用树形图求概率教学案
3.1.1 用树状图或表格求概率 教案
1.通过抛硬币游戏,帮助学生了解计算一类事件发生等可能性的方法,体会概率的意义.2.能通过列表、画树状图等方法列举出简单事件的所有可能结果,以及指定事件的所有可能结果,从而计算概率,并使学生进一步认识随机现象.3.通过观察、实验等活动,理解在保持实验条件不变的条件下,事件发生的频率与概率之间的关系,知道通过大量的重复实验,可以用频率来估计概率,进一步体会概率是描述随机现象的数学模型,感受随机的数学思想.重点1.会用树状图法和列表法求出简单事件发生的概率.2.会利用频率来估计概率.难点1.能通过列表、画树状图等方法列举出简单事件的所有可能结果,以及指定事件的所有可能结果,从而计算概率,并使学生进一步认识随机现象.2.通过观察、实验等活动,理解在保持实验条件不变的条件下,事件发生的频率与概率之间的关系,知道通过大量的重复实验,可以用频率来估计概率,进一步体会概率是描述随机现象的数学模型,感受随机的数学思想.学情分析对于九年级学生来说,参与活动、利用实验解决数学问题已经不再陌生了,他们已经初步具备了利用实践操作来检验真知的能力.积极参与实验活动,从实验中体会和感受,可以有效帮助学生对这部分知识的理解和运用.教学建议1.概率涉及很多新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起紧密的联系.2.教师要引导学生将获得的新概念、新模型与已有的概念、模型进行对照、比较,找出它们之间的联系和区别,优化自己的认知结构.3.在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟模型提取的思维机制,获取模型选取的经验.感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高.本单元共用 3 课时教材第 60~62 页,本节课主要介绍用树状图或表格求概率和用频率估计概率.本节课的内容是在学生已经简单了解概率知识的基础上编排的一节课,意在通过树状图或表格计算出简单事件发生的概率,体会概率是描述不确定现象的数学模型,让学生了解事件发生的可能性及游戏规则的公平性,帮助学生澄清一些生活中的错误的经验.这部分内容有利于培养学生的随机概念,是义务教育阶段唯一培养学生从不确定的角度来观察世界的数学内容,学生明智地应付变化和不确定性,有助于学生理解社会,适应生活,教材从不同的情景出发,让学生感受用树状图或表格解决问题,进一步丰富学生对概率的认识,从而丰富学生的数学体验,提高分析问题、解决问题的能力.知识与能力1.用画树状图或表格的方法来列出简单随机事件所有等可能的结果,以及指定事件的所有结果.2.能通过画树状图或表格,求出简单事件发生的概率.过程与方法经历实验、列表、统计、运算等活动的过程,在活动中进一步发展学生合作交流的意识和能力,通过学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,提高学生分析问题和解决问题的能力.情感、态度与价值观1.培养学生实事求是的科学态度,发展学生合作交流的意识和能力.2.体会到根据实际情境设计出合理的模拟实验来研究问题的思维理念,积极参与数学活动.重点用树状图法和列表法求出简单事件发生的概率.难点根据问题的实际背景列举出所有等可能的结果.在引进表示一个事件发生的可能性大小的数是概率的基础上,引导学生利用已做过的实验的实验数据(稳定时的频率值)得到这些事件发生的概率,从而让学生明确只要确定事件发生的频率就可以得到事件发生的概率,最后从几个具体的实验操作求事件发生的概率.在教学过程中充分让学生自主思考、分析、实验、经历“猜测结果—进行实验—分析实验结果”的过程,满足学生的表现欲及探究欲.教师准备:多媒体课件.学生准备:练习本.一、创设情境、导入新课同学们,大家都听说过(或经历过)转盘游戏、摇号摸奖、买彩票获奖这类事情吧?1.说一说三种事件发生的概率和表示(1)必然事件发生的概率为 1,记作 P(必然事件)=1.(2)不可能事件发生的概率为 0,记作 P(不可能事件)=0.(3)若 A 为不确定事件,则 0<P(A)<1.2.等可能性事件的两个特征.(1)出现的结果有有限多个.(2)各结果发生的可能性相等.小明、小颖和小凡都想周末去看电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影,游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上, 则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.教师:有没有不重不漏地列出等可能结果的方法呢?今天我们来分析一下这个问题. (板书课题:用树状图或表格求概率)二、探索新知1.连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上、一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.通过大量重复试验发现,在一般情况下,“一枚正面朝上、一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,对小凡比较有利.2.探究用树状图法或表格计算概率.在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.我们通常借助树状图或表格列出所有可能出现的结果,如图所示或如表所示.教师:观察图或表,所有等可能性的结果有几种?分别是什么?他们每个人获胜的概率是多少呢?学生:总共有 4 种结果,且每种结果出现的可能性相同,分别为(正,正),(正, 反),(反,正),(反,反).则小明获胜的结果有 1 种:(正,正),所以小明获胜的概率是;小颖获胜的结果有 1 种:(反,反),所以小颖获胜的概率也是;小凡获胜的结果有 2 种:(正, 反)(反,正),所以小凡获胜的概率是 .教师:通过利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.(设计意图:教师引导学生对问题的解决进行回顾,让学生体会树状图或表格解决问题的优点.)三、课堂练习1.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A. B. C. D.2.某学校游戏节活动中,设计了一个有奖转盘游戏:如图,A 转盘被分成三个面积相等的扇形,B 转盘被分成四个面积相等的扇形,每一个扇形内都标有相应的数字.先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向下一区域内为止),然后.将两次记录的数据相乘.(1)请利用列表法求乘积结果为负数的概率;(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?A 盘B 盘四、课堂小结1.同学们,在生活中,你见过哪些现象运用了本节课的知识?2.我们如何运用本节课所学的概率知识来应对生活中出现的一些事情呢?(如识别骗子的游戏骗局等)(设计意图:师生共同探讨,用生活中的实例来深化学生对本课知识点的认识和理解.)教材第 62 页习题 3.1 第 2 题.本节内容跟实际生活经验较为接近,因此在教学设计中,我们从掷硬币游戏引入新课,让学生真切体验到学习数学的必要性和趣味性.最后在学生畅谈如何将本节课所学的概率知识运用到生活中去,如何使自己变得更有智慧,如何运用概率知识识破游戏骗局,减少做事情的盲目性中结束.学生的学习积极性较高,使他们真正体验到数学来源于实践又服务于实践的新课程理念.。
概率树形图 教学设计-经典教学教辅文档
3.2概率树形图教学设计教学目标知识与技能:对于一些简单的事情,学会器具体的树形图,列出一切等机会的结果,从而求出所关注的事情发生的概率。
过程与方法:合作探求,探求用树形图列举事情的一切等可能结果的方法。
在具体的成绩情境中理解概率的意义。
情感态度价值观:领会用数形结合的数学思想方法解决成绩经过用树形图求某事情概率,养成合作认识和探求精神,在学习中感悟数学在理想生活中的运用。
教学重难点重点:用树形图计算简单事情的概率难点:画树形图教学方法合作探求教学媒体多媒体课时安排2课时教学过程设计第一课时:一、情景引入上节课我们学习了用列表法求事情的概率,下方我们就一同来看这道题。
提出探求成绩把一枚质地均匀的硬币,连续掷三次,试求:三次中出现两次正面朝上一次反面朝上的概率。
二引例探求1、引导分析,提出成绩(1)、事情的特点(2)用二维表格的方法求出一切的可能结果吗?为甚么?2、师画出树形图先生仔细观察上图,回答下方成绩:①实验共有多少个可能结果?这些可能结果是等可能发生的吗?②事情包含几个可能结果?③如何计算上述两个事情的概率?先生对立考虑,经过观察图形很快回答出上面成绩,领会用树形图表示实验结果的优点3、给出影像形的名称——树形图(tree diagram),由于图形的外抽象一棵倒放的树,利用树形图将实验的可能结果像树枝分杈一样一层一层表示,每个分支对应一种可能结果,树形图可以清楚地表示实验结果,便于计算结果总数。
4、反思:树形图的画法1)、分杈的层数=实验操作的次数a2)、每层又分杈的个数=该步操作的结果数b3)总可能性=ab三运用新知,例练巩固例1、一个不透明的袋中装有大小和质地完全一样的三个小球,分别标有数字1、2、3,任意摸出一球,记下数字放回袋中;搅匀后,再任意摸出一个球,记下数字放回。
用第一次记下的数字作为十位数,第二次记下的数字作为个位数,组成一个两位数。
利用树形图求:1.恰好为“32”的概率。
《用树状图或表格求概率》教案
一、教学目标1. 让学生理解概率的概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作学习、探究学习的能力,提高学生的数学思维水平。
二、教学内容1. 概率的概念和性质2. 树状图求概率的方法3. 表格求概率的方法4. 实际问题中的应用三、教学重点与难点1. 重点:概率的概念和性质,树状图和表格求概率的方法。
2. 难点:用树状图和表格求复杂概率问题,以及实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生自主探究、合作学习。
2. 利用多媒体课件辅助教学,生动形象地展示概率问题的解决过程。
3. 注重让学生经历“提出问题、建立模型、求解问题”的全过程,培养学生的数学素养。
五、教学过程1. 导入:通过简单的历史背景介绍,引出概率的概念。
2. 基本概念:介绍概率的基本性质,让学生理解概率的意义。
3. 树状图求概率:讲解树状图的画法,让学生通过树状图求解概率问题。
4. 表格求概率:讲解表格的填写方法,让学生通过表格求解概率问题。
5. 应用拓展:让学生解决实际问题,运用概率知识解决生活中的问题。
六、教学评估1. 课堂问答:通过提问检查学生对概率概念的理解和对树状图、表格求概率方法的掌握。
2. 练习题:布置练习题,让学生运用新学的知识解决实际问题,检验学生对知识的吸收和应用能力。
3. 小组讨论:评估学生在合作学习中的参与度和对问题的探究能力。
七、教学反思1. 教师反思:在课后对教学过程进行回顾,分析教学效果,针对学生的掌握情况调整教学策略。
2. 学生反馈:收集学生对教学内容、教学方法的反馈,了解学生的学习需求和困难,为改进教学提供依据。
八、教学拓展1. 概率游戏:设计有趣的概率游戏,让学生在游戏中进一步理解和掌握概率知识。
2. 课后探究项目:布置课后探究项目,让学生深入研究概率问题,培养学生的研究能力和创新意识。
九、教学资源1. 教材:选用权威、实用的概率教材,为学生提供系统的学习资料。
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是衡量事件发生可能性的数值,范围在0到1之间。
举例说明概率的应用,如抛硬币、掷骰子等。
1.2 样本空间和事件介绍样本空间是所有可能结果的集合,事件是样本空间的一个子集。
利用树状图展示样本空间和事件的关系。
第二章:树状图法求概率2.1 树状图的绘制讲解如何利用树状图表示事件的概率。
示范绘制树状图,展示单次试验和多次试验的树状图。
2.2 利用树状图求概率教授如何通过树状图计算概率。
练习计算简单事件的概率。
第三章:表格法求概率3.1 表格的绘制讲解如何利用表格表示事件的概率。
示范绘制表格,展示单次试验和多次试验的表格。
3.2 利用表格求概率教授如何通过表格计算概率。
练习计算简单事件的概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指一个事件的发生不影响另一个事件的发生。
利用树状图和表格展示独立事件的概率计算。
4.2 利用树状图和表格求独立事件的概率教授如何通过树状图和表格计算独立事件的概率。
练习计算独立事件的概率。
第五章:条件概率5.1 条件概率的定义解释条件概率是在某一事件已发生的情况下,另一事件发生的概率。
利用树状图和表格展示条件概率的计算。
5.2 利用树状图和表格求条件概率教授如何通过树状图和表格计算条件概率。
练习计算条件概率。
第六章:组合与排列6.1 组合的定义解释组合是指从n个不同元素中取出m(m≤n)个元素的有序列的个数。
利用树状图和表格展示组合的计算。
6.2 排列的定义解释排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。
利用树状图和表格展示排列的计算。
第七章:概率的加法规则7.1 概率的加法规则讲解当两个事件互斥时,可以使用概率的加法规则计算它们的概率。
利用树状图和表格展示概率的加法规则的计算。
7.2 应用概率的加法规则教授如何应用概率的加法规则解决实际问题。
练习计算互斥事件的概率。
人教版九年级数学上册《树形图求概率》教学设计
《用树状图求概率》教学设计一、教学目标1、知识与技能能运用树状图计算简单事件发生的概率。
2、过程与方法在经历试验、统计等活动过程中进一步发展学生合作交流的意识和能力,提升逻辑推理能力。
3、情感态度价值观通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性,体会数学的严谨性。
二、教学内容用树状图求概率三、教学重难点1、教学重点运用树状图计算涉及两步试验的随机事件发生的概率。
2、教学难点运用树状图和列表法计算涉及两步试验的随机事件发生的概率。
四、教学方法讲授法、讨论法五、教学过程1、引入新课创设情境:扎西和达瓦用13张卡片上面分别标有数字1-13进行游戏,扎西先抽出两张卡片,然后达瓦从剩下的卡片中任意抽出一张,如果达瓦的卡片数字的大小在扎西的两张卡片数字之间,则达瓦获胜,如果扎西抽出的两张卡片如下:那么,达瓦获胜的概率是多少?(1)一张“10”和一张“13”(2)一张“5”和一张“12”(3)一张“2”和一张“13”2、探索新知甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D 和E;丙口袋中装有2个相同的小球,它们分别写有字母H 和I. 从3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?学生活动:小组讨论,提问小组代表,得出可以用树状图方法。
教师明确:利用树状图,我们可以不重复不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。
提问:用树状图或表格求概率要注意的问题有哪些?教师强调:一定注意“放回实验”和“不会回实验”的列表法和树状图的区别。
3、课堂练习(小组讨论并展示)小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?4、小结作业提问:今天有什么收获?引导学生总结:利用树状图求概率的方法步骤,以及注意的地方。
《用树状图或表格求概率》教案
一、教学目标:1. 让学生理解概率的基本概念,掌握用树状图和表格求概率的方法。
2. 培养学生运用概率知识解决实际问题的能力。
3. 培养学生合作交流、思考问题的能力。
二、教学重点与难点:1. 教学重点:树状图和表格求概率的方法。
2. 教学难点:如何运用树状图和表格求复杂事件的概率。
三、教学准备:1. 教师准备:教学课件、树状图和表格示例、实际问题案例。
2. 学生准备:笔记本、彩笔。
四、教学过程:1. 导入新课:通过抛硬币、抽签等实例,引导学生理解概率的概念。
2. 讲解树状图求概率的方法:(1)介绍树状图的基本结构;(2)讲解如何通过树状图求解事件的概率;(3)举例演示树状图求概率的过程。
3. 讲解表格求概率的方法:(1)介绍表格的基本结构;(2)讲解如何通过表格求解事件的概率;(3)举例演示表格求概率的过程。
4. 练习环节:让学生独立完成练习题,巩固所学方法。
五、课后作业:(1)抛一枚硬币,求正面向上的概率;(2)抽取一副扑克牌,求抽到红桃的概率;(3)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
2. 结合生活实际,自主创作一个概率问题,并用树状图或表格求解。
六、教学拓展:1. 引导学生思考:在实际生活中,还有哪些事件可以用树状图或表格求解概率?2. 讨论:如何运用树状图和表格求解更复杂的事件概率?3. 举例:分析彩票中奖概率、体育比赛胜负概率等问题,引导学生运用树状图和表格进行求解。
七、课堂小结:2. 强调树状图和表格在解决实际问题中的重要性。
八、教学反思:1. 教师反思:本节课教学目标是否达成?学生掌握情况如何?2. 学生反馈:学生对树状图和表格求概率的方法是否理解?是否存在疑惑?九、章节练习:1. 选择题:A. 树状图B. 表格C. 抛硬币D. 猜谜语(2)在抛一枚硬币的实验中,正面向上的概率是____。
A. 0B. 1C. 0.5D. 100%2. 解答题:抽取一副扑克牌,求抽到红桃的概率;(2)一个班级有30名学生,其中有18名女生,求随机挑选一名学生是女生的概率。
画树状图法求概率教案
画树状图法求概率教案教案标题:画树状图法求概率教案目标:1. 了解概率的基本概念和计算方法;2. 掌握使用树状图法求解概率问题;3. 培养学生的逻辑思维和问题解决能力。
教学重点:1. 树状图的构建和使用;2. 利用树状图法解决概率问题。
教学难点:1. 复杂问题的树状图构建;2. 确定正确的概率计算方法。
教学准备:1. 教师准备:白板、彩色粉笔/白板笔、树状图示例;2. 学生准备:笔记本、铅笔、橡皮擦。
教学过程:Step 1: 引入概率概念1. 教师简要介绍概率的定义和基本概念,如样本空间、事件等。
2. 引导学生举例说明概率的应用场景,如掷骰子、抽牌等。
Step 2: 树状图法概述1. 教师通过示意图或实际例子介绍树状图法的基本思想和步骤。
2. 强调树状图的层次结构和分支表示不同的可能性。
Step 3: 树状图的构建1. 教师通过一个简单的问题示例,引导学生一起构建树状图。
2. 解释如何根据问题的条件和可能性分支来构建树状图。
Step 4: 树状图法求解概率问题1. 教师通过示例问题演示如何使用树状图法求解概率问题。
2. 强调计算概率的方法,如乘法原理、加法原理等。
Step 5: 练习与巩固1. 学生个人或小组练习,使用树状图法解决给定的概率问题。
2. 教师提供反馈和指导,纠正学生的错误和困惑。
Step 6: 拓展应用1. 学生尝试解决更复杂的概率问题,如多次独立事件的概率计算。
2. 教师提供挑战性问题,鼓励学生探索更高级的概率计算方法。
Step 7: 总结与评价1. 教师与学生一起总结树状图法求解概率问题的基本步骤和注意事项。
2. 学生进行自我评价,检查自己对概率和树状图法的理解程度。
教学延伸:1. 学生可以在课后继续探索更复杂的概率问题,并尝试使用树状图法进行求解。
2. 学生可以与同学分享自己的概率问题解决过程,互相学习和提供反馈。
教学评估:1. 教师观察学生在课堂上的参与程度和问题解决能力。
《概率树形图》教案-01
《概率树形图》教案
教学目标:
1.使学生会画树形图计算简单事件的概率.
2.通过画树形图求概率的过程培养学生思维的条理性,提高学生分析问题、解决问题的能力.
3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性. 教学重点:画树形图计算简单事件的概率.
教学难点:通过学习画树形图计算概率,培养学生思维的条理性.
教学方法:学生自主探究、合作交流与教师启发引导相结合.
教学用具:计算机辅助教学.
塑料木质
A
A
A
B
A
B B
B
A
A
B
A
B B
解:两枚纪念币中恰好有一枚是“欢欢”记为事件A .
52;。
3.1_用树状图或表格求概率(教案)
5.数学表达能力:通过书写树状图和填写表格,提高学生的数学表达能力,使其清晰、准确地表达自己的思考过程。
本节课将紧密围绕新教材要求,注重培养学生的学科核心素养,提高他们的综合运用能力。
三、教学难点与重点
1.教学重点
(1)理解并掌握树状图和表格在求解概率问题中的应用。
(2)能够运用树状图和表格表示事件的所有可能结果,并进行概率计算。
(3)掌握单一事件和组合事件的概率计算方法。
举例:
-通过抛硬币、掷骰子等简单实例,让学生理解如何利用树状图和表格表示事件的所有可能结果。
-讲解并举例说明如何通过树状图和表格计算单一事件和组合事件的概率。
2.教学难点
(1)树状图的构建:学生在构建树状图时,可能难以把握事件之间的逻辑关系,导致树状图错误。
(2)表格的填写:学生在填写表格时,容易遗漏或重复计算某些结果,影响概率计算的正确性。
(3)条件概率的计算:对于涉及条件概率的问题,学生可能难以理解条件概率的概念,以及如何利用树状图和表格进行计算。
举例:
同学们,今天我们将要学习的是“3.1_用树状图或表格求概率”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断某个事件发生概率的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子的概率、抽卡片的概率等。
用画树状图法求概率(教案、教学反思、导学案)
第2课时用画树状图法求概率【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表,树状图的画法.列表法和树状图的选取方法.一、情境导入,初步认识播放视频《田忌赛马》,提出问题,引入新课.齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛.(1)你知道孙膑给的是怎样的建议吗?(2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢?【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.二、思考探究,获取新知1.用列表法求概率课本第136页例2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用怎样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.【教学说明】教师引导学生列表,使学生动手体会如何列表,指导学生体会列表法对列举所有可能的结果所起的作用,总结并解答.指导学生如何规范的应用列表法解决概率问题.由例2可总结得:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:①列表;②通过表格确定公式中m、n的值;③利用P(A)=m/n计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?答:“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作此改动对所得结果没有影响.2.树状图法求概率.课本第138页例3.分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?介绍树状图的方法:第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.【教学说明】教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.【归纳结论】画树状图求概率的基本步骤:①明确试验的几个步骤及顺序.②画树状图列举试验的所有等可能的结果.③计数得出m,n的值.④计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图”法方便?一般地,当一次试验要涉及两个因素(或两步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、运用新知,深化理解在一只不透明的盒子里装有用“贝贝”(B)、“晶晶”(J)、“欢欢”(H)、“迎迎”(Y)和“妮妮”(N)五个福娃的图片制成的五张外形完全相同的卡片.小华设计了四种卡片获奖的方案(每个方案都是前后共抽两次,每次从盒子里抽取一张卡片).(1)第一次抽取后放回盒子并混合均匀,先抽到“B”后抽到“J”;(2)第一次抽取后放回盒子并混合均匀,抽到“B”和“J”(不分先后);(3)第一次抽取后不再放回盒子,先抽到“B”后抽到“J”;(4)第一次抽取后不再放回盒子,抽到“B”和“J”(不分先后);问:(1)上述四种方案,抽中卡片的概率依次是_____,_____,_____,_____;(2)如果让你选择其中的一种方案,你会选择哪种方案?为什么?【教学说明】这是只涉及两个步骤的试验,一般情况下用列表法求解,但第(3)、(4)种方案中涉及到“不放回”的问题,我们选择树状图法更好.学生交流合作,教师指导分析列表或画树状图.【答案】(1)1/25,2/25,1/20,1/10;(2)选择方案(4),因为方案(4)获奖的可能性比其它几种方案获奖的可能性大.四、师生互动,课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?【教学说明】教师提出问题,让学生进行回顾思考,并相互交流.1.布置作业:从教材“习题25.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.25.2 用列举法求概率第2课时用画树状图法求概率一、导学1.导入课题:猜一猜:假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果3枚卵全部成功孵化,则3只雏鸟中恰有3只雌鸟的概率是多少?问题:你能用列表法列举所有可能出现的结果吗?本节课我们学习用画树状图法列举所有可能出现的结果. (板书课题)2.学习目标:会用画树状图法求出事件发生的概率.3.学习重、难点:重点:用画树状图法列举所有可能出现的结果.难点:画树状图.4.自学指导:(1)自学内容:教材第138页至第139页的例3.(2)自学时间:10分钟.(3)自学方法:认真阅读思考后,弄清树状图的画法及作用.(4)自学参考提纲:①本次试验涉及到 3 个因素,用列表法不能(能或不能)列举所有可能出现的结果.②摸甲口袋的球会出现 2 种结果,摸乙口袋的球会出现3 种结果,摸丙口袋的球会出现2 种结果.画树状图为:③由树形图得,所有可能出现的结果有12 种,它们出现的可能性相等.满足只有一个元音字母的结果有5 种,则P(一个元音)=5 12.满足只有两个元音字母的结果有4 种,则P(两个元音)=1 3 .满足三个全部为元音字母的结果有 1 种,则P(三个元音)=1 12.满足全是辅音字母的结果有 2 种,则P(三个辅音)=1 6 .④你还能用别的方法列举出全部结果吗?试试看.(A,C,H ),(A,C,I),(A,D,H),(A,D,I),(A,E,H),(A,E,I),(B,C,H),(B,C,I),(B,D,H),(B,D,I),(B,E,H ),(B,E,I).二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:了解学生是否会画树状图.(2)差异指导:教师对个别突出的个性或共性问题进行适时点拨引导.2.生助生:引导学生通过合作交流解决疑点.四、强化1.画树状图法适用的条件,树状图的画法及作用.2.练习:(1)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:①三辆车全部继续直行;②两辆车向右转,一辆车向左转;③至少有两辆车向左转. 解:设三辆汽车分别为甲、乙、丙,它们经过十字路口时所有可能发生的结果用树状图表示如下:由图可知,所有可能的结果有27种,这些结果出现的可能性相等.② 满足三辆车全部继续直行(记为事件A )的结果有1种,所以()P A =127. ②两辆车向右转,一辆车向左转(记为事件B )的结果有3种,所以()PB ==31279. ③至少有两辆车向左转(记为事件C )的结果有7种,所以()P C =727. (2)假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚卵全部成功孵化,那么3只雏鸟中恰有3只雌鸟的概率是多少?解:设3枚卵分别为甲、乙、丙,它们卵化后的可能结果如下:由图可知,所有可能的结果有8种.这些结果出现的可能性相等.其中满足3只雏鸟中恰有3只雌鸟(记为事件A )的结果有1种,所以P (A )=18.(3)一只蚂蚁要在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是多少?解:用树状图表示蚂蚁的路径如下:其中“1”表示没有食物,“2”表示有食物.由图可知,所有可能出现的结果有6种,这些结果出现的可能性相等.蚂蚁能获得食物(记为事件A )的结果有2种.所以()P A ==2163. 五、评价 1.学生的自我评价(围绕三维目标):怎样画树状图?何时用画树状图法比较方便?2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课引入一种新的列举方法——画树状图法,让学生感受到这种方法的简捷性和实用性.通过求较复杂概率的数学活动,针对不同的数学问题,采用不同的数学方法,体验各种方法之间存在的内在联系,体会数学在现实生活中的应用价值,培养学生缜密的逻辑思维习惯和发散性思维.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是(C )A. 23B. 12C. 13D. 142.(10分)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的概率为(A )A. 16B. 14C. 13D. 123.(10分)从1、2、-3三个数中,随机抽取两个数相乘,积是负数的概率是23.4.(10分)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,只好把杯盖与茶杯随机地搭配在一起,求颜色搭配正确和颜色搭配错误的概率各是多少?解:杯盖与茶杯的搭配结果如下:由图可知,共有4种搭配结果,其中颜色搭配正确(记为事件A )的结果有2种,所以()P A ==2142.其中颜色搭配错误(记为事件B )的结果有2种,所以()P B ==2142. 5.(30分) 妞妞和爸爸玩“石头、剪刀、布”游戏.每次用一只手可以出“石头”“剪刀”“布”三种手势之一,规则是“石头”赢“剪刀”、“剪刀”赢“布”、“布”赢“石头”,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“石头”手势的概率是多少?解:爸爸可能出“石头”“剪刀”和“布”共3种手势,所以爸爸出“石头”手势的概率为13. (2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?妞妞出“布”,爸爸可能出三种手势中的任意一种,而只有爸爸出“石头”,妞妞才能赢,所以妞妞赢的概率为13. (3)妞妞和爸爸出相同手势的概率是多少?列举出妞妞和爸爸出的手势结果如下:由图可知共有9种可能的结果,且每种结果出现的可能性相等.其中两人出相同手势(记为事件A )的结果有3种,所以()PA ==3193. 二、综合应用(20分) 6.(20分)第一个盒中有2个白球、1个黄球,第二个盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求下列事件的概率:(1)取出的2个球都是黄球;(2)取出的2个球中1个白球,1个黄球.解:分别从两个盒中随机取出1个球的可能结果如下图所示:共有6种可能的结果,且每种结果出现的可能性相等.(1)所有的结果中,满足取出的2个球都是黄球(记为事件A )的结果有1种,所以()P A =16. (2)取出的2个球中1个白球,1个黄球(记为事件B )的结果有3种,所以()P B ==3162. 三、拓展延伸(10分)7.(10分) 两张图片形状完全相同,把两张图片全部从中间剪断,再把四张形状相同的小图片混合在一起.从四张图片中随机地摸取一张,接着再随机地摸取一张,则两张小图片恰好合成一张完整图片的概率是多少?解:设第一张图片为A ,剪断的两张分别为A1,A2;第二张图片为B ,剪断的两张分别为B1,B2.列举出所有结果如下:共有12种可能的结果,且每种结果出现的可能性相等.其中恰好合成一张完整图片(记为事件A )的结果有4种,所以()P A ==41123.。
25.2用列举法求概率画树状图法求概率((教案))
-复合事件的列举:指导学生如何将复合事件分解为若干个简单事件,以及如何整合不同简单事件的概率。
-树状图法求解概率:重点在于教授学生如何构建树状图,并通过树状图来分析事件发生的所有可能性。
-树状图的构建:强调树状图的逻辑结构,以及如何从初始事件出发,逐步展开所有分支。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是指某个事件在所有可能事件中发生的频率或可能性。它是帮助我们量化不确定性,进行合理决策的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过列举法或树状图法求解一个实际问题,展示概率在实际中的应用,以及如何帮助我们解决问题。
此外,学生在构建树状图时,对于如何正确地表示事件之间的分支关系显得有些吃力。我意识到,这里我需要给出更清晰的指导,比如通过逐步引导的方式,让学生在课堂上一起参与构建,而不是仅仅观看我在黑板上演示。
我还观察到,在小组讨论环节,有些学生显得不够积极。为了鼓励他们更主动地参与进来,我打算在下次课堂上尝试一些互动性更强的教学方法,比如角色扮演或者辩论赛,让每个学生都能在活动中找到自己的位置,发挥自己的作用。以下核心素养:
1.数据分析观念:通过列举法和树状图法求解概率问题,提高学生分析数据、处理信息的能力,使其能够从实际问题中抽象出数学模型。
2.逻辑推理能力:在求解过程中,引导学生运用逻辑推理,分析事件之间的关联,培养学生严谨的逻辑思维。
3.数学抽象能力:让学生在列举和画树状图的过程中,提高对事件抽象和概括的能力,形成数学模型。
在教学过程中,教师需要针对这些重点和难点,通过直观的例子、互动讨论和反复练习,帮助学生深入理解核心知识,并克服学习中的困难。
《用树状图求概率》教学案
课题:用树状图求概率【学习目标】1.掌握用“树状图”求概率的方法.2.会画“树状图”并利用其分析和解决有关三步求概率的实际问题.【学习重点】用“树状图”求概率的方法.【学习难点】画“树状图”分析和解决有关三步求概率的实际问题.情景导入 生成问题旧知回顾:1.小颖将一枚质地均匀的硬币掷一次,正面朝上的概率是12;小颖将一枚质地均匀的硬币连续掷了两次,你认为两次都是正面朝上的概率是14;连续掷三次正面朝上的概率是多少呢? 2.掷一枚硬币一次,这是一步试验,可用直接计算法求概率;掷两枚硬币(或一枚硬币掷两次),这是两步试验,可用列表法求概率;那么掷三枚硬币(或一枚硬币掷三次),这是三步试验.那么如何求三步试验的概率呢?带着这个问题进入今天学习吧!自学互研 生成能力知识模块一 树状图法求概率【自主探究】阅读教材P 138~P 139例3,完成下面的问题:范例:“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,回答以下问题:解:(1)补全下列“树状图”:(2)他遇到三次红灯的概率是多大?P(三次红灯)=18. 归纳:当试验存在三步或三步以上时,用树状图法比较方便,【合作探究】变例:甲,乙,丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回甲手中的概率是多少?解:画树状图如图:可看出:三次传球有8种等可能结果,其中传回甲手中的有2种.所以P(传球三次回到甲手中)=28=14. (2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由. 解:由(1)可知:从甲开始传球,传球三次后球传到甲手中的概率为14,球传到乙、丙手中的概率均为38,所以三次传球后球回到乙手中的概率最大值为38.所以乙会让球开始时在甲手中或丙手中. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块 树状图法求概率当堂检测 达成目标【当堂检测】1.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( D )A .13B .16C .23D .192.学校团委在五四青年节举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是( A )A .23B .56C .16D .123.在四边形ABCD 中,①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是多少?解:画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平形四边形的概率是812=23. 【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
【教案】 用树形图求概率
用树形图求概率学习目标:1、会用树形图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树形图法计算简单事件发生的概率,并阐明理由.难点:用树形图求出一次试验所有可能的结果. 复习引入:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.当一次试验中涉及3个因素或更多的因素时,怎么办?引入课题 课前预习导学:学习P137-138内容,体会用“树形图”的方法求概率。
自我检测:抛掷一枚质地均匀的骰子,计算下列事件的概率:(1)点数为6; (2)点数小于或等于3; (3)点数为7. 研讨一:同时抛掷三枚硬币,求下列事件的概率: (1) 三枚硬币全部正面朝上;(2) 两枚硬币正面朝上而一枚硬币反面朝上; (3) 至少有两枚硬币正面朝上.学习小组交流,讨论并让学生板演解: 由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种∴ P(A)=81(2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种∴ P(B)= 83(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种 ∴ P(C)=84=21课内训练巩固:《数学》在小组交流探讨的基础上小结:用树状图和列表法求概率的前提是:各种结果出现的可能性必须相等 研讨二:甲口袋中装有2个相同的小球,它们分别写有字母A 和B ; 乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少? 本题中元音字母: A E I辅音字母: B C D H师生分析:第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的? 第二、画出树形图:学生试画后,教师板书. 解:根据题意,我们可以画出如下“树形图”:第三、计算概率:明确随机事件,正确数出nm ,的值,计算概率. 师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中n m ,的值.学生讨论后归纳出正确数出n m ,的方法:方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,甲乙丙 ACH I DH I EH I BCH I DH I EH I从中找出n m ,的值.方法2:直接看树形图的最后一步,就可以求出n 的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出m 的值了.教师板书:由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等. (1)只有一个元音字母的结果有5个,所以()125一个元音=P ; 有两个元音字母的结果有4个,所以()31124个元音两==P ; 全部为元音字母的结果有1个,所以()61122个元音三==P ;(2)全是辅音字母的结果有2个,所以()61122音辅三个==P .第四、归纳方法:画树形图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序; (2)画树形图列举一次试验的所有可能结果; (3)明确随机事件,数出n m ,;(4)计算随机事件的概率()A m P n=. 想一想:(1) 列表法和树形图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?课内训练巩固:1. 小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。
用树状图法求概率优秀教学设计
用树状图法求概率教学目标:1.使学生会画树形图计算简单事件的概率.2.通过画树形图求概率的过程培养学生思维的条理性,提高学生分析问题、解决问题的能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.教学重点:画树形图计算简单事件的概率.教学难点:通过学习画树形图计算概率,培养学生思维的条理性. 教学准备:PPT课件教学方法:演示法、练习法、讲授法教学设计:一.复习提问,巩固旧知问题1.列举一次试验的所有可能结果时,学过哪些方法?问题2.用列举法求概率的基本步骤是什么?问题3.什么情况下用列表法?设计意图:复习直接列举法、列表法求概率及其步骤。
二、回顾例题,引入新课掷两枚硬币,列出所有事件发生的结果:直接列举法、列表法问题1:如果掷三枚硬币,列表法方不方便得到总的结果的种数?分析:当一次试验是三枚硬币来反映出现的结果的种数时,列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用画树状图法。
设计意图:为探究画树状图法求概率作铺垫。
解决问题:掷三枚硬币,求下列事件的概率:(1)三枚硬币全部正面朝上(2)三枚硬币全部反面朝上(3)至少有两枚硬币反面朝上(鼓励学生思考、分析,板书用画树状图法求概率的过程)三、典例精析应用新知1、小明是一个小马虎,晚上睡觉的时候把两双袜子放在床上,早上起床没有看清楚就穿上去学校了,问小明穿上同一双袜子的概率为多少?(请同学上黑板演示,写出详细的作图过程,老师巡视,老师点评,并再次分析思路与做题过程并且强调书写的格式和过程)2、甲袋——A和B;乙袋——C、D和E;丙袋——H和I;从三个袋中随机地取出一个球。
(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少? 其中 A、E、I 是元音字母,B、C、D、H是辅音字母设计意图:让学生熟悉和灵活运用树状图求概率,并思考用画树状图求概率的基本步骤。
用树状图或表格求概率优秀教案
用树状图或表格求概率【课时安排】3课时【教学目标】(一)知识与技能目标:1.进一步理解当试验次数较大时试验频率稳定于概率。
2.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率。
(二)方法与过程目标:合作探究,培养合作交流的意识和良好思维习惯。
(三)情感态度价值观。
积极参与数学活动,提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣。
发展学生初步的辩证思维能力。
【教学重点】借助树状图和列表法计算涉及两步试验的随机事件发生的概率。
【教学难点】理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。
正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率。
【教学过程】【第一课时】一、温故而知新,可以为师矣。
问题再现:小明和小凡一起做游戏。
在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。
(一)这个游戏对双方公平吗?(二)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?遇到了新问题:小明、小凡和小颖都想去看周末电影,但只有一张电影票。
三人决定一起做游戏,谁获胜谁就去看电影。
游戏规则如下:2.两次摸到不同颜色球的概率;3.只有一张电影票,通过做这样一个游戏,谁获胜谁就去看电影。
如果是你,你如何选择?如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法。
用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率。
在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的。
活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件。
教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的。
《用树状图或表格求概率》教案
《用树状图或表格求概率》教案第一章:概率的基本概念1.1 概率的定义解释概率是反映事件发生可能性大小的量。
强调概率的取值范围:0≤P(A)≤1。
1.2 必然事件和不可能事件必然事件的概率为1,不可能事件的概率为0。
举例说明。
第二章:树状图法求概率2.1 树状图的概念介绍树状图是一种图形化表示事件的方法。
强调树状图的优点:直观、清晰。
2.2 树状图法求概率步骤一:画出树状图。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第三章:列表法求概率3.1 列表法的概念介绍列表法是将所有可能的结果列出来,便于计算概率的方法。
强调列表法的优点:简单、直观。
3.2 列表法求概率步骤一:列出所有可能的结果。
步骤二:统计符合条件的结果数。
步骤三:计算概率。
第四章:独立事件的概率4.1 独立事件的定义解释独立事件是指在一次试验中,一个事件的发生不影响另一个事件的发生。
强调独立事件概率的乘法规则。
4.2 独立事件的概率计算步骤一:列出所有独立事件的组合。
步骤二:计算每个独立事件的概率。
步骤三:将各独立事件的概率相乘。
第五章:互斥事件的概率5.1 互斥事件的定义解释互斥事件是指在一次试验中,两个事件不可能发生。
强调互斥事件概率的加法规则。
5.2 互斥事件的概率计算步骤一:列出所有互斥事件的组合。
步骤二:计算每个互斥事件的概率。
步骤三:将各互斥事件的概率相加。
本教案通过讲解概率的基本概念,以及树状图法、列表法求概率,重点介绍了独立事件和互斥事件的概率计算方法。
希望对您的教学有所帮助!第六章:条件概率6.1 条件概率的定义解释条件概率是指在某一事件已经发生的条件下,另一事件发生的概率。
强调条件概率的取值范围:0≤P(B|A)≤1。
6.2 条件概率的计算步骤一:计算事件A的概率P(A)。
步骤二:计算事件A和事件B发生的概率P(AB)。
步骤三:计算条件概率P(B|A)=P(AB)/P(A)。
第七章:全概率公式7.1 全概率公式的概念介绍全概率公式是用来计算一个事件发生的总概率的公式。
用树形图求概率-经典教学教辅文档
个回合能确定两人先上场的概率.
先生充分自探后,小组合探,然后教师出示展现评价分工表,进行展现评价,教师强调重难点。
四、质疑再探
你还有甚么疑问或新的见解,请大胆提出来,大家一同解决。
五、运用拓展
1、请你根据本节知识自编一题,小组内交流互解,并把好的引荐给全班同学。
合作小组的4位同学坐在课桌旁讨论成绩,先生A的坐位如图所示,先生B,C,D随机坐到其他三个坐位上,
求先生B坐在2号坐位的概率.
六、课堂小结
画树形图求概率的步骤:
①把第一个要素一切可能的结果列举出来.
②随着事情的发展,在第一个要素的每一种可能上都会发生第二个要素的一切的可能.
③随着事情的发展,在第二步列出的每一个可能上都。
用树形图求概率教学案
25.2.3 用树形图求概率一、学习目标:1、会用树形图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.● 重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树形图法计算简单事件发生的概率,并阐明理由.● 难点:用树形图求出一次试验所有可能的结果.二、复习引入:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.当一次试验中涉及3个因素或更多的因素时,怎么办?引入课题三、课前预习导学:学习P136-137内容,体会用“树形图”的方法求概率。
复习:(1)通过小明和小岗用两个转盘做游戏的练习复习列表法。
.四、研讨一:同时抛掷三枚硬币,求下列事件的概率:(1) 三枚硬币全部正面朝上;(2) 两枚硬币正面朝上而一枚硬币反面朝上;(3) 至少有两枚硬币正面朝上.学习小组交流,讨论并让学生板演解: 由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种∴ P(A)=81 (2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种∴ P(B)= 83 (3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种∴ P(C)=84=21● 课内训练巩固:在小组交流探讨的基础上小结:用树状图和列表法求概率的前提是:各种结果出现的可能性必须相等。
● 巩固练习:小明的袜子问题五、研讨二:甲口袋中装有2个相同的小球,它们分别写有字母A 和B ; 乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?本题中元音字母: A E I辅音字母: B C D H师生分析:第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?第二、画出树形图:学生试画后,教师板书.解:根据题意,我们可以画出如下“树形图”:第三、计算概率:明确随机事件,正确数出n m ,的值,计算概率.师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中n m ,的值.学生讨论后归纳出正确数出n m ,的方法:方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出n m ,的值.方法2:直接看树形图的最后一步,就可以求出n 的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出m 的值了. 教师板书:由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.(1)只有一个元音字母的结果有5个,所以()125一个元音=P ; 有两个元音字母的结果有4个,所以()31124个元音两==P ; 全部为元音字母的结果有1个,所以()61122个元音三==P ; (2)全是辅音字母的结果有2个,所以()61122音辅三个==P . 第四、归纳方法:画树形图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树形图列举一次试验的所有可能结果;(3)明确随机事件,数出n m ,;甲 乙 丙 A C HI D H I E H I B C HI D H I EH I(4)计算随机事件的概率()A mPn.想一想:(1) 列表法和树形图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?六、课内训练巩固:1. 小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。
树状图法求概率教案
用列举法求概率——树状图法李文辉【学习目标】1、进一步理解有限等可能性事件概率的意义。
2、会用树状图列出一次试验中分三步或更多步完成(涉及3个或更多个因素)时,不重不漏地求出所有可能的结果,从而正确地计算事件的概率。
3、进一步提高分类的数学思想方法,掌握有关数学技能(树状图)。
4、了解在什么情况用“列表”,什么情况用“树状图”较为方便。
【学习重点】用树状图计算简单事件发生的概率,构建数学模型,培养思维的条理性【学习难点】会用树状图法不重不漏地列举出所有可能的结果【学习过程设计】一、复习回顾1、通过前面的学习,我们掌握了用哪些方法求概率?2、刚才老师提的这个问题有很多同学举手想来回答:①如果老师就从甲、乙、丙三位同学中随机地选择一位来回答,那么选中丙同学的概率是多少?②如果老师想从甲和乙两位同学中选择一位同学回答,且由甲和乙两位同学以猜拳一次(剪刀、锤子、布)的形式谁获胜就谁来回答,那么你能用列表法求得甲同学获胜的概率吗?【由以上进行说明】:当一次试验只需一步完成或者试验的结果只由一个因素决定时,用直接列举法即可较简单列出所有可能的结果。
当一次试验需要两步完成或者试验的结果需由两个因素决定时,用列表列举法即可较简单列出所有可能的结果。
列举要完全,不重不漏。
列举完成后即可用以下公式求某个事件的概率:P(A)=mn。
二、新知学习甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?1、思考:在这个试验中,一个结果由几个因素决定?当一次试验涉及3个因素或3个以上的因素时,列表法能胜任吗?2、教师说明:当一次试验要涉及3个或更多的因素时,列表就不方便了,为不重不漏地列出所有可能的结果,通常采用画树状图法。
《25.2 第2课时 用树状图求概率》教案、导学案
25.2 用列举法求概率《第2课时用树状图求概率》教案【教学目标】1.进一步理解有限等可能事件概率的意义.2.会用树状图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.3.进一步提高运用分类思想解题的能力,掌握有关数学技能.【教学过程】一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点:用树状图求概率【类型一】摸球问题一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.112解析:用树状图或列表法列举出所有可能情况,然后由概率公式计算求得.画树状图(如图所示):∴两次都摸到白球的概率是212=16,故选C. 【类型二】转盘问题有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果.其中A 大于B 的有5种情况,A 小于B 的有4种情况,再利用概率公式即可求得答案.解:选择A 转盘.画树状图得:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况, ∴P (A 大于B )=59,P (A 小于B )=49,∴选择A 转盘.方法总结:树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【类型三】游戏问题甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是________.解析:分别用A ,B 表示手心,手背.画树状图得:∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是:48=12,故答案为12. 方法总结:列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.【类型四】游戏公平性的判断小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?解析:(1)设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 根据抽取过程不放回,可列表或作树状图,表示出所有可能结果;(2)根据树状图或列表得出两人所取笔颜色相同的情况,求出小明和小军获胜的概率,比较概率大小判断是否公平,概率越大对谁就有利.解:(1)根据题意,设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 作树状图如下:一共有20种可能.(2)从树状图可以看出,两次抽取笔的颜色相同的有8种情况,则小明获胜的概率大小为820=25,小军获胜的概率大小为35,显然本游戏规则不公平,对小军有利.方法总结:用树状图法分别求出两个人获胜的概率,进行比较.若相等,则游戏对双方公平;若不相等,则谁胜的概率越大,对谁越有利.三、板书设计【教学反思】教学过程中,强调在面对多步完成的事件时,通常选择树状图求概率.在求概率时,注意方法的选择.《第2课时用树状图求概率》教案【教学目标】1.让学生在具体情境中了解概率的意义,运用画树状图来计算简单事件发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2.3 用树形图求概率
一、学习目标:
1、会用树形图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.
2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.
● 重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树形图法计算简单事件发生的概率,并阐明理由.
● 难点:用树形图求出一次试验所有可能的结果.
二、复习引入:
当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.
当一次试验中涉及3个因素或更多的因素时,怎么办?引入课题
三、课前预习导学:
学习P136-137内容,体会用“树形图”的方法求概率。
复习:(1)通过小明和小岗用两个转盘做游戏的练习复习列表法。
.
四、研讨一:
同时抛掷三枚硬币,求下列事件的概率:
(1) 三枚硬币全部正面朝上;
(2) 两枚硬币正面朝上而一枚硬币反面朝上;
(3) 至少有两枚硬币正面朝上.
学习小组交流,讨论并让学生板演
解: 由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.
(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种
∴ P(A)=8
1 (2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种
∴ P(B)= 8
3 (3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种
∴ P(C)=
84=2
1
● 课内训练巩固:
在小组交流探讨的基础上小结:
用树状图和列表法求概率的前提是:各种结果出现的可能性必须相等。
● 巩固练习:小明的袜子问题
五、研讨二:
甲口袋中装有2个相同的小球,它们分别写有字母A 和B ; 乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。
从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母的概率是多少?
本题中元音字母: A E I
辅音字母: B C D H
师生分析:
第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?
第二、画出树形图:学生试画后,教师板书.
解:根据题意,我们可以画出如下“树形图”:
第三、计算概率:明确随机事件,正确数出n m ,的值,计算概率.
师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中n m ,的值.学生讨论后归纳出正确数出n m ,的方法:
方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出n m ,的值.
方法2:直接看树形图的最后一步,就可以求出n 的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出m 的值了. 教师板书:
由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.
(1)只有一个元音字母的结果有5个,所以()125一个元音=
P ; 有两个元音字母的结果有4个,所以()3
1124个元音两==P ; 全部为元音字母的结果有1个,所以()6
1122个元音三==P ; (2)全是辅音字母的结果有2个,所以()6
1122音辅三个==P . 第四、归纳方法:画树形图求概率的基本步骤:
(1)明确一次试验的几个步骤及顺序;
(2)画树形图列举一次试验的所有可能结果;
(3)明确随机事件,数出n m ,;
甲 乙 丙 A C H
I D H I E H I B C H
I D H I E
H I
(4)计算随机事件的概率
()A m
P
n
.
想一想:
(1) 列表法和树形图法的优点是什么?
(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?
六、课内训练巩固:
1. 小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。
2、在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?
(1)、从盒子中取出一个小球,小球是红球;
(2)、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同;
(3)、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小球的颜色都相同。
七、课堂总结:树形图和用树状图和列表的方法求概率的前提。
八、课外拓展:
一、经过某十字路口的汽车,它可能继续直行,也可能左转的概率:
(1)三辆车全部继续直行;
(2)两辆车右转,一辆车左转;
(3)至少有两辆车左转。
二、“数学病院”
三、“配紫色游戏”。