微元法解电磁感应
微元法在电磁感应问题中的应用
——微元法在电磁感应问题中的应用
导体 感应电 变速 E=BLv 动势变 运动 化
v与a方向关系
E I= R+r
感应 电流 变化
F=BIL
加速 度变 化
F合=ma
合外 力变 化
F合=F安+F其
安培 力变 化
分析此类问题的关键是抓住状态变化过程中变 量的变化特点和规律,从而确定状态变化过程中的 临界点和最终状态
q CBL v CBL a I t t mg CB 2 L2 a ma m 恒量 a g 2 2 m CB L
即物体作匀加速直线运动!
2008.12.16
mg
分析元过程 来帮助理解 运动细节
小结——微元法在电磁感应问题中的应用 在处理问题时,从对事物的极小部分(微元)分 析入手,达到解决事物整体的方法。 在使用微元法处理问题时,需将其分解为众多 微小的“元过程”,而且每个“元过程”所遵循的 规律是相同的,这样,我们只需分析这些“元过 程”,然后再将“元过程”进行必要的数学方法 (累计求和)进而使问题求解。 在电磁感应问题中,常常遇到非匀变速运动过 程中求位移,电量,能量等问题,灵活运用微元的 思想,可以帮助我们更深刻的理解物理过程。
t
2008.12.16
R
B
F
思考:求该过程中 ③末速度多大? 产生的焦耳热
B 2 L2 vm F F安 R
2 2
FR vm 2 2 B L
v vm
B L v 运动规律 F vi m R2 2 t B L F t vi t mv t0 t t R Δt B 2 L2 F t vi t m v Ft mvm R x R 2 2 2 2 B L B L Ft x m(vm 0) R
电磁感应微元法
电磁感应中的“微元法”和“牛顿第四定律”江苏省特级教师 江苏省丰县中学 戴儒京所谓:“微元法”所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。
1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。
2. 关于微元法。
在时间t ∆很短或位移x ∆很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ∆=∆,s x l t lv ∆=∆=∆。
微元法体现了微分思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),并且0v v v -=∆∑,当末速度0=v 时,有∑=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。
对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。
微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。
电磁感应中的微元法一些以“电磁感应”为题材的题目。
可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为B L v E =,感应电流为R BLvI =,受安培力为v RL B B I L F 22==,因为是变力问题,所以可以用微元法.1.只受安培力的情况例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
(1) 求导体棒刚滑到水平面时的速度0v ;(2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出x v -关系草图。
(浙江专用)高考物理大二轮复习微专题4电磁感应中的“微元法”课件
Δv=∑(-������2������2)·vΔt=(-������2������2)·x,速度
������������
������������
v=v0+Δv=v0-������������2������������2·x。
-6-
既受安培力又受重力的情况 【例2】如图所示,竖直平面内有一边长为L、质量为m、电阻为 R的正方形线框在竖直向下的匀强重力场和水平方向的磁场组成 的复合场中以初速度v0水平抛出,磁场方向与线框平面垂直,磁场的 磁感应强度随竖直向下的z轴按B=B0+kz的规律均匀增大,已知重力 加速度为g,求:
������
舍=mg-F
安=mg-������
2
������4 ������
������������
是变力。
用微元法,设在微小时间 Δt 内,变力可以看做恒力,变加速运动可
以看做匀加速运动,加速度为 a=g-������2������4������������,则在 Δt 内速度的增加为
������������
������
微元法。
-3-
只受安培力的情况 【例1】如图所示,宽度为L的光滑金属导轨一端封闭,电阻不计, 足够长,水平部分有竖直向上、磁感应强度为B的匀强磁场。质量 为m、电阻为r的导体棒从高度为h的斜轨上从静止开始滑下,由于 在磁场中受安培力的作用,在水平导轨上滑行的距离为s时停下。
-4-
(1)求导体棒刚滑到水平面时的速度v0; (2)写出导体棒在水平导轨上滑行的速度v与在水平导轨上滑行 的距离x的函数关系。 答案:(1) 2������ℎ (2)v=v0-������������2������������2·x
在时间
高中物理电磁感应微元法专题
电磁感应中的“微元法”1 走近微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
“微元法”,又叫“微小变量法”,是解物理题的一种常用方法。
2 如何用微元法1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。
2. 关于微元法。
一般是以时间和位移为自变量,在时间t 很短或位移x 很小时,此元过程内的变量可以认为是定值。
比如非匀变速运动求位移时在时间t 很短时可以看作匀速运动,在求速度的变化量时在时间t 很短时可以看作匀变速运动。
运动图象中的梯形可以看作很多的小矩形,所以,v t x s。
微元法体现了微分的思想。
3. 关于求和。
许多小的梯形加起来为大的梯形,即s S ,(注意:前面的s为小写,后面的S 为大写),比如v v v0 ,当末速度v 0 时,有v,或初速度v0 0v时,有v v ,这个求和的方法体现了积分思想。
4.物理量有三种可能的变化情况不变(大小以及方向)。
可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。
线性变化(方向不变,大小线性变化)。
比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。
电流的平方随时间线性变化可用平方的平均值来求焦耳热。
非线性变化。
可以考虑用微元法。
值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。
微元法在电磁感应中的应用
注:
解:将整个导体棒分割成n个小线元,小线元端点到轴线的距离分别为r-r(=0),r , r ,……,r ,r ,……,r ,r (= a),第i个线元的长度为Δ r =r ,当Δ r
0 1
很小时,可以认为该线元上各点的速度都为vi=ω ri,各点的磁感应强度都为 Bi=Kri, 该线元因切割磁感线而产生的感应电动势为 ΔE Bvi Δri Kri ri Δri K ri2 Δri ① i 整个棒上的电动势为
2
代入②式,得
n 1 1 1 E K (ri3 ri3 1 ) K[(r13 r03 ) (r23 r13 ) (rn3 rn31 )] Ka 3 3 3 3 i 1
③
由全电路欧姆定律,导体棒通过的电流为
E Ka 3 I R 3R
2
式中已略去高阶小量(Δri)2。该细圆环带上、下表面所带电荷量之和为
Δqi 2σΔS i 2σ 0 ri2 2π ri Δri 4π 0 Δri ri
设时刻t,细圆环转动的角速度为 , 0 t 单位时间内,通过它的“横截面”的电荷量,即为电流
ΔI i Δqi
2 2 2k 0 (a 2 a1 ) πa 0 2k 0 (a 2 a1 ) πa 0 E t a1 a 2 t a1 a 2
⑤
由全电路欧姆定律可知,导线环内感应电流的大小为
2 E 2k 0 (a 2 a1 ) πa 0 I R a1 a 2 R
二、微元法解决问题的一般思路
(1)将所研究的对象进行无限分割,或假设研究对象发生了微小的 变化,如伸长了一小段长度Δl、质量减少了Δm、发生了一小段位 移Δx、经历了一小段时间Δt等等。 (2)从该微元入手,以某个微元为研究对象或微小变化为研究过程, 找出所选取的微元或微小变化所遵循的物理规律,列出对应的物理 方程。
微元法论文电磁感应论文:微元法在电磁感应中的应用题型分析
微元法论文电磁感应论文:微元法在电磁感应中的应用题型分析摘要:本文针对目前江苏高考中电磁感应中微元法的应用进行了深入浅出的分析。
首先对微元法的定义和步骤作简要的分析。
然后把电磁感应中出现的题目作了简要的分类:(1)导体棒所受的合力为单一安培阻力。
(2)安培阻力与物体速度成正比,导体在受到安培力的作用下和一个恒定外力的作用下做变加速运动。
(3)导体棒由于切割磁感线产生感应电流,受到安培阻力作用做变加速运动,安培力与速度的不成正比。
对每种题型作了详尽的分析,并且得出了更易于学生接受的推论。
此方法已经在教学实践中加以应用,并收到了良好的效果。
关键词:微元法电磁感应应用一、背景微元法是中学物理中的一种重要的思想方法。
从近几年的江苏省的高考试题来看多次出现应用微元法解决电磁感应的题目,如2006年最后一题,2007年最后第二题,2008年的最后一题,2009年最后一题。
说明在江苏高考中微元法占有相当重要的地位。
在大学普通物理中,许多问题的求解都要用到“微元法”的思想。
因此微元法非常重要。
我在教学过程中发现,学生对微元法的理解不够深入。
学生对微元法什么时候用,为什么要用,怎样用微元法往往是一知半解,在考试中乱用一气。
在电磁感应与力学综合题中,导棒在磁场中切割磁感线,产生感应电动势,进而产生感应电流。
导棒中的感应电流在磁场中受到了安培力的作用。
而安培力与物体的速度有关,安培力是变力,进而使导棒做变加速运动。
当求导棒在一定时间内发生的位移,或发生一定位移时需要的时间,由于导棒发生变加速运动,不能应用匀变速运动规律来求解,这为微元法的应用提供了非常好的素材。
因此本文借助于电磁感应中的力学问题的素材来研究微元法的应用。
本文主要讨论两个方面:一是怎样引导利用微元法来解题;二是就电磁感应中利用微元法解答的几种题型作初步的探讨。
二、微元法的定义微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
微元法在《电磁感应》中的应用
微元法在《电磁感应》中的应用作者:揭秋林来源:《中学物理·高中》2015年第12期物理学追求认识自然界最普遍、最基本的规律。
学生学习物理,就要注意养成追根问底、悟物穷理的思维习惯,这有利于提高学生的理性思维能力。
新教材在《电磁感应》这一章中较老教材做了许多改动,从电磁感应现象,本质、规律三方面进行阐述,旨在达到上述效果。
但是由于高中学生在物理理论知识和数学知识两方面都有不足,学习时做不到深究,从而造成对电磁感应的认识不到位,而微元法能很好的加深理解和应用。
1 电磁感应现象大量的实验说明只要穿过某一闭合回路的磁通量发生变化,闭合回路中就有电流产生,磁通量的变化有以下两种情况:(1)B不变化而闭合电路的整体或局部在做切割磁感线运动,这样产生的感应电动势叫做动生电动势。
(2)B变化而闭合电路的任一部分都不动,这样产生的感应电动势叫做感生电动势。
2 产生电动势的原因(1)动生电动势的产生原因——洛伦兹力如图1所示,金属杆ab以速率v向右平移,它里面的电子也随之向右运动,向右运动的电子因处在磁场中所以要受到[TP12GW167。
TIF,Y#]洛伦兹力作用,由左手定则可以判断洛伦兹力方向向下,沿杆的洛伦兹力驱使自由电子向下运动,闭合线框中便出现逆时针方向的电流,这样在杆ab中就产生了动生电动势,运动着的杆ab就相当于电源。
(2)感生电动势产生的原因——感生电场力通过实验观察杆不动磁场变化时的电磁感应现象,自然会提出什么力驱使电荷定向移动呢?麦克斯韦认为,变化的磁场会激发一个闭合电场,我们称之为感生电场或涡旋电场。
感生电场对自由电荷的感生电场力充当了非静电力驱使闭合回路中的自由电荷定向移动,形成了电流,产生了感生电动势。
3 感应电动势大小的计算方法3。
1 匀强电场中的动生电动势大小的计算方法方法一从产生原因入手——洛伦兹力作用如图2所示,金属杆ab以速率v向右平移,则自由电子受到的沿杆的洛伦兹力f=evB,电子从金属杆一端移动到另一端(相当于从电源的一极移到另一极),此力做功Wf=fl,而Wf=eE,联立以上三式可解得E=Blv。
电磁感应中的“微元法”
电磁感应中的“微元法”1走近微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
“微元法”,又叫“微小变量法”,是解物理题的一种常用方法。
2如何用微元法1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。
2. 关于微元法。
一般是以时间和位移为自变量,在时间t ∆很短或位移x ∆很小时,此元过程内的变量可以认为是定值。
比如非匀变速运动求位移时在时间t ∆很短时可以看作匀速运动,在求速度的变化量时在时间t ∆很短时可以看作匀变速运动。
运动图象中的梯形可以看作很多的小矩形,所以,s x t v ∆=∆=∆。
微元法体现了微分的思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),比如0v v v -=∆∑,当末速度0=v 时,有∑-=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4.物理量有三种可能的变化情况✍不变(大小以及方向)。
可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。
✍线性变化(方向不变,大小线性变化)。
比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。
电流的平方随时间线性变化可用平方的平均值来求焦耳热。
✍非线性变化。
可以考虑用微元法。
值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。
浅谈“微元法”在高考物理题中应用
浅谈“微元法”在高考物理题中应用作者:史文杰来源:《理科考试研究·高中》2014年第12期在近几年的高考中时常出现一些涉及物体在变力作用下,做非匀变速运动的问题.学生在解题时,感觉无从下手.因为日常的教学和练习中,大多数情况只讨论恒力作用下的匀变速直线运动,对于变力问题下的非匀变速直线运动只作定性分析,很少进行定量研究.这类问题的解决涉及到“微元法”.一、微元法所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法.它适用于变力作用下做变速运动(非匀变速运动)的情况.用微元法解题目体现了微分和积分的思想.何为微分思想?例如时间Δt很短或位移Δx很小时,非匀变速运动可以看作匀变速运动,从v-t图象中的图形可近似看作矩形,所以vΔt=Δx.何为积分思想?如许多小的梯形加起来为大的梯形,即Δx=X,(Δx代表微位移,X代表总位移),并且Δv=v-v0,当末速度v=0时,有Δv=v0,或初速度v0=0时,有Δv=v,这种求和的方法体现了积分思想.笔者发现采用“微元法”解决的题目虽然很多,情景多变,但其解题的模式是相似的,都采用关系式Δv=aΔt=F合mΔt,即牛顿第二定律和加速度定义式的微元式,学生只要会受力分析和运动分析,写出F合的表达式(与v有关的变力)以及初速度v0和末速度v,根据上面的方程,解出相关的物理量即可.下面谈一谈“微元法”在电磁感应问题和动力学问题中的应用.二、“微元法”在电磁感应问题中的应用一些涉及“电磁感应”的题目,可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生的感应电动势E=BLv,感应电流I=BLvR,安培力F=BIL=B2L2Rv,因为是变力问题,所以可以用微元法.例1如图所示,一水平放置的光滑平行导轨上放一质量为m的金属杆,导轨间距为L,导轨的一端连接一阻值为R的电阻,其它电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面,现给金属杆一个水平向右的初速度v0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析对杆进行受力分析,杆在竖直平面内受到重力、竖直向上的支持力这是一对平衡力,水平方面上向左的安培力是杆受到的合外力.而且F安随速度的变小而变小.这是典型变力作用下求位移的题.解设杆在减速中的某一时刻的速度为v,取一极短时间Δt,发生了一段极小的位移Δx,在Δt时间内,磁通量的变化Δ=BLΔx,感应电流I=ΔΔtR=BLΔxΔtR安培力F安=BIL=B2L2ΔxΔtR,由于Δt极短,可以认为F安=B2L2vR.由牛顿第二定律在t到t+Δt时间内,Δv=aΔt=F合m=Δt (此处体现了微分思想)方程两边求和:Δv=B2L2vmRΔt (此处体现了积分思想)方程变形:Δv=B2L2mRvΔt (vΔt=x,Δv=v0-0)即v0-0=B2L2mRx,解得:x=mv0RB2l2三、“微元法”在动力学问题中的应用。
电磁感应中微元法的应用技巧及实例
电磁感应中微元法的应用技巧及实例无锡市第六高级中学 曹钱建摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。
间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。
关键词:微元法;电磁感应;高考新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。
而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。
电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。
其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。
例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称.(1)求t=0时刻线圈的电功率;(2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少?(3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m RLS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率Rv L B R E P 20222==(2)线圈进入磁场的过程中动能转化为焦耳热 21202121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -=(3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得:Bv v 乙m Rv L B m BLI a 22==: 等式两边同时乘以t ∆可得:t Lv mRL B t v mR L B t a ∆=∆=∆222 因为时间t ∆极短,则a 可认为恒定不变,所以t a ∆等于此极短时间内的速度改变量v ∆,同理v 也可认为恒定不变,所以t v ∆等于此极短时间内的位移x ∆。
高中物理电磁感应微元法专题
电磁感应中的“微元法”1走近微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
“微元法”,又叫“微小变量法”,是解物理题的一种常用方法。
2如何用微元法1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。
2. 关于微元法。
一般是以时间和位移为自变量,在时间t ∆很短或位移x ∆很小时,此元过程内的变量可以认为是定值。
比如非匀变速运动求位移时在时间t ∆很短时可以看作匀速运动,在求速度的变化量时在时间t ∆很短时可以看作匀变速运动。
运动图象中的梯形可以看作很多的小矩形,所以,s x t v ∆=∆=∆。
微元法体现了微分的思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),比如0v v v -=∆∑,当末速度0=v 时,有∑-=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4.物理量有三种可能的变化情况 不变(大小以及方向)。
可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。
线性变化(方向不变,大小线性变化)。
比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。
电流的平方随时间线性变化可用平方的平均值来求焦耳热。
非线性变化。
可以考虑用微元法。
值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。
巧用微元法求解电磁感应问题的几类模型
巧用微元法求解电磁感应问题的几类模型摘要:微元法是高中物理教学中一种重要的思维方法。
本文结合电磁感应问题中的几类模型,利用微元法的思想有效快速地解决了问题,并收到了良好的教学效果。
在教学中进行“微元法”的训练,能提高学生思维能力和分析解决问题的能力。
关键词:微元法电磁感应模型在高中物理中,由于数学知识学习上的局限,对于高等数学中可以使用积分来进行计算的一些问题,在高中很难加以解决,成为一大难题。
但是如果应用积分的思想,化整为零,化曲为直,采用“微元法”,可以很好地解决这类问题。
“微元法”通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法,这个方法充分体现了积分的思想。
本文结合电磁感应中的几种疑难问题,对微元法的灵活应用加以分析说明。
一、“切割类”模型导体切割磁感线是高中物理常见的产生感应电动势的基本模型之一,我们将这种模型简称为“切割类”模型。
直线切割比较简单,但对于不规则形状的切割可以利用微元法来求解。
具体如下例:例1:如图1所示,ab是半径为r的半圆形金属导体,当ab以v水平向右运动时,求ab两端的感应电动势多大?解析:高中生利用法拉第电磁感应定律可以推导出直线切割时的感应电动势为:e=blv,但是对于不规则导体切割磁感线的情况则感到束手无策。
此时不妨利用微元法,将金属导体ab分为无数条小段,如下图2所示:在图2中选取任意一小段导体l,将其无限放大后如图3所示,由于导体l本身比较短,可以将导体l等效为直线,则导体l可以正交分解为水平分量lx和竖直分量ly,水平分量lx不会切割磁感线,竖直分量ly切割磁感线产生的感应电动势大小为el=blyv,以此类推,每一小段导体切割的感应电动势都可以按照正交分解的办法,所有竖直分量叠加起来即为大导体ab的直径2r,故导体ab产生的感应电动势大小为:e=b2rv=2brv.二、“插入类”模型当条形磁铁插入或者拔出闭合金属环时,金属环内会产生感应电流,电流方向可以用楞次定律判定。
2019届高考物理二轮复习 微专题4 电磁感应中的“微元法”
K12课件
-12-
练 如图所示,刚性U型金属导轨M1N1N2M2位于光滑水平桌面上, 其左端中接有阻值为R的电阻,它们总的质量为m0。导轨的两条轨 道间的距离为l,PQ是质量为m的金属杆,其电阻为r,可在轨道上滑 动,滑动时保持与轨道垂直。杆与轨道的接触是粗糙的,导轨的电 阻均不计。初始时,杆PQ于图中的虚线处,虚线的右侧为一匀强磁 场区域,磁场方向垂直于桌面,磁感应强度的大小为B。现有一位于 导轨平面内的与轨道平行的恒力F作用于PQ上,使之从静止开始在 轨道上向右做加速运动。已知经过时间t通过电阻的电流为I0,导轨 向右移动的距离为x0(导轨的N1N2部分尚未进入磁场区域)。不考 虑回路的自感,求:
(1)线框竖直方向速度为v1时,线框中瞬时电流的大小; (2)线框在复合场中运动的最大电功率; (3)若线框从开始抛出到瞬时速度大小到达v2所经历的时间为t,那 么,线框在时间t内的总位移大小K为12课多件 少?
-7-
答案:(1)������������2������1
������
(2)������������22������������24������
Δv=gΔt-������
2 ������4 ������������ ������������Δt,而源自vzΔt=Δz,所以在时间
t
内增加的速度为
Δv=g∑Δt-������2������4∑Δz,所以 Δv=gt-������2������4·z。
������������
������������
从宏观看速度的增加为 ������22-������02,所以 gt-���������2���������������4·z= ������22-������02,得线框
电磁感应中的“微元法”和“牛顿第四定律”
电磁感应中的“微元法”和“牛顿第四定律”所谓:“微元法”所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。
1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。
2. 关于微元法。
在时间t ∆很短或位移x ∆很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ∆=∆,s x l t lv ∆=∆=∆。
微元法体现了微分思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),并且0v v v -=∆∑,当末速度0=v 时,有∑=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法.如果既可以用动量定理也可以用动能定理解。
对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。
微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。
电磁感应中的微元法一些以“电磁感应”为题材的题目。
可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为BLv E =,感应电流为RBLv I =,受安培力为v RL B BIL F 22==,因为是变力问题,所以可以用微元法.1.只受安培力的情况例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
(1) 求导体棒刚滑到水平面时的速度0v ; (2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出x v -关系草图。
解决电磁感应问题 不可缺少的五种思维方法
解决电磁感应问题不可缺少的五种思维方法作者:冯占余来源:《中学生数理化·高二高三版》2015年第04期在电磁感应的学习中,同学们不仅要掌握、理解基本知识,更重要的任务是培养思维方法,提高灵活运用基本知识解决物理问题的能力。
下面我们就一起来解决一些具体问题,进而探讨在电磁感应的学习中思维方法的培养。
一、等效法等效法是在某种物理意义效果相同的前提下,通过相互替代把复杂的问题变换成简单的问题来研究的一种科学思维方法。
可使问题化繁为简,化难为易。
例1 如图1所示,半径为r的半圆形金属导线处于磁感应强度为B的匀强磁场中,磁场方向垂直于线圈所在平面,试求导线在下列情况中产牛的感应电动势:(1)导线在自身所在平面内,沿垂直于直径OO'的方向以速度v向右匀速运动。
(2)导线从图示位置起,绕直径OO'以角速度w匀速转动。
解析:(1)假设另有一直导线OO'以同样的速度v向右匀速平动,因为半圆形导线OAO'和直导线OO'在相同的时间内切割的磁感线条数相等,所以在产生感应电动势这一点上,半圆形导线OAO'与直导线OO'等效。
从而易得E=2Bvr。
二,图像法图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理示意图,利用示意图直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的。
三、对称法由于物质世界存在某些对称性,使得物理学中某些电磁感应现象也具有对称性。
用对称性解题的关键是敏锐地抓住事物在某一方面的对称性,这些对称性往往就是通往正确答案的捷径。
利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求四、极端法极端法就是极端思维方法。
物理现象的产生、存在和变化,由于涉及的因素较多,牵涉的面较广,变化过程较复杂,从而使问题难以求解。
如果我们将问题推到极限状态或极限值条件下进行分析研究,就会使问题变得容易求解。
高考物理大一轮复习第单元电磁感应增分微课九导数和微元法在电磁感应中的应用
t 求导,可得感应电动势为
2
2
2
e= =BR ωcos
ωt,在 C
从 A 点沿圆弧移动的过程中,磁通量 Φ 先增加后
减少,由楞次定律可判断导线框中感应电流的方
向先沿逆时针后沿顺时针,A 正确;
应用示例
A.在 C 从 A 点沿圆弧移动到 D 点的过程中,
导线框中感应电流的方向先沿逆时针,后沿顺
x,导体棒速度为 v 时,回路中感应电流为 i,则
的匀强磁场.导轨上有一导体
i=
安=Bil=B
棒 ab,其质量为 m,以初速度 v0
向右运动.棒和导轨的电阻均
不计,棒与导轨始终保持垂直
且接触良好,求:
图 W9-2
(1)导体棒在整个运动过程中的位移 x;
(2)在导体棒的整个运动过程中通过闭合回路某
金属杆所受安培力大小为 F=BIl=1.44×10 N.
金属杆所受的安培力大小.
A
-3
应用示例
例 3 如图 W9-2 所示,水平放置的两根光滑平行
[答案]
0
(1) 2 2
0
(2)
金属导轨与电阻为 R 的导体相连,两导轨间距为
[解析] (1)设导体棒整个运动过程中的位移为
l,其间有垂直于导轨平面向下、磁感应强度为 B
金属棒在时刻 t 的加速度方向沿斜面向下,设其
大小为 a,根据牛顿第二定律有
mgsinθ-f1-f2=ma
联立得
(sin-cos)
a=
g
2
2
+
由此可知,金属棒做初速度为零的匀加速运动.t
20电磁感应微元法专题
电磁感应中的“微元法”1. 关于微元法。
在时间t ∆很短或位移x ∆很小时,x t v ∆=∆,s x l t lv ∆=∆=∆。
微元法体现了微分思想。
2. 关于求和∑。
0vv v -=∆∑,求和的方法体现了积分思想。
3牛顿定律,动量定理或动能定理,都可以用微元法. 1.只受安培力的情况例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
求(1)导体棒刚滑到水平面时的速度v 0;(2)写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出v-x 关系草图。
(3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度v 1、v 2;2.既受安培力又受重力的情况例、如图所示,竖直平面内有一边长为L 、质量为m 、电阻为R 的正方形线框在竖直向下的匀强重力场和水平方向的磁场组成的复合场中以初速度v 0水平抛出,磁场方向与线框平面垂直,磁场的磁感应强度随竖直向下的z 轴按B=B 0+kz 得规律均匀增大,已知重力加速度线框竖直方向速度为v 1时,为g,求: (1)线框中瞬时电流的大小;(2)线框在复合场中运动的最大电功率;(3)若线框从开始抛出到瞬时速度大小到达v 2所经历的时间为t ,那么,线框在时间t 内的总位移大小为多少?3.重力和安培力不在一条直线上的情况 例3、如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直.(设重力加速度为g )⑴若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁场区域过程中增加的动能△E k ;⑵若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域;此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且a .b 在任意一个磁场区域或无磁场区域的运动时间均相等.求b 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q ;⑶对于第⑵问所述的运动情况,求a 穿出第k 个磁场区域时的速率v .1、如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5m,现有一边长l=0.2m、质量m=0.1kg、电阻R=0.1Ω的正方形线框MNOP以v0=7m/s的初速从左侧磁场边缘水平进入磁场,求(1)线框MN边刚进入磁场时受到安培力的大小F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微元法解电磁感应压轴
1【石家庄期末】如图所示,相距l=0.5m足够长的两根光滑导轨与水平面成37°角,导轨电阻不计,上、下端分别连接阻值都为2Ω的电阻R,导轨处在磁感应强度B=2T的匀强磁场中,磁场方向垂直导轨平面向上.一质量为0.5kg、电阻为1Ω的金属棒ab水平放置在导轨上且与导轨接触良好,现将ab棒从静止释放,ab棒沿轨道下滑4m时,速度达到最大值Vm(g=10m/s2,sin37°=0.6.cos37°=0.8)求:
(1)ab棒的最大速度Vm;
(2)该过程中电路产生的焦耳热;
(3)该过程中通过导轨下端电阻R的电荷量q。
2【2016石家庄一模】(19分)如图所示,间距为L平行且足够长的光滑导轨由两部分组成:倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r的定值电阻.质量为m、电阻也为r的金属杆MN垂直导轨跨放在导轨上,在倾斜导轨区域加以垂直导轨平面向下、磁感应强度为B的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B的匀强磁场.闭合开关S,让金属杆MN从图示位置由静止释放,已知金属杆运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆始终与导轨接触良好,重力加速度为g.求:
(1)金属杆MN在倾斜导轨上滑行的最大速率Vm;
(2)金属杆MN在倾斜导轨上运动,速度未达到最大速度Vm前,当流经定值电阻的电流从零增大到I的过程中,通过定值电阻的电荷量为q,求这段时间内在定值电阻上产生的焦
耳热Q;
(3)金属杆MN在水平导轨上滑行的最大距离Xm。
3【2017昆明二模】(20分)如图所示,平行光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L,A,C两点间连接有阻值为R的电阻,一根质量为m,电阻为r 的直导体棒EF跨在导轨上,两端与导轨接触良好.在边界ab,cd之间存在垂直导轨平面的匀强磁场,磁场的磁感应强度为B,ab和cd与导轨垂直,将导体棒EF从图示位置由静止释放,EF 进入磁场就开始匀速运动,穿过磁场过程中电阻R产生的热量为Q,整个运动过程中,导体棒EF与导轨始终垂直且接触良好,除R和r之外,其余电阻不计,取重力加速度为g.
(1)求导体棒EF刚进入磁场时的速率;
(2)求磁场区域的宽度s;
(3)将磁感应强度变化为0.5B,仍让导体棒EF从图示位置由静止释放,若导体棒离开磁场前后瞬间的加速度大小之比为1:2,求导体棒通过磁场的时间.
4【2013年全国卷】(20分)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系。
5【2017年天津卷】(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:
(1)磁场的方向;
(2)MN刚开始运动时加速度a的大小;
(3)MN离开导轨后电容器上剩余的电荷量Q是多少。
6【等长双杆】如图所示,在匀强磁场区域内与B垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L,质量为m,电阻为R,回路部分导轨电阻可忽略,棒与导轨无摩擦,不计重力和电磁辐射,且开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v0,试求两棒之间距离增长量x的最大值。
7【不等长双杆】如图所示,abcd和a'b'c'd'为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场.ab、a'b'间的宽度是cd、c'd'间宽度的2倍.设导轨足够长,导体棒ef 的质量是棒gh的质量的2倍,现给导体棒ef一个初速度v0,沿导轨向左运动,当两棒的速度隐定时,两棒的速度分别是多少?
8【2018年天津卷】真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。
图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计,ab和cd是两根与导轨垂直,长度均为l,电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m。
列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示,为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自动关闭。
(1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并简要说明理由;
(2)求刚接通电源时列车加速度a的大小;
(3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。
若某时刻列车的速度为Vo,此时ab、cd均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?
9如图(a),—水平面内固定有两根平行的长直金属导轨,导轨间距为L;两根相同的导体棒M、N置于导轨上并与导轨垂直,长度均为L;棒与导轨间的动锁因数为μ(最大静摩擦力等于滑动摩擦力);整个装置处于竖直向下的匀强磁场中,磁感应强度大小为B。
从t=0时开始,对导体棒施加一平行于导轨的外力F,F随时词变化的规律如图(b)所示.已知在to时刻导体棒MM加速度大小为μg,导体棒N开始运动。
运动过程中两棒均与导轨接触良好重力加速度大小为g,两棒的质量均为m,电阻均为R,导轨的电阻不计。
求:
(1)to时刻导体棒M的速度vm;
(2)0~to时间内外力F的冲量大小;
(3)0~to时间内导体棒M与导轨因摩擦产生的内能。