(完整版)配方法解一元二次方程练习题及答案

合集下载

《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+= 2. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=; (3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x =C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为()A.2±B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=91x2-x-4=0(3)x2+12x-15=0 (4)411.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。

(完整)配方法解一元二次方程专项练习及测试(含专练60道)

(完整)配方法解一元二次方程专项练习及测试(含专练60道)

一、填空题1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x —5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x —b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5。

若方程20x m -=有整数根,则m 的值可以是 (只填一个).6。

用配方法解一元二次方程的一般步骤是:化二次项系数为1,把方程化为20x mx n ++=的形式;把常数项移到方程右边即 方程两边同时加上24m ,整理得到 24m n =-;当204m n -≥时,(2m x +=,当204m n -<时,原方程 . 二、选择题7.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .—3C .±3D .以上都不对8.用配方法将二次三项式a 2—4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a —2)2-19.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x —2)2=1D .(x+2)2=210用配方法解方程x 2+4x=10的根为( )A .2±.—2..11.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数三、解答题12.用配方法解下列方程:(1)x 2+8x=9 (2)x 2+12x-15=0. (3)3x 2—5x=2 (4)41 x 2—x-4=013。

用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求—3x 2+5x+1的最大值。

2.2用配方法解一元二次方程同步练习含答案

2.2用配方法解一元二次方程同步练习含答案

九年级数学(上)第二章《一元二次方程》同步测试2.2用配方法解一元二次方程一、选择题1.用配方法解方程x2-4x-7=0时,原方程应变形为()A.(x-2)2=11 B.(x+2)2=11 C.(x-4)2=23 D.(x+4)2=232.将代数式x2+6x-3化为(x+p)2+q的形式,正确的是()A.(x+3)2+6 B.(x-3)2+6 C.(x+3)2-12 D.(x-3)2-123.用配方法解方程x2-4x+1=0时,配方后所得的方程是()A.(x-2)2=3 B.(x+2)2=3 C.(x-2)2=1 D.(x-2)2=-14.用配方法解方程2x2-4x+1=0时,配方后所得的方程为()A.(x-2)2=3 B.2(x-2)2=3 C.2(x-1)2=1 D.5.已知M=29a-1,N=a2-79a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定6.将代数式x2-10x+5配方后,发现它的最小值为()A.-30 B.-20 C.-5 D.07.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x+2)2=9 B.(x-2)2=9 C.(x+2)2=1 D.(x-2)2=18.一元二次方程x2-6x-5=0配方可变形为()A.(x-3)2=14 B.(x-3)2=4 C.(x+3)2=14 D.(x+3)2=49.用配方法解一元二次方程x2+4x-3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=1910.对于代数式-x2+4x-5,通过配方能说明它的值一定是()A.非正数B.非负数C.正数 D.负数二、填空题1.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.2.若x2-4x+5=(x-2)2+m,则m= .3.若a的最小值为.4.用配方法解方程3x2-6x+1=0,则方程可变形为(x- )2= .5.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m-n)2016= .6.设x,y为实数,代数式5x2+4y2-8xy+2x+4的最小值为.7.若实数a,b满足a+b2=1,则a2+b2的最小值是.8.将x2+6x+4进行配方变形后,可得该多项式的最小值为.9.将一元二次方程x2-6x+5=0化成(x-a)2=b的形式,则ab= .10.若代数式x2-6x+b可化为(x-a)2-3,则b-a= .三、解答题1.解方程:(1)x2+4x-1=0.(2)x2-2x=4.2. “a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2-4x+6=(x )2+ ;所以当x= 时,代数式x2-4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2-1与2x-3的大小.3.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a-b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长;(3)已知x+y=2,xy-z2-4z=5,求xyz的值.4.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一、选择题1.A2.C3.A4.C5.A6.B7.A8.A9.B 10.D二、填空题1.(x+2)2+1.2.1;3.3;4. 1;23;5.1;6.3;7.34.;8.-5;9.12;10.-3三、解答题1. 解:∵x2+4x-1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=-2∴x1x2(2)配方x2-2x+1=4+1∴(x-1)2=5∴x=1∴x1x22.解:(1)x2-4x+6=(x-2)2+2,所以当x=2时,代数式x2-4x+6有最小值,这个最值为2,故答案为:-2;2;2;小;2;(2)x2-1-(2x-3)=x2-2x+2;=(x-1)2+1>0,则x2-1>2x-3.3.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=-1,a=3,则a-b=4;(2)∵2a2+b2-4a-6b+11=0,∴2a2-4a++2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2-x,则x(2-x)-z2-4z=5,∴x2-2x+1+z2+4z+4=0,∴(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,∴xyz=2.4.解:(1)m2+m+4=(m+12)2+154,∵(m+12)2≥0,∴(m+12)2+154≥154,则m2+m+4的最小值是154;(2)4-x2+2x=-(x-1)2+5,∵-(x-1)2≤0,∴-(x-1)2+5≤5,则4-x2+2x的最大值为5;(3)由题意,得花园的面积是x(20-2x)=-2x2+20x,∵-2x2+20x=-2(x-5)2+50=-2(x-5)2≤0,∴-2(x-5)2+50≤50,∴-2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。

一元二次方程的解法——配方法(含答案)

一元二次方程的解法——配方法(含答案)

一元二次方程的解法——配方法一.填空题(共4小题)1.把一元二次方程x2﹣4x﹣8=0化成(x﹣m)2=n的形式,则m+n的值为.2.利用配方法解一元二次方程x2﹣6x+7=0时,将方程配方为(x﹣m)2=n,则mn=.3.方程(x﹣3)(x+5)﹣1=0的根x1=,x2=.4.把方程2x2﹣4x+1=0配方后得到的新方程是:.二.解答题(共8小题)5.解方程:(1)x2﹣2x﹣4=0;(2)(x+1)(x﹣3)=﹣4.6.解方程:(1)(x﹣1)(x+2)=4.(2)4x2﹣8x﹣3=0.7.解下列方程:(1)(x+3)2=16;(2)x2﹣4x﹣3=0.8.解方程:(1)(x﹣1)2﹣9=0.(2)x2﹣2x﹣5=0.9.解下列方程:(1)(x﹣3)2﹣4=0;(2)x2﹣4x﹣8=0.10.解方程:(1)4x2=81;(2)x2+2x﹣5=0.11.解方程:(1)x2+4x﹣1=0;(2)(y+2)2=(3y﹣1)2.12.解一元二次方程.(1)x2﹣2x﹣4=0;(2)(x﹣5)(x+2)=8.参考答案与试题解析一.填空题(共4小题)1.把一元二次方程x2﹣4x﹣8=0化成(x﹣m)2=n的形式,则m+n的值为14.【分析】利用配方法把一元二次方程变形,进而求出m、n,计算即可.【解答】解:x2﹣4x﹣8=0,移项,得x2﹣4x=8,配方,得x2﹣4x+4=8+4,∴(x﹣2)2=12,∴m=2,n=12,∴m+n=2+12=14,故答案为:14.【点评】本题考查的是一元二次方程的解法,熟记配方法解一元二次方程的一般步骤是解题的关键.2.利用配方法解一元二次方程x2﹣6x+7=0时,将方程配方为(x﹣m)2=n,则mn=6.【分析】方程移项后,两边加上一次项一半的平方,利用完全平方公式配方得到结果,求出m与n的值,即可求出mn的值.【解答】解:方程x2﹣6x+7=0,移项得:x2﹣6x=﹣7,配方得:x2﹣6x+9=2,即(x﹣3)2=2,∵方程配方为(x﹣m)2=n,∴m=3,n=2,则mn=3×2=6.故答案为:6.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.方程(x﹣3)(x+5)﹣1=0的根x1=﹣1+,x2=﹣1﹣.【分析】先观察再确定方法解方程,此题首先要化简,然后选择配方法较简单,因为二次项的系数为1.【解答】解:化简得,x2+2x﹣16=0∴x2+2x=16∴(x+1)2=17∴x1=﹣1+,x2=﹣1﹣.【点评】解此题的关键是先化简,再选择适宜的解题方法.求根公式法和配方法适用于任何一元二次方程,配方法对于二次项的系数为1方程要简单些.4.把方程2x2﹣4x+1=0配方后得到的新方程是:(x﹣1)2=.【分析】先移项,二次项的系数化成1,再根据完全平方公式配方,最后得出答案即可.【解答】解:2x2﹣4x+1=0,2x2﹣4x=﹣1,x2﹣2x=﹣,配方得:x2﹣2x+1=﹣+1,(x﹣1)2=,故答案为:(x﹣1)2=.【点评】本题考查了用配方法解一元二次方程,能够正确配方是解此题的关键.二.解答题(共8小题)5.解方程:(1)x2﹣2x﹣4=0;(2)(x+1)(x﹣3)=﹣4.【分析】(1)公式法求解可得;(2)整理成一般式后,因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣4,∴Δ=4﹣4×1×(﹣4)=20>0,∴x==1±;∴x1=1+,x2=1﹣.(2)整理得:x2﹣2x+1=0,∴(x﹣1)2=0,则x﹣1=0或x﹣1=0,∴x1=x2=1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.解方程:(1)(x﹣1)(x+2)=4.(2)4x2﹣8x﹣3=0.【分析】(1)整理后,利用因式分解法求解即可;(2)利用公式法求解即可.【解答】解:(1)(x﹣1)(x+2)=4,整理得:x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2;(2)4x2﹣8x﹣3=0,a=4,b=﹣8,c=﹣3,∴b2﹣4ac=64﹣4×4×(﹣3)=112>0,∴x==,∴x1=,x2=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.解下列方程:(1)(x+3)2=16;(2)x2﹣4x﹣3=0.【分析】(1)利用直接开方法,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)利用配方法,再开方求解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)(x+3)2=16,∴x+3=±4,∴x+3=4或x+3=﹣4,∴x1=1,x2=﹣7;(2)x2﹣4x﹣3=0,x2﹣4x+4=7,即(x﹣2)2=7,∴或,∴,.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.8.解方程:(1)(x﹣1)2﹣9=0.(2)x2﹣2x﹣5=0.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)(x﹣1)2=9,∴x﹣1=±3,解得:x1=4,x2=﹣2;(2)x2﹣2x=5,x2﹣2x+1=5+1,(x﹣1)2=6,∴x﹣1=±,∴x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.解下列方程:(1)(x﹣3)2﹣4=0;(2)x2﹣4x﹣8=0.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可.【解答】解:(1)∵(x﹣3)2=4,∴x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1;(2)∵x2﹣4x﹣8=0,∴x2﹣4x=8,则x2﹣4x+4=8+4,即(x﹣2)2=12,∴x﹣2=,∴x1=2+2,x2=2﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.解方程:(1)4x2=81;(2)x2+2x﹣5=0.【分析】(1)利用解一元二次方程﹣直接开平方法,进行计算即可解答;(2)利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:(1)∵4x2=81,∴x2=,∴x1=,x2=;(2)x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,x+1=±,x+1=或x+1=﹣,∴,.【点评】本题考查了解一元二次方程﹣直接开平方法,解一元二次方程﹣配方法,准确熟练地进行计算是解题的关键.11.解方程:(1)x2+4x﹣1=0;(2)(y+2)2=(3y﹣1)2.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+4x﹣1=0,x2+4x=1,配方得:x2+4x+4=1+4,(x+2)2=5,开方得:x+2=,解得:x1=﹣2+,x2=﹣2﹣;(2)(y+2)2=(3y﹣1)2,开方得:y+2=±(3y﹣1),解得:y1=,y2=﹣.【点评】本题考查了解一元二次方程,能正确适当的方法解方程是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.12.解一元二次方程.(1)x2﹣2x﹣4=0;(2)(x﹣5)(x+2)=8.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)整理后把方程的左边分解因式,即可得出两个一元一次方程,再求出方程的解即可.【解答】解:(1)x2﹣2x﹣4=0,移项,得x2﹣2x=4,配方,得x2﹣2x+1=4+1,即(x﹣1)2=5,开方,得x﹣1=,解得:x1=1+,x2=1﹣;(2)(x﹣5)(x+2)=8,整理得:x2﹣3x﹣18=0,(x﹣6)(x+3)=0,x﹣6=0或x+3=0,解得:x1=6,x2=﹣3.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.。

配方法解一元二次方程基础练习30题含详细答案

配方法解一元二次方程基础练习30题含详细答案
配方得: ,
即 ,
故选D.
10.B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
11.C
【分析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.
【详解】
解:∵ ,
∴ ,即 ,
故选:C.
【点睛】
本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.
【详解】
a=3,b=-2,c=-2,
b2-4ac=(-2)2-4×3×(-2)=28>0,
∴x= = ,
, .
【点睛】
本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.
19.(1) ;(2) 是方程的解.
【解析】
【详解】
A、由原方程,得 ,
等式的两边同时加上一次项系数2的一半的平方1,得 ;
故本选项正确;
B、由原方程,得 ,
等式的两边同时加上一次项系数−7的一半的平方,得, ,
故本选项正确;
C、由原方程,得 ,
等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;
故本选项错误;
D、由原方程,得3x2−4x=2,
12.用配方法解一元二次方程 ,配方正确的是().
A. B.
C. D.
13.用配方法解下列方程时,配方有错误的是()
A. 化为 B. 化为
C. 化为 D. 化为
14.用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是( )
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40

配方法解一元二次方程专项小练习(附详细答案)

配方法解一元二次方程专项小练习(附详细答案)

一、 公式参考a 2 +2ab +b 2=(a +b)2 a 2 -2ab +b 2=(a -b)2二、配方填空1、x 2+6x+ = (x+ )22、x 2-4x+ = (x- )23、x 2+x+ = (x+ )24、x 2-5x+ = (x- )2三、用配方法解下列方程:1、x 2-4x=52、x 2+32x-2=03、x(x+6)=4x-34、2x 2-3=4x5、(2x-1)(2x-3)=56、076x 212=--x二、 公式参考a 2 +2ab +b 2=(a +b)2 a 2 -2ab +b 2=(a -b)2二、配方填空1、x 2+6x+ 9 = (x+ 3)22、x 2-4x+ 4 = (x- 2)23、x 2+x+41= (x+21)2 4、x 2-5x+425= (x-25)2 三、用配方法解下列方程:1、x 2-4x=5解:两边都加上4得x 2-4x+4=5+4配方得(x-2)2=9开平方得x-2=3或x-2=-3解得:1,5x 21-==x2、x 2+32x-2=0 解:移项得x 2+32x=2 两边都加91,配方得 x 2+32x+91=2+91 写成完全平方式,得(x+31)2=919 开平方得 x+31=319± 解得:31931,31931x 21--=+-=x 3、x(x+6)=4x-1解:去括号得x 2+6x=4x-1移项并合并得x 2+2x=-1两边都加上1,配方得 x 2+2x+1=-1+1写成完全平方式,得 (x+1)2=0开平方得x+1=0解得:1x 21-==x4、2x 2-3=4x解:移项得2x 2-4x=3二次项系数化为1,得x 2-2x=23 两边都加上1,配方得x 2-2x+1=23+1 写成完全平方式,得 (x-1)2=25开平方得 x-1=210±解得:2101,2101x 21-=+=x 5、(2x-1)(2x-3)=5 解:去括号得: 4x 2-6x-2x+3=5化简得:4x 2-8x=2二次项系数化为1得x 2-4x=21 两边都加上4,配方得x 2-4x+4=21+4 写成完全平方式得(x-2)2=29 开平方得x-2=±223 解得:2232,2232x 21-=+=x 6、076x 212=--x 解:二次项系数化为1得 01412x 2=--x 移项得1412x 2=-x两边都加上36,配方得 36143612x 2+=+-x 写成完全平方式得 (x-6)2=50开平方得 x-6=25±解得:256,256x 21-=+=x。

解一元二次方程配方法练习题

解一元二次方程配方法练习题

解一元二次方程配方法练习题Updated by Jack on December 25,2020 at 10:00 am解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2±.-2±..9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=0 11.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

另外: 12.将二次三项式4x 2-4x+1配方后得( )A .(2x -2)2+3B .(2x -2)2-3C .(2x+2)2D .(x+2)2-313.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( )A .x 2-8x+(-4)2=31B .x 2-8x+(-4)2=1C .x 2+8x+42=1D .x 2-4x+4=-11二、综合提高题:每题10分1.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。

(完整版)解一元二次方程配方法练习题

(完整版)解一元二次方程配方法练习题

解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1 ;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.1 •用适当的数填空:①X2+6X+__ = (x+ _) 2;② x2—5x+ = (x —_) 2;③X2+ X+ ___ = ( X+ _) 2;④ X2—9X+ = (X—_) 22 .将二次三项式2X2-3X-5进行配方,其结果为•3. 已知4x2-ax+1可变为(2x-b) 2的形式,贝V ab= _______ .4. 将一元二次方程X2-2X-4=0用配方法化成(x+a) 2=b的形式为_______ , ?所以方程的根为___________ .5. 若x2+6x+m2是一个完全平方式,则m的值是()A . 3B . -3 C.± 3 D .以上都不对6. 用配方法将二次三项式a2-4a+5变形,结果是( )A. (a-2) 2+1B. (a+2) 2-1C. (a+2) 2+1 D . ( a-2) 2-17. 把方程X+3=4X配方,得()A . ( X-2 ) 2=7B . ( X+2)2=21C. (X-2 ) 2=1 D . ( X+2)2=2&用配方法解方程X2+4X=10的根为()A. 2± \10B. -2 ±14C. -2+ 10D. 2- -109. 不论X、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2B.总不小于7C.可为任何实数 D .可能为负数10. 用配方法解下列方程:(1) 3X2-5X=2 . (2) X2+8X=9(5) 6X2-7X+仁0 (6) 4X2-3X=5211.用配方法求解下列问题(1)求2X2-7X+2的最小值;(2)求-3X2+5X+1的最大值。

(完整版)配方法解一元二次方程练习题及答案

(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1 .用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= ______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2C.D.9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7 C .可为任何实数 D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9 x2+12x-15=01x2-x-4=0 所以方程的根为?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

21 、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。

1 、.y2?6y?6?0 、3x2?2?4x 、x2?4x?964 、x2?4x?5?05 、2x2?3x?1?0 、3x2?2x?7?07 、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。

32y 、3y2?1?2y1 、x2?2x?8?0 、4y?1?4 、2x2?5x?1?0 、?4x2?8x??16、2x2?3x?2?08εθeεe×∂2×' Ze9 •乙U乙乙9乙X乙X ' 17C"乙乙乙说"、Le 0=9+2×ε'82OdLdXZ∂2×9' 920∂0C∂×2∂2×2 P o=2k×l7+×'£ 0乙乙陀乙q乙X陀乙乙X ' 乙况LL0∂2e×6∂2×ε ' L OaC×cZ× '00乙q乙X乙乙Xe ^IZCaCKCCZCKC^ZLOd2θeθe×∂2× '和乙q乙陀乙X£2乙乙q<iZx' PIoCQZCZac×Zc ' 2L 乙比X乙£乙乙乂X乙X17 '0∂θC∂×∂2×ε '6L9C∂×εLC∂2× ' 9L乙帥乙乙q乙X%乙乙X、CL兀乙比心乙说心' OL 0∂0C∂×Z∂2×、60“%"£ '0乙说乙比X* ' LOCCzC×c×ccZc×cP ccZc×ccZc×c ' OdOLd×Ze2× ' 陀0乙9〃乙乙X ε×9eεe×2 Zc9c×c×ccU×c×Z ' 比o SW~3r-≡±⅛IW≡⅛^宙、荘OCZC Oc×cZ× 9凸说乙17 ' P0∂8e×9∂2× ' OCZCZ ' X乙乙乙X ' Lo畐卑盪二卫一陋丄搦滚搦岳芒厘宙'H26 、5x2?8x??1 7、x2?2mx?3nx?3m2?mn?2n2?、0 ?22x30 、3x2?4x?1 、x2?4?5x3 、2x2?5x?4?0 、2x2?2x?30?06 、x2+4x-12=0 、x2?x?139 、3y2?1?2y 解一元二次方程配方法练习题1 .用适当的数填空:①、x2=2;③、x22;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= _______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,以方程的根为 ____________ .5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2D .9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7C .可为任何实数D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9x2+12x-15=0 1x2-x-4=0所?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。

课后作业.2 一元二次方程的解法练习》(配方法)(含答案)

课后作业.2 一元二次方程的解法练习》(配方法)(含答案)

1.2 一元二次方程的解法练习一、选择题1.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根D.没有实数根2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.4.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n 的值为()A.9 B.10 C.9或10 D.8或105.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.6.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠07.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥18.(2015•荆门)若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<19.(2015•凉山州)关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠210.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠011.判断一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12 B.16 C.20 D.2412.下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=013.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.214.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x215.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根D.以上三种情况都有可能16.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=017.(2015•湘西州)下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=018.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定二、填空题19.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于______.20.一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=______.(只需填一个).21.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是______.22.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是______.23.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=______,b=______.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是______.25.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是______.26.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为______.1.2 一元二次方程的解法答案一、选择题1.D;2.C;3.B;4.B;5.B;6.A;7.B;8.A;9.D;10.D;11.C;12.A;13.B;14.C;15.C;16.A;17.B;18.A;二、填空题19.3;20.4;21.m≤1;22.m<;23.4;2;24.a>0;25.a≤1;26.-3;。

一元二次方程的解法练习题(带答案))

一元二次方程的解法练习题(带答案))

【答案】( 1 ) ① ②
(2) (3)
【解析】( 1 ) ( 2 ) 方程 ∴
. . . .
的解为
, .
6
( 3 ) 解方程


【标注】【知识点】算式找规律
, .
四、 因式分解法
1. 用因式分解法解方程:
(1)

(2)

(3)

(4)

【答案】( 1 ) (2) (3) (4)








【解析】( 1 ) (2) (3) (4)
3. 阅读材料,解答问题.
阅读材料:为解方程
,我们可以将 视为一个整体,然后设
,则
,原方
程化为
.解得

.当 时,


;当 时,
,∴

∴原方程的解为




解答问题:请你仔细阅读上述材料,深刻领会解题过程中所包含的数学思想和方法,然后解方程

【答案】


【解析】 设
,则原方程化为

解这个方程,得
,.

, ,
. .
【解析】( 1 ) (2)
, ,
. .
【标注】【知识点】公式法求一元二次方程的根
2. 公式法解方程:
(1)

(2)

(3)

【答案】( 1 ) (2) (3)






【标注】【知识点】公式法求一元二次方程的根
3. 在实数范围内因式分解:

配方法解一元二次方程专项练习111题(有答案)ok

配方法解一元二次方程专项练习111题(有答案)ok

配方法解一元二次方程专项练习111题(有答案)ok配方法解一元二次方程专项练习111题(有答案)1.x2﹣2x=4.2.3x2=5x+23.2x2﹣4x+1=0.4. x2+2x=2;5.x2﹣2x﹣4=0.6..7.x2+4x﹣1=0.8.2x2+x﹣30=0 9.x2﹣28x﹣4=010.x2﹣8x﹣1=0.11.x2+2x=5.12.2x2+6=7x13.2x2+1=8x14.3x2﹣2x﹣6=015..16.x2+2x﹣15=0.17.x2+6x﹣16=018.2x2﹣5x﹣3=019.x2﹣4x+2=020.(x+3)(x﹣1)=1221.2x2﹣12x+6=022.2x2﹣3x﹣2=0.23.x(x+2)﹣5=0.24.x2﹣6x+2=025.3x2﹣6x﹣1=0 26.2x2+4x﹣1=0 27.x2﹣4x+3=0.28.x2﹣6x﹣3=0 29.2x2﹣8x+3=0.30.3x2﹣4x+1=0;31.x2﹣6x+1=0.32.2x2﹣4x+1=0 33.x2+5x﹣3=0.34.x2+2x﹣4=035.2x2﹣4x+1=0.36..37.5(x2+17)=6(x2+2x)38.4x2﹣8x+1=039.2x2+1=3x.40.x2+x﹣2=0.41.x2﹣6x+1=042.x2﹣8x+5=043.x2+3x﹣4=0.44.3x2+8x﹣3=045.x2+8x=2.46.x2+3x+1=047. 2x2﹣3x+1=048.x2﹣4x﹣6=049. x2﹣8x+1=050.x2+4x+1=051.x2﹣4x+1=052.x2﹣6x﹣7=0 54. x2﹣6x﹣5=0.55.2x2+1=3x56. x2+3x+1=0 57.x2﹣8x+1=0.58. x2﹣8x﹣16=0 59..60.6x2﹣7x﹣3=0 61. x2﹣6x=﹣8;62. 2x2﹣5x+1=0.63.3x2+8x﹣3=064.3x2﹣4x+1=065.2x2+3x﹣1=0.66.2x2﹣5x﹣1=067.4x2﹣8x﹣1=068.3x2+4x﹣7=069.3移项得3x2﹣10x=﹣6.70.3x2﹣10x﹣5=071.2x2+3=7x72.x2+2x﹣224=073.x2﹣5x﹣14=074..75.x2+8x﹣20=076.x2﹣x+.77.2t2﹣6t+3=0.78.3x2﹣6x﹣12=0.79.x2﹣4x+1=080. 3x2﹣3=2x.81.2x2﹣5x+1=0.82.2y2+8y﹣1=083.x2﹣6x﹣18=084.x2﹣2x﹣1=0.85. x2﹣4x﹣1=0;86. 2x2+3x+1=0.87.2x2﹣6x﹣7=0 88.ax2+bx+c=0(a≠0).89.4x2﹣4ax+a2﹣b2=0.90. x2﹣4x﹣2=091. x(x+4)=6x+1292. 2x2+7x﹣4=093. 3(x﹣1)(x+2)=x+494. 3x2﹣6x=895. 2x2﹣x﹣30=0,96. x2+2=2x,97.x2+px+q=O(p2﹣4q≥O),98. m2x2﹣28=3mx(m≠O),99. x2﹣6x+7=0;100. 2x2+6=7x;101. ﹣5x2+10x+15=0.102. x2+6x+8=0;103. x2=6x+16;104.2x2+3=7x;105. (2x﹣1)(x+3)=4.106. x2+4x=﹣3;107. 2x2+x=0.108.x2+4x﹣3=0;109.x2+3x﹣2=0;110. x2﹣x+=0;111. x2+2x﹣4=0.参考答案:1.x2﹣2x=4.配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.2. 3x2=5x+2x2﹣x+=+=x=2,x=﹣3.2x2﹣4x+1=0.由原方程,得2(x﹣1)2=1,∴x=1±,∴原方程的根是:x1=1+,x2=1﹣.4.x2+2x=2;原式可化为x2+2x﹣2=0即x2+2x+1﹣3=0(x+1)2=3x=1.5.x2﹣2x﹣4=0.由原方程移项,得x2﹣2x=4,等式两边同时加上一次项系数一半的平方,得x2﹣2x+1=5,配方,得(x﹣1)2=5,∴x=1±,∴x1=1+x2=1﹣.6..,移项得:x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,x﹣1=,7.x2+4x﹣1=0.解:移项得:x2+4x=1,配方得:x2+4x+4=1+4,即(x+2)2=5,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣.8.2x2+x﹣30=0原方程变形为x2+x=15∴x2+x+()2=15+()2.∴(x+)2=,∴x1=﹣3,x2=.9.x2﹣28x﹣4=0原方程可化为x2﹣28x+142=4+142(x﹣14)2=200x﹣14=∴x1=14+,x2=14﹣.10.原方程移项得,x2﹣8x=1,⇒x2﹣8x+16=1+16,(x﹣4)2=17,⇒解得11.x2+2x=5.x2+2x+1=5+1,即(x+1)2=6,所以x+1=±,解得:x1=﹣1+,x2=﹣1﹣.12.2x2+6=7x移项得:2x2﹣7x=﹣6,二次项的系数化为1得:,解得:x1=2,.2∴2x2﹣8x=﹣1,∴x2﹣4x=﹣,即(x﹣2)2=,∴x﹣2=,∴x1=2+,x2=2﹣14.3x2﹣2x﹣6=0系数化1得,x2﹣x﹣2=0方程两边加上一次项系数一半的平方即得:∴(x ﹣)2=∴x1=,x2=15..配方得:x2﹣2x+3=12,即(x ﹣)2=12,开方得:x ﹣=±2,则x1=3,x2=﹣.16.x2+2x﹣15=0.x2+2x=15,x2+2x+1=15+1.(x+1)2=42.x+1=±4.∴x1=3,x2=﹣5.17.(1)x2+6x﹣16=0 由原方程,得x2+6x=16,等式的两边同时加上一次项系数6的一半的平方,得x2+6x+9=25,即(x+3)2=25,直接开平方,得x+3=±5,∴x1=2,x2=﹣8;18.2x2﹣5x﹣3=0(用配方法)∴∴;19. x2﹣4x+2=0x2﹣4x+4=﹣2+4(x﹣2)2=2,,∴;两边都加上12,得x2+2x+12=15+12即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4∴x1=3,x2=﹣521.2x2﹣12x+6=0 (配方法).把方程2x2﹣12x+6=0的常数项移到等号的右边,得到2x2﹣12x=﹣6,把二次项的系数化为1得:x2﹣6x=﹣3,程两边同时加上一次项系数一半的平方,得到x2﹣6x+9=﹣3+9即(x﹣3)2=6,∴x﹣3=±,∴x=3±,∴x1=3+,x2=3﹣.22.2x2﹣3x﹣2=0.移项得:2x2﹣3x=2化二次项系数为1,得:x2﹣x=1,配方得:x2﹣x+=1+,即=,∴x ﹣=或x ﹣=﹣,∴x1=2,x2=﹣.23.x(x+2)﹣5=0.x(x+2)﹣5=0,去括号得:x2+2x﹣5=0,移项得:x2+2x=5,左右两边加上1,变形得:(x+1)2=6,开方得:x+1=±,即x=﹣1±,∴x1=﹣1+,x2=﹣1﹣24.x2﹣6x+2=0x2﹣6x+2=0移项,得x2﹣6x=﹣2,即x2﹣6x+9=﹣2+9,∴(x﹣3)2=7,解得x﹣3=±,即x=3±.∴x1=3+,x2=3﹣.25.把方程x2﹣2x ﹣=0的常数项移到等号的右边,得到x2﹣2x=配方得(x﹣1)2=开方得x﹣1=移项得x=+126.2x2+4x﹣1=0原方程变形为2x2+4x=1即x2+2x=∴x2+2x+1=1+即(x+1)2=∴∴,27.x2﹣4x+3=0.∵x2﹣4x+3=0∴x2﹣4x=﹣3∴x2﹣4x+4=﹣3+4∴(x﹣2)2=1∴x=2±1∴x1=3,x2=128.x2﹣6x﹣3=0x2﹣6x=3,(x﹣3)2=12,x﹣3=.∴x1=3+,x2=3﹣29.2x2﹣8x+3=0.原方程变形为∴∴∴x﹣2=.∴x1=2+,x2=2﹣.30.3x2﹣4x+1=0;3(x2﹣x)+1=0(x ﹣)2=∴x1=1,x2=31.x2﹣6x+1=0.x2﹣6x=﹣1.x2﹣6x+9=﹣1+9,(x﹣3)2=8,.,32.2x2﹣4x+1=0原方程化为配方得即开方得∴,33.x2+5x﹣3=0.由原方程移项,得x2+5x=3,等式两边同时加上一次项系数一半的平方,得,∴∴解得,∴,.34.x2+2x﹣4=0移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣35.2x2﹣4x+1=0.由原方程,得x2﹣2x=﹣,等式的两边同时加上一次项系数一半的平方,得配方,得(x﹣1)2=,直接开平方,得x﹣1=±,x1=1+,x2=1﹣.36..∵x2﹣x+=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=0解得x1=x2=.37.5(x2+17)=6(x2+2x)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x,x2+12x﹣85=0,x2+12x=85,x2+12x+36=85+36,(x+6)2=121,x+6=±11,x1=5,x2=﹣1738.4x2﹣8x+1=0方程4x2﹣8x+1=0同除以4,得x2﹣2x+=0,把方程4x2﹣8x+1=0的常数项移到等于号的右边,得x2﹣2x=﹣,方程两边同时加上一次项一半的平方,得到,x2﹣2x+1=,∴x﹣1=±,解得x1=,x2=.39.2x2+1=3x.由原方程,移项得2x2﹣3x=﹣1,化二次项系数为1,得x2﹣x=﹣,等式的两边同时加上一次项系数一半的平方,得配方,得(x ﹣)2=,开平方,得x ﹣=±,解得,x1=1,x2=.40.x2+x﹣2=0.配方,得x2+x ﹣=2+,即=,所以x+=或x+=﹣.解得 x1=1,x2=﹣2.41.x2﹣6x+1=0移项,得x2﹣6x=﹣1,配方,得x2﹣6x+9=﹣1+9,即(x﹣3)2=8,解得x﹣3=±2,∴x1=3+2,x2=3﹣2.42.x2﹣8x+5=0原方程可变为,x2﹣8x=﹣5,方程两边同时加上一次项系数一半的平方得,到x2﹣8x+16=11,配方得,(x﹣4)2=11,直接开平方得,x﹣4=±,解得x=4+或4﹣.43.x2+3x﹣4=0.x2+3x﹣4=0x2+3x=4x2+3x+=4+=∴x+=±所以x1=1,x2=﹣4.44.3x2+8x﹣3=0∵3x2+8x﹣3=0,∴3x2+8x=3,∴x2+x=1,∴x2+x+=1+,∴(x+)2=,解得x1=,x2=﹣345.移项,得x2+8x=2.两边同加上42,得x2+8x+16=2+16,即(x+4)2=18.利用开平方法,得x+4=或x+4=﹣.解得x=﹣4+或x=﹣4﹣3.所以,原方程的根是x1=﹣4+,x2=﹣4﹣.46.x2+3x+1=0∵x2+3x+1=0∴x2+3x=﹣1∴x2+3x+=﹣1+∴(x+)2=∴x=∴x1=,x2=.47. 2x2﹣3x+1=0∵2x2﹣3x+1=0∴x2﹣x=﹣∴x2﹣x+=﹣+∴(x ﹣)2=∴x=∴x1=,x2=48.x2﹣4x﹣6=0x2﹣4x﹣6=0x2﹣4x=6x2﹣4x+4=4+6(x﹣2)2=10x﹣2=±∴49. x2﹣8x+1=0∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得2配方得,x2+4x+22=﹣1+4,(x+2)2=3,,解得,51.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=4﹣1,⇒(x﹣2)2=3,⇒,∴,解得,.52.x2﹣6x﹣7=0x2﹣6x+9=7+9(x﹣3)2=16开方得x﹣3=±4,∴x1=7,x2=﹣153..由原方程,得x2﹣2x=3,等上的两边同时乘以2,得x2﹣4x=6,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=10,配方得(x﹣2)2=10.∴,∴,54. x2﹣6x﹣5=0.移项得x2﹣6x=5,方程两边都加上9得 x2﹣6x+9=5+9,即(x﹣3)2=14,则x﹣3=±,所以x1=3+,x2=3﹣55.2x2+1=3x移项,得2x2﹣3x=﹣1,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2,即(x ﹣)2=,开方,得x ﹣=±,∴x1=1,x2=.56. x2+3x+1=0移项,得x2+3x=﹣1,配方得x2+3x+=﹣1+,即(x+)2=,开方,得x+=±,∴x1=﹣+,x2=﹣﹣57.x2﹣8x+1=0.配方得,(x﹣4)2=15,开方得,x﹣4=±,x1=4+,x2=4﹣58. x2﹣8x﹣16=0(x﹣4)2﹣16﹣16=0,(x﹣4)2=32,即或,解得:,.59..移项得:x2﹣x=﹣3,配方得:x2﹣x+()2=﹣3+()2,即(x ﹣)2=,开方得:x ﹣=或x ﹣=﹣,解得:x1=2,x2=.60.6x2﹣7x﹣3=0解:6x2﹣7x﹣3=0,b2﹣4ac=(﹣7)2﹣4×6×(﹣3)=121,∴x=,∴x1=,x2=﹣.61. x2﹣6x=﹣8;配方得x2﹣6x+9=﹣8+9,即(x﹣3)2=1,开方得x﹣3=±1,∴x1=4,x2=262. 2x2﹣5x+1=0.移项得2x2﹣5x=﹣1,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=63.3x2+8x﹣3=0∵3x2+8x﹣3=0∴3x2+8x=3∴x2+x=1∴x2+x+=1+∴(x+)2=∴x=∴x1=,x2=﹣3.64.3x2﹣4x+1=0x2﹣x=﹣,x2﹣x+=﹣,即(x ﹣)2=,x ﹣=±;解得:x1=1,.65.2x2+3x﹣1=0.x2+(1分)x2+(3分)(4分)x+(6分)x1=66.2x2﹣5x﹣1=0(限用配方法);原方程化为2x2﹣5x=1,x2﹣x=,x2﹣x+()2=+()2,(x ﹣)2=,即x ﹣=±,x1=+,x2=﹣67.4x2﹣8x﹣1=0移项得:4x2﹣8x=1,二次项系数化1:x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,x﹣1=±,x1=1+,x2=1﹣.68.3x2+4x﹣7=0移项,得3x2+4x=7,把二次项的系数化为1,得x2+x=,等式两边同时加上一次项系数一半的平方,得x2+x+=,∴=,∴x=±,∴x1=1,x2=﹣.69.3移项得3x2﹣10x=﹣6.二次项系数化为1,得x2﹣x=﹣2;配方得x2﹣x+(﹣)2=﹣2+,即(x ﹣)2=,开方得:x ﹣=±,∴x1=,x2=x2﹣10x+6=0 70.3x2﹣10x﹣5=0∵3x2﹣10x﹣5=0,∴3x2﹣10x=5,∴x2﹣x=,∴x2﹣x+=+,∴(x ﹣)2=,∴x=,∴x1=,x2=71.2x2+3=7x移项,得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣,配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.72.x2+2x﹣224=0移项,得x2+2x=224,在方程两边分别加上1,得x2+2x+1=225,配方,得(x+1)2=225,∴x+1=±15,∴x1=14,x2=﹣16;73.x2﹣5x﹣14=0x2﹣5x﹣14=0,x2﹣5x=14,x2﹣5x+=14+,(x ﹣)2=,x ﹣=±,∴x1=7,x2=﹣2.74..把二次项系数化为1,得x2﹣x ﹣=0,将常数项﹣移项,得x2﹣x=,两边同时加上一次项系数﹣的一半的平方,得x2﹣x+=+,配方得,(x ﹣)2=,∴x ﹣=∴x1=1,x2=﹣.75.x2+8x﹣20=0∵x2+8x﹣20=0∴x2+x=20∴x2+x+=20+∴(x+)2=∴x+=±,∴x=﹣,即x1=4,x2=﹣5.76.x2﹣x+.配方得(x ﹣)2=0,解得x1=x2=.77.2t2﹣6t+3=0.移项、系数化为1得,t2﹣3t=﹣配方得t2﹣3t+=﹣,即(t ﹣)2=,开方得t ﹣=±,∴x1=,x2=78.3x2﹣6x﹣12=0.3x2﹣6x﹣12=0,移项,得3x2﹣6x=12,把二次项的系数化为1,得x2﹣2x=4,等式两边同时加上一次项系数﹣2一半的平方1,得x2﹣2x+1=5,∴(x﹣1)2=5,∴79.x2﹣4x+1=0∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴(x﹣2)2=﹣1+4,∴(x﹣2)2=3,∴x﹣2=±,∴x1=2+;x2=2﹣;80. 3x2﹣3=2x.移项,得3x2﹣2x=3,二次项系数化为1,得x2﹣x=1,配方,得(x ﹣)2=1+,x ﹣=±,解得x1=;x2=81.2x2﹣5x+1=0.移项,得2x2﹣5x=﹣1,化二次项系数为1,得x2﹣x=﹣,方程的两边同时加上,得(x ﹣)2=,直接开平方,得x ﹣=±,∴x1=,x2=82.2y2+8y﹣1=0方程两边同时除以2得:y2+4y ﹣=0,移项得:y2+4y=,左右两边加上4,变形得:(y+2)2=,开方得:y+2=±,∴y1=﹣2+,y2=﹣2﹣.83.x2﹣6x﹣18=0由原方程移项,得x2﹣6x=18,方程两边同时加上一次项系数一半的平方,得x2﹣6x+9=27,配方,得(x﹣3)2=27,开方,得x﹣3=±3,解得,x1=3+3,x2=3﹣384.x2﹣2x﹣1=0.由原方程,得x2﹣2x=1,等式的两边同时加上一次项系数﹣2的一半的平方,得x2﹣2x+1=2,即(x﹣1)2=2,直接开平方,得x﹣1=±,∴x1=1+,x2=1﹣.85. x2﹣4x﹣1=0;移项,得x2﹣4x=1,等式两边同时加上一次项系数一半的平方4,得x2﹣4x+4=1+4,∴(x﹣2)2=5(1分)∴x﹣2=±(1分)∴x=2±,解得,x1=2+,x2=2﹣86. 2x2+3x+1=0.移项,得2x2+3x=﹣1,把二次项的系数化为1,得x2+x=﹣,等式两边同时加上一次项系数一半的平方,得x2+x+=﹣+∴(x+)2=(1分)∴x+=±(1分)∴x=﹣±解得,x1=﹣,x2=﹣187.2x2﹣6x﹣7=0x2﹣3x ﹣=0,x2﹣3x=,x2﹣3x+=,=,x ﹣=±,x=±,∴x1=,x2=.88.ax2+bx+c=0(a≠0).∵a≠0,∴两边同时除以a得:x2+x+=0,x2+x=﹣,x2+x+=﹣,=,∵a≠0,∴4a2>0,当b2﹣4ac≥0时,两边直接开平方有:x+=±,x=﹣±,∴x1=,x2=89.4x2﹣4ax+a2﹣b2=0.原式可化为:x2﹣ax+=0,整理得,x2﹣ax+()2﹣()2=﹣即:(x ﹣)2=,解得x1=或x2=.90. x2﹣4x﹣2=0,配方,得x2﹣4x+4﹣4﹣2=0,则x2﹣4x+4=6,所以(x﹣2)2=6,即x﹣2=±.所以x1=+2,x2=﹣+2.91. 原方程变形得x2﹣2x=12,配方得x2﹣2x+()2﹣()2=12,即(x﹣1)2=13,所以x﹣1=±.x1=1+,x2=1﹣.(运用配方法解形如x2+bx+c=0的方程的规律是把原方程化为一般式即为x2+bx+c=0形式,再配方得x2+bx+()2﹣()2+c=0,(x+)2=,再两边开平方,得其解.)92. 2x2+7x﹣4=0,两边除以2,得x2+x﹣2=0,配方,得x2+x+()2=2+()2,(x+)2=,则x+=±.所以x1=,x2=﹣4.93. 原方程变形为3x2+2x﹣10=0.两边除以3得x2+x ﹣=0,配方得x2+x+()2=+.即(x+)2=,则x+=±.所以x1=﹣,x2=.94. 方程两边除以3得x2﹣2x=.配方得x2﹣2x+1=+1.⇒(x﹣1)2=.所以x﹣1=±,解得x1=+1,x2=1﹣95. 2x2﹣x﹣30=0,2x2﹣x=30,x2﹣x=15,x2﹣x+=15,(x ﹣)2=;x ﹣=±,x1==3,x2=﹣=﹣;96. x2+2=2x,x2﹣2x=﹣2,x2﹣2x+3=﹣2+3;(x ﹣)2=1,x ﹣=±1,x1=1+,x2=﹣1+;97.x2+px+q=O(p2﹣4q≥O),x2+px=﹣q,x2+px+=﹣q+,(x+)2=,∵p2﹣4q≥O,∴x+=±,∴x1=,x2=;98. m2x2﹣28=3mx(m≠O),(mx)2﹣3mx﹣28=0,(mx﹣7)(mx+4)=0,mx=7或mx=﹣4,∵m≠0,∴x1=,x2=.99. x2﹣6x+7=0;移项得x2﹣6x=﹣7,配方得x2﹣6x+9=﹣7+9,即(x﹣3)2=2,开方得x﹣3=±,∴x1=3+,x2=3﹣.100. 2x2+6=7x;移项得2x2﹣7x=﹣6,二次项系数化为1,得x2﹣x=﹣3.配方,得x2﹣x+()2=﹣3+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=2,x2=.101. ﹣5x2+10x+15=0.移项得﹣5x2+10x=﹣15.二次项系数化为1,得x2﹣2x=3;配方得x2﹣2x+1=3+1,即(x﹣1)2=4,开方得:x﹣1=±2,∴x1=3,x2=﹣1.102. 移项得x2+6x=﹣8,配方得x2+6x+9=﹣8+9,即(x+3)2=1,开方得x+3=±1,∴x1=﹣2,x2=﹣4.103. 移项得x2﹣6x=16,配方得x2﹣6x+9=16+9,即(x﹣3)2=25,开方得x﹣3=±5,∴x1=8,x2=﹣2.104. 移项得2x2﹣7x=﹣3,二次项系数化为1,得x2﹣x=﹣.配方,得x2﹣x+()2=﹣+()2即(x ﹣)2=,开方得x ﹣=±,∴x1=3,x2=.105. 整理得2x2+5x=7.二次项系数化为1,得x2+x=;配方得x2+x+()2=+()2,即(x+)2=,开方得:x+=±,∴x1=1,x2=﹣.106. x2+4x=﹣3;方程化为:x2+4x+4=﹣3+4,(x+2)2=l,x+2=±1,x=﹣2±1,∴x1=﹣l,x2=﹣3;107. 2x2+x=0.方程化为:x2+x=0,x2+x+=,=,x+=±,x=﹣±,∴x1=0,x2=﹣.108. ∵x2+4x﹣3=0∴x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7∴x1=﹣2,x2=﹣﹣2.109. 移项得x2+3x=2,配方得x2+3x+=2+,即(x+)2=,开方得x+=±,∴x1=,x2=.110. 移项得x2﹣x=﹣,配方得x2﹣x+=﹣+,即(x ﹣)2=,开方得x ﹣=±,∴x1=,x2=.111. 移项得,x2+2x=4配方得,x2+2x+2=4+2,即(x+)2=6,开方得x+=,∴x1=,x2=﹣.。

2022-2023学年九年级上数学:配方法和公式法解一元二次方程练习题(附答案解析)

2022-2023学年九年级上数学:配方法和公式法解一元二次方程练习题(附答案解析)

2022-2023学年九年级上数学第21章一元二次方程21.2.1配方法和公式法解一元二次方程一、选择题1.一元二次方程210x -=的根是()A .121x x ==B .121x x ==-C .11x =-,21x =D .1x =2.方程24x =的根为()A .2x =B .2x =-C .0x =D .2x =±3.用配方法解方程2210x x +-=时,配方结果正确的是()A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=4.若将一元二次方程2890x x --=化成2()x n d +=的形式,则n ,d 的值分别是()A .4,25B .4-,25C .2-,5D .8-,735.一元二次方程20(0)ax bx c a ++=≠的求根公式是()A .2b x a -=B .2b x a =C .x =D .x 6.用公式法解方程2263t t =+时,a ,b ,c 的值分别为()A .2,6,3B .2,6-,3-C .2-,6,3-D .2,6,3-7.方程210x x +-=的根是()A .1-BC .1-D 二、填空题8.若2280x -=,则x =.9.一元二次方程2(1)4x +=的解为.10.方程2220x x +-=配方得到2()3x m +=,则m =.11.方程2250x x --=配方后可化为.12.一元二次方程210x x +-=的解是.13.用公式法解一元二次方程,得y =,则该一元二次方程为.三、解答题14.解方程:(1)2(1)16x -=;(2)22310x x +-=.15.解方程:(1)(2)3x x -=;(2)210x x +-=.一、选择题1.下列配方中,变形正确的是()A .222(1)x x x +=+B .2243(2)1x x x --=-+C .222432(1)1x x x ++=++D .222(1)1x x x -+=-+-2.用配方法解下列方程,其中应在两端同时加上4的是()A .225x x -=B .2245x x -=C .245x x +=D .225x x +=3.利用配方法解方程22103x x --=时,应先将其变形为()A .2110()39x +=B .2110()39x -=C .218()39x -=D .218(39x +=4.方程(1)2x x -=的两根为()A .10x =,21x =B .10x =,21x =-C .11x =,22x =D .11x =-,22x =5.已知等腰ABC ∆中的三边长a ,b ,c 满足22248180a b a b +--+=,则ABC ∆的周长是()A .6B .9C .6或9D .无法确定6.已知方程264x x -+=□,等号右侧的数字印刷不清楚.若可以将其配方成2()7x p -=的形式,则印刷不清的数字是()A .6B .9C .2D .2-7.若方程2230x mx +-=的二次项系数、一次项系数、常数项的和为0,则该方程的解为()A .1x =,2x =B .11x =,23x =-C .11x =-,23x =D .11x =-,22x =-二、填空题8.已知x ,y 是有理数,且2226100x x y y ++-+=,则y x =.9.方程(4)(5)1x x +-=的根为.三、解答题10.解下列方程:(1)2(2)240x x --+=;(2)2410x x --=.11.解下列方程:(1)(4)3x x -=;(2)2215x x +-=.一、选择题1.(2022•聊城)用配方法解一元二次方程23610x x +-=时,将它化为2()x a b +=的形式,则a b +的值为()A .103B .73C .2D .432.(2022•雅安)若关于x 的一元二次方程260x x c ++=配方后得到方程2(3)2x c +=,则c 的值为()A .3-B .0C .3D .93.(2022•甘肃)用配方法解方程222x x -=时,配方后正确的是()A .2(1)3x +=B .2(1)6x +=C .2(1)3x -=D .2(1)6x -=4.(2021•赤峰)一元二次方程2820x x --=,配方后可变形为()A .2(4)18x -=B .2(4)14x -=C .2(8)64x -=D .2(4)1x -=5.(2021•丽水)用配方法解方程2410x x ++=时,配方结果正确的是()A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x +=6.(2021•海南)用配方法解方程2650x x -+=,配方后所得的方程是()A .2(3)4x +=-B .2(3)4x -=-C .2(3)4x +=D .2(3)4x -=7.(2020•泰安)将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是()A .4-,21B .4-,11C .4,21D .8-,698.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是()A .2317()416x -=B .231(42x -=C .2313(24x -=D .2311()24x -=9.(2022•郴州)一元二次方程2210x x +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根10.(2022•贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,011.(2022•营口)关于x 的一元二次方程240x x m +-=有两个实数根,则实数m 的取值范围为()A .4m <B .4m >-C .4m D .4m - 12.(2022•北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A .4-B .14-C .14D .413.(2022•辽宁)下列一元二次方程无实数根的是()A .220x x +-=B .220x x -=C .250x x ++=D .2210x x -+=14.(2022•湖北)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且1212(2)(2)217x x x x ++-=,则(m =)A .2或6B .2或8C .2D .615.(2022•宜宾)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是A .0a ≠B .1a >-且0a ≠C .1a - 且0a ≠D .1a >-16.(2022•常德)关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是()A .4k >B .4k <C .4k <-D .1k >二、填空题17.(2022•荆州)一元二次方程2430x x -+=配方为2(2)x k -=,则k 的值是.18.(2020•扬州)方程2(1)9x +=的根是.19.(2022•上海)已知20x m -+=有两个不相等的实数根,则m 的取值范围是.20.(2022•铜仁市)若一元二次方程220x x k ++=有两个相等的实数根,则k 的值为.21.(2022•鄂州)若实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,则11ab+的值为.三、解答题22.(2022•齐齐哈尔)解方程:22(23)(32)x x +=+.23.(2022•无锡)(1)解方程:2250x x --=;24.(2021•兰州)解方程:2610x x --=.参考答案基础训练1.【答案】C【解析】解:210x -= ,21x ∴=,1x ∴=±,即11x =-,21x =.故选:C .2.【答案】D【解析】解:24x = ,2x ∴=±,故选:D .3.【答案】B【解析】解:2210x x +-=,移项得221x x +=,等式两边同时加21得22111x x ++=+配方得2(1)2x +=.,故选:B .4.【答案】B【解析】解:2890x x --= ,281625x x ∴-+=,2(4)25x ∴-=,4n ∴=-,25d =,故选:B .5.【答案】A【解析】解:一元二次方程的求根公式为x =,故选:A .6.【答案】B【解析】解:方程化为22630t t --=,所以2a =,6b =-,3c =-.故选:B .7.【答案】D【解析】解:210x x +-=,1a = ,1b =,1c =-,∴△224141(1)50b ac =-=-⨯⨯-=>,故122b b ac x a --==,故选:D .8.【答案】2±【解析】解:由原方程,得228x =,24x ∴=,直接开平方,得2x =±.故答案为:2±.9.【答案】11x =,23x =-【解析】解:2(1)4x +=12x +=±21x =±-11x =,23x =-,故答案为:11x =,23x =-.10.【答案】1【解析】解:222x x +=,2213x x ++=,2(1)3x +=.所以1m =,故答案为1.11.【答案】2(1)6x -=【解析】解:2250x x --= ,2216x x ∴-+=,2(1)6x ∴-=,故答案为:2(1)6x -=.12.【答案】1152x -+=,2152x --=【解析】解:1a = ,1b =,1c =-,∴△2141(1)5=-⨯⨯-=,x ∴=,所以1x =,2x =.故答案为1152x -+=,2152x -=.13.【答案】23510x x +-=【解析】解:根据题意得:3a =,5b =,1c =-,则该一元二次方程是23510x x +-=.故答案为:23510x x +-=.14.【解析】解:(1)2(1)16x -=,14x -=±,14x -=或14x -=-,15x =,23x =-;(2)22310x x +-=,△2342(1)9817=-⨯⨯-=+=,3174x -±∴=,13174x -+∴=,23174x --=.15.【解析】解:(1)方程整理得:223x x -=,配方得:2214x x -+=,即2(1)4x -=,开方得:12x -=或12x -=-,解得:13x =,21x =-;(2)这里1a =,1b =,1c =-,△1=+122b b ac x a --∴==,解得:1152x -+=,2152x -=.1.【答案】C【解析】解:22x x +2211x x =++-2(1)1x =+-,A 错误.243x x --24443x x =-+--2(44)(43)x x =-++--2(2)7x =--.B 错误.2243x x ++22(2)3x x =++22(211)3x x =++-+22(21)213x x =++-⨯+22(1)23x =+-+22(1)1x =++.C 正确.22x x -+2(211)x x =--+-2(21)1x x =--++2(1)1x =-++D 错误.故选:C .2.【答案】C【解析】解:A .由225x x -=得22151x x -+=+,不符合题意;B .由2245x x -=得2522x x -=,所以252112x x -+=+,不符合题意;C .由245x x +=得24454x x ++=+,符合题意;D .由225x x +=得22151x x ++=+,不符合题意;故选:C .3.【答案】B【解析】解:22103x x --=,移项,得2213x x -=,配方,得222211(1()333x x -+=+,即2110()39x -=,故选:B .4.【答案】D【解析】解:方程移项并化简得220x x --=,1a =,1b =-,2c =-△180=+12x ±∴=解得11x =-,22x =.故选:D .5.【答案】B【解析】解22248180a b a b +--+= ,222(1)(4)0a b ∴-+-=,10a ∴-=,40b -=,解得1a =,4b =,35c << ,ABC ∆ 是等腰三角形,4c ∴=.故ABC ∆的周长为:1449++=.故选:B .6.【答案】C【解析】解:设印刷不清的数字是a ,2()7x p -=,2227x px p -+=,2227x px p ∴-=-,222411x px p ∴-+=-,方程264x x -+=□,等号右侧的数字印刷不清楚,可以将其配方成2()7x p -=的形式,26p ∴-=-,211a p =-,3p ∴=,21132a =-=,即印刷不清的数字是2,故选:C .7.【答案】B【解析】解:方程2230x mx +-=的二次项系数、一次项系数、常数项分别是1,2m ,3-,方程2230x mx +-=的二次项系数、一次项系数、常数项的和为0,12(3)0m ∴++-=,解得:1m =,即方程为2230x x +-=,解得:11x =,23x =-,故选:B .8.【答案】1-【解析】解:2226100x x y y ++-+=,22(21)(69)0x x y y +++-+=,22(1)(3)0x y ++-=,则1030x y +=⎧⎨-=⎩,1x ∴=-,3y =,3(1)1y x ∴=-=-,故答案为:1-.9.【答案】1x 2x =【解析】解:(4)(5)1x x +-=,整理得:2210x x --=,224(1)41(21)85b ac -=--⨯⨯-=,1852x ±=,112x +=,212x =,故答案为:1x =2x =.10.【解析】解:(1)2(2)240x x --+=,2(2)2(2)0x x ---=,(2)(22)0x x ---=,20x -=或220x --=,解得:12x =,24x =;(2)2410x x --=,241x x -=,配方,得24414x x -+=+,2(2)5x -=,开方得:2x -=,解得:12x =+,22x =-.11.【解析】解:(1)(4)3x x -=,243x x -=,配方,得24434x x -+=+,2(2)7x -=,开方,得2x -=解得:12x =+,22x =-;(2)2215x x +-=,2260x x +-=,224142(6)148490b ac -=-⨯⨯-=+=> ,x ∴==,解得:132x =,22x =-.1.【答案】B【解析】解:23610x x +-= ,2361x x ∴+=,2123x x +=,则212113x x ++=+,即24(1)3x +=,1a ∴=,43b =,73a b ∴+=.故选:B .2.【答案】C【解析】解:260x x c ++=,26x x c +=-,2699x x c ++=-+,2(3)9x c +=-+.2(3)2x c += ,29c c ∴=-+,解得3c =,故选:C .3.【答案】C【解析】解:222x x -=,22121x x -+=+,即2(1)3x -=.故选:C .4.【答案】A【解析】解:2820x x --= ,282x x ∴-=,则2816216x x -+=+,即2(4)18x -=,故选:A .5.【答案】D【解析】解:方程2410x x ++=,整理得:241x x +=-,配方得:2(2)3x +=.故选:D .6.【答案】D【解析】解:把方程2650x x -+=的常数项移到等号的右边,得到265x x -=-,方程两边同时加上一次项系数一半的平方,得到26959x x -+=-+,配方得2(3)4x -=.故选:D .7.【答案】A【解析】解:2850x x --= ,285x x ∴-=,则2816516x x -+=+,即2(4)21x -=,4a ∴=-,21b =,故选:A .8.【答案】A 【解析】解:由原方程,得23122x x -=,23919216216x x -+=+,2317()416x -=,故选:A .9.【答案】A【解析】解: △2142(1)1890=-⨯⨯-=+=>,∴一元二次方程2210x x +-=有两个不相等的实数根,故选:A .10.【答案】B【解析】解:设方程的另一根为a ,2x =- 是一元二次方程220x x m ++=的一个根,440m ∴-+=,解得0m =,则20a -=,解得0a =.故选:B .11.【答案】D【解析】解: 关于x 的一元二次方程240x x m +-=有两个实数根,∴△2441()1640m m =-⨯⨯-=+ ,解得:4m - ,故选:D .12.【答案】C【解析】解:根据题意得△2140m =-=,解得14m =.故选:C .13.【答案】C【解析】解:A 、△2141(2)90=-⨯⨯-=>,则该方程有两个不相等的实数根,故本选项不符合题意;B 、△2(2)41040=--⨯⨯=>,则该方程有两个不相等的实数根,故本选项不符合题意;C 、△21415190=-⨯⨯=-<,则该方程无实数根,故本选项符合题意;D 、△2(2)4110=--⨯⨯=,则该方程有两个相等的实数根,故本选项不符合题意;故选:C .14.【答案】A【解析】解: 关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,∴△22(2)4(41)0m m m =---- ,即14m - ,且21241x x m m =--,122x x m +=,1212(2)(2)217x x x x ++-= ,1212122()4217x x x x x x ∴+++-=,即12122()417x x x x ++-=,2444117m m m ∴+-++=,即28120m m -+=,解得:2m =或6m =.故选:A .15.【答案】B【解析】解:由题意可得:20240a a ≠⎧⎨+>⎩,1a ∴>-且0a ≠,故选:B .16.【答案】A【解析】解: 关于x 的一元二次方程240x x k -+=无实数解,∴△2(4)410k =--⨯⨯<,解得:4k >,故选:A .17.【答案】1【解析】解:2430x x -+= ,243x x ∴-=-,24434x x ∴-+=-+,2(2)1x ∴-=,一元二次方程2430x x -+=配方为2(2)x k -=,1k ∴=,故答案为:1.18.【答案】12x =,24x =-【解析】解:2(1)9x +=,13x +=±,12x =,24x =-.故答案为:12x =,24x =-.19.【答案】3m <【解析】解: 关于x 的方程20x m -+=有两个不相等的实数根,∴△2(40m =-->,解得:3m <.故答案为:3m <.20.【答案】1【解析】解:根据题意得△22410k =-⨯⨯=,即440k -=解得1k =.故答案为:1.21.【答案】43【解析】解: 实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,a ∴、b 可看作方程2430x x -+=的两个不相等的实数根,则4a b +=,3ab =,则原式43a b ab +==,故答案为:43.22.【解析】解:方程:22(23)(32)x x +=+,开方得:2332x x +=+或2332x x +=--,解得:11x =,21x =-.23.【解析】解:(1)2250x x --=,225x x -=,22151x x -+=+,2(1)6x -=,1x ∴-=,解得11x =+,21x =-.24.【解析】解:2610x x --=,移项得:261x x -=,配方得:26910x x -+=,即2(3)10x -=,开方得:3x -=,则13x =+23x =。

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

21.2.1解一元二次方程之配方法 同步练习(含答案)

21.2.1解一元二次方程之配方法 同步练习(含答案)

21.2.1 解一元二次方程(配方法)一、单选题(共10小题)1.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 2.用配方法解方程2310x x ++=,经过配方,得到( )3.不论x ,y 取何实数,代数式x 2﹣4x+y 2+13总是( )A .非负数B .正数C .负数D .非正数4.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A .x 2﹣2x =5B .x 2+4x =5C .2x 2﹣4x =5D .4x 2+4x =55.把方程x 2﹣12x +33=0化成(x +m )2=n 的形式,则式子m +n 的值是( )A .9B .﹣9C .﹣3D .36.用配方法解方程2620x x ++=,配方正确的是( )A .2(3)9x +=B .2(3)9x -=C .2(3)6x +=D .2(3)7x +=7.一同学将方程2430x x --=化成了2()x m n +=的形式,则m 、n 的值应为( ) A .m=2.n=7 B .m=﹣2,n=7 C .m=﹣2,n=1 D .m=2,n=﹣78.对一元二次方程 x 2﹣ax =3 进行配方时,两边同时加上( )9.方程x 2-2x -5=0的左边配成一个完全平方后,所得的方程是( )A .2 (1)6 x +=B .(x -1)2=6C .(x+2)2=9D . 2(2)9x -= 10.用配方法解下列方程时,配方错误的是 ( )二、填空题(共5小题)11.把关于x 的方程x 2-2x+2=0配方成为a (x -2)2+b (x -2)+c=0的形式,得________. 12.将x 2+6x+3配方成(x+m )2+n 的形式,则n=______.13.已知方程x 2﹣10x+24=0的两个根是一个等腰三角形的两边长,则这个等腰三角形的周长为_____. 14.规定:a ⊗b =(a +b )b ,如:2⊗3=(2+3)×3=15,若2⊗x =3,则x =_______.15.方程(x+1)(x -3)=-4的解为______.三、解答题(共2小题)16.用配方法求一元二次方程()()23616x x +-=的实数根.17.解方程:267x x +=-参考答案一、单选题(共10小题)1.(2019·江苏中考真题)用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 【答案】D【解析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=, 289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点评】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 2.(2019·昆山市第二中学初二期末)用配方法解方程2310x x ++=,经过配方,得到() A .2313()24x +=B .235()24x +=C .2(3)1x +=D .2(3)8x +=【答案】B【解析】按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.【详解】x 2+3x+1=0,x 2+3x=-1, x 2+3x+232⎛⎫ ⎪⎝⎭=-1+232⎛⎫ ⎪⎝⎭,235x 24⎛⎫+= ⎪⎝⎭, 故选B.【点评】本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键. 3.(2018·陕西西安音乐学院附中初三期中)不论x ,y 取何实数,代数式x 2﹣4x+y 2+13总是( )A.非负数B.正数C.负数D.非正数【答案】B【解析】利用配方法把原式化为平方和的形式,根据偶次方的非负性解答.【详解】解:x2﹣4x+y2+13=x2﹣4x+4+y2+9=(x﹣2)2+y2+9,∵(x﹣2)2≥0,y2≥0,∴(x﹣2)2+y2+9>0,即不论x,y取何实数,代数式x2﹣4x+y2+13总是正数,故选:B.【点评】本题考查了配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.4.用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5【答案】B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;C、将该方程的二次项系数化为x 2-2x= 52,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;D、将该方程的二次项系数化为x 2 +x= 54,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方14;故本选项错误;故选B.【点评】本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.把方程x 2﹣12x +33=0化成(x +m )2=n 的形式,则式子m +n 的值是( )A .9B .﹣9C .﹣3D .3【答案】C【解析】方程移项变形后,配方得到结果,即可确定出m 与n 的值.从而得出答案.【详解】∵x 2﹣12x +33=0,∴x 2﹣12x =﹣33,则x 2﹣12x +36=﹣33+36,即(x ﹣6)2=3,∴m =﹣6,n =3,∴m +n =﹣6+3=﹣3,故选:C .【点评】考查一元二次方程的解法,解题的关键是灵活运用所学知识解决问题,学会用适当的方法解一元二次方程.6.(2018·湖南广益实验中学初二期中)用配方法解方程2620x x ++=,配方正确的是( ) A .2(3)9x +=B .2(3)9x -=C .2(3)6x +=D .2(3)7x +=【答案】D【解析】按照配方法解一元二次方程的方法和步骤,先移项,再在方程两边都加上一次项系数的一半的平方(二次项系数为1),整理化简即得答案.【详解】解:方程2620x x ++=即为262x x +=-,在方程的两边都加上9,得26929x x ++=-+,即2(3)7x +=.故选D.【点评】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的的方法和步骤是解此题的关键.7.(2018·江门市第二中学初二期末)一同学将方程2430x x --=化成了2()x m n +=的形式,则m 、n 的值应为( )A .m=2.n=7B .m=﹣2,n=7C .m=﹣2,n=1D .m=2,n=﹣7【答案】B【解析】先把(x+m )2=n 展开,化为一元二次方程的一般形式,再分别使其与方程x 2-4x -3=0的一次项系数、二次项系数及常数项分别相等即可.【详解】解:∵(x+m )2=n 可化为:x 2+2mx+m 2-n=0,∴2243m m n =-⎧⎨-=-⎩,解得:27m n =-⎧⎨=⎩ 故选:B .【点评】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可. 8.对一元二次方程 x 2﹣ax =3 进行配方时,两边同时加上( )A .22a B .24a C .2a D .a 2【答案】B 【解析】方程两边都加上一次项系数一半的平方即可.【详解】解:23x ax -=,222322a a x ax ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,22324a a x ⎛⎫-=+ ⎪⎝⎭,故选:B . 【点评】考查了解一元二次方程,能正确配方是解此题的关键.9.(2019·河南省实验中学初二期末)方程x 2-2x -5=0的左边配成一个完全平方后,所得的方程是( ) A .2(1)6 x += B .(x -1)2=6 C .(x+2)2=9D . 2(2)9x -=【答案】B【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【详解】解:把方程x 2-2x -5=0的常数项移到等号的右边,得到x 2-2x=5,方程两边同时加上一次项系数一半的平方,得到x 2-2x+(-1)2=5+(-1)2,配方得(x -1)2=6.故选:B .【点评】本题考查配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.用配方法解下列方程时,配方错误的是( )A.2x2-7x-4=0化为(x-74)2=8116B.2t2-4t+2=0化为(t-1)2=0C.4y2+4y-1=0化为(y+12)2=12D.13x2-x-4=0化为(x-32)2=594【答案】D【解析】根据配方法解一元二次方程即可进行求解.【详解】A. 2x2-7x-4=0化为(x-74)2=8116,正确;B. 2t2-4t+2=0化为(t-1)2=0,正确;C. 4y2+4y-1=0化为(y+12)2=12,正确;D. 13x2-x-4=0化为(x-32)2=574,故错误;故选D.【点评】此题主要考查配方法,解题的关键是熟知配方法进行求解.二、填空题(共5小题)11.(2019·南京市金陵中学河西分校初一期中)把关于x的方程x2-2x+2=0配方成为a(x-2)2+b(x-2)+c=0的形式,得________.【答案】(x-2)2+2(x-2)+2=0.【解析】此题把x-2看作整体,用配方法可化为(x-2)2+2(x-2)+2=0,即可.【详解】∵x2-2x+2=x2-4x+4+2x-4+2=(x-2)2+2(x-2)+2,∴方程x2-2x+2=0配方成为a(x-2)2+b(x-2)+c=0的形式为,(x-2)2+2(x-2)+2=0,故答案为(x-2)2+2(x-2)+2=0.【点评】本题考查了用配方法解一元二次方程,还考查了一个很重要的思想,整体思想.12.(2018·江苏省泗洪县新星城南学校初三期中)将x2+6x+3配方成(x+m)2+n的形式,则n=______.【答案】-6【解析】根据配方法即可求出答案.【详解】原式=(x2+6x)+3=(x2+6x+9-9)+3=(x+3)2-6,∴n=-6故答案为:-6【点评】本题考查配方法的应用,解题的关键是熟练运用配方法,本题属于基础题型.13.(2019·重庆市江津中学校初三期中)已知方程x2﹣10x+24=0的两个根是一个等腰三角形的两边长,则这个等腰三角形的周长为_____.【答案】14或16.【解析】先解方程的两根,再由三角形的三边关系定理确定三角形的周长.【详解】配方得,x2−10x+25−25+24=0,解得x=6或4,∵方程x2−10x+24=0的两个根是一个等腰三角形的两边长,∴这个等腰三角形的周长为14或16.【点评】本题考查了一元二次方程的解法以及实际应用,掌握解一元二次方程法方法是解题的关键.14.(2018·湖南中考真题)规定:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,若2⊗x=3,则x=________.【答案】1或-3【解析】根据a⊗b=(a+b)b,列出关于x的方程(2+x)x=3,解方程即可.【详解】依题意得:(2+x)x=3,整理,得x2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是:1或-3.【点评】用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.15.(2019·蚌埠铁路中学初二期中)方程(x+1)(x -3)=-4的解为______.【答案】x 1=x 2=1【解析】首先将已知的方程变形可得2210x x -+=,对其进行因式分解可得()210,x -=求解即可.【详解】(x+1)(x -3)=-4 2234,x x --=-移项得:2210x x -+=即()210,x -= ∴x 1=x 2=1,故答案为:x 1=x 2=1【点评】本题是一道关于解一元二次方程的题目,解答本题的关键是熟练掌握因式分解法解一元二次方程;三、解答题(共2小题)16.(2019·内蒙古中考真题)用配方法求一元二次方程()()23616x x +-=的实数根.【答案】194x =294x +=. 【解析】首先把方程化为一般形式为2x 2-9x -34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 【详解】原方程化为一般形式为22x 9x 340﹣﹣=, 29x x 172﹣=, 298181x x 1721616-++=, 29353x 416-()=,9x 44-±=,所以12x x ,.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.(2019·黑龙江中考真题)解方程:267x x +=-【答案】13x =-23x =-【解析】方程两边都加上9,配成完全平方式,再两边开方即可得.【详解】解:267x x +=-,∴26979x x ++=-+,即()232x +=,则3x += ∴3x =-±即13x =-23x =-【点评】本题主要考查一元二次方程的解法,必须熟练的计算,这是中考的必考题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。

1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。

32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。

1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。

21、3x?x?1??x?x?5?2、2x?3?5x3、x?2y?6?024、x2?7x?10?0 、?x?3??x?2??、4?x?3??x?x?3??0 7、?5x?1??2?0、3y2?4y?09、x2?7x?30?010、?y?2??y?1??413、x2?4ax?b2?4a216、x2?313x?3619、3x2?x?3a?0、4x?x?1??3?x?1? 12、?2x?1?2?25?014、x2?b2?a?3x?2a?b? 15、x2?x?a?a2?017、?y?3??y?1??218、ax2?x?b?00、x2?x?1?0 1、3x2?9x?2?011222、x2?2ax?b2?a2?0 3、 x+4x-12=0 4、2x2?2x?30?0 25、5x2?7x?1?028、3x2+5=031、y2?2?22y234、x?x?6??112.537、x2?x?3?03826、5x2?8x??1 7、x2?2mx?3nx?3m2?mn?2n2?0、?22x30、3x2?4x?1 、x2?4?5x3、2x2?5x?4?0 、2x2?2x?30?06、x2+4x-12=0 、x2?x?139、3y2?1?2y解一元二次方程配方法练习题1.用适当的数填空:①、x2=2;③、x22;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,以方程的根为_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=0 1x2-x-4=0所?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。

12. 用配方法证明:a2?a?1的值恒为正;?9x2?8x?2的值恒小于0.13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率.解一元二次方程公式法练习题一、双基整合步步为营1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____,当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________.3.若方程3x2+bx+1=0无解,则b应满足的条件是________.4.关于x的一元二次方程x2+2x+c=0的两根为________.5.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.6.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________.7.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±18.用公式法解方程4y2=12y+3,得到A.B.y= C.D.9.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,?则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形10.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有A.0个 B.1个 C.2个 D.3个11.解下列方程;112x2-3x-5=02t2+3=7t x2+x-=03x20.4x2-0.8x=1221y+y-2=03二、拓广探索:1?x2x2?x?112.当x=_______时,代数式与的值互为相反数.413.若方程x-4x+a=0的两根之差为0,则a的值为________.14.如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,?如果正方体的左面与右面所标注代数式的值相等,求x的值.三、智能升级:15.小明在一块长18m宽14m的空地上为班级建造一个花园,所建花园占空地面积的请你求出图中的x.1,216.要建一个面积为150m2的长方形养鸡场,为了节约材料,?鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.求鸡场的长与宽各是多少?题中墙的长度a对解题有什么作用.解一元二次方程练习题1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________..已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,?所以方程的根为_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-1.把方程x+3=4x配方,得 A.2=7B.2=21 C.2=1D.2=2.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于 C.可为任何实数 D.可能为负数 10.用配方法解下列方程:3x2-5x=2. x2+8x=91x2+12x-15=0 x2-x-4=04- 1 - 为了孩子的未来------温新堂教育- - 为了孩子的未来------温新堂教育11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。

用配方法解一元二次方程练习题答案:1.①9,②2.52,2.5③0.52,0.5④4.52,4.53492.22- ..2=5,15.C .A.?C.B .A4810.方程两边同时除以3,得 x2-523x=3,配方,得 x2-55253x+2=3+2,即 =36,x-6=±6,x=6±6.所以 x1=56+76=2,x2=5716-6=-3.所以 x1=2,x2=-13.x1=1,x2=-9x1x211.∵2x2-7x+2=2+2=22-33338≥-8,∴最小值为-338,-3x2+5x+1=-3237376+12≤12,?∴最大值为3712.- - 为了孩子的未来------温新堂教育精品文档11/ 11。

相关文档
最新文档