方程与不等式课件

合集下载

中考数学专题复习 第五章 方程与不等式 第2讲 不等式(组)课件

中考数学专题复习 第五章 方程与不等式 第2讲 不等式(组)课件

变式运用►3.[2017·常州中考]某校计划购买一批篮球和足球(zúqiú) ,已知购买2个篮球和1个足球(zúqiú)共需320元,购买3个篮球和2个 足球(zúqiú)共需540元.
(1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么 最多可购买多少个足球?
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲,乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多 少万件?
【思路分析】(1)可设甲种商品的销售单价(dānjià)为x元,乙种商品 的销售单价(dānjià)为y元,根据等量关系:①2件甲种商品与3件乙种 商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多 1500元,列出方程组求解即可;(2)可设销售甲种商品a万件,根据甲 、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
2021/12/9
第十九页,共二十四页。
4.[2012·泰安,6,3分]将不等式组
的解集在数轴上表示(biǎoshì)出来,正确的是( C )
得分(dé fēn)要领►求不等式组的解集要遵循以下原则:同大取大, 同小取小,小大大小中间找,大大小小解不了.
2021/12/9
第二十页,共二十四页。
命题点2 确定不等式组中字母(zìmǔ)的取值范围
2021/12/9
第十一页,共二十四页。
类型(lèixíng)3 不等式的应用
【例3】[2017·宁波中考]2017年5月14日至15日,“一带一路”国际合作 (hézuò)高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作 (hézuò)协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国 家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比 2件乙种商品的销售收入多1500元.

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

二次函数与一元二次方程、不等式_课件

二次函数与一元二次方程、不等式_课件
对于比较简单的分式不等式,可直接转化为一元二次 不等式或一元一.次不等式组求解,但要注意分母不 为零.
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为

高中数学第二章一元二次函数方程和不等式2.2基本不等式第1课时基本不等式课件新人教A版必修第一册

高中数学第二章一元二次函数方程和不等式2.2基本不等式第1课时基本不等式课件新人教A版必修第一册

6.若 a,b 都是正数,则1+ba1+4ba的最小值为(
)
A.7 B.8 C.9 D.10
答案 C
解析 因为 a,b 都是正数,所以1+ba1+4ba=5+ba+4ba≥5+2
b 4a a·b
=9,当且仅当 b=2a 时取等号.
7.已知 x>0,y>0,且 x+y=8,则(1+x)(1+y)的最大值为( ) A.16 B.25 C.9 D.36
8.若 a>b>0,则下列不等式一定成立的是( )
A.a-b>1b-1a B.ca2<cb2
2ab C. ab>a+b
D.3aa++3bb>ab
答案 C
解析 逐一考查所给的选项:当 a=2,b=13时,a-b=53,1b-1a=52,不 满足 a-b>1b-1a,A 错误;当 c=0 时,ca2=cb2=0,不满足ca2<cb2,B 错误;
x+4x=--x+-4x≤-2
-x·-4x=-4,C 错误,故选 D.
知识点二 直接利用基本不等式求最值 5.设 x>0,y>0,且 x+y=18,则 xy 的最大值为( ) A.80 B.77 C.81 D.82
答案 C 解析 因为 x>0,y>0,所以x+2 y≥ xy,即 xy≤x+2 y2=81,当且仅当 x=y=9 时,等号成立,所以 xy 的最大值为 81.
3x·1x=3-2 3,当且仅当 3x=1x,
4.设 x>0,则 x+2x+2 1-32的最小值为(
)
A.0
1 B.2
C.1
3 D.2
答案 解析
A 因为 x>0,所以 x+12>0,所以 x+2x+2 1-32=x+12+x+1 12-

《基本不等式》一元二次函数、方程和不等式PPT教学课件(第二课时基本不等式的应用)

《基本不等式》一元二次函数、方程和不等式PPT教学课件(第二课时基本不等式的应用)
利用基本不等式求最值 【例 1】 (1)已知 x<54,求 y=4x-2+4x-1 5的最大值; (2)已知 0<x<12,求 y=12x(1-2x)的最大值. [思路点拨] (1)看到求 y=4x-2+4x-1 5的最值,想到如何才能出现 乘积定值;(2)要求 y=12x(1-2x)的最值,需要出现和为定值.
2 2 [x+2x≥2 x·2x=2 2,当
________.
且仅当 x= 2时,等号成立.]
栏目导航
9
3.设 x,y∈N*满足 x+y=20, 100 [∵x,y∈N*,∴20=x+
则 xy 的最大值为________.
y≥2 xy,
∴xy≤100.]
栏目导航
10
合作探究 提素养
栏目导航
11
(3)当 x>1 时,函数 y=x+x-1 1≥2 x-x 1,所以函数 y 的最小值是
2 x-x 1.(
)
栏目导航
[提示] (1)由 a+b≥2 ab可知正确. (2)由 ab≤a+2 b2=4 可知正确. (3) x-x 1不是常数,故错误.
[答案] (1)√ (2)√ (3)×
37
栏目导航
38
13
栏目导航
14
利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆 项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳 为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或 定积;若不等,一般用后面第三章§3.2 函数的基本性质中学习.
栏目导航
33
∵x>0,∴x+22x5≥2 x·22x5=30. 当且仅当 x=22x5,即 x=15 时,上式等号成立. ∴当 x=15 时,y 有最小值 2 000 元. 因此该楼房建为 15 层时,每平方米的平均综合费用最少.

《等式的性质与方程的解集》_等式与不等式PPT优秀课件

《等式的性质与方程的解集》_等式与不等式PPT优秀课件
)
1
1
A.如果 a=3,那么 = 3
B.如果a=3,那么a2=9
C.如果a=3,那么a2=3a
D.如果a2=3a,那么a=3
解析:如果a=3,那么 1 = 1 ,正确,故选项A不符合题意;
3
2
如果a=3,那么a =9,正确,故选项B不符合题意;
如果a=3,那么a2=3a,正确,故选项C不符合题意;
(1)方程的解(或根)是指能使方程左右两边相等的未知数的值.
(2)一般地,把一个方程所有解组成的集合称为这个方程的解集.
3.做一做
求方程x2+3x+2=0的解集.
解:∵x2+3x+2=0,∴(x+1)(x+2)=0,
∴x=-1或x=-2,∴方程的解集为{-1,-2}.
课堂篇
探究学习
探究一
探究二
思维辨析
B.原式=(m-1)2,错误;
C.原式=a2-16,正确;
D.原式=x(x2-1)=x(x+1)(x-1),错误.
故选C.
答案:C
课堂篇
探究学习
探究一
探究二
思维辨析
当堂检测
3.若x=3是方程3x-a=0的解,则a的值是(
A.9
B.6
C.-9
D.-6
解析:把x=3代入方程3x-a=0得9-a=0,
分析:将方程左边整理化成两个一次因式乘积的形式,进而求解.
解:把方程左边因式分解,得(x-2)(x+1)=0,
从而,得x-2=0或x+1=0,
所以x1=2,x2=-1.
所以方程的解集为{-1,2}.
反思感悟 因式分解法解一元二次方程

人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

(1)途中乙发生了什么事,
P
(2)他们是相遇还是追击; 12
(3)他们几时相遇。
10
8
D E
AB
0
0.5
1 1.2
t
1.右图中的两直线l1 、l2 的交点坐标可以看作
y 2x 1
y 4
l1
3
2
l2 1
-1 0 -1
1 2 3 4x
x 2y 2 2.解方程组 2x y 2
问 经过多长时间两人相遇 ?
你明白他的想法吗?
设同时出发后t 时相遇, 则 20 t 30 t 150
用他的方法做一做,看 看和你的结果一致吗?
t=3
求出s与t之间的关系式,联立解方程组
A、B 两地相距150千米,甲、
对于乙,s 是t
乙两人骑自行车分别从A、B 两地相
的一次函数,
向而行。假设他们都保持匀速行驶, 则他们各自到A 地的距离s (千米) 都
120千米,即乙的
B 两地同时相向而行。假设他 小彬 速度是 30千米/时,
们都保持匀速行驶,则他们各
自到A地的距离s(千米)都是骑 车时间t(时)的一次函数.
1 时后乙距A地120千米, 2 时后甲距A地 40千米.
2 时后甲距A 地 40千米, 故甲的速度是 20千米/时,
由此可求出甲、乙两人的 速度, 以及 ……
2
4
6
所以方程
x 2 y 2 2x y 2
-6
的解是 x 2 。
y
2
一、二元一次方程的解与相应的一次函数图象上点 对应。
以方程 x+y=3 的解为坐标的所有点组成的图形
就是 一次函数 y=3-x 的图象.

函数、方程、不等式以及它们图像_课件

函数、方程、不等式以及它们图像_课件

2019/10/23
30
解: sik n x k ( ) siknx
k2m k(2m 1)mZ
由①②可知,实数k的取值范围是
{kkm,mZ}
2019/10/23
31
例题5、函数 f ( x ) 在 (1,1) 上有定义,
f ( 1 ) 1 且满足 x,y(1,1)时,有
1
nl im lna(n)nl im 2nlna 0
2019/10/23
24
例题4、已知集合M是满足下列性质的 f ( x ) 的全体:存在非零常数T,对任意 xR,有 f(xT)T(fx)成立。
(1)函数 f(x) x是否属于集合M?说明理由; (2)设函数 f (x) a x (a0,a1)的图像与
y
o c
2019/10/23
x
13
解:
(c 1)2 4(c2 c) 0

1 c

2

c
f (c) 3c2 2c 0
2019/10/23
14
解:
1 c0 3
11c 4 , 8 1c2 1 39
ab(1, 4), a2 b2 (8,1)
2019/10/23
46
解(1):
当 0m1时,f(x1)f(x2)0,
函数在 [, ] 上是减函数
当 m1时, f(x1)f(x2)0, 函数在 [, ]上是增函数
2019/10/23
47
解(2):
由(1)可知,当 0m1时,
f (x) 为减函数, 则由其值域为 [lm o m ( g 1 )l,o m m ( g 1 )]
f(x)logm

中考数学复习分类精品课件:第二单元《方程与不等式》

中考数学复习分类精品课件:第二单元《方程与不等式》


(2)已知 A,B 两件服装的成本共 500 元,鑫洋服装店老板分别以 30% 和 20%的利润率定价后进行销售,该服装店共获利 130 元,问 A,B 两件 服装的成本各是多少元?
解:设 A 服装的成本为 x 元,根据题意,得 30%x+20%(500-x)=130.解得 x=300. 则 500-x=200. 答:A,B 两件服装的成本分别为 300 元,200 元.
的关系;
(2)设:设关键未知数(可设直接或间接未知数);
(3)列:根据题意寻找⑲ 等量关系
列方程(组);
(4)解:解方程(组);
(5)验:检验所解答案是否正确,是否符合题意和实际情况;
(6)答:规范作答,注意单位名称.
2.常见的应用题类型及基本数量关系:
常见类型
基本数量关系
路程=速度×时间
相遇

甲走的路程+乙走的路程=两地距离.
(2)面积问题常见图形:
(3)利润问题; (4)握手问题.
7.(1)某药品经过两次降价,每瓶零售价由 100 元降为 81 元.已知两 次降价的百分率都为 x,那么 x 满足的方程是 100(1-x)2=81 ;
(2)某机械厂七月份营业额为 1 000 万元,第三季度总的营业额为 3 990 万元.设该厂八、九月份平均每月的营业额增长率为 x,那么 x 满足的方程 是1 000+1 000(1+x)+1 000(1+x)2=3 990 .
3.解下列方程: (1)2(x+3)=5x; 解:去括号,得 2x+6=5x. 移项,得 2x-5x=-6. 合并同类项,得-3x=-6. 系数化为 1,得 x=2.
(2)x+2 1-2=x4. 解:去分母,得 2(x+1)-8=x. 去括号,得 2x+2-8=x. 移项,得 2x-x=8-2. 合并同类项,得 x=6.

《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)

《等式性质与不等式性质》一元二次函数、方程和不等式PPT教学课件(第一课时不等关系与不等式)
栏目导航
9
4.设 M=a2,N=-a-1,则 M、 M>N [M-N=a2+a+1=
N 的大小关系为________.
a+122+34>0,
∴M>N.]
栏目导航
10
合作探究 提素养
栏目导航
11
用不等式(组)表示不等关系 【例 1】 京沪线上,复兴号列车跑出了 350 km/h 的速度,这个速 度的 2 倍再加上 100 km/h,不超过民航飞机的最低时速,可这个速度已经 超过了普通客车的 3 倍,请你用不等式表示三种交通工具的速度关系.
栏目导航
23
解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪 一个,然后再用作差法比较它们的大小即可.
栏目导航
24
3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如 果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅 游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家 旅行社价格更优惠?
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质 第1课时 不等关系与不等式
2
学习目标
核心素养
1.会用不等式(组)表示实际问题中 1. 借助实际问题表示不等式,提升
的不等关系.(难点) 2.会用比较法比较两实数的大 小.(重点)
数学建模素养. 2. 通过大小比较,培养逻辑推理素 养.
栏目导航
14
1.用一段长为 30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m, 要求菜园的面积不小于 216 m2,靠墙的一边长为 x m.试用不等式表示其 中的不等关系.
栏目导航
15
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以 0<x≤18,

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT【精品课件】

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT【精品课件】
(2)形式:
①ax2+bx+c>0(a≠0);
②ax2+bx+c≥0(a≠0);
③ax2+bx+c<0(a≠0);
④ax2+bx+c≤0(a≠0).
(3)解集:一般地,使某个一元二次不等式成立的x的值叫做这个不
等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次
不等式的解集.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
零点不是点,是一个实数.零点就是函数对应方程的根.
(2)二次函数y=x2-5x的图象如图所示.
当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0.
上述各种情况下函数图象与x轴有什么关系?
提示:当x=0或x=5时,y=0.此时图象与x轴交于两个点(0,0)和(5,0);
当0<x<5时,y<0,函数图象位于x轴下方,此时x2-5x<0;
3.借助一元二次函
数的图象,了解一
元二次不等式与相
等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
当x<0或x>5时,y>0.此时函数图象位于x轴上方,此时x2-5x>0.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件

一次函数与方程不等式关系PPT课件

一次函数与方程不等式关系PPT课件
方程的解与函数的零点
对于形如y=kx+b的一次函数,其与x轴的交点即为方程 y=0的解,也就是函数的零点。通过对方程进行求解,可 以得到函数的零点,从而确定函数的图像与x轴的交点。
03
不等式的解集与函数的图像
一次函数图像在平面坐标系中的位置和形态可以通过不等 式来描述。对于形如y<kx+b或y>kx+b的不等式,其解集 对应于函数图像在坐标系中的位置和取值范围。通过解不 等式,可以得到函数图像在坐标系中的位置和形态。
一次函数与不等式的关系
01
不等式可以转化为函数形式
不等式可以看作是函数的特殊情况,如 (ax + b > c) 可以视为 (y = ax
+ b) 在 (y) 轴上的截距大于 (c) 的情况。
02
解不等式即找函数值的范围
解不等式的过程是找到满足条件的 (x) 值范围,即函数值的范围。
03
函数图像与不等式的解集关系
函数图像上方的区域对应不等式的解集,下方的区域对应不等式的非解
集。
一次函数在方程与不等式中的应用
利用一次函数解一元一次方程
通过将方程转化为函数形式,可以更直观地找到方程的解。
利用一次函数解一元一次不等式
将不等式转化为函数形式,可以更方便地找到满足条件的 (x) 值范围。
一次函数在解决实际问题中的应用
02
方程与不等式的基本概念
方程的概念
1 2
3
方程
表示数学关系的一种数学模型,由等号和等号右边的未知数 组成。
一元一次方程
只含有一个未知数,且未知数的次数为1的方程。
二元一次方程
含有两个未知数,且未知数的次数为1的方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程和二元一次方程组
学习目标:
1:给出几个方程,指出一元二次方程。 2:先说出解一元二次方程的方法,再用适当
的方法解一元二次方程。
3:通过解分式方程说出解分式方程的步骤。 4:通过解二元一次方程组,总结出解二元一次
方程组的基本思想是消元。
ቤተ መጻሕፍቲ ባይዱ 自主学习
内容:《河南中考》的18-19页与《复习指导》的6566页。
第1讲 一元一次方程
第1讲 一元一次方程
第1讲 一元一次方程
练习:
第2讲 二元一次方程组
第2讲 二元一次方程组
第2讲 二元一次方程组
第2讲 二元一次方程组
第2讲 二元一次方程组
第3讲 一元二次方程
第3讲 一元二次方程
第3讲 一元二次方程
课堂小结
1、学生对本节课的知识和练习题进行归 纳
2、学生谈本节课的收获和感受
作业
1、 《河南中考》20页 2、《复习与指导》67-68
目标:(1)梳理并识记一元一次方程、一元二次方 程、分式方程等相关概念.(2)分析对应的例题和真 题,并完成相应的拓展题。
方法:学生独立完成自学内容,并对相关内容整理在 书上,有疑惑的问题做上标记,教师进行讲评。
时间:10分钟 检测题: 《河南中考》的20-21页的填空题。
第1讲 一元一次方程
相关文档
最新文档