刚度、线刚度、侧向刚度

合集下载

多层框架结构习题

多层框架结构习题

多层框架结构习题一、填空题1、框架结构是由和连接而成的结构。

2、框架结构伸缩缝与沉缝的宽度一般不小于。

3、框架结构在计算纵向框架和横向框架的内力时,分别按进行计算。

4、框架结构在计算梁的惯性矩时,通常假定截面惯性矩I 沿轴线不变,对装配式楼盖,取I = I 0 ,I 0 为矩形截面梁的截面惯性矩;对现浇楼盖,中框架I = ,边框架I= 。

5、框架柱的反弯点位置取决于该柱上下端的比值。

6、框架柱的反弯点高度一般与、、、等因素有关。

7、框架梁端负弯矩的调幅系数,对于现浇框架可取。

8、用分层法计算框架结构在竖向荷载下的内力时,除底层柱外,其余层柱线刚度乘以,相应传递系数为。

9、框架柱的抗侧移刚度与、、等因素有关。

10、框架在水平荷载下内力的近似计算方法—反弯点法,在确定柱的抗侧移刚度时,假定柱的上下端转角。

11、框架结构在水平荷载下的侧移变形是由和两部分组成的。

12、框架结构在水平荷载下柱子的抗侧移刚度D= ,在一般情况下它比用反弯点法求得的柱抗侧移刚度。

13、多层框架结构总高度受限制的主要原因是。

14、框架结构中框架柱的主要内力为;框架梁的主要内力为。

15、框架结构中“柱抗侧移刚度”定义为。

16、框架结构按施工方法的不同可分为、和。

17、框架结构承重框架的布置方案有、和等三种。

18、框架结构的变形缝有、和三种。

19、伸缩缝的设置,主要与有关。

20、沉降缝的设置,主要与有关。

21、防震缝的设置,注要与有关。

22、框架结构设置伸缩缝的作用是。

23、框架结构设置沉降缝的作用是。

24、框架结构设置防震缝的作用是。

25、在水平荷载的作用下,框架柱的反弯点位置取决于。

26、作用于框架结构上的荷载,可分为和两类。

27、框架结构在竖向荷载作用下的内力常用近似计算方、和等。

28、框架结构在水平荷载作用下的内力与侧移常用近似计算方法有、、等。

29、框架结构D值法中柱的侧移刚度D= ,是考虑对柱侧移刚度的修正系数。

30、框架结构D值法中柱的标准反弯点高度与、、、有关。

混凝土框架结构设计中应注意的几个问题

混凝土框架结构设计中应注意的几个问题

混凝土框架结构设计中应注意的几个问题发表时间:2020-05-14T16:40:49.907Z 来源:《基层建设》2020年第3期作者:孙莅栋[导读] 摘要:目前,框架结构是混凝土结构设计中应用最广泛的结构型式。

新疆凯盛建材设计研究院(有限公司)摘要:目前,框架结构是混凝土结构设计中应用最广泛的结构型式。

本文从工作实际及相关设计经验提出几个在结构设计中应注意的涉及结构安全及经济的问题。

关键词:多层混凝土框架;结构设计;在结构体系的选择上,多层建筑由于建筑物高度不高,受水平力影响较小,主要承受竖向荷载的影响,宜选择框架结构体系。

在结构设计中常常发现混凝土框架设计时存在部分问题常常被忽略,随着人们专业素质的提高,业主对设计的要求越来越专业化,对结构设计的要求也越来越具体。

设计不仅要美观、适用、安全,而且要经济。

因此,优质的结构设计不仅为业主带来利益,也为设计者本身提高了信誉。

加强结构设计质量,重视结构设计中存在的问题,提高业务能力和技术水平是每一个设计人员应具备的基本素质。

下面,本人总结了近年来在结构设计中发现的容易被忽略应引起注意的几个问题,供设计人员参考。

1.结构计算中几个重要参数的合理选取:《抗震规范》第3.6.6.4条指出,所有的计算机计算结果,应经分析判断确认其合理、有效后方可用于工程设计。

通常情况下,计算机的计算结果主要是结构的自振周期、楼层地震剪力系数、楼层弹性层间位移(包括最大位移与平均位移比)和弹塑性变形验算时楼层的弹塑性层间位移、楼层的侧向刚度比、振型参与质量系数、墙和柱的轴压比及墙、柱、梁和板的配筋、超筋超限信息等等。

为了分析判断计算机计算结果是否合理,结构设计计算时,除了有合理的结构方案还需依据概念设计判断结构计算简图的正确性。

2.梁、柱截面尺寸的调整:结构设计时一般根据教科书建议的梁、柱截面尺寸的取值范围,结合自己的经验先对所有构件的大小初步确定一个尺寸。

此时须注意尽可能使柱的线刚度与梁的线刚度的比值>1。

混凝土结构设计自考历年简答

混凝土结构设计自考历年简答

全国2010年10月10.简要说明剪力墙结构中系数α的物理意义,并判断α<10时剪力墙的类型。

答:①α为剪力墙整体性系数,反映了连梁总转角刚度与墙肢总线刚度两者的相对比值,是一个无量纲系数。

②α<10时,为联肢剪力墙。

10.牛腿设计的主要内容是什么?答:①确定牛腿的截面尺寸②承载力计算③配筋构造。

11.简述梁柱节点在地震作用下破坏的主要原因。

答:①节点的受剪承载力不足②箍筋稀少③梁筋锚固长度不足。

12.在框架—剪力墙的计算中,为何有时要对综合框架总剪力V f进行修正?当V f<0.2V o时,如何修正?答:①在工程设计中,为防止由于某些原因引起剪力墙刚度的突然降低而导致整个结构承载能力下降过多,在框架内力计算时,V f不得太小。

②若V f<0.2V o时,则V f应取下列二者的较小值:1.5V f,max,0.2V。

13.简述用D值法确定框架柱反弯点位置的主要步骤。

答:①根据框架总层数、楼层所在位置及梁柱的线刚度比,求标准反弯点高度比y0。

②求上、下层横梁线刚度比对y0的修正值y1。

③求上、下层层高变化对y0的修正值y2、y3。

④求框架柱的反弯点高度y h:y h=(y0+y1+y2+y3)h0。

全国2010年1月14.对单层厂房柱牛腿进行承载力计算时,可取什么样的计算简图?并画出示意图。

并写出正截面承载力计算公式。

答:①根据牛腿的受力特点,计算时可将牛腿简化为一个以顶端纵向钢筋为水平拉杆,以混凝土斜向压力带为压杆的三角形桁架。

②A s=F v a/0.85f y h0+1.2F k/f y。

15.简述框架柱的抗震设计原则。

答:①强柱弱梁。

②在弯曲破坏之前不发生剪切破坏,使柱有足够的抗剪能力。

③控制柱的轴压比不要太大。

④加强约束,配置必要的约束箍筋。

16.用分层法计算竖向荷载作用下框架弯矩的主要计算步骤是什么?答:①画出分层框架的计算简图。

②计算框架梁、柱的线刚度,注意除底层以外的各柱线刚度应乘以折减系数0.9。

钢结构课后习题答案--

钢结构课后习题答案--

高层建筑结构有哪几种结构体系?各种结构体系的优缺点和受力特点如何?答:(1)框架结构体系。

优点是:建筑平面布置灵活,能获得大空间,也可按需要做成小房间;建筑立面容易处理;结构自重较轻;计算理论比较成熟;在一定高度范围内造价较低。

缺点是:框架结构的侧向刚度小,水平荷载作用下侧移较大,故需要控制建筑物的高度。

(2)剪力墙结构体系。

优点是:剪力墙的承载力和侧向刚度均很大,侧向变形较小。

缺点是:结构自重较大;建筑平面布置局限性大,较难获得大的建筑空间。

(3)框架—剪力墙结构体系。

优点是:框架—剪力墙结构房屋比框架结构房屋的水平承载力和侧向刚度都有所提高。

(4)筒体结构体系。

优点是:空间性能好。

缺点是:容易有剪力滞后现象。

框架—筒体结构体系。

优点是:这种结构体系兼有框架体系和筒体体系两者的优点,建筑平面布置灵活便于设置大房间,又具有较大的侧向刚度和水平承载力。

刚臂—芯筒结构体系。

优点是:与框架—筒体结构体系相比,刚臂—芯筒体系具有更大的侧向刚度和水平承载力,从而适用于更多层数的高层建筑。

高层建筑地震作用计算的原则有哪些?1 一般情况下,应在结构两个主轴方向分别考虑水平地震作用;有斜交抗侧力构件的结构,应分别计算各抗侧力构件方向分别考虑水平地震作用;2 质量和刚度分布明显不对称的结构,应计算双向水平地震作用下的扭转作用;其他情况应计算单向水平地震作用下的扭转作用;3 8度9度抗震设计时,高层建筑中的大跨度和场悬臂结构应考虑竖向地震作用4 7度抗震时的高层建筑应考虑竖向地震时的作用。

什么是结构的重力二阶效应?1. 重力二阶效应一般包括两部分:一是由于构件自身挠度引起的附加重力效应,二是在水平荷载作用下产生侧移后重力荷载由于该侧移引起的附加效应。

2. 控制和验算结构在风荷载或地震作用下重力P—Δ效应对结构构件性能的降低以及由此可能引起的结构构件失稳剪力墙根据洞口的大小,位置等分为几类?其判别条件是什么?各有哪些受力特点?1整截面墙:剪力墙无洞口,或虽有洞口但截面洞口的总面积不大于剪力墙总面积的16%,且洞口间距及洞口至墙边的距离均大于洞口长边尺寸时,可忽视洞的影响,称为整剪力墙。

结构设计中的刚度运用和控制

结构设计中的刚度运用和控制

结构设计中的刚度运用和控制引言刚度的运用和控制是贯穿结构设计始终的一条主线。

一方面,刚度可控制结构或构件的变形能力,另一方面,对超静定结构而言,结构的内力分布也是通过相对刚度的大小来控制的,也就是说,外力在结构内部产生的效应、力的传递与分配以及所引起的结构变形都是通过刚度来控制的。

事实上,结构工程师从结构方案阶段的结构布置和选型、结构的计算模型、结构构件的设计和调整,以至于在简单的楼面板配筋的结构设计全过程中,都在寻求科学合理的刚度,而一栋建筑物设计质量的优劣关键也在于结构的整体刚度和构件的相对刚度控制得是否合理。

1、刚度的概念刚度为产生单位变形所需要的力,其中力和变形都是广义的。

力可以是应力、轴力、弯矩、剪力或扭矩等;变形可以是应变、位移、曲率、剪切角、扭转角等。

刚度包括截面刚度、杆件刚度、结构刚度。

1. 1杆件刚度杆件刚度是在截面刚度(轴向刚度EA 、弯曲刚度E1、剪切刚度GA、扭转刚度GI P等)的基础上考虑第三方向的尺度L,也称为线刚度。

杆件刚度主要有轴向刚度、弯曲刚度、剪切刚度、扭转刚度等。

轴心受压(拉)下的变形△N=,可知轴向受压(拉)杆件刚度为。

弯矩作用下杆件产生弯曲变形,曲率=,小变形下L=则弯曲转角,可知,杆件弯曲刚度为。

剪力作用下产生相对剪切变形: d=γ0ds,则小变形下剪切位移=γ0s==,可知杆件剪切刚度为。

扭矩作用下产生扭转变形,扭矩M n=GI P,其中为单位扭转角,则小变形下扭转角,可知杆件扭转刚度为。

可以看出,各种状态下,杆件越长,杆件刚度越小,其变形越大。

对于内力一定的状况下,杆件刚度越大,则变形越小;而对于变形一定的情况,杆件刚度越大,内力越大。

这也是支座位移(沉降)、温度变化、材料收缩、制造误差等引起的结构变形,欲通过加大截面尺寸来改善结构受力状态并不是一个有效途径的原理所在。

1. 2结构刚度结构是由若干构件组成的,结构刚度可采用特定荷载作用下特定方向的变形来表征越小则结构刚度越大,由上式可以看出,获得更大结构刚度的途径主要有:(1)缩短结构的传力路径,使求和号及积分号后的项数减少;(2)改变约束条件,使结构内力值(如 ,)变小、内力分布更均匀,从而使积分值趋小;(3)使截面刚度(如EI)更大。

刚度理论在结构设计中的作用和体现

刚度理论在结构设计中的作用和体现

第 卷第 期建筑结构 年 月刚度理论在结构设计中的作用和体现张元坤李盛勇广东省建筑设计研究院广州≈提要 结构设计中不仅必须重视属于结构外部因素的/力0 而且要牢牢地掌握及控制好属于结构内部因素的/刚度0∀前者所涉及的力的平衡!结构或构件变形的协调以及由此而产生的构件内力都是通过后者所包含的绝对刚度!线刚度及相连构件之间的相对刚度来体现的∀通过举例 叙述并分析刚度理论在整体结构及单一构件中的体现 从中折射出刚度理论在结构设计中所起的重要作用 有助于结构设计人员对刚度理论有一个清醒的认识和清晰的概念 并在具体的结构设计中科学地运用 避免结构产生不安全因素 以达到结构受力合理且能获得最佳经济效益的目的∀≈关键词 结构设计力刚度绝对刚度相对刚度概念设计∏ ∏ ∏ ¬ ∏ × ∏ ∏ ∏ ∏ ∏ ∏ ∏ 2 √ ≥ ¬ √ ∏ ∏ . ∏ ∏ 2 √ ∏ ∏ ∏ √ ∏ ∏Κεψωορδσ: ∏ ∏ ∏ √一!前言在结构设计过程中的结构布置 包括竖向构件和水平构件布置 和结构计算分析 包括计算假定和构件内力分析 阶段 一般的设计人员比较关注的是荷载的产生及其数值大小 即比较注重/力0的概念而往往会忽视或轻视结构或构件抵抗外力的变形能力!反映结构构件内在联系!影响构件内力及变形相互关系的/刚度0概念∀事实上 结构中力的平衡!变形的协调以及由此产生的构件内力都是通过构件自身的线刚度 由截面尺寸及三维空间的第三方向尺度和材料特性三要素构成 以及连接构件之间的相对刚度的大小来体现的∀换而言之 属于结构外部因素的/力0)))楼层作用荷载!风力!地震作用以及建筑物的自重等在结构内部的作用!传递以及所引起的结构反应都要通过属于结构内部因素的/刚度0来完成∀既为内部因素 从哲学的观点来说 它比起外部因素当然更是事物的本质所在∀另一个事实是 在结构技术书籍和各类结构设计规范 规程 中有关构件计算和构造方面的论述 其核心内容也常以刚度为主线∀因此 结构工程师应十分重视!透彻理解结构刚度理论 尤其是对相对刚度理论∀在结构设计中对刚度理论科学地运用 从高层次!高要求的角度看就显得十分必要和重要 它不仅能够避免结构产生不安全因素 消除结构隐患 而且可以保证构件以至于整个结构在荷载作用下 受力合理并获得最佳的经济效益∀前者是对结构设计的最基本要求 当然也是最重要的要求 而后者则是对结构设计的更高!更全面的要求 也即是结构优化设计终始目标的内容∀此外 对结构设计工作来说 运用了刚度理论可进行整体结构的宏观控制 具有定性且定量!准确有效!简捷方便的特点 有利于缩短设计周期 节省人力和时间 提高工作效率∀二!刚度概念贯穿于结构设计的全过程一幢建筑物的结构设计行与不行和好与不好 关键在于结构的整体刚度和构件的相对刚度控制得是否恰当合理∀事实上 结构设计人员在结构设计过程中所进行的结构布置和构件截面的调整 都是在寻求一种合理的结构刚度 所不同的是意识的强烈程度 而结构设计的基本概念以及结构设计规范的原始精神都是围绕着刚度这一基本原理来展开的∀以高层抗震建筑结构为例 刚度概念则贯穿于结构设计的全过程∀ 1对楼层平面刚度无穷大的结构可以较准确地求得各抗侧力构件的内力高层抗震结构的楼层是刚性的 则能够保证结构的竖向构件所承受的水平力是按其抗侧力刚度分配的 从结构分析的计算数学模型假定到结构的真正受力状态都能一致地反映这一点∀按此设计出来的结构 其安全度是有保证的 其构件内力分析是较准确的 相反 楼盖形成不了无限刚性)))比如楼层大开洞口或凹凸太深太长 即使采用考虑楼板变形的计算程序进行计算 也很难准确了解和掌握其各竖向构件内力的大小∀这就是为什么结构工程师总是希望建筑师所构思的建筑方案的楼面为刚性或近似刚性的道理∀ 1侧向刚度均匀连续变化的结构沿高度的变形不产生突变侧向刚度均匀连续变化的高层建筑 其整体变形曲线是光滑的 在任何楼层处都不会产生位移突变 因而也就形成不了薄弱部位 这样的结构即使在遭受罕遇地震时也不至于倒塌或发生危及人们生命的严重破坏 相反 侧向刚度突变的高层建筑 在楼层刚度突变处形成薄弱部位 产生应力集中 塑性变形大 易遭受地震破坏∀对有转换层的高层建筑 希望是低位转换而不是高位转换 且要求转换层上下层的抗侧刚度有一定的连续性而不是突变的 因而规范规定底部 ∗ 层大空间的剪力墙结构 其转换层上下层的剪切刚度比Χ宜接近 非抗震设计时的Χ不应大于 抗震设计时的Χ不宜大于 ∀厚板转换结构在转换层位置上下层其变形曲线也有突变∀因此 一般不欢迎出现厚板式转换层的结构 就是这个道理∀1结构主轴方向的侧向刚度均衡可以抑制结构的扭转效应主轴方向刚度均衡的结构 两向甚至多方向的动力特性相近 扭转效应不明显 在地震作用下甚至风力作用下 主轴平动占上风 结构的变形简单 容易保证结构安全∀设计时要求抗震结构的平面长宽比小 两向的抗侧力构件分布要均匀!对称!分散!周边 就是基于此方面的考虑∀1解决平面刚度突变的最佳办法是设置防震缝当建筑平面的使用功能非常优越 但出现平面薄弱部位 薄弱部位的平面刚度产生突变 即使采用/精确0的电算程序进行计算和多种构造措施加强 都很难保证该薄弱部位构件抵抗地震作用的强度和变形能力时 通常采取设置防震缝方法 从该位置将建筑物分成独立的结构单元∀对于高烈度区的框架结构 为了减小防震缝两侧碰撞时的破坏 有时需要在防震缝的两侧设置抗撞墙∀这是处理平面刚度突变的最佳方法∀ 1改善或减少因结构侧向刚度不足而产生的结构侧移偏大的有效办法是设置楼层加强层或伸臂内筒2外框架甚至内筒2外框筒高层建筑或超高层建筑 由于高度大!高宽比较大 结构的侧向位移 包括顶点位移和层间位移 可能不满足规范要求或仅达到位移限位的下限 为了改善或减小结构的侧向位移 主要是层间位移 有效且经济的方法是在一定楼层高度处设置结构加强层或伸臂 这是从加强楼层平面刚度和协调内外筒受力概念出发来抑制结构侧向位移的巧妙方法∀加强层的最佳位置可由理论计算确定 其理想楼层从建筑使用功能方面考虑最好是设备转换层或避难层 而这往往与结构最佳位置并不吻合∀实际设计中就需要结构与建筑互相协商 找出双方都能接受的共同点∀对高宽比较大的高层建筑顶层屋盖板加厚并加强配筋在一定程度上也可以抑制结构的侧移∀ 1控制剪力墙的连梁尺寸可以更好地发挥开洞剪力墙的作用框架2剪力墙结构体系中 由于其中的剪力墙是零星!分散布置的 所形成的结构整体刚度不太大 为了增强结构整体刚度 使其中的剪力墙成为主要的抗侧力构件 故规范规定/一!二级抗震墙的洞口连梁跨高比不宜大于 且梁截面高度不宜小于 0 意即要求连梁的刚度不宜太小 相反 在剪力墙结构体系 包括部分框支抗震墙结构体系 中 由于墙体多且密 所形成的结构整体刚度往往过大 不仅吸收地震能量大 对结构受力不利 而且会造成结构造价的上涨 因此 规范规定/将一道抗震墙分成长度均匀的若干墙段 洞口连梁的跨高比宜大于 0 意即要求连梁的刚度不宜太大∀这是有目的地控制剪力墙连梁刚度 将结构整体刚度调整至合适程度并使开洞剪力墙发挥更大作用的显著例子∀所谓/合适程度0 至少应使整体结构的位移限值满足规范的有关要求∀1具有足够楼层平面刚度的地下室顶板才能作为上部结构的嵌固端上部结构以地下室顶板为嵌固端 既保证上部结构的地震剪力通过地下室顶板传递到全部地下室结构 同时也保证上部结构在地震作用下的结构变形是以地下室顶板为参照原点 这是结构整体分析的需要 也是人们对结构实际变形的期望∀为了满足成为上部结构的嵌固端的要求 规范有原则性的定量规定 /地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的两倍0 具体的定性和定量规定则有 /顶板不能开设大洞口 并应采用现浇梁板结构 楼板厚度不宜小于 混凝土强度等级不宜小于≤ 0等 这是高层建筑对确定计算简图大前提的规定 此条的重要性涉及到结构计算分析结果的可靠性和准确性∀ 1多!高层建筑采用单独柱基或单柱单桩基础 应沿两个主轴方向设置具有足够刚度的基础系梁单独柱基或单柱单桩基础虽然受周边土 砂 层的侧限约束 但土 砂 层毕竟存在不均匀性 如有侧向力作用其侧向压缩变形比起钢筋混凝土基础来说要大得多∀在房屋基础设计假设中 各个基础之间是不允许出现相对位移的在柱端弯矩作用下 对基础的转动也必须加以严格限制∀为了达到上述两个条件以满足上部结构的嵌固端假设单独柱基或单柱单桩基础在其两主轴方向都必须设置刚度 包括竖向刚度和侧向刚度 较大的基础系梁∀这是刚度理论贯穿于房屋基础设计中的典型例子∀三!刚度理论在整体结构和构件设计中的体现在结构体系的确定过程以及单一构件的设计中 无时不体现刚度理论在其中所起的指导作用∀也只有在结构设计全过程中紧紧抓住刚度这一重要概念 才能把结构设计做到既保证结构安全且安全度掌握得合适 同时又达到经济合理的理想境界∀而要达到这种境界仅依靠结构专业本身或到了最后进入施工图设计阶段才来运用结构刚度理论是远远不够的∀在设计的初始阶段包括建筑方案和初步设计阶段 就要将结构刚度理论应用在其中 这个阶段 要求建筑师也必须具有结构刚度理论概念∀/先天不足后天再补0就很难设计出建筑与结构相统一的佳品 尤其是高层和超高层建筑以及非高层的抗震建筑∀然而 只要参加工程设计的结构工程师有强烈的刚度理论观念在工作中又积极主动地配合建筑师的创作 则能创造出建筑与结构结合较为完美的作品∀下面列举刚度理论在整体结构!单一构件设计以及构件相互作用中的体现 有助于提高结构设计人员对刚度理论的感性认识∀1结构体系的演变体现对结构整体刚度的要求以钢筋混凝土结构为例 随着建筑高度的不断增加或抗风!抗震级别的提高 结构体系由纯框架结构开始 逐步演变出框2剪!剪力墙!筒体2框架!筒中筒!束筒结构 也就是随着结构层数越来越多!承受的风荷载越来越大地震反应越强烈 对结构的整体刚度的要求就越高因此就产生了整体刚度越来越大的结构体系 见图 ∀图 结构体系的演变1长宽比!高宽比的限值体现高层建筑对结构宏观刚度的要求高层建筑对结构单元平面的长宽比Α/Β!竖向的高宽比Η/Β均有所限制其表象是对高层建筑体形尺寸 宏观的三维空间尺寸 的限制实质上是对结构整体刚度的宏观控制 包括整体刚度的大小以及整体刚度的均衡以求在建筑方案设计阶段所构思的建筑雏形为日后的结构设计提供可行的大前提 并尽可能为取得合理的效果创造条件 见图∀图 长宽比及高宽比图 连体结构1连体高层建筑的产生实质是结构对整体刚度的需要人们通常以为连体高层建筑的出现仅仅是一种新建筑风格的展示 其实不尽然∀实质上是单塔高层建筑的高宽比过大!刚度太弱 而设计者 有时也包括投资者 不想或不可能通过降低高度和增加宽度来提高结构的整体刚度 而是借助于两座塔楼之间的某部分连接 使/孤单0的单塔楼互相傍靠而形成刚度很大的一个整体 因而就产生了连体高层建筑 聪明的建筑师巧妙地利用了这一结构特性创造出了一种新的高层建筑风格 见图 ∀当然连体结构主要起结构稳定的作用 由于其连体部位局部刚度大了 会造成结构整体竖向刚度的不均匀 受力更复杂 震害加剧 结构分析需更详尽∀从抗震角度衡量 它并非理想的建筑体型∀1刚度理论在板式构件中的体现矩形平面的楼板按其两向刚度比划分单向板和双向板 计算四边支承的楼板 首先根据其两个方向的板跨度决定板型 当λ /λ ∴ 时 板上荷载大部分沿板的短方向传递 故按单向板计算 当λ /λ 时 板上荷载沿双向传递 故必须按双向板计算∀其划分原则表面以板的长短边比例作为界限 实质上是因荷载的传递方式取决于板的两个方向刚度比值 两方向的刚度相等或相近 荷载沿双向传递 相差悬殊时则为单向传递 且沿着刚度大的方向传递 即实际上是根据板的纵向与横向刚度比例划分单!双向板 见图 ∀楼板边界条件取决于与相邻板的刚度比 按弹性理论计算楼板时 其支座边界条件通常是这样确定的 邻边有楼板时则假定为固定端 邻边无楼板 边跨或相邻为孔洞的情况 则假定为简支边∀如果严格按刚度理论 即以相邻构件刚度的相对比值确定边界条件时则有些例外的情况 比如当双向板为整间大楼板 即板厚度较大 而邻边为小跨度板 即板厚度较小 由于两者的刚度相差过于悬殊 往往就不宜以固定端对待 对于小跨度板来说 当然是固定端 ∀又如支承端跨板的边梁为宽扁梁或近乎深梁 由于边梁的抗扭刚度甚大 此时的边梁又可作为楼板的固定端 见图 ∀实际配筋构造要求应与计算假定相一致∀图 板的长宽比图 板的边界条件图 地下室侧壁受力简图地下室侧壁两向刚度比决定其计算简图地下室侧壁承受的荷载形式 土压力及水压力等 与水平放置的楼板虽有不同 但其计算简图仍取决于其周边的支承情况及由壁板两向刚度比区分为单向板或双向板∀设夹壁柱之间的距离为Λ,层高为η 当Λ/η∴ 时按单向板计算 反之按双向板算 见图 ∀1刚度理论在梁构件中的体现多跨次梁计算简图的成立有赖于支座处的主梁刚度足够大楼盖中的多跨连续次梁计算简图的确定 其前提是支承次梁的支座)))主梁 框架梁 的刚度远大于次梁 可以成为次梁的/不沉降0支点 否则 计算所得的次梁内力因未考虑支座的/沉陷0而没有反映其实际受力状态 见图 有经验的结构工程师在次梁的配筋量及配筋方式上会给予一定的考虑 而不是绝对地按照计算结果来配筋∀有相当刚度的楼层封口梁会改变传力路径如图 所示 原设计意图是将楼层封口梁支承在框架悬臂梁及楼层悬臂梁上 两种悬臂梁平分外挑部分的荷载∀而事实上由于封口梁的刚度一般都较大 加上楼层悬臂梁的刚度可能小于框架悬臂梁 结果使得封口梁的荷载大部分直接传给框架悬臂梁∀这样 框架悬臂梁由于配筋少而潜伏危险 见图 ∀交叉梁系的传力关系遵循刚度理论交叉梁系的荷载传递方式取决于两个方向梁的线刚度比值∀当两向梁的跨度相同或接近时 即其线刚度比值近似为 荷载由两向梁共同承担 当两向梁的跨度相差悬殊时 即其线刚度相差较大 荷载为单向传递 荷载最终基本上由线刚度大的梁承担 结构形式虽为交叉梁系 实质上已变成主次梁系 见图 ∀建筑角部边梁按刚度大小分担荷载楼层角部相交边梁 其截面尺寸一般都相同∀当λ λ 即线刚度相等 则为双向双悬臂梁关系 平分板上传来的荷载 如λ Ξλ 即线刚度不相同 则可看作主次梁关系 长跨的为次梁 短跨的为主梁 ∀当然 当λ 与λ 相差不很大的情况下 长跨的梁仍有悬臂受力成分 见图 ∀实际设计中 为了安全起见 通常须按两种支承关系验算并作配筋调整 双悬臂时 有意加强长向梁底筋 主次梁时 有意加强长向梁的面筋∀井字梁系的两向梁内力按其线刚度分配矩形平面的井字梁楼盖 正交正放时由于短向梁的线刚度大 产生的内力较大 长向梁的截面虽与短向梁相同 但由于其线刚度小 故产生的内力也小∀当Α/Β∴ 1 时 为了使两向梁受力均匀 产生的内力相近 此时不宜布置成正交正放形式而应该采用斜放井字梁形式 见图 ∀构造加腋梁与变截面梁的区别在于刚度是否突变构造加腋梁由于对其加腋尺寸有所限制 使得其轴线上各处的绝对刚度 ΕΙ 相差不很大 计算时仍可按等截面梁看待 如加腋尺寸超出限值则必须按变截面梁进行计算 见图∀图 连续次梁计算简图图 外悬臂支承边梁图 交叉梁系图 相交悬臂梁图 井字梁系图 加腋梁 1刚度理论在柱构件中的体现在框架结构柱构件的布置中 柱子截面高宽比的不同取值或者说截面尺寸不同的摆向将在两个主轴方向产生很大的刚度差异 当然结构的侧向刚度还与两方向的梁截面尺寸有关 结构设计中完全可以 而且有必要利用这一特征来调整结构两向刚度的均衡∀例如 在建筑平面尺寸ΑΥΒ的结构中 由于两向的跨数及跨度接近 此时柱子就应以η/βΥ 布置 而在长方形的建筑平面中 由于两向的侧向刚度有差异 为了弥补Β方向 短方向 的刚度不足 此时柱子就应以η/β较大值布置 且应以η向平行于Β方向 见图 而绝不能与其相反否则将加剧两向结构整体刚度的差距 既不利于结构的抗风也不利于结构的抗震∀尤其在高层建筑的框架2筒体和外框筒2核心筒筒中筒 结构中前者的侧向刚度由各榀框架2剪力墙构成 故外框架柱的η向应平行于框架的计算方向 而后者的侧向刚度由外框筒的腹板框架构成故其外围柱的η方向应平行于腹板框架方向 见图 ∀这是柱子截面尺寸在不同的结构平面及不同的结构体系中取值 或曰摆向以取得更合理的结构整体刚度的典型例子∀1刚度理论在剪力墙构件中的体现剪力墙和柱同属结构的竖向构件 但剪力墙在其平面内的刚度远远大于柱 因此在结构布置中 当有剪力墙构件时 剪力墙的截面尺寸!数量!位置和形状等对结构的刚度的影响举足轻重 刚度理论在其中的体现更是十分突出∀从早期的墙率 单位建筑面积中剪力墙截面积 探讨 到以刚度为计算参数的剪力墙最低数量的各种各样的简化公式的展示 无不从刚度角度出发 探索剪力墙合理数量的规律∀所谓合理数量 一是指剪力墙不能太少 少到不足以抵抗风力或地震作用是结构设计所不允许的 二是指剪力墙不宜太多 即结构刚度不宜太大 否则对抗震反而不利 而且会造成结构造价的上升 是属于不适宜或不合理的结构设计∀不论是前者或后者 都涉及到刚度理论问题∀图 柱截面在不同平面中的摆向横纵向剪力墙连成× 形甚至闭合筒体 其刚度要比各自分散的剪力墙大 横向!纵向分散的剪力墙一个方向的刚度仅由该方向的剪力墙提供 而横向与纵向相连的剪力墙 一个方向的刚度由该方向的剪力墙及与之相连的翼缘共同提供两者的刚度大小有时可差几倍∀相同横截面积 即消耗的材料相同 形成的剪力墙刚度大的自然比刚度小的要好 这是一个非常明显的道理∀除此之外横向纵向剪力墙相连还增加结构的稳定性提高结构的抗震延性∀ 框2剪结构中的剪力墙宜设置在墙面不需要开大洞口的位置以便形成刚度较大的抗侧力构件 框架2剪力墙结构中的剪力墙 其片数总是有限的∀为了使其起到主要抗侧力构件的作用 每片剪力墙都需要具有一定的刚度如剪力墙开大洞口 则其刚度大大地被削弱 这将与设置剪力墙的初衷相违背 因此宜将剪力墙设置在不需要开大洞口的位置上这是从刚度理论出发对框架2剪力墙结构中剪力墙最佳位置选择的一个基本原则∀图 柱截面在不同结构体系中的摆向 刚度过大的较长剪力墙 宜开设洞口将其分为多肢剪力墙 较长的剪力墙由于墙的高度与墙宽之比减小 平面内刚度相当大 地震时易遭受剪切破坏而在抗震原则中 应做到/强剪弱弯0 结构构件的剪切破坏是要避免的∀为了达到此目的 需将较长剪力墙通过开设洞口 分成较均匀的若干墙段 即将刚度很大的单肢墙通过开洞口变成双肢或多肢墙 使各墙段的高宽比大于 避免剪切破坏 提高其变形能力∀这是合理控制剪力墙刚度的一个例子∀1刚度理论在构件相互作用中的体现荷载的传递使构件产生的内力与相连构件的线刚度有关∀在相同力作用下 刚度大的构件变形就小 或者相连接的构件在一个共同力作用下 刚度大的构件产生的内力就大∀由于刚度在其中起很重要的作用 因此在结构设计中就有许多有关刚度方面的考虑∀梁与楼板相连使梁的刚度增大 而梁的刚度则决定了板的边界条件 现浇钢筋混凝土结构 楼板的存在使梁截面由矩形变为×形或倒 形 不仅使梁增强了抗弯刚度而且也增强了抗扭刚度∀结构计算中 区分中跨梁及边跨梁的刚度增大系数正是这个道理 而梁的抗扭刚度大小则决定了板的边界条件 直接影响板跨中的弯矩及挠度 即梁的抗扭刚度大则板跨中的弯矩及挠度就小 相反则大∀当楼板的边界为边梁 或洞口梁 时 一般的计算将板在该支承边假设为简支 但当边梁为宽扁梁或深梁 或跨高比较小 时 由于其抗扭刚度很大 如完全按所假设的简支端来配筋 对该边界板支座来说往往是不合适的∀图 楼层节点图 顶层节点梁与柱相连节点处的弯矩按梁柱的线刚度比分配 框架节点的梁柱杆件所承受的弯矩按杆件自身。

浅谈结构设计中的刚度理论

浅谈结构设计中的刚度理论

浅谈结构设计中的刚度理论摘要:结构设计中不仅必须重视属于结构外部因素的“力”而且要牢牢地掌握及控制好属于结构内部因素的“刚度”。

前者所涉及的力的平衡、结构或构件变形的协调以及由此而产生的构件内力都是通过后者所包含的绝对刚度、线刚度及相连构件之间的相对刚度来体现的。

通过举例,叙述并分析刚度理论在整体结构及单一构件中的体现,从中折射出刚度理论在结构设计中所起的重要作用,有助于结构设计人员对刚度理论有一个清醒的认识和清晰的概念,并在具体的结构设计中科学地运用,避免结构产生不安全因素,以达到结构受力合理且能获得最佳经济效益的目的。

关键词:刚度绝对刚度线刚度相对刚度在结构设计过程中的结构布置(包括竖向构件和水平构件布置)和结构计算分析(包括计算假定和构件内力分析)阶段,一般的设计人员比较关注的是荷载的产生及其数值大小,即比较注重“力”的概念而往往会忽视结构或构件抵抗外力的变形能力的“刚度”概念。

事实上,结构中力的平衡、变形的协调以及由此产生的构件内力都是通过构件自身的线刚度及连接构件之间的相对刚度的大小来体现的。

换而言之,属于结构外部因素的“力”—楼层作用荷载、风力、地震作用以及建筑物的自重等在结构内部的作用、传递以及所引起的结构反应都要通过属于结构内部因素的“刚度”来完成。

在结构设计中对刚度理论科学的应用,从高层次、高要求的角度看就显得十分重要,它不仅能够避免结构产生不安全因素,消除结构隐患,而且可以保证构件以至于整个结构在荷载作用下,受力合理并获得最佳的经济效益。

对结构设计工作来说,运用了刚度理论可进行整体结构的宏观控制,具有定性且定量、准确有效、简捷方便的特点,有利于缩短设计周期,节省人力和时间,提高工作效率。

刚度概念贯穿于结构设计的全过程:一幢建筑物的结构设计行与不行和好与不好,关键在于结构的整体刚度和构件的相对刚度控制得是否恰当合理。

事实上,结构设计人员在结构设计过程中所进行的结构布置和构件截面的调整,都是在寻求一种合理的结构刚度,所不同的是意识的强烈程度,而结构设计的基本概念以及结构设计规范的原始精神都是围绕着刚度这一基本原理来展开的。

浅析框架结构办公楼设计

浅析框架结构办公楼设计

浅析框架结构办公楼设计摘要:综合考虑建筑物的使用功能、结构重要性等级、各类荷载组合值等,确定本拟建建筑采用现浇混凝土框架结构。

在建筑设计板块,应着重解决建筑物内部使用功能和有限空间的合理安排,以及建筑物与周边环境、外部条件的协调配合,在满足建筑物坚固的前提下,应尽量做到适用、经济、美观,并且应富有创新感;在结构设计板块,应明确结构的传力路径,合理选取计算简图进行简化处理,应使计算过程简单,计算结果可靠。

关键词:框架结构;结构设计;强剪弱弯;强柱弱梁前言在此次设计中,设计内容包括建筑设计、结构设计和施工组织设计三部分内容。

建筑设计是整个过程中首要的,起着主导和先行的作用。

创造出既符合科学性又具有艺术的生活环境是多年来建筑设计不变的追求。

结构设计的目的在于保证所设计的结构和结构构件在施工和工作过程中能满足预期的安全性和适用性的要求。

施工组织设计是毕业设计的实践阶段,通过四年的学习,把学到的理论知识能够灵活的运用到实践中去,锻炼学生的实践能力和组织能力。

1.对建筑设计的认识作为一个框架结构办公空间设计,要在平面规划中自始至终遵循实用、功能需求和人性化管理充分结合的原则。

在设计中,既结合办公需求和工作流程,科学合理的划分职能区域,也要考虑职能区域之间的相互交流。

材料运用简洁,大方,耐磨,环保的现代材料,在照明采光上使用全局照明,能满足办公的需要。

经过精心设计,在满足各种办公同时,又简洁、大方、美观。

在开始建筑设计时,应首先进行初步的平面设计。

为了便于采光,该拟建建筑朝向为南北向布置。

为了防止建筑物弱轴破坏,应围绕:展开设计。

其次应进行建筑物的立面设计,在立面设计之前应该熟悉立面设计不当的三个问题,分别是:竖向刚度不规则、竖向抗侧力构件不连续、楼层承载力突变。

在已经知道了立面设计的病因之后,应避免建筑竖向体型存在较大的外挑和内收,从而确保竖向质量、刚度、承载力连续且避免出现应力集中现象。

2.对结构设计中某些知识点的认识2.1对相关尺寸初步确定的认识对于框架梁截面尺寸的初步确定,应通过公式:进行初步确定;对于框架柱来说,轴压比是影响柱子破坏形态和延性的主要因素之一,试验表明柱的位移延性随着轴压比增大而急剧下降,尤其在高轴压比条件下,箍筋对柱的变形能力的影响越来越不明显。

土木工程概论(1、2、3组答案)

土木工程概论(1、2、3组答案)

⼟⽊⼯程概论(1、2、3组答案)考试科⽬:答题:第()组答案:第⼀组:⼀、论述题(每⼩题30分,共60分)1、试述结构的基本受⼒特征和基本功能?1.框架结构:优点:较空旷且建筑平⾯布置灵活,可做成具有较⼤空间的会议室、餐厅、办公室和实验室等,同时便于门窗的灵活设置,⾥⾯也可以处理得富于变化,可以满⾜各种不同⽤途的建筑的需求。

缺点:由于其结构的受⼒特性和抗震性能的限制,使得它的使⽤⾼度受到限制。

受⼒特点:框架结构的抗⼒来⾃于梁、柱通过节点⽟树的框架作⽤。

单层框架柱底完全固结,单层梁的刚度也⼤到可以完全限制柱顶的转动,此时在侧向荷载作⽤下,柱的饭晚点在柱的中间,其承受的弯矩为全部外弯矩的⼀半,另⼀半由柱⼦的轴⼒形成的⼒偶来抵抗。

这种情况下的梁、柱之间的相互作⽤即为框架作⽤的理想状态——完全框架作⽤。

⼀般来说,当梁的线刚度为柱的线刚度的5倍以上时,可以近似地认为梁能完全限制柱的转动,此时就⽐较接近完全框架作⽤。

实际的框架作⽤往往介于完全框架作⽤与悬臂梁排架柱之间,梁、柱等线性构件受建筑功能的限制,截⾯不能太⼤,其线刚度⽐较⼩,故⽽抗侧刚度⽐较⼩。

变形特点:在⽔平荷载的作⽤下将产⽣较⼤的侧向位移。

其中:⼀部分是框架结构产⽣的整体弯曲变形,即柱⼦的轴向拉伸和压缩所引起的侧移,在完全框架做哟更情况下,拉压⼒偶抵抗⼀般的外⼒矩,此时的整体弯曲还是⽐较明显的。

另⼀部分是剪切变形,即框架的整体受剪,层间梁、柱杆件发⽣弯曲⽽引起⽔平位移。

在完全框架作⽤情况下,柱⼦的弯曲尚需来说是⽐较难抵抗的。

通过合理设计,框架结构本⾝的抗震性能良好,能承受较⼤的变形。

使⽤层数和应⽤:建筑⾼度10层以下或70m以下。

2.剪⼒墙结构:优点:剪⼒墙结构具有良好的抗震性能。

房间内没有梁柱棱⾓,⽐较美观且便于室内布置和使⽤。

缺点:剪⼒墙是⽐较宽⼤的平⾯构件,使建筑平⾯布置、交通组织和使⽤要求等受到⼀定的限制。

同时,剪⼒墙的间距受到楼板构件跨度的限制,不容易形成⼤空间。

混凝土结构与砌体结构设计中册(第四版)_十二 十三 十四章思考题答案

混凝土结构与砌体结构设计中册(第四版)_十二 十三 十四章思考题答案

混凝土结构与砌体结构设计中册(第四版) 十一章思考题答案12.1单层厂房排架结构中,哪些构件是主要承重构件?单层厂房中的支撑分几类?支撑的主要作用是什么?答:主要承重构件有:屋盖结构、吊车梁、排架柱、抗风柱、基础梁、基础单层厂房中的支撑:屋架间垂直支撑、横向、纵向水平支撑以及天窗架支撑和柱间支撑支撑的主要作用是:增强空间刚度及稳定性,传递风荷载和水平吊车荷载。

2.2排架内力分析的目的是什么?排架内力分析的步骤是怎样的?排架内力分析的目的是:为了获得排架柱在各种荷载作用下,控制截面的最不利内力,作为设计柱的依据;同时,柱底截面的最不利内力,也是设计基础的依据,并绘制出排架柱的弯矩图、轴力图及剪力图(M图、N图及V图)。

排架内力分析的步骤是:等高排架在水平荷载作用下的内力分析方法采用剪力分配法,步骤如下:(1)在柱顶水平集中力F作用下等高排架在柱顶作用一水平集中力F,在F作用下,柱顶产生水平位移。

沿柱顶将横梁与柱切开,在切口处代之一对剪力,如图2-4-16(b)所示。

取横梁为脱离体,由平衡条件有:又知,在单位水平力F=1作用下,柱顶水平侧移为。

反之要使柱顶产生单位水平位移即u=1,则需在柱顶施加的水平集中力。

如图2-4-17所示。

对于相同材料的柱,柱越粗,所需的越大,即所需施加的水平力越大。

反映了柱子抵抗侧移的能力,故称为柱子的抗侧刚度。

切开后的排架拄顶作用有水平力,在作用下产生柱顶位移为,根据上面分析可得等高排架,当各跨横梁EA时,有:将(2)、(3)式代入(1)式,得:由此可得:将(5)式代回(2)式得:式中称为第i根柱的剪力分配系数,它等于i柱的抗侧刚度与整个排架柱总的杭侧刚度的比值,且。

值可按附图1计算,由可求出分配系数,从而求出各柱顶剪力,最后按静定悬臂柱求出在已知作用下的柱截面内力。

附图1由此可见,剪力分配法就是将作用在顶部的水平集中力F按抗侧刚度分配给各柱,再按静定悬臂柱求解柱子内力的方法。

4结构设计中的刚度淮则

4结构设计中的刚度淮则

K4
10b
与柔性梁体系刚度之比: K3/K1=5O
与柔性梁体系刚度之比: K4/K1=390
17
4 剪力墙洞口对刚度的影响
墙的刚度取决于洞口连梁 刚度大小及洞口大小。 开洞墙简图:
连梁
根据整体系数α 及洞口大 小系数ζ 确定墙的类型:
3 h(I +I )〔I-(I +I )〕 α =H√12Iba2I/Lb 1 2 1 2 ζ =IA/I=I-(I1+I2)/I
21
讨沦
1

① 在水平力作用下,框架与框筒的 腹板框架均为主要受力构件。
② 二者的区别是翼缘框架是否
参加工作 框架结构 腹板框架 翼缘框架
柔性梁 不变形
刚性粱
减少剪力滞后现象措施: 采用深梁密柱、建筑平面 接近方形等
变形相同 框筒结构
刚度较大
变形较小 剪力滞后
22
2 同一层的梁柱截面尺寸及纵横梁跨度相 同,柱侧移刚度为什么不同?
Kyj yi Kxi
C
X
抗扭刚度大,扭转效应小,设计 时应遵守“周边强”的原则: 抗扭刚度大 不能承受扭矩
M
Φ=1rad
15
(二) 影响多高层结构侧移刚度大小的主要因素是什么
1 材料及杆件三维尺寸; 2 梁对柱的约束程度(梁柱刚度比);
梁柱刚度比为0 1 K1 K2 梁柱刚度比为∞ 1
刚 度 系 数
1 刚性结构地震作用大

不利
2 场地效应
有利
硬土 不利 α 有利
软土 0 T
α反应谱曲线
因软土易发生地基失效, 软土上的房屋震害较重。
26
3 二次地震作用
刚性结构 柔性结构

高层建筑中的侧向刚度比计算及控制方法

高层建筑中的侧向刚度比计算及控制方法

高层建筑中的侧向刚度比计算及控制方法摘要:在高层建筑结构设计过程中,侧向刚度比作为重要控制参数之一,按照规范做好侧向刚度比的调整控制,就能很好的解决上述刚度突变问题,保证结构上设计安全性。

本文阐述了10版新规范的条文中有关侧向刚度的条文和修改的部分,并总结了侧向刚度比的三种计算方法,提出了高层建筑中刚度比相对难控制的楼层部位的控制措施。

关键词:侧向刚度、薄弱层、刚度比1 引言在高层建筑结构中,由于无论是功能需要还是安全考虑需要等种种原因,出现局部楼层层高变化较大;竖向构件不连续,如设置转换层结构、悬挑结构、加强层等;常常会出现侧向刚度突变、竖向构件不连续,根据计算分析和对地震震害的研究,侧向刚度突变的结构容易形成抗震薄弱部位,引起内力和位移突变,造成局部破坏甚至倒塌等严重后果。

根据工程实际情况采取适合的侧向刚度计算方法,按照规范要求控制侧向刚度比,安全经济设计高层建筑结构。

2 刚度比定义及有关新规范条文:2.1刚度比定义:刚度比指结构竖向不同楼层的侧向刚度的比值(也称层刚度比),该比值主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层。

对于地下室结构顶板能否作为嵌固端,对于设置转换层的结构,转换层上、下结构刚度能否满足要求,及薄弱层的判断,均以层刚度比作为依据。

[抗规]与[高规]提供有三种方法计算层刚度:剪切刚度、剪弯刚度、地震剪力与地震层间位移的比值。

2.2相关新规范规范条文的控制:[抗规]新规范附录E.2.1规定,转换层上下结构质量中心宜接近重合(不包括裙房),转换层上下层的侧向刚度比不宜大于2[1];[高规]表3.5.2-1条规定,抗震设计的高层建筑结构,侧向不规则定义与参数指标,该层的侧向刚度小于相临上一层侧向刚度的70%,或小于其上相临三层侧向刚度平均值的80%;在高规中,针对设置转换层的结构,对其转换层上下结构侧向刚度做了如下规定:[高规]10.2.3条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录E的规定[2];3 侧向刚度比计算方法根据高层建筑结构的不同实际情况,通常按照以下三种方法计算:剪切刚度、剪弯刚度、地震剪力与地震层间位移的比值。

高层建筑结构设计思考题答案 (2)

高层建筑结构设计思考题答案 (2)

第二章2.1钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?每种结构体系举1~2例。

答:钢筋混凝土房屋建筑的抗侧力结构体系有:框架结构(如主体18层、局部22层的北京长城饭店);框架剪力墙结构(如26层的上海宾馆);剪力墙结构(包括全部落地剪力墙和部分框支剪力墙);筒体结构[如芝加哥Dewitt-Chestnut公寓大厦(框筒),芝加哥John Hancock大厦(桁架筒),北京中国国际贸易大厦(筒中筒)];框架核心筒结构(如广州中信大厦);板柱-剪力墙结构。

钢结构房屋建筑的抗侧力体系有:框架结构(如北京的长富宫);框架-支撑(抗震墙板)结构(如京广中心主楼);筒体结构[芝加哥西尔斯大厦(束筒)];巨型结构(如香港中银大厦)。

2.2框架结构、剪力墙结构和框架----剪力墙结构在侧向力作用下的水平位移曲线各有什么特点?答:(1)框架结构在侧向力作用下,其侧移由两部分组成:梁和柱的弯曲变形产生的侧移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线为弯曲型,自下而上层间位移增大。

第一部分是主要的,所以框架在侧向力作用下的水平位移曲线以剪切型为主。

(2)剪力墙结构在侧向力作用下,其水平位移曲线呈弯曲型,即层间位移由下至上逐渐增大。

(3)框架-剪力墙在侧向力作用下,其水平位移曲线呈弯剪型, 层间位移上下趋于均匀。

2.3框架结构和框筒结构的结构构件平面布置有什么区别?答:(1)框架结构是平面结构,主要由与水平力方向平行的框架抵抗层剪力及倾覆力矩,必须在两个正交的主轴方向设置框架,以抵抗各个方向的侧向力。

抗震设计的框架结构不宜采用单跨框架。

框筒结是由密柱深梁组成的空间结构,沿四周布置的框架都参与抵抗水平力,框筒结构的四榀框架位于建筑物的周边,形成抗侧、抗扭刚度及承载力都很大的外筒。

2.5中心支撑钢框架和偏心支撑钢框架的支撑斜杆是如何布置的?偏心支撑钢框架有哪些类型?为什么偏心支撑钢框架的抗震性能比中心支撑框架好?答:中心支撑框架的支撑斜杆的轴线交汇于框架梁柱轴线的交点。

建筑设计计算说明书

建筑设计计算说明书

建筑设计计算说明书(1)设计标高:室内设计标高±0.000,室表里高差450mm.(2)墙身做法:采取加气混凝土块,用M5混淆砂浆砌筑,内粉刷为混淆砂浆底,纸筋灰面,厚20mm,“803”内涂料两度。

外墙采取贴面砖,1:3水泥砂浆底厚20mm。

(3)楼面作法:楼板顶面为水磨石地面,楼板底面为15mm厚白灰砂浆天花抹面,外加V型轻钢龙骨吊顶。

(4)屋面作法:现浇楼板上依次铺20mm厚水泥砂浆找平层、300mm厚水泥珍宝成品隔热找平层、20mm厚水泥砂浆找平层和SDC120复合卷材,下面依次为15mm厚白灰砂浆天花抹面和V型轻钢骨龙吊顶。

(5)全然风压:ωo=0.3KN/m2(地面粗拙度属C类)。

(6)全然雪压:S0=0.3KN/m2。

(7)抗震设防烈度:八度(0.2g)第二组,框架抗震等级为二级。

(8)地质前提:由上至下:人工添土:厚度为1m粉质粘土:厚度为7m,地基承载力特点值为500KPa中风化基岩:岩石饱和单轴抗压强度标准值为3.6MPa建筑场地类别为Ⅱ类;无地下水及不良地质现象。

活荷载:上人屋面活荷载2.0KN/m2,办公室楼面活荷载2.0KN/m2,走廊楼面活荷载2.5KN/m2,档案室楼面活荷载2.5KN/m2。

目录中文摘要 (Ⅰ)英文摘要 (Ⅱ)一、设计材料 (1)二、构造安排及构造运算简图切实事实上定 (1)三、荷载运算 (3)四、内力运算 (10)五、内力组合 (56)六、截面设计 (56)七、框架节点核心区抗震验算 (56)八、差不多设计 (58)九、板式楼梯设计 (60)参考文献…………………………..……………………………………………………….……63二、构造安排及构造运算简图切实事实上定构造平面安排如图1所示。

各梁柱截面尺寸确信如下:主梁:取h=1/9l=1/9×7200=800mm,取h=800mm,取b=350mm,次梁:取h=1 /16l=1/16×7200=450mm,取h=500mm,取b=250mm,柱子:取柱截面均为b×h=600×600mm,现浇板厚为100mm。

钢结构稳定性的新诠释

钢结构稳定性的新诠释
对支撑刚度应该要提出要求: 支撑抗侧刚度 K 至少要 3
P /h 。
i 1 i
n
现有支撑是否都满足这一要求?
•返回

1 2 I (1 P AW PE )3
1.0
2 0
0.8
轴 力的 等 效 轴 压负 刚度
EA l 1
1 2 Ai 2 (1 P Al
2
PE
)3 n2
0.6
λ =100
0.4

EA l 1
1 2n (1 P
2
λ =150
PE
)
3
0.2
2
0.0 0.0 0.2 0.4 0.6 0.8 1.0
4. 结构(子结构)的刚度:如层抗侧移刚度。

从以上可知,结构是分层次的,刚度也是分 层次的,每一层次结构都会发生失稳现象。在 材料层次上,应力应变曲线上切线模量为零的 点表示金属内部晶体结构不再能保持原状,通 过滑移达到新的状态,这代表的是微观状态的 失稳。材料和截面层次的失稳是强度问题。更 高层次结构的失稳就是稳定问题。我们关注的 稳定性,通常是构件和(子)结构层次上的稳 定性。
一、应力应变关系:强度和刚度
首先考察一下钢材的应力应变关系曲线 ( 曲线), 如图 1 所示。从钢材的 曲线,得到钢材的四个机械性能 fu E 指标: f y 在 f y 时有屈服平台,且荷载不增加 时变形迅速增加。以此为基础,进行强 度计算。以上述 曲线为基础,借 助于材料力学的先入为主的影响,在我 们的脑海中,深深的烙下了强度是最最 主要的、占第一位的印象。
图3a
EA Pl ( ) , l EA
图3b
(2)图 3c,d 所示压杆当P 0 时轴压刚度=

《混凝土房屋结构设计》复习总结答案

《混凝土房屋结构设计》复习总结答案

《混凝土房屋结构设计》内容总结1.房屋的水平结构体系和竖向结构体系的概念,它们之间的相互关系和作用高层建筑有哪些常见结构体系,各自的特点。

水平结构体系:各层的楼盖和顶层的屋盖作用:承受并传递、分配竖向荷载给竖向结构体系竖向结构体系:是指排架、框架和剪力墙之类抵抗侧向力的结构体系作用:承受由楼、屋盖传来的竖向力和水平力并将其传递给下部结构两者的联系:水平结构体系承受竖向荷载同时将其传递给竖向结构体系,并把作用在各层的水平力传递、分配给竖向结构体系。

高层常见体系及特点:框架结构体系:建筑平面布置灵活、造型活泼,使用空间大,满足多功能要求,但是结构侧向刚度小;剪力墙结构体系:能承受较大水平力;框架-剪力墙结构体系:布置灵活、使用方便,抗侧刚度大、抗震性能好,有较好技术经济指标;筒体结构体系:既可以承受竖向荷载,又可以承受任意方向上的侧向力作用,侧向刚度与筒壁厚度以及平面尺寸有关。

2.荷载按照是否随时间变化的分类。

了解实际工程设计中各具体荷载属于哪一类。

荷载按照作用方向分为哪几类,了解实际工程设计中各具体荷载属于哪一类。

风荷载标准的大小与哪些因素有关。

荷载按作用时间分为永久荷载(结构自重、土压力、预应力)、可变荷载又称活荷载(楼面活荷载、吊车荷载、风荷载、雪荷载)、偶然荷载(爆炸力、撞击力)荷载按作用方向分为垂直荷载(结构自重、雪荷载)、水平荷载(风荷载、地震力荷载)风荷载标准大小有关因素:基本风压、建筑物体型、地面粗糙程度、距离地面高度、地形3.永久荷载和可变荷载各有哪几个代表值,各有什么含义。

永久荷载代表值:标准值(指结构在使用期间可能出现的最大的荷载值)可变荷载代表值:标准值、组合值、频遇值、准永久值(组合值指两种或两种以上可变荷载同时作用使组合荷载效应在设计基准期内的超越概率能与荷载单独作用时相应超越概率趋于一致的荷载;频遇值指在设计基准期内,其超越的总时间为规定的较小比率,或超越频率为规定频率的荷载值;准永久值指在设计基准期内,其超越总时间为设计基准期一半的荷载)4.荷载规范给出的荷载是标准值,构件截面承载力计算用的是内力设计值。

某乘用车车门静态刚度与模态分析

某乘用车车门静态刚度与模态分析

某乘用车车门静态刚度与模态分析Static stiffness and modal analysis of a passenger car door田国富,张家兴TIAN Guo-fu, ZHANG Jia-xing(沈阳工业大学 机械工程学院,沈阳 110870)摘 要:为判断车门结构的合理性,针对车门在设计研发过程中存在刚度不足的问题,以有限元法为基础,结合相关试验标准,对车门的系统刚度特性和模态特性进行分析。

分析结果表明,该车门自由模态频率、扭转刚度、侧向刚度和带线刚度在正常范围之内,下沉刚度不足,采用增加上下铰链加强板和窗框加强板厚度的方案,使下沉刚度有明显改善,有望给车门结构的设计及改进提供必要的依据和支撑。

关键词:车门;静态刚度;自由模态;扭转刚度;下沉刚度 中图分类号:U463.834 文献标识码:A 文章编号:1009-0134(2020)04-0056-05收稿日期:2019-01-21基金项目:大型弧齿锥齿轮符合精密制造技术研究(20170540674)作者简介:田国富(1968 -),男,教授,博士后,研究方向为机械系统计算机辅助设计、工程技术等。

0 引言车门作为极其重要的车身覆盖件之一,是由多块薄板利用冲压成型技术焊接在一起的多层超大面积组合体,其不仅能够与车身相连构成乘坐空间和驾驶空间,还可保护乘车人和驾驶人的安全[1]。

对车门的研究主要包括动态性能和静态性能两个指标,前者主要指低阶模态,是对车门避免常规振动的表征;后者则主要表现在强度和刚度方面,具体指抵抗外力的能力。

车门最重要的性能即刚度性能,用载荷与载荷之间引起变形量的比值来表示[2],车门静态刚度的大小,对整车的舒适性和安全性都有很大的影响。

静态刚度过大会导致碰撞时车门对产生的冲击能量吸收不足,在二次碰撞的过程中会导致乘员与车门接触时的冲击力增大。

静态刚度过小又会导致车门密封性降低,增加了车内的噪声和振动,也会存在漏风和渗水的现象,影响整车的联动性与平顺性。

刚度、线刚度、侧向刚度

刚度、线刚度、侧向刚度

刚度、线刚度、侧向刚度理论类 2010-04-13 16:12:45 阅读79 评论0 字号:大中小订阅刚度是指:单位变形条件下,结构或构件在变形方向所施加的力的大小。

在结构静力或动力分析时需要用到。

如用位移法分析结构内力时要用到刚度矩阵,计算地震作用或风振影响时需要用到结构的刚度参数。

还有在设计动力机器基础时也需要用到结构刚度参数。

可以看有关结构力学或结构动力学的书。

机械零件和构件抵抗变形的能力。

在弹性范围内,刚度是零件载荷与位移成正比的比例系数,即引起单位位移所需的力。

它的倒数称为柔度,即单位力引起的位移。

刚度可分为静刚度和动刚度。

小位移和大位移计算刚度的理论分为小位移理论和大位移理论。

大位移理论根据结构受力后的变形位置建立平衡方程,得到的结果精确,但计算比较复杂。

小位移理论在建立平衡方程时暂时先假定结构是不变形的,由此从外载荷求得结构内力以后,再考虑变形计算问题。

大部分机械设计都采用小位移理论。

例如,在梁的弯曲变形计算中,因为实际变形很小,一般忽略曲率式中的挠度的一阶导数,而用挠度的二阶导数近似表达梁轴线的曲率。

这样做的目的是将微分方程线性化,以大大简化求解过程;而当有几个载荷同时作用时,可分别计算每个载荷引起的弯曲变形后再叠加。

静刚度和动刚度静载荷下抵抗变形的能力称为静刚度。

动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需的动态力。

如果干扰力变化很慢(即干扰力的频率远小于结构的固有频率),动刚度与静刚度基本相同。

干扰力变化极快(即干扰力的频率远大于结构的固有频率时),结构变形比较小,即动刚度比较大。

当干扰力的频率与结构的固有频率相近时,有共振现象,此时动刚度最小,即最易变形,其动变形可达静载变形的几倍乃至十几倍。

构件变形常影响构件的工作,例如齿轮轴的过度变形会影响齿轮啮合状况,机床变形过大会降低加工精度等。

影响刚度的因素是材料的弹性模量和结构形式,改变结构形式对刚度有显著影响。

刚度计算是振动理论和结构稳定性分析的基础。

工程结构试题

工程结构试题

工程结构试题思考题1、单层工业厂房结构是由哪几部分组成的?答:单层厂房排架结构通常由屋盖结构、柱子、吊车梁、支撑、基础、围护结构等部分组成并相互连接成整体。

2、简述单层工业厂房结构主要荷载的传递路线答:单层厂房的结构所承受的各种荷载,基本上都是传递给排架柱,在由柱传至基础及地基的,因此,屋架柱、基础是单层厂房的主要承重构件。

3、变形缝包括哪几种?各有什么作用?答:伸缩缝:为减少厂房结构中温度应力,可设置伸缩缝,将厂房结构分为若干温度区段。

沉降缝:为避免厂房因基础不均匀沉降而引起开裂和损坏,需在适当部位用沉降缝讲厂房划分成若干刚度较一致的单元。

防震缝:为了减轻厂房震害而采取的措施之一,是防止地震时水平振动、房屋相互碰撞而设置的隔离缝。

4、简述支撑的种类及作用。

答:屋架上弦横向水平支撑:作用是在屋架上弦平面内构成刚性框架,增加屋盖的整体刚度,保证屋架上弦或屋面梁上翼缘平面外的稳定,同时将抗风柱传来的风荷载传递到纵向排架柱顶。

屋架下弦支撑:作用是承受垂直支撑传来的荷载,并将屋架下弦受到的风荷载传至纵向排架柱顶。

屋架垂直支撑和水平系杆:能保证屋盖系统的空间刚度和屋架安装时结构的安全外,还能讲屋架下弦平面内的水平荷载传递到屋架下弦平面内。

天窗架间的支撑:作用是将天窗端壁的风力传递给屋盖系统和保证天窗架上弦平面外的稳定。

柱间支撑:作用是保证厂房结构的纵向刚度和稳定性,并将水平荷载传到两侧纵向柱列,再传至基础。

5、简述牛腿的受力特点。

牛腿有哪几种破坏形态?牛腿的受力特点:刚开始加荷载时,出现发展很小的竖向裂缝;当荷载加到40-60%时,出现第一条裂缝。

继续加荷载,除了这条裂缝不断发展之外,几乎不再出现第二条裂缝。

加大荷载至接近破坏时,突然出现第二条裂缝,这预示着牛腿将要破坏。

牛腿的破会形态主要取决于a/h0 值,有以下三种主要破坏形式:1、弯曲破坏当a/h0值>0.75和纵向受力钢筋配筋率较低时。

2、剪切破坏(纯剪破坏、斜压破坏、斜拉破坏)当a/h0值很小时3、局部受压破坏当加载板过小或混凝土强度过低时6、框架结构在哪些情况下采用?答:适用于多层及高度不大的高层建筑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚度、线刚度、侧向刚度
理论类2010-04-13 16:12:45 阅读79 评论0 字号:大中小订阅
刚度是指:单位变形条件下,结构或构件在变形方向所施加的力的大小。

在结构静力或动力分析时需要用到。

如用位移法分析结构内力时要用到刚度矩阵,计算地震作用或风振影响时需要用到结构的刚度参数。

还有在设计动力机器基础时也需要用到结构刚度参数。

可以看有关结构力学或结构动力学的书。

机械零件和构件抵抗变形的能力。

在弹性范围内,刚度是零件载荷与位移成正比的比例系数,即引起单位位移所需的力。

它的倒数称为柔度,即单位力引起的
位移。

刚度可分为静刚度和动刚度。

小位移和大位移计算刚度的理论分为小位移理论和大位移理论。

大位移理论根据结构受力后的变形位置建立平衡方程,得到的结果精确,但计算比较复杂。

小位移理论在建立平衡方程时暂时先假定结构是不变形的,由此从外载荷求得结构内力以后,再考虑变形计算问题。

大部分机械设计都采用小位移理论。

例如,在梁的弯曲变形计算中,因为实际变形很小,一般忽略曲率式中的挠度的一阶导数,而用挠度的二阶导数近似表达梁轴线的曲率。

这样做的目的是将微分方程线性化,以大大简化求解过程;而当有几个载荷同时作用时,可分别计算每个
载荷引起的弯曲变形后再叠加。

静刚度和动刚度静载荷下抵抗变形的能力称为静刚度。

动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需的动态力。

如果干扰力变化很慢(即干扰力的频率远小于结构的固有频率),动刚度与静刚度基本相同。

干扰力变化极快(即干扰力的频率远大于结构的固有频率时),结构变形比较小,即动刚度比较大。

当干扰力的频率与结构的固有频率相近时,有共振现象,此时动刚度最小,即最易变形,其动变形可达静载变形的几倍乃至十几倍。

构件变形常影响构件的工作,例如齿轮轴的过度变形会影响齿轮啮合状况,机床变形过大会降低加工精度等。

影响刚度的因素是材料的弹性模量和结构形式,改变结构形式对刚度有显著影响。

刚度计算是振动理论和结构稳定性分析的基础。

在质量不变的情况下,刚度大则固有频率高。

静不定结构的应力分布与各部分的刚度比例有关。

在断裂力学分析中,含裂纹构件的应力强度因子可根据柔
度求得。

举个两个简单的例子:用力弯折直径和长度相等的实心钢管和木头,哪个费劲哪个刚度(弯曲刚度)就大。

很显然是钢管的大吧,你有可能把木头弯折,但要弯折钢管就很难吧!用力弯折长度相等而直径不等的实心钢管,当然是直径小的容易弯折吧,那就是直径小的刚度小了。

所以刚度是和材料特性及截面特性直接相
关,当然线刚度还和长度有关了!
一般能满足F=k△,F为作用力,△为位移,k即为刚度,所以刚度物理意义为单位位移时所产生的力。

k可以是某些量的函数,即可为表达式。

由F的不同,叫法不同。

另外就是我们要说的刚度叫线刚度,即单位长度上的刚度。

比如,我们在用反弯点法计算多层框架水平荷载作用下内力近似计算时。

计算柱的水平剪力时,剪力与柱层间水平位移△的关系为V=(12ic/h2)△那么d=(12ic/h2)就叫柱的侧移刚度,表示柱上下两端相对有单位侧移时柱中产生的剪力。

其中ic表示柱的线刚度(即ic=EI/h),h为楼层高,EI是柱的抗弯刚度(M=EI(1/p),M为弯矩,(1/p)为曲率,也满足F=k△形式)。

另外还可用D值法,即考
虑了梁柱的刚度比变化,因为柱两端梁的刚度不同,即对柱的约束不同,那么它的反弯点,即M=0的点会随之移动,那端强,反弯点离它越远。

而且同层柱剪力分配时也是由柱的线刚度决定,因为同层位移一定,简单讲,由F=k△,谁的刚度大,谁分得的剪力就大。

反过来,这也可以解释改变局部的刚度能调节内力的分布的情况。

这部分知识,结构力学涉及较多,你可对症复习一些相关知
识。

相关文档
最新文档