材料力学习题集 (有答案)教学内容

合集下载

材料力学习题册参考答案

材料力学习题册参考答案

材料力学习题册参考答案材料力学习题册参考答案(无计算题)第1章:轴向拉伸与压缩一:1(ABE )2(ABD )3(DE )4(AEB )5(C )6(CE)7(ABD )8(C )9(BD )10(ADE )11(ACE )12(D )13(CE )14(D )15(AB)16(BE )17(D )二:1对2错3错4错5对6对7错8错9错10错11错12错13对14错15错三:1:钢铸铁 2:比例极限p σ 弹性极限e σ 屈服极限s σ 强度极限b σ3.横截面 45度斜截面4. εσE =, EAFl l =5.强度,刚度,稳定性;6.轴向拉伸(或压缩);7. llb b ?μ?=8. 1MPa=106 N/m 2 =1012 N/mm 2 9. 抵抗伸缩弹性变形,加载方式 10. 正正、剪 11.极限应力 12. >5% <5% 13. 破坏s σ b σ 14.强度校核截面设计荷载设计15. 线弹性变形弹性变形 16.拉应力 45度 17.无明显屈服阶段的塑性材料力学性能参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑8. s2s 9. 0.1 10. 压缩11. b 0.4σ 12. <;< 剪切挤压答案:一:1.(C ),2.(B ),3.(A ),二:1. 2bh db 2. b(d+a) bc 3. 4a δ a 2 4. F第2章:扭转一:1.(B ) 2.(C D ) 3.(C D ) 4. (C ) 5. (A E ) 6. (A )7. (D )8. (B D ) 9.(C ) 10. (B ) 11.(D ) 12.(C )13.(B )14.(A ) 15.(A E )二:1错 2对 3对 4错 5错 6 对三:1. 垂直 2. 扭矩剪应力 3.最外缘为零4. p ττ< 抗扭刚度材料抵抗扭转变形的能力5. 不变不变增大一倍6. 1.5879τ7.实心空心圆8. 3241)(α- 9. m ax m in αττ= 10. 长边的中点中心角点 11.形成回路(剪力流)第3章:平面图形的几何性质一:1.(C ),2.(A ),3.(C ),4.(C ),5.(A ),6.(C ),7.(C ),8.(A ),9.(D )二:1). 1;无穷多;2)4)4/5(a ; 3),84p R I π=p 4z y I 16R I I ===π4)12/312bh I I z z ==;5))/(/H 6bh 6BH W 32z -= 6)12/)(2211h b bh I I I I z y z y +=+=+;7)各分部图形对同一轴静矩8)两轴交点的极惯性矩;9)距形心最近的;10)惯性主轴;11)图形对其惯性积为零三:1:64/πd 114; 2.(0 , 14.09cm )(a 22,a 62)3: 4447.9cm 4, 4:0.00686d 4 ,5: 77500 mm 4 ;6: 64640039.110 23.410C C C C y y z z I I mm I I mm ==?==?第4章:弯曲内力一:1.(A B )2.(D )3.(B )4.(A B E )5.(A B D )6.(ACE ) 7.(ABDE ) 8.(ABE )9. (D ) 10. (D ) 11.(ACBE ) 12.(D ) 13.(ABCDE )二:1错 2错 3错 4对 5错 6对 7对三:1. 以弯曲变形 2.集中力 3. KNm 2512M .max =4. m KN 2q = 向下 KN 9P = 向上5.中性轴6.荷载支撑力7. 小8. 悬臂简支外伸9. 零第5章:弯曲应力一:1(ABD)2.(C )3.(BE )4.(A )5.(C )6.(C )7.(B )8.(C )9.(BC )二:1对 2错 3错 4 对 5 错 6错 7 对三:1.满足强度要求更经济、更省料2. 变成曲面,既不伸长也不缩短3.中性轴4.形心主轴5.最大正应力6.剪力方向7.相等8.平面弯曲发生在最大弯矩处9.平面弯曲第6章:弯曲变形一:1(B ),2(B ),3(A ),4(D ),5(C ),6(A ),7(C ),8(B ),9(A )10(B ),11(A )二:1对2错3错4错5错6对7错8错9错10对11错12对三:1.(转角小量:θθtan ≈)(未考虑高阶小量对曲率的影响)2. 挠曲线采用近似微分方程导致的。

材料力学性能》课程习题集

材料力学性能》课程习题集

材料力学性能》课程习题集材料力学性能》课程题集1.解释以下名词:1) 弹性比功:材料在弹性阶段内所吸收的能量与所施加的力之比。

2) 包辛格效应:材料在受到压力时,由于晶格结构的变化而导致的体积变化。

3) 解理面:材料中存在的平面状缺陷,容易引起断裂。

4) 塑性、脆性和韧性:材料的变形能力、断裂形式和抵抗断裂的能力。

5) 解理台阶:材料中解理面上形成的台阶状缺陷。

6) 河流花样:材料中出现的一种特殊断裂形式。

7) 穿晶断裂和沿晶断裂:材料的断裂方式,穿晶断裂为穿过晶粒的断裂,沿晶断裂为沿着晶粒的界面断裂。

2.常用的标准试样有5倍试样和10倍试样,其延伸率分别用σ5和σ10表示,为什么选择这样的表示方法?答:选择这种表示方法是因为延伸率随着应力的增加而逐渐减小,而σ5和σ10则可以表示在不同应力下的延伸率,从而更全面地描述材料的延展性能。

3.某汽车弹簧在未装满载时已变形到最大位置,缺载后可完全恢复到原来状态;另一汽车弹簧使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。

试分析这两种故障的本质及改变措施。

答:第一种故障是弹簧在弹性阶段内发生的变形,可以通过增加弹簧的刚度来解决;第二种故障是弹簧在塑性阶段内发生的变形,需要重新设计弹簧的材料和结构,以提高其抗塑性变形的能力。

4.金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能?答:金属的弹性模量主要取决于其晶格结构和原子键的强度。

它是一个对结构不敏感的力学性能,是因为即使在不同的晶格结构和原子排列方式下,金属的原子键强度也是相似的,从而导致弹性模量的变化不大。

5.今有45、40Cr、35CrMo钢和灰铸铁几种材料,你选择那种材料作为机床机身?为什么?答:选择35CrMo钢作为机床机身材料,因为它具有较高的强度和韧性,能够承受机床的重载和振动,同时具有良好的加工性能和耐磨性。

6.什么是包辛格效应,如何解释,它有什么实际意义?答:包辛格效应是材料在受到压力时,由于晶格结构的变化而导致的体积变化。

材料力学习题集(含答案)要点

材料力学习题集(含答案)要点

《材料力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《材料力学》(编号为06001)共有单选题,计算题,判断题,作图题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。

一、单选题1.构件的强度、刚度和稳定性________。

(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关2.一直拉杆如图所示,在P力作用下。

(A) 横截面a上的轴力最大(B) 横截面b上的轴力最大(C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大3.在杆件的某一截面上,各点的剪应力。

(A)大小一定相等(B)方向一定平行(C)均作用在同一平面内(D)—定为零4.在下列杆件中,图所示杆是轴向拉伸杆。

(A) (B)(C) (D)P5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A为。

(A)横截面上的正应力(B)斜截面上的剪应力(C)斜截面上的正应力(D)斜截面上的应力6.解除外力后,消失的变形和遗留的变形。

(A)分别称为弹性变形、塑性变形(B)通称为塑性变形(C)分别称为塑性变形、弹性变形(D)通称为弹性变形7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。

(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍(C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍8.图中接头处的挤压面积等于。

P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。

(A)τ/2(B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。

(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴线与载荷作用面同在—个平面内12.图示悬臂梁的AC段上,各个截面上的。

材料力学-习题集(含答案)

材料力学-习题集(含答案)

《材料力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《材料力学》(编号为06001)共有单选题,计算题,判断题,作图题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。

一、单选题1.构件的强度、刚度和稳定性________。

(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关2.一直拉杆如图所示,在P力作用下。

(A) 横截面a上的轴力最大(B) 横截面b上的轴力最大(C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大3.在杆件的某一截面上,各点的剪应力。

(A)大小一定相等(B)方向一定平行(C)均作用在同一平面内(D)—定为零4.在下列杆件中,图所示杆是轴向拉伸杆。

(A) (B)(C) (D)P5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A为。

(A)横截面上的正应力(B)斜截面上的剪应力(C)斜截面上的正应力(D)斜截面上的应力6.解除外力后,消失的变形和遗留的变形。

(A)分别称为弹性变形、塑性变形(B)通称为塑性变形(C)分别称为塑性变形、弹性变形(D)通称为弹性变形7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。

(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍(C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍8.图中接头处的挤压面积等于。

P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。

(A)τ/2(B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。

(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴线与载荷作用面同在—个平面内12.图示悬臂梁的AC段上,各个截面上的。

材料力学习题集 (有答案)

材料力学习题集  (有答案)

绪 论一、 是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。

( ) 1.2 内力只能是力。

( )1.3 若物体各点均无位移,则该物体必定无变形。

( ) 1.4 截面法是分析应力的基本方法。

( ) 二、选择题1.5 构件的强度是指( ),刚度是指( ),稳定性是指( )。

A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的( )在各点处相同。

A. 应力 B. 应变C. 材料的弹性常数D. 位移1.7 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为ρ,试问下列结论中哪一个是正确的? (A) q gA ρ=;(B) 杆内最大轴力N max F ql =; (C) 杆内各横截面上的轴力N 2gAlF ρ=;(D) 杆内各横截面上的轴力N 0F =。

2. 低碳钢试样拉伸时,横截面上的应力公式N F A σ=适用于以下哪一种情况? (A) 只适用于σ≤p σ; (B) 只适用于σ≤e σ; (C)3. 在A 和B和点B 的距离保持不变,绳索的许用拉应力为[]σ取何值时,绳索的用料最省? (A) 0; (B) 30; (C) 45; (D) 60。

4. 桁架如图示,载荷F 可在横梁(刚性杆)DE 为A ,许用应力均为[]σ(拉和压相同)。

求载荷F 的许用值。

以下四种答案中哪一种是正确的?(A)[]2A σ; (B) 2[]3Aσ;(C) []A σ; (D) 2[]A σ。

材料力学习题册答案学习资料

材料力学习题册答案学习资料

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是):(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

,(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据小变形条件,可以认为构件的变形远小于其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材 料 力 学 习 题 集 _ 【有 答 案】

材 料 力 学 习 题 集 _ 【有 答 案】

习题2-1图 习题2-2图习题2-3图 习题2-4图 习题2-5图 习题2-6图 材料力学习题集第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。

关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。

正确答案是 C 。

1-2 图示带缺口的直杆在两端承受拉力F P 作用。

关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。

正确答案是 D 。

1-3 图示直杆ACB 在两端A 、B 处固定。

关于其两端的约束力有四种答案。

试分析哪一种答案最合理。

正确答案是 D 。

1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。

关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。

正确答案是 D 。

1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。

关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。

正确答案是 C 。

1-6 等截面直杆,其支承和受力如图所示。

关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。

正确答案是 C 。

第2章 杆件的内力分析习题2-1图习题2-2图习题2-3图习题2-4图2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。

试分析下列平衡微分方程中哪一个是正确的。

(A d Q F d M(B (C (D 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中。

2-3 已知梁的剪力图以及a 、e 截面上的弯矩M a 和M e ,如图所示。

为确定b M 、M ,现有下列四种答案,试分析哪一种 (A (B (C (D 之间剪力图的面积,以此类推。

材力习题集.

材力习题集.

第一章 绪论1-1矩形平板变形后为平行四边形,水平轴线在四边形AC 边保持不变。

求(1)沿AB边的平均线应变; (2)平板A 点的剪应变。

(答案:εAB =7.93×10-3 γXY =-1.21×10-2rad )第二章 拉伸、压缩与剪切2-1 试画图示各杆的轴力图,并指出轴力的最大值。

2-2 一空心圆截面杆,内径d=30mm ,外径D=40mm ,承受轴向拉力F=KN 作用,试求横截面上的正应力。

(答案:MPa 7.72=σ)2-3 题2-1 c 所示杆,若该杆的横截面面积A=502m m ,试计算杆内的最大拉应力与最大压应力(答案:MPa t 60max ,=σ MPa c 40max ,=σ)2.4图示轴向受拉等截面杆,横截面面积A=5002m m ,载荷F=50KN 。

试求图示截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

(答案:MPa MPa MPa MPa 50 ; 100 ; 24.49 ; 32.41max max ==-==τστσαα)2.5如图所示,杆件受轴向载荷F 作用。

该杆由两根木杆粘接而成,若欲使粘接面上的正应力为其切应力的二倍,则粘接面的方位角θ应为何值(答案: 6.26=θ)2.6 等直杆受力如图所示,试求各杆段中截面上的轴力,并绘出轴力图。

2.7某材料的应力-应变曲线如图所示,图中还同时画出了低应变去区的详图,试确定材料的弹性模量E 、屈服极限s σ、强度极限b σ、与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

2.8某材料的应力-应变曲线如图所示,试根据该曲线确定: (1)材料的弹性模量E 、比例极限P σ与屈服极限2.0σ; (2)当应力增加到MPa 350=σ时,材料的正应变ε, 以及相应的弹性应变e ε与塑性应变p ε2.9图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30mm 与d2=20mm ,两杆材料相同,许用应力[]σ=160MPa ,该桁架在节点A 处承受铅垂方向的载荷F=80KN 作用。

材料力学习题及答案

材料力学习题及答案

资料力学-学习指导及习题谜底之迟辟智美创作第一章绪论1-1 图示圆截面杆,两端接受一对方向相反、力偶矩矢量沿轴线且年夜小均为M的力偶作用.试问在杆件的任一横截面m-m上存在何种内力分量,并确定其年夜小.解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其年夜小即是M.1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ.解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零.试问杆件横截面上存在何种内力分量,并确定其年夜小.图中之C点为截面形心.解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示.试求棱边AB与AD的平均正应变及A 点处直角BAD的切应变.解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最年夜值.解:(a) F N AB=F,F N BC=0,F N,max=F=F(b) F N AB=F,F N BC=-F,F N,max(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N=3 kN,max(d) F N AB=1 kN,F N BC=-1 kN,F N=1 kN,max2-2 图示阶梯形截面杆AC,接受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm.如欲使BC与AB段的正应力相同,试求BC段的直径.解:因BC与AB段的正应力相同,故2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN.试求图示斜截面m-m上的正应力与切应力,以及杆内的最年夜正应力与最年夜切应力.解:2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A接受载荷F=80kN作用.杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的资料相同,屈服极限σ=320MPa,平安因数n s.试校核桁架的强度.s解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件.2-5(2-14)图示桁架,接受载荷F作用.试计算该载荷的许用值[F].设各杆的横截面面积均为A,许用应力均为[σ].解:由C点的平衡条件由B点的平衡条件1杆轴力为最年夜,由其强度条件2-6(2-17)图示圆截面杆件,接受轴向拉力F作用.设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值.已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa.解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d::12-7(2-18)图示摇臂,接受载荷F1与F2作用.试确定轴销B的直径d.已知载荷F1=50kN,F2,许用切应力[τ]=100MPa,许用挤压应力[σ]=240MPa.bs解:摇臂ABC受F1、F2及B点支座反力F B三力作用,根据三力平衡汇交定理知F B的方向如图(b)所示.由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径第三章轴向拉压变形3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm.在轴向拉F=6kN的作用下,测得试验段伸长Δl,板宽缩短Δb.试计算硬铝的弹性模量E与泊松比μ.解:由胡克定律3-2(3-5) 图示桁架,在节点A处接受载荷F作用.从试验中测得杆1与杆2的纵向正应变分别为ε1×10-4与ε2×10-4.试确定载荷F及其方位角θ之值.已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa.解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得3-3(3-6) 图示变宽度平板,接受轴向载荷F作用.试计算板的轴向变形.已知板的厚度为δ,长为l,左、右真个宽度分别为b1与b2,弹性模量为E.解:3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持.设钢丝绳的轴向刚度(即发生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移.解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移.设各杆各截面的拉压刚度均为EA.解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移即是B点铅垂位移加2杆的伸长量,即(b)点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)3-6(3-14) 图a所示桁架,资料的应力-应变关系可用方程σn=Bε暗示(图b),其中n和B为由实验测定的已知常数.试求节点C的铅垂位移.设各杆的横截面面积均为A.(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与资料均相同.在梁的中点C接受集中载荷F作用.试计算该点的水平与铅垂位移.已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm.解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等3-8(3-17) 图示桁架,在节点B和C作用一对年夜小相等、方向相反的载荷F.设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C.解:根据能量守恒定律,有3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2.复合杆接受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形.解:设杆、管接受的压力分别为F N1、F N2,则F N1+F N2=F (1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σc]=110MPa.试确定各杆的横截面面积.解:设杆1所受压力为F N1,杆2所受拉力为F N2,则由梁BC的平衡条件得变形协调条件为杆1缩短量即是杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa.若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积.解:设杆1、杆2、杆3的轴力分别为F N1(压)、F N2(拉)、F N3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移即是杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件 A1=A2=2A3,取A1=A2=2A3=2448mm2.3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起.铆接后,温度升高40°,试计算铆钉剪切面上的切应力.钢与铜的弹性模量分别为E s=200GPa与E c=100GPa,线膨胀系数分别为αl s×10-6℃-1与αl c=16×10-6℃-1.解:钢杆受拉、铜管受压,其轴力相等,设为F N,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F].为了提高许用载荷之值,现将杆3的设计长度l酿成l+Δ.试问当Δ为何值时许用载荷最年夜,其值[F max]为何.解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2年夜,由杆3的强度条件若将杆3的设计长度l酿成l+Δ,要使许用载荷最年夜,只有三杆的应力都到达[σ],此时变形协调条件为第四章扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m.试计算横截面上的最年夜、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力.解:因为τ与ρ成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接.已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[τ]=80MPa,d1/d2.试确定实心轴的直径d,空心轴的内、外径d1和d2.解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW.(1) 试求轴内的最年夜扭矩;(2) 若将轮1与轮3的位置对换,试分析对轴的受力是否有利.解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最年夜扭矩若将轮1与轮3的位置对换,则最年夜扭矩酿成最年夜扭矩变小,固然对轴的受力有利.4-4(4-21) 图示两端固定的圆截面轴,接受扭力矩作用.试求支反力偶矩.设扭转刚度为已知常数.解:(a) 由对称性可看出,M A=M B,再由平衡可看出M A=M B=M(b)显然M A=M B,变形协调条件为解得(c)(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起.设作用在刚性平板上的扭力矩为M=2kN·m,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa.试求套管与芯轴的扭矩及最年夜扭转切应力.解:设套管与芯轴的扭矩分别为T1、T2,则T1+T2 =M=2kN·m (1)变形协调条件为套管与芯轴的扭转角相等,即联立求解式(1)、(2),得套管与芯轴的最年夜扭转切应力分别为4-6(4-28) 将截面尺寸分别为φ100mm×90mm 与φ90mm×80mm的两钢管相套合,并在内管两端施加扭力矩M0=2kN·m后,将其两端与外管相焊接.试问在去失落扭力矩M0后,内、外管横截面上的最年夜扭转切应力.解:去失落扭力矩M0后,两钢管相互扭,其扭矩相等,设为T,设施加M0后内管扭转角为φ0.去失落M0后,内管带动外管回退扭转角φ1(此即外管扭转角),剩下的扭转角(φ0-φ1)即为内管扭转角,变形协调条件为内、外管横截面上的最年夜扭转切应力分别为4-7(4-29) 图示二轴,用突缘与螺栓相连接,各螺栓的资料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为δ=10mm,轴所接受的扭力矩为M=5.0 kN·m,螺栓的许用切应力[τ]=100MPa,许用挤压应力 [σbs]=300MPa.试确定螺栓的直径d.解:设每个螺栓接受的剪力为F S,则由切应力强度条件由挤压强度条件故螺栓的直径第五章弯曲应力1(5-1)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示.试分析下列平衡微分方程中哪一个是正确的.解:B正确.平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定.截面弯矩和剪力的方向是不随坐标变动的,我们在处置这类问题时都按正方向画出.可是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程式时就有所分歧,参考下图.当Ox坐标取向相反,向右时,相应(b),A是正确的.但无论A、B弯矩的二阶导数在q向上时,均为正,反之,为负.2(5-2)、对接受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种谜底中哪一种是毛病的.解:A是毛病的.梁截面上的弯矩的正负号,与梁的坐标系无关,该梁上的弯矩为正,因此A是毛病的.弯矩曲线和一般曲线的凸凹相同,和y轴的方向有关,弯矩二阶导数为正时,曲线开口向着y轴的正向.q(x)向下时,无论x轴的方向如何,弯矩二阶导数均为负,曲线开口向着y轴的负向,因此B、C、D都是正确的.3(5-3)、应用平衡微分方程画出下列各梁的剪力图和弯矩图,并确定|F Q|max和|M|max.(本题和下题内力图中,内力年夜小只标注相应的系数.)解:4(5-4)、试作下列刚架的弯矩图,并确定|M|max.解:5(5-5)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知A端弯矩M(0)=0,试确定梁上的载荷(包括支座反力)及梁的弯矩图.解:6(5-6)、已知静定梁的剪力图和弯矩图,试确定梁上的载荷(包括支座反力).解:7(5-7)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知E端弯矩为零.请:(1)在Ox坐标中写出弯矩的表达式;(2)试确定梁上的载荷及梁的弯矩图.解:8(5-10) 在图示梁上,作用有集度为m=m(x)的分布力偶.试建立力偶矩集度、剪力及弯矩间的微分关系.解:用坐标分别为x与x+d x的横截面,从梁中切取一微段,如图(b).平衡方程为9(5-11) 对图示杆件,试建立载荷集度(轴向载荷集度q或扭力矩集度m)与相应内力(轴力或扭矩)间的微分关系.解:(a) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(c).平衡方程为(b) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(d).平衡方程为10(5-18) 直径为d的金属丝,环绕在直径为D的轮缘上.试求金属丝内的最年夜正应变与最年夜正应力.已知资料的弹性模量为E.解:11(5-23) 图示直径为d的圆木,现需从中切取一矩形截面梁.试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极年夜值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极年夜值,为此令12(5-24) 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A底边的纵向正应变ε×10-4,试计算梁内的最年夜弯曲正应力.已知钢的弹性模量E=200GPa,a=1m.解:梁的剪力图及弯矩图如图所示,从弯矩图可见:13(5-32) 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa.试校核梁的强度. 解:先求形心坐标,将图示截面看成一年夜矩形减去一小矩形惯性矩弯矩图如图所示,C 截面的左、右截面为危险截面. 在 C 左截面,其最年夜拉、压应力分别为夜拉、压应力分别为在 C 右截面,其最年 故14(5-35) 图示简支梁,由四块尺寸相同的木板胶接而成,试校核其强度. 已 知 载 荷 F=4kN , 梁 跨 度 l=400mm , 截 面 宽 度 b=50mm , 高 度 h=80mm,木板的许用应力[σ]=7MPa,胶缝的许用切应力[τ]=5MPa.解:从内力图可见木板的最年夜正应力由剪应力互等定理知:胶缝的最年夜切应力即是横截面上的最年夜切 应力 可见,该梁满足强度条件.15(5-41) 图示简支梁,接受偏斜的集中载荷 F 作用,试计算梁内的最年 夜弯曲正应力.已知 F=10kN,l=1m,b=90mm,h=180mm.解: 16(5-42) 图示悬臂梁,接受载荷 F1 与 F2 作用,已知 F1=800N,F2,l=1m,许用应力[σ]=160MPa.试分别按下列要求确定截面尺寸: (1) 截面为矩形,h=2b; (2) 截面为圆形.解:(1) 危险截面位于固定端(2)17(5-45) 一铸铁梁,其截面如图所示,已知许用压应力为许用拉应力 的 4 倍,即[σc]=4 [σt].试从强度方面考虑,宽度 b 为何值最佳. 解: 又因 y1+y2=400 mm,故 y1=80 mm,y2=320 mm.将截面对形心轴 z 取静 矩,得18(5-54) 图示直径为 d 的圆截面铸铁杆,接受偏心距为 e 的载荷 F 作用. 试证明:当 e≤d/8 时,横截面上不存在拉应力,即截面核心为 R=d/8 的圆形区域. 解: 19(5-55) 图示杆件,同时接受横向力与偏心压力作用,试确定 F 的许用 值.已知许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa. 解:故 F 的许用值为.第 七 章 应力、应变状态分析7-1(7-1b) 已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;MPa7-2(7-2b)已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;7-3(7-2d)已知应力状态如图所示(应力单位为 ),试用图解法计算 图中指定截面的正应力与切应力.解:如图,得: 指定截面的正应力 切应力7-4(7-7) 已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 ),试用图解法求主应力的年夜小及所在截面的方位.解:由图,根据比例尺,可以获得:,,最年夜切应力.7-5(7态如图 向应力 力、最10c)已知应力状 所示,试画三 圆,并求主应 年夜正应力与解:对图示应力状态, 是主应力状态,其它两个主应力由 、 、 确定.在 平面内,由坐标( , )与( , )分别确定 和 点,以 为直径画 圆与 轴相交于 和 .再以 及 为直径作圆,即得三向应力圆.由上面的作图可知,主应力为,,,7-6(7-12)已知应力状态如图所示(应力单位为 ),试求主应力的年 夜小.解: 与 截面的应力分别为:;;;在 截面上没有切应力,所以是主应力之一.;;;7-7(7-13)已知构件概况某点处的正应变,,切应变,试求该概况处 方位的正应变 与最年夜应变 及其所在方位.解:得:7-8(7-20)图示矩形截面杆,接受轴向载荷 F 作用,试计算线段 AB 的正 应变.设截面尺寸 b 和 h 与资料的弹性常数 E 和μ均为已知.解:,,,AB 的正应酿成7-9(7-21)在构件概况某点 O 处,沿 , 与 方位,粘贴三个应变片,测得该三方位的正应变分别为,与,该概况处于平面应力状态,试求该点处的应力 , 与 .已知资料的弹性模量,泊松比解:显然,,并令,于是得切应变:7-10(7-6)图示受力板件,试证明 A 点处各截面的正应力与切应力均为零.证明:若在尖点 A 处沿自由鸿沟取三角形单位体如图所示,设单位体 、 面上的应力分量为 、 和 、 ,自由鸿沟上的应力分量为 ,则有由于、,因此,必有 、 、.这时,代表 A 点应力状态的应力圆缩为 坐标的原点,所以 A 点为零应力状态.7-11(7-15)构件概况某点 处,沿 , , 与 方位粘贴四个应变片,并测得相应正应变依次为,,与,试判断上述测试结果是否可靠.解:很明显,,得:又得:根据实验数据计算获得的两个 结果纷歧致,所以,上述丈量结果不 成靠.第 八 章应力状态与强度理论 1、 (8-4)试比力图示正方形棱柱体在下列两中情况下的相当应力 , 弹性常数 E 和μ均为已知. (a) 棱柱体轴向受压; (b) 棱柱体在刚性方模中轴向受压.解:对图(a)中的情况,应力状态如图(c) 对图(b)中的情况,应力状态如图(d)所以,,2、 (8-6)图示钢质拐轴,接受集中载荷 F 作用.试根据第三强度理论确 定轴 AB 的直径.已知载荷 F=1kN,许用应力[σ]=160Mpa. 解:扭矩弯矩 由 得:所以,3、 (8-10)图示齿轮传动轴,用钢制成.在齿轮Ⅰ上,作用有径向力、切向力;在齿轮Ⅱ上,作用有切向力、径向力.若许用应力[σ]=100Mpa,试根据第四强度理论确定轴径.解:计算简图如图所示,作 、 、 图.从图中可以看出,危险截面为 B 截面.其内力分量为: 由第四强度理论 得:4、8-4 圆截面轴的危险面上受有弯矩My、扭矩Mx 和轴力FNx 作 用,关于危险点的应力状态有下列四种.试判断哪一种是正确的. 请选择正确谜底. (图中微元上平行于纸平面的面对应着轴的横截面) 答:B5、 (8-13)图示圆截面钢杆,接受载荷 , 与扭力矩 作用.试根据第三强度理论校核杆的强度.已知载荷N,,扭力矩,许用应力[σ]=160Mpa.解:弯矩满足强度条件.6、 (8-25)图示铸铁构件,中段为一内径 D=200mm、壁厚δ=10mm 的圆筒,圆筒内的压力p=1Mpa,两真个轴向压力F=300kN,资料的泊松比μ,许用拉应力[σt]=30Mpa.试校核圆筒部份的强度.解:,,由第二强度理论:满足强度条件.7、(8-27)图薄壁圆筒,同时接受内压p与扭力矩M作用,由实验测得筒壁沿轴向及与轴线成方位的正应变分别为和.试求内压p与扭力矩M之值.筒的内径为D、壁厚δ、资料的弹性模量E与泊松比μ均为已知.解:,,,很显然,8、(8-22)图示油管,内径D=11mm,壁厚δ,内压p,许用应力[σ]=100Mpa.试校核油管的强度.解:,,由第三强度理论,满足强度条件.9、(8-11)图示圆截面杆,直径为d,接受轴向力F与扭矩M作用,杆用塑性资料制成,许用应力为[σ].试画出危险点处微体的应力状态图,并根据第四强度理论建立杆的强度条件.解:危险点的应力状态如图所示.,由第四强度理论,,可以获得杆的强度条件:10、(8-17)图示圆截面圆环,缺口处接受一对相距极近的载荷作用.已知圆环轴线的半径为,截面的直径为,资料的许用应力为,试根据第三强度理论确定的许用值.解:危险截面在A或B截面A:,,截面B:,由第三强度理论可见,危险截面为A截面.,得:即的许用值为:11、(8-16)图示等截面刚架,接受载荷与作用,且.试根据第三强度理论确定的许用值.已知许用应力为,截面为正方形,边长为,且.解:危险截面在A截面或C、D截面,C截面与D截面的应力状态一样. C截面:由第三强度理论,得:A截面:由第三强度理论,得:比力两个结果,可得:的许用值:12、(8-25)球形薄壁容器,其内径为,壁厚为,接受压强为p之内压.试证明壁内任一点处的主应力为,.证明:取球坐标,对球闭各点,以球心为原点.,,由于结构和受力均对称于球心,故球壁各点的应力状态相同.且由于球壁很薄.,对球壁上的任一点,取通过该点的直径平面(如图),由平衡条件对球壁内的任一点,因此,球壁内的任一点的应力状态为:,证毕.。

《材料力学》习题册附答案

《材料力学》习题册附答案

F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4) 应力是内力分布集度。

(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6) 若物体产生位移,则必定同时产生变形。

(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。

(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。

(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。

3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。

(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。

变形。

(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。

(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学习题集--(有答案)

材料力学习题集--(有答案)

绪 论一、 是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。

〔 〕 1.2 内力只能是力。

〔 〕1.3 假设物体各点均无位移,则该物体必定无变形。

〔 〕 1.4 截面法是分析应力的基本方法。

〔 〕 二、选择题1.5 构件的强度是指〔 〕,刚度是指〔 〕,稳定性是指〔 〕。

A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的〔 〕在各点处相同。

A. 应力 B. 应变C. 材料的弹性常数D. 位移1.7 以下结论中正确的选项是〔 〕 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为ρ,试问以下结论中哪一个是正确的? (A) q gA ρ=;(B) 杆内最大轴力N max F ql =; (C) 杆内各横截面上的轴力N 2gAlF ρ=;(D) 杆内各横截面上的轴力N 0F =。

2. 低碳钢试样拉伸时,横截面上的应力公式N F A σ=适用于以下哪一种情况? (A) 只适用于σ≤p σ; (B) 只适用于σ≤e σ; (C)3. 在A 和B和点B 的距离保持不变,绳索的许用拉应力为[]σ取何值时,绳索的用料最省? (A) 0; (B) 30; (C) 45; (D) 60。

4. 桁架如图示,载荷F 可在横梁〔刚性杆〕DE 为A ,许用应力均为[]σ〔拉和压相同〕。

求载荷F 的许用值。

以下四种答案中哪一种是正确的? (A)[]2A σ; (B) 2[]3Aσ; (C) []A σ; (D) 2[]A σ。

材料力学内部习题集及答案

材料力学内部习题集及答案

第二章 轴向拉伸和压缩2-1 一圆截面直杆,其直径d =20mm, 长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3, 杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。

题 2 - 1 图+5004.8N4000N解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Ad d σππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2 试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。

已知杆横截面面积为A ,长度为L,材料的容重为γ。

AB题 2-2 图A B解:距离A 为x 处的轴力为N ()F x Ax γ=⋅ 所以总伸长 2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3 图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。

材料力学全部习题解答

材料力学全部习题解答

弹性模量
b
E 2 2 0 M P a 2 2 0 1 0 9P a 2 2 0 G P a 0 .1 0 0 0
s
屈服极限 s 240MPa
强度极限 b 445MPa
伸长率 ll010000m ax2800
由于 280;故0该50 材0料属于塑性材料;
13
解:1由图得
弹性模量 E0 3.550110063700GPa
A x l10.938m m
节点A铅直位移
A ytan 4 l150co sl4 2503.589m m
23
解:1 建立平衡方程 由平衡方程
MB 0 FN1aFN22aF2a
FN 2 FN1
得: FN12F1N22F
l1
l2
2.建立补充方程
3 强度计算 联立方程1和方
程(2);得
从变形图中可以看出;变形几何关
l
l0
断面收缩率
AAA110000d22d22d2121000065.1900
由于 2故.4 属6 % 于 塑5 性% 材料;
15
解:杆件上的正应力为
F A
4F D2 -d2
材料的许用应力为
要求
s
ns
由此得
D 4Fns d2 19.87mm
s
取杆的外径为
D19.87m m
16
FN1 FN 2
Iz= I( za) I( zR ) =1 a2 4
2R4 a4 R 4 =
64 12 4
27
Z
解 a沿截面顶端建立坐标轴z;,y轴不变; 图示截面对z,轴的形心及惯性矩为
0 .1
0 .5
y d A 0 .3 5 y d y2 0 .0 5 y d y

材料力学习题集(有答案)

材料力学习题集(有答案)

绪论一、是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。

()1.2 内力只能是力。

()1.3 若物体各点均无位移,则该物体必定无变形。

()1.4 截面法是分析应力的基本方法。

()二、选择题1.5 构件的强度是指(),刚度是指(),稳定性是指()。

A. A. 在外力作用下构件抵抗变形的能力在外力作用下构件抵抗变形的能力B. B. 在外力作用下构件保持其原有的平衡状态的能力在外力作用下构件保持其原有的平衡状态的能力C. C. 在外力作用下构件抵抗破坏的能力在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的()在各点处相同。

A. A. 应力应力B. B. 应变应变C. C. 材料的弹性常数材料的弹性常数D. D. 位移位移1.7 下列结论中正确的是()A. A. 内力是应力的代数和内力是应力的代数和B. B. 应力是内力的平均值应力是内力的平均值C. C. 应力是内力的集度应力是内力的集度D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为r ,试问下列结论中哪一个是正确的?(A) q gA r =;(B) 杆内最大轴力Nmax F ql =;(C) 杆内各横截面上的轴力N 2gAlF r =;(D) 杆内各横截面上的轴力N 0F =。

2. 低碳钢试样拉伸时,横截面上的应力公式N F A s =适用于以下哪一种情况? (A) 只适用于s ≤p s ;(B) 只适用于s ≤e s ;(C) 只适用于s ≤s s ;(D) 在试样拉断前都适用。

3. 在A 和B 两点连接绳索ACB ,绳索上悬挂物重P ,如图示。

材料力学习题及参考答案

材料力学习题及参考答案
答案: 截面法。
2.工程构件在实际工作环境下所能承受的应力称 为( ),工件中最大工作应力不能超过此应力, 超过此应力时称为( )。
答案: 许用应力 ,失效 。
3.金属拉伸标准试件有( )和( )两种。
答案: 圆柱形,平板形 。
4.在低碳钢拉伸曲线中,其变形破坏全过程可分为( ) 个变形阶段,它们依次是 ( )、( )、( )、和 ( )。
答案: 连续性、均匀性、各向同性。
3 .构件所受的外力可以是各式各样的,有时是很复杂的。 材料力学根据构件的典型受力情况及截面上的内力分量 可分为( )、( )、( )、( )四种基本变形。
答案: 拉伸或压缩、剪切、扭转、弯曲。
二、计算
1. 试求下列杆件中指定截面上内力分量,并指出相应的
变形形式。
I

P
P
I
解: 根据轴向拉伸杆件斜截面上正应力和剪力公式,
各自的容许条件为

x cos2

P cos2
A
0a

x sin cos

P sin cos
A
0b
式(b)除以式(a),得
C

NC A2

12.98103 4 104
36.8MPa
所以
max B 41.4MPa
C l2 2
B l1 1
A P
aБайду номын сангаас
x
N2
22
x2
N1
11
x1 A1
A2 B A1
o
A
A
PP
b
2)作轴力图 取1-1截面(AB段,见图(b))

材料力学习题册_参考答案(1-9章)

材料力学习题册_参考答案(1-9章)

(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。

材料力学-习题集(含答案)

材料力学-习题集(含答案)

《材料力学》课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《材料力学》(编号为06001)共有单选题,计算题,判断题,作图题等多种试题类型,其中,本习题集中有[判断题]等试题类型未进入。

一、单选题1. 构件的强度、刚度和稳定性________。

(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关 (C)与二者都有关(D)与二者都无关 2. 一直拉杆如图所示,在P 力作用下 。

(A) 横截面a 上的轴力最大(B) 横截面b 上的轴力最大 (C) 横截面c 上的轴力最大(D) 三个截面上的轴力一样大 3. 在杆件的某一截面上,各点的剪应力 。

(A)大小一定相等(B)方向一定平行 (C)均作用在同一平面内 (D)—定为零 4. 在下列杆件中,图 所示杆是轴向拉伸杆。

(A) (B)(C)(D) 5. 图示拉杆承受轴向拉力P 的作用,斜截面m-m 的面积为A ,则σ=P/A 为 。

(A)横截面上的正应力(B)斜截面上的剪应力 (C)斜截面上的正应力(D)斜截面上的应力 6. 解除外力后,消失的变形和遗留的变形 。

(A)分别称为弹性变形、塑性变形(B)通称为塑性变形 (C)分别称为塑性变形、弹性变形(D)通称为弹性变形 7. 一圆截面轴向拉、压杆若其直径增加—倍,则抗拉 。

(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍 (C)强度和刚度均是原来的2倍 (D)强度和刚度均是原来的4倍8. 图中接头处的挤压面积等于 。

P P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。

(A)τ/2(B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。

材料力学 内部习题集及答案精编版

材料力学  内部习题集及答案精编版

第二章 轴向拉伸和压缩2-1 一圆截面直杆,其直径d =20mm, 长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3, 杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。

题 2 - 1 图+5004.8N4000N解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Ad d σππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2 试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。

已知杆横截面面积为A ,长度为L,材料的容重为γ。

AB题 2-2 图A B解:距离A 为x 处的轴力为N ()F x Ax γ=⋅ 所以总伸长 2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3 图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪 论一、 是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。

( ) 1.2 内力只能是力。

( )1.3 若物体各点均无位移,则该物体必定无变形。

( ) 1.4 截面法是分析应力的基本方法。

( ) 二、选择题1.5 构件的强度是指( ),刚度是指( ),稳定性是指( )。

A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的( )在各点处相同。

A. 应力 B. 应变C. 材料的弹性常数D. 位移1.7 下列结论中正确的是( ) A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为ρ,试问下列结论中哪一个是正确的? (A) q gA ρ=;(B) 杆内最大轴力N max F ql =; (C) 杆内各横截面上的轴力N 2gAlF ρ=;(D) 杆内各横截面上的轴力N 0F =。

2. 低碳钢试样拉伸时,横截面上的应力公式N F A σ=适用于以下哪一种情况? (A) 只适用于σ≤p σ; (B) 只适用于σ≤e σ; (C)3. 在A 和B和点B 的距离保持不变,绳索的许用拉应力为[]σ取何值时,绳索的用料最省? (A) 0o ; (B) 30o ; (C) 45o ; (D) 60o 。

4. 桁架如图示,载荷F 可在横梁(刚性杆)DE 为A ,许用应力均为[]σ(拉和压相同)。

求载荷F 的许用值。

以下四种答案中哪一种是正确的? (A)[]2A σ; (B) 2[]3Aσ; (C) []A σ; (D) 2[]A σ。

5. 一种是正确的?(A) 外径和壁厚都增大;(B) 外径和壁厚都减小; (C) 外径减小,壁厚增大; (D) 外径增大,壁厚减小。

6. 三杆结构如图所示。

今欲使杆3的轴力减小,问应采取以下哪一种措施? (A) 加大杆3的横截面面积;(B) 减小杆3的横截面面积;(C) 三杆的横截面面积一起加大;(D) 增大α角。

7. 图示超静定结构中,梁AB 为刚性梁。

设l ∆示杆1的伸长和杆2的正确答案是下列四种答案中的哪一种? (A) 12sin 2sin l l αβ∆=∆; (B) 12cos 2cos l l αβ∆=∆; (C) 12sin 2sin l l βα∆=∆; (D) 12cos 2cos l l βα∆=∆。

8. 图示结构,AC 为刚性杆,杆1和杆2力变化可能有以下四种情况,问哪一种正确? (A) 两杆轴力均减小; (B) 两杆轴力均增大;(C) 杆1轴力减小,杆2轴力增大; (D) 杆1轴力增大,杆2轴力减小。

9. 结构由于温度变化,则: (A) (B) (C)(D) 10. n-n (A) (C) 11. 12. 13. 14. 1A 是题1-14答案:1. D2. D3. C4. B5. B6. B7. C8. C9. B 10. B11. Fl EA ;12. ab ;椭圆形 13. 22gl gl E ρρ, 14. >,= 一、 是非题2.1 使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。

( )2.2 轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。

( ) 2.3 内力是指物体受力后其内部产生的相互作用力。

( ) 2.4 同一截面上, σ 必定大小相等,方向相同。

( )2.5 杆件某个横截面上,若轴力不为零,则各点的正应力均不为零。

( ) 2.6 δ、 y 值越大,说明材料的塑性越大。

( )2.7 研究杆件的应力与变形时,力可按力线平移定理进行移动。

( ) 2.8 杆件伸长后,横向会缩短,这是因为杆有横向应力存在。

( ) 2.9 线应变 e 的单位是长度。

( )2.10 轴向拉伸时,横截面上正应力与纵向线应变成正比。

( ) 2.11 只有静不定结构才可能有温度应力和装配应力。

( )2.12 在工程中,通常取截面上的平均剪应力作为联接件的名义剪应力。

( ) 2.13 剪切工程计算中,剪切强度极限是真实应力。

( ) 二、选择题2.14变形与位移关系描述正确的是( )A. 变形是绝对的,位移是相对的B. 变形是相对的,位移是绝对的C. 两者都是绝对的D. 两者都是相对的 2.15轴向拉压中的平面假设适用于( )A. 整根杆件长度的各处B. 除杆件两端外的各处C. 距杆件加力端稍远的各处2.16长度和横截面面积均相同的两杆,一为钢杆,一为铝杆,在相同的拉力作用下( ) A. 铝杆的应力和钢杆相同,而变形大于钢杆 B. 铝杆的应力和钢杆相同,而变形小于钢杆 C. 铝杆的应力和变形都大于钢杆 D. 铝杆的应力和变形都小于钢杆2.17一般情况下,剪切面与外力的关系是( )。

A . 相互垂直 B . 相互平行 C . 相互成 45 度 D . 无规律2.18如图所示,在平板和受拉螺栓之间垫上一个垫圈,可以提高( )强度。

A . 螺栓的拉伸 B . 螺栓的剪切 C . 螺栓的挤压 D . 平板的挤压 参考答案2.1 × 2.2 × 2.3 √ 2.4 × 2.5 × 2.6 √ 2.7 × 2.8 × 2.9 ×2.10 × 2.11 √2.12 √ 2.13 ×2.14 A 2.15 C 2.16 A 2.17 B 2.18 D材料的力学性能1. 工程上通常以伸长率区分材料,对于脆性材料有四种结论,哪一个是正确? (A) 5%d < ; (B) 0.5%d < ; (C) 2%d < ; (D) 0.2%d < 。

2. 对于没有明显屈服阶段的塑性材料,通常以0.2s 表示屈服极限。

其定义有以下四个结论,正确的是哪一个?(A) 产生2%的塑性应变所对应的应力值作为屈服极限; (B) 产生0.02%的塑性应变所对应的应力值作为屈服极限; (C) 产生0.2%的塑性应变所对应的应力值作为屈服极限; (D) 产生0.2%的应变所对应的应力值作为屈服极限。

3. 关于材料的冷作硬化现象有以下四种结论,正确的是哪一个? (A) 由于温度降低,其比例极限提高,塑性降低; (B) 由于温度降低,其弹性模量提高,泊松比减小; (C) 经过塑性变形,其比例极限提高,塑性降低; (D) 经过塑性变形,其弹性模量提高,泊松比减小。

4. 关于材料的塑性指标有以下结论,哪个是正确的?(A) s s 和d ; (B) s s 和ψ; (C) d 和ψ; (D) s s 、d 和ψ。

5. 用标距50 mm 和100 mm 的两种拉伸试样,测得低碳钢的屈服极限分别为s1s 、s2s ,伸长率分别为5d 和10d 。

比较两试样的结果,则有以下结论,其中正确的是哪一个?(A )s1s2s s <,510d d >; (B )s1s2s s <,510d d =; (C )s1s2s s =,510d d >; (D )s1s2s s =,510d d =。

6. 圆柱形拉伸试样直径为d ,常用的比例试样其标距长度l 是 或 。

7. 低碳钢拉伸试验进入屈服阶段以后,发生 性变形。

(填“弹”、“塑”、“弹塑”)8. 低碳钢拉伸应力-应变曲线的上、下屈服极限分别为s1s 和s2s ,则其屈服极限s s 为 。

9. 灰口铸铁在拉伸时,从很低的应力开始就不是直线,且没有屈服阶段、强化阶段和局部变形阶段,因此,在工程计算中,通常取总应变为_______%时应力-应变曲线的割线斜率来确定其弹性模量,称为割线弹性模量。

10. 混凝土的标号是根据其_________强度标定的。

11. 混凝土的弹性模量规定以压缩时的s e -曲线中 s = 时的割线来确定。

12. 铸铁材料(根据拉伸、压缩、扭转)性能排序:抗拉_______抗剪_______抗压。

参考答案:1. A 2. C 3. C 4. C 5. C 6. 5d ; 10d 7. 弹塑 8. s2s 9. 0.1 10. 压缩 11. b 0.4σ 12. <;<剪切与挤压的实用计算1. 图示木接头,水平杆与斜杆成α角,其挤压面积为bs A 为(A )bh ; (B )tan bh α ; (C )cos bh α ; (D )cos sin bhαα⋅ 。

答:C2. 图示铆钉连接,铆钉的挤压应力bs σ(A )22π Fd ; (B )2F d δ;(C )2F b δ ; (D )24πFd 。

答:B3. 切应力互等定理是由单元体(A )静力平衡关系导出的; (B )几何关系导出的; (C )物理关系导出的; (D )强度条件导出的。

答:A4. 销钉接头如图所示。

销钉的剪切面面积为 ,挤压面面积 。

答:2bh ;bd5.和,挤压面面积为。

答:ab;bd;bc6. 图示厚度为δ为。

答:4aδ;2a7. 图示直径为d力F,则基座剪切面的剪力答:()22S2π4π4D dFFD-=⨯扭转1. 一直径为1D的实心轴,另一内径为d, 外径为D, 内外径之比为22d Dα=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A有四种答案:(A) 21α-;(B)(C) (D) 。

2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论:(A) (B) (C) (D)切应力互等定理:成立不成立不成立成立剪切胡克定律:成立不成立成立不成立3. 一内外径之比为/d Dα=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ;(B) ατ;(C) 3(1)ατ-;(D) 4(1)ατ-。

4. 长为l、半径为r、扭转刚度为pGI的实心圆轴如图所示。

扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T及两端截面的相对扭转角ϕ有四种答案:(B) p ()T l GI γ=,l r ϕγ=; (C) p T GI r γ=,l r ϕγ=; (D) p T GI r =,ϕ=5. (A) “平面假设”(B) (C) (D)6. (A) 必最大; (B)7. 图示圆轴AB 的切变模量G ,截面C (A) 43π128d G a ϕ; (C) 43π32d G a ϕ;8. 一直径为1D 若两轴的长度、材料、21W W = 。

相关文档
最新文档