2013年底24届希望杯八年级第一次邀请赛数学试题

合集下载

历届希望杯初二选择题附答案

历届希望杯初二选择题附答案

历届希望杯初二选择题希望杯第二十届(2009年) 初二第二试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的)( )2.如果1-<<y x ,那么代数式xyx y -++11的值是( ) (A ) 0 (B ) 正数 (C )负数 (D )非负数3.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )1 4.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( )(A )120°,180°,60°(B )108°,144°,108° (C )90°,180°,90° (D ) 72°,216°,72°5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于 ( ) (A )20 (B ) 28 (C ) 36 (D )406.In the rectangular coordinates,abscissa and ordinate of the intersection point ofthe lines k x y -= and 2+=kx y are integers for imteger k ,then the number of the possible values of k is ( )(A )4 (B )5 (C )6 (D )7(英汉小词典:abscissa 横坐标;ordinate 纵坐标;intersection point 交点;integer 整数)7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形 8.若不等式组⎩⎨⎧>++<+-mx x m x 1104的解集是4>x ,则( )(A )29≤m (B )5≤m (C )29=m (D )5=m 9.如图4,四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于( )(A ) 134 (B )38 (C )12 (D )31010.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F . 则在以下结论 ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=. 中,正确的结论有( )(A ) 4个 (B )3个 (C )2个 (D )1个第二十一届“希望杯”全国数学邀请赛一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.计算91252⨯,得数是( )(A)9位数. (B) 10位数. (C) 11位数. (D) 12位数.图1fed c ba2.若132=-yx ,则代数式189189---+y x y x 的值( )(A )等于57. (B)等于75. (C)等于75或不存在. (D)等于57或不存在. 3. The integer solutions of the inequalities about x ⎪⎩⎪⎨⎧-<+--≥+-23)21(22)(3xb b x a x a xare1,2,3, then the number of integer pairs (a,b) is( )(A)32. (B)35. (C)40. (D)48. (英汉词典:integer 整数)4.已知三角形三个内角的度数之比为z y x ::,且x+y<z ,则这个三角形是( ) (A)锐角三角形. (B)直角三角形. (C)钝角三角形. (D)等腰三角形. 5.如图1,一个凸六边形的六个内角都是120°,六条边的长分别为 a ,b ,c ,d ,e ,f ,则下列等式中成立的是( ) (A)a+b+c=d+e+f . (B)a+c+e=b+d+f . (C)a+b=d+e . (D)a+c=b+d .6.在三边互不相等的三角形中,最长边的长为a ,最长的中线的长为m ,最长的 高线的长为h ,则( )(A)a>m>h . (B)a>h>m . (C)m>a>h . (D)h>m>a .7.某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有( ) (A) 15种. (B)11种. (C)5种. (D)3种. 8.若yx y x xy 11,0,0+=/+=/与x+y 成反比,则2)(y x +与22y x + ( ) (A)成正比. (B)成反比. (C)既不成正比,也不成反比. (D)关系不确定.9.如图2,已知函数)0(),0(2<=>=x xky x x y ,点A 在正y 轴上,过点A 作x BC //轴,交两个函数的图象于点B 和C ,若3:1:=AC AB ,则k 的值是( )(A)6. (B)3. (C)一3. (D)一6.10. 10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图3所示,则报出来的数是3的人心里想的数是( )(A)2. (B)一2. (C)4. (D)一4.第二十二届”希望杯”全国数学邀请赛 初二 第2试2011年4月10日 上午9:00至11:00一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内. 1. Given A :B =32:3,A =2,C =1029. The size relationship between B and C is (A) B >C (B) B =C (C) B <C (D) uncertain2. 已知a 2-a =7,则代数式21+-a a .12422+--a a a ÷112-a 的值是(A) 3 (B)27(C) 4 (D) 5 3. 一个凸四边形的四个内角可以(A) 都是锐角 (B) 都是直角 (C) 都是钝角 (D) 有三个是直角,另一个是锐角或钝角 .4. 如果直线y =2x +m 与直角坐标系的两坐标轴围成的三角形的面积等于4,则m 的值是 (A) ±3 (B) 3 (C) ±4 (D) 45. 若n +1=20102+20112,则12+n = (A) 2011 (B) 2010 (C) 4022 (D) 40216. 有四个命题:若两个等腰三角形的腰相等,腰上的高也相等,则这两个等腰三角形全等 有一条边相等的两个等腰直角三角形全等● 有一条边和一个锐角对应相等的两个直角三角形全等 ❍ 两边以及另一边上的高对应相等的两个三角形全等 其中,正确的命题有(A) 0个 (B) 1个 (C) 2个 (D) 3个7. 如图1,Rt △ABC 两直角边上的中线分别为AE 和BD , 则AE 2+BD 2与AB 2的比值为A BCD E 图1ABCDEFP(A)43 (B) 1 (C) 45 (D) 23 8. As shown in figure 2, ABCD is a rectangle and AD =12, AB =5, P is any point on AD and PE ⊥BD at point E , PF ⊥AC at point F . Then PE +PF has a total length of (A)1348 (B) 1360 (C) 5 (D) 1370 9. 如图3,正方形ABCD 的边AB 在x 轴的正半轴上,C (2,1),D (1,1). 反比例函数y =xk的图像与边BC 交于点E ,与边CD 交于点F .已知 BE :CE =3:1,则DF :FC 等于(A) 4:1 (B) 3:1 (C) 2:1 (D) 1:110. 如图4,a ,b ,c ,d ,e 分别代表1,2,3,4,5中的一个数. 若b +a +c 及d +a +e 除以3都余1,则不同的填数方法有 (A) 2种 (B) 4种 (C) 8种 (D) 16种 .第二十三届“希望杯”全国数学邀请赛初二 第2试2012年4月8日 上午9:00至11:00 得分一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在后面的圆括号内。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( ) A .1-x x . B.1-x. C.x1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度. 6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______. 8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个. 9.x ,y ,z 适合方程组826532113533451x y z x z x yx y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120° 所以∠ADC 的度数是120度. 5.∠COD 度数的一半是30度.8.∵Δ=p 2-4q >p 2.9.方程组可化简为:解得: x=1,y=-1,z=0. ∴1989x-y+25z=1990.10.∵6x 4+11x 3-7x 2-3x-7=(3x 2+4x-7)(2x 2+x+1)而3x 2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ] A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ] A .M >P >N 且M >Q >N. B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ] A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:(每题1分,共5分)1. △ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA的延长线交于N .已知CL=3,则CN=______. 2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0的两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.已知△ABC是等腰三角形,则[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角 [ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.18512.1,>+等于[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ]A.两负根;B.一正根、一负根且负根的绝对值大(1)BOC .一正根、一负根且负根的绝对值小;D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则[ ]到达N 地. A . 二人同时; B .甲先;C .乙先;D .若a >b 时,甲先到达,若a <b 时,乙先 二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度. 2.有理化分母=______________.3.0x =的解是x=________. 4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 2-9)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2-y 2=1991有______个整数解.8.当m______时,方程(m-1)x 2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.CBAFFEDCBA(2) (3) (4)10.如图3,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出__条. 11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于__度. 12.如图4,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______.14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( ) A .a <b <c. B .(a-b)2+(b-c)2=0. C .c <a <b. D .a=b ≠c 5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( ) A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 2 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为x 2、y 2的值是( )A.x 2,y 22y 2;C. x 2,y 2; D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( ) A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则ab=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

【2013】希望杯竞赛数学试题详解(21-30题)

【2013】希望杯竞赛数学试题详解(21-30题)

题21 若0,>y x ,且12=+y x ,则⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y y x x u 411的最小值是 . (第一届高二第一试第20题)题22 已知+∈R b a ,,且1=+b a ,则1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 . (第八届高二培训填空题第6题)题23 设R y x ∈,,且221x y +≤,则xy y x ++的最大值是 ,最小值是 .(第六届高二培训解答题第2题、第八届高二第一试第23题)题24 若223x xy 3y 20-+=,则228x 23y +的最大值是 .(第十三届高二培训题第68题)题25 函数xxx y sin 1cos sin ++=的最大值是____.(第九届高二培训题第43题)题26 函数1212y sin x cos x =+的值域是 .(第十一届高二培训题第46题)题27 设+∈N n ,则|2001||1950||1949|-+⋯+-+-n n n 的最小值是 .(第九届高二培训题第53题)题28 611112310s =++++ ,则s 的整数部分是 ( )A 、1997 B、1998 C 、1999 D 、2000(第八届高二第二试第10题) 题 29 求函数4803224+++-=x x x y 的最小值和取最小值时x 的值(第十三届高二培训题第81题)题30 函数223223x x x x y -+++-=的最大值是 ,最小值是 .(第十四届高二第二试第16题)21.解法1 比较:当1,0,=+>b a b a 时,42511≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b b a a ,当且仅当21==b a 时取等号.可见,82542521212121411=⋅≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x y y x x ,当且仅当41,21==y x 时取等号.825m in =∴u . 解法2 xyxy xy x y y x xy y y x x u 411414411++≥+++=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=. 令12,=+=y x xy t 且xy y x y x 222,0,0≥+∴>>,即81≤xy ,即81≤t .可证函数()t t t f 411++=在⎥⎦⎤⎝⎛81,0上单调递减,81=∴t 时,()82581min =⎪⎭⎫ ⎝⎛=f t f .即当41,21==y x 时,min 258u =. 解法3 令⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∈==2,0,tan 2,tan πϕθϕθy x ,则tan tan 1,θϕ+=21112sin 2sin 22.sin 2sin 222sin 2sin 22u x y x y θϕθϕθϕ⎛⎫+⎛⎫⎛⎫=++=≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (当且仅当ϕθ=时取等号).又222tan 2tan sin 2sin 21tan 1tan θϕθϕθϕ+=+++ ()22222221tan tan tan tan 1tan tan tan tan θϕϕθθϕθϕ++=+++()()22222tan tan tan tan 1tan tan 2tan tan tan tan θϕϕθθϕθϕθϕ++=++-+()2tan tan 11tan tan 22ϕθϕθ-++=.由1tan tan =+ϕθ,易得41tan tan ≤ϕθ(当且仅当ϕθ=时取等号).于是()22191tan tan 1.416θϕ⎛⎫-≥-= ⎪⎝⎭ 12284sin 2sin 295116θϕ+⋅∴+≤=+(ϕθ=时取等号).故∴=⎪⎭⎫⎝⎛≥⎪⎭⎫ ⎝⎛+≥.82558822sin 2sin 222ϕθu 当21arctan ==ϕθ,即212==y x 时,825m in =u . 评析 解法1的依据就是课本上一道习题的结论.本赛题就是这道课本习题的变题.利用现成的一些重要结论可以简化解题过程,尤其是解选择题、填空题时更可直接利用.由于a 、+∈R b 时,2≥+baa b ,当且仅当b a =时取等号,所以解法2将u 展开成xy xy x y y x 414+++后,只能对x y y x +4使用上述公式(因为12=+y x ,所以必须使212==y x 时取等号).若也对xy xy 41+使用上述公式就错了,因为由212==y x ,得41,21==y x ,此时xy xy xy ,241,81==与xy 41并不相等.这是同一式子中几处同时使用基本不等式时必须注意的,是一个常见的易错点.x 与()0,0>>x k xk不可能相等时,通常运用函数的单调性求x k x +的最小值(易证函数()0,0>>+=k x xkx y 在(0,]k 上单调减,在[,)k +∞上单调增). 解法3运用三角代换法,虽然较繁,但仍可起到开阔视野,活跃思维的作用. 拓展 命题“若0,>b a 且1=+b a ,则42511≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b b a a ”可作如下推广: 推广1 若0,,>c b a 且1=++c b a 则271000111≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+c c b b a a . 证明 1111b c c a a b ca b a b c a b c a b c a b c a b c a b b c c a⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++++++ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 331133abc abc abc abc ≥+++⋅⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=33131abc abc abc abc ,当且仅当31===c b a 时取等号.31,271313333≤∴=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++≤abc c b a abc .又()x x x f 1+=在⎥⎦⎤ ⎝⎛271,0及⎥⎦⎤ ⎝⎛31,0上都是减函数,,2710003113132712713133=⎪⎪⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+≥⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+∴abc abc abc abc 当且仅当271=abc 时取等号.271000111≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴c c b b a a (当且仅当31===c b a 时取等号). 推广2 若0(1,2,,)i a i n >= ,11=∑=ni i a ,则2111nni i i n a a n =⎛⎫⎛⎫++≥ ⎪ ⎪⎝⎭⎝⎭∏. 推广3 若0(1,2,,)i a i n >= ,k a ni i =∑=1,则2211nni i i n k a a nk =⎛⎫⎛⎫++≥ ⎪ ⎪⎝⎭⎝⎭∏.推广2、3的证明,叙述较繁,此处从略. 22.解法1 11,,1,,224a b a b R a b ab ab ++∈+=∴≤=∴≤ 且. 111111*********a b a b a b ab ab ab ab +⎛⎫⎛⎫∴++=+++=++=+≥+= ⎪⎪⎝⎭⎝⎭.当且仅当21==b a 时取等号.min11119a b ⎡⎤⎛⎫⎛⎫∴++= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦. 解法2 3311111111113a b a b b a b a a b a b a b a b++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++++≥⋅ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =9,当且仅当1==b a a b ,即21==b a 时取等号. min11119a b ⎡⎤⎛⎫⎛⎫∴++= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦.解法3 1111112252a b a b b a b a a b a b a b a b ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++=++≥ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9225=⨯+,当且仅当1==b a a b ,即21==b a 时取等号. min11119a b ⎡⎤⎛⎫⎛⎫∴++= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦. 评析 求条件最值离不开利用条件.如何利用条件1=+b a ?解法1把1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭展开后将b a +用1代,解法2与3将a 1与b1中的1用b a +代,其目的都是为了能利用均值不等式或基本不等式求最值. 拓展 此题可作如下推广:推广1 若+∈R n b a ,,,且n b a =+,则1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是22n n +⎛⎫ ⎪⎝⎭.证明ab b a n R n b a 2,,,≥+=∴∈+,于是241nab ≥, 2211114(1)211111a b n n n a b ab ab n n +++++⎛⎫⎛⎫⎛⎫++=+=+≥+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当2nb a ==时取等号,1111a b ⎛⎫⎛⎫∴++ ⎪⎪⎝⎭⎝⎭的最小值是22n n +⎛⎫ ⎪⎝⎭.推广2 若+∈R a a a n ,,,21 ,且121=+++n a a a ,则12111111n a a a ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的最小值是n n )1(+. 证明 +∈R a a a n ,,,21 ,121=+++n a a a ,1121112111)1(11a a a a a n a a a a a a n nn ++≥++++=+∴ .同理112121222(1)(1)111,,1n n n n nn n n a a a a n a a a a a a a a +++++≥+≥ .故 112121212(1)()()111111(1)n nn n n n nn n a a a a a a n a a a a a a ++⎛⎫⎛⎫⎛⎫+++≥=+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当 121n a a a n ====时取等号. 12111111na a a ⎛⎫⎛⎫⎛⎫∴+++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的最小值是nn )1(+. 推广3 若),,2,1(,,n i R a m k i =∈+,且∑==n i im a 1,则111nk i i a =⎛⎫+ ⎪⎝⎭∏的最小值是 1nk k n m ⎛⎫+ ⎪⎝⎭.证明 由均值不等式得111nnnni ii i nn a m a ==⎛⎫⎪⎛⎫ ⎪≥= ⎪ ⎪⎝⎭ ⎪⎝⎭∏∑, 111212111111()(1,2,,)p p n n p p kppk n nkC p p p C n n n n k k kk i i i n i i i i i i i n C C C p n a a a a a m --≤<<<≤==⎛⎫⎛⎫≥=≥= ⎪ ⎪⎝⎭⎝⎭∑∏∏ , 从而1212112121111111111111n n nn nkk k k k k k ki i i i n i i i n i i i i i i i i i a a a a a a a a --==≤<≤≤<<<≤=⎛⎫+=+++++≥ ⎪⎝⎭∏∑∑∑∏ 2112111n nnkk kkk n n n n n n k k k k k n n n n n C C C C mm m m m --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当且仅当),,2,1(n i n ma i ==时取等号.故111n ki i a =⎛⎫+ ⎪⎝⎭∏的最小值是1nk k n m ⎛⎫+ ⎪⎝⎭.推广4 若),,2,1(,,n i R a m k i =∈+,且)0(1n m m a ni i ≤<=∑=,则11nk i k i i a a =⎛⎫+ ⎪⎝⎭∏的最小值为nk k k k m n nm ⎛⎫+ ⎪⎝⎭.推广4的证明与推广3类似,留给读者.运用这些推广,读者可做练习: 1、 已知+∈R b a ,,且1=+b a ,求:(1)221111a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值;(2)1111nna b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值;(3)221111a b ⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭的最小值. 2、已知+∈R c b a ,,,且1=++c b a ,求111111a b c ⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭的最小值. 3、已知+∈R a a a n ,,,21 ,且121=+++n a a a ,求22212111111n a a a ⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的最小值. 4、求ββαα2222sin cos cos 1sin 1+的最小值.(提示:22222sin cos cos cos sin 1ααβαβ++=,原式22222111sin cos cos cos sin ααβαβ=++.) 5、已知+∈R a a a a 4321,,,,且14321=+++a a a a ,求3214214314321111a a a a a a a a a a a a +++++++++++的最小值. 答案:1、(1)18 (2)n 32⋅ (3)9 2、64 3、2)1(+n n 4、9 5、316 23.解法1 122≤+y x ,1,1≤≤-∴y x ,10,10x y ∴+≥+≥. 由2)(2)(222≤+≤+y x y x ,有22≤+≤-y x ,22322212)(2)1()1()1)(1(22222+=++≤++++=+++≤++∴y x y x y x y x .记1)1)(1(-++=++=y x xy y x u ,立得1-≥u 和221+≤u .故当1-=x 或1-=y 时,1min -=u ,当22==y x 时,221m ax +=u . 解法2 由题意,设)2,0[,10,sin ,cos πθθθ∈≤≤==r r y r x . 则2211cos sin cos sin 2sin sin 22422x y xy r r r r r πθθθθθθ⎛⎫++=++=++≤+ ⎪⎝⎭,当且仅当1=r 且4πθ=,即22==y x 时取等号.max 1()22x y xy ∴++=+.又 ]1)cos [(sin 2)cos (sin cos sin )cos (sin 222-+++=++=++θθθθθθθθr r r r xy y x .令]2,2[,c o s s i n -∈=+t t θθ,则]1)1[(21)1(22222r rt t r rt xy y x --+=-+=++.易知当01=+rt 时,1)(,0])1[(m in 2m in 2-=-=+r rt .此时,1,1-==t r ,即1x =-或1-=y 时,1)(m in -=++xy y x .关于xy y x ++的最大值,还有下列解法.解法3 22222222212,1,()2()2,22x y xy x y x y x y x y xy +≤++≤∴+≤+≤≤≤ , 2122)(22222+≤+++≤++∴y x y x xy y x ,当且仅当22==y x 时取等号.212)(m ax +=++∴xy y x .解法4 22221111111122()1122222222x y x y x y ++⋅+⋅≤+=++≤+⨯= ,2≤+∴y x .又212,21222+≤++∴≤+≤xy y x y x xy ,当且仅当22==y x 时取等号.故212)(m ax +=++xy y x . 评析 解法2由122≤+y x 考虑到三角换元,这是很自然的事.解法3运用基本不等式)(2)(222y x y x +≤+及222y x xy +≤,再由122≤+y x ,分别求出y x +与xy 的最大值(注意:必须是x 与y 取相同值时y x +与xy同时取得最大值),从而得到xy y x ++的最大值.解法4与解法3路子不同,实质一样.但解法3、4都只能解决题中的最大值问题,如何求最小值是本题的难点.解法1中将xy y x ++变形为1)1)(1(-++y x ,并由已知得出01,01≥+≥+y x ,是突破这一难点的关键.第九届高二第一试第15题:“实数y x ,适合条件2122≤+≤y x ,则函数22232x xy y ++的值域是 .”其形式与实质都与本题一样.以三角代换法求解最为简捷.(答案为]7,21[)拓展 由题引伸,可以得到:定理1 设xy y x z y x λλ++=≤+≥,1,022,则(1)当22≥λ时,22212λλλ+≤≤--z ; (2)当202λ≤≤时,2222λλ+≤≤+-z . 证明 设b a y b a x -=+=,,则2122≤+b a .又设θθsin ,cos r b r a ==, 220≤≤r ,则2222222()2cos (cos sin )z x y xy a a b r r r λλθλθθ=++=+-=+-λλλθλ22221)21(cos 2r r r --+=.1cos 1,θ-≤≤∴ 1、当121≤λr ,即1222r λ≥≥时, (1))220(221212≤≤--≥--≥r r z λλλλ,当且仅当λλθ2121cos -=-=r 时取等号. (2)2222112122222z r r r r r λλλλλλ⎛⎫≤+--=+≤+ ⎪⎝⎭,当且仅当22,1cos ==r θ时取等号.2、当112r λ≥,即12022r λ≤≤≤时 (1)当22,1cos ==r θ时,22m ax +=λz . (2)当1cos -=θ时,λ22r r z +-≥.又函数222,0,2y x x λλ⎡⎤=-+∈⎢⎥⎣⎦,当20,2x ⎡⎤∈⎢⎥⎣⎦时是减函数,故2222λλ+-≥+-r r .综上所述,当22≥λ时,22212λλλ+≤≤--z ;当202λ≤≤时, 2222λλ+≤≤+-z .进一步引伸,可得定理2 0,≥n m ,若nxy y x m z y x ++=≤+)(,122,则(1)当22≥m n 时,22222n m z n m n +≤≤--; (2)当202n m ≤≤时,2222nm z n m +≤≤+-. 简证 n z m x y xy m ⎛⎫=++ ⎪⎝⎭.令nt x y xy m=++,再由定理1即可得证. 再引伸,还可得到定理3 设12,,,n x x x R +∈ ,且12()m m mn x x x S m N ++++≤∈ ,则有11212.nm m m n n n S x x x x x x nS n -++++≤+证明 1212,,,,()mmmn n x x x R x x x S m N ++∈+++≤∈ 及平均值不等式1121212,m m m mnn nn x x x x x x x x x n n ⎛⎫++++++≥≥ ⎪⎝⎭111212,,n nm mm m m n n n S S S x x x n n S x x x n n n -⎛⎫⎛⎫∴+++≤⋅=≤= ⎪ ⎪⎝⎭⎝⎭11212.nm m m n n n S x x x x x x nS n-∴++++≤+24.解法1 引入参数t,22222222y 1y t 1xy tx t x x y t 2t 22t⎛⎫=⋅≤+=+ ⎪⎝⎭ ,又22xy 3x 3y 20=+- ,222222t 1x y 3x 3y 20,22t∴+≥+-2222t 13x 3y 2022t ⎛⎫⎛⎫∴-+-≤ ⎪ ⎪⎝⎭⎝⎭.考虑到待求最值的二元式是228x 23y +,故令22t 38212332t -=-,解得2t 4=或22t 23=-(舍去),故只需令t 2=,即可得()22132x 3y 208⎛⎫-+-≤ ⎪⎝⎭.因此,228x 23y 160+≤,当且仅当y 2x 2=,即y 4x =时取等号.()22max8x 23y 160∴+=. 解法2 已知条件式即2213520x y y 6363⎛⎫-+= ⎪⎝⎭.令120x y cos ,633520y sin ,63⎧-=α⎪⎪⎨⎪=α⎪⎩即202x cos sin ,32112y sin .21⎧=α+α⎪⎪⎨⎪=α⎪⎩代入待求式,并化简,得()22223211288x 23y sin 22121+=+α-ϕ223211281602121≤+=.故当且仅当y 4x =时,228x 23y +有最大值160.解法3 令2228x 23y t +=.从而有8x t cos,23y t sin,⎧=α⎪⎨=α⎪⎩即t tx cos ,y sin .823=α=α代入已知等式,得222223t t 3t cos sin cos sin 20823184α-αα+α=, ()222202036820368t 160.3139347cos 29347cos sin 2sin 823736⨯⨯∴==≤=+α+ϕ-α-α+α即228x 23y 160+≤.解法4 ()22116x y xy 4x y 48+=⋅≤ ,而22xy 3x 3y 20,=+-222216x y 3x 3y 20,8+∴+-≤即228x 23y 160+≤.解法5 设x m n,y m n,=+=-代入条件得225m 7n 20.+=令20m 2cos ,n sin 7=α=α,则()()22228x 23y 8m n 23m n +=++-2231m 30mn 31n =-+()225620162cos 60sin 2sin 744376cos 2777=α-α+α=+α+ϕ⎡⎤⎣⎦()17443761607≤+=. 解法6 设228x 23y s,+=则()()2222s 3x xy 3y208x23y ,-+=+即()()223s 160x sxy 3s 460y 0--+-=①.由题设x,y 不同时为0,故不妨设y 0≠,则将①式两边同除以2y ,得()()2x x 3s 160s 3s 4600.y y ⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭当3s 1600-≠时,由()()2s 43s 1603s 4600,∆---≥=解得368s 1607≤≤;当3s 1600-=时,x 45y 8=-.综上,368s 1607≤≤.故()22max 8x 23y 160+=. 解法7 ()()()22222228x 23y 83x x y3y 16x8x y y 8204x y 160+=-+--+=⋅--≤.故当4x y =时,()22max8x23y 160+=.评析 破解此题的关键是消去条件式中的xy 项.命题组给出的解法1,通过引入参数t,将xy 变形为ytx t ⋅,再运用基本不等式,从而得到2222t 13x 3y 2022t ⎛⎫⎛⎫-+-≤ ⎪ ⎪⎝⎭⎝⎭.而要求的是228x 23y +的最大值,故令22t 38212332t-=-,从而使问题获解,极其巧妙.此法还具有普遍性,是解决此类问题的通法.解法2将223x xy 3y 20-+=变为2213520x y y 6363⎛⎫-+= ⎪⎝⎭,从而为三角代换创造了条件,进而运用三角函数的有界性求得最值.此法也具一般性,且对于求式中含xy 项时同样适用.解法5通过对称换元消去了已知式中的乘积项.当式中2x 项与2y 项系数相等时这也是一种通法.解法4的技巧性特强.要知道,若2219x y xy (3x y)36+=⋅≤,由22xy 3x 3y 20=+-,得22229x y 3x 3y 206++-≤,即229x 17y 120+≤,则仍然不能解决问题.解法6运用整体思想及方程思想,由二次方程有实根的条件使问题获解,这也是一种常用的方法.解法7巧用配方法,使得问题的解决极其简洁.可能有人要说这是不是碰巧了,换个题目此法就不灵了,其实不然,请看下面的问题:例1 若x,y 22R,2xy y 7∈+-=且x , 则22x y +的最小值是________.(第十届高二培训题第66题)解2222227x 2x y y 2(xy )(21)x 2x y(21)y⎡⎤=+-=+---++⎣⎦2222212(x y )(21)x y 2(x y )21⎛⎫=+---≤+ ⎪-⎝⎭,即227x y 22+≥,当且仅当1x y 21=-时取等号,故所求最小值为 2.72再看一例:例2 实数x,y 适合221x y 2≤+≤,则函数222x 3xy 2y ++的值域是 .(第九届高二第一试第15题)解 (1)()()2222221x y 22x 3xy 2y3x2xy y ≤+=++-++()()()2222222122x 3xy 2y 3x y 22x 3xy 2y .2x 3xy 2y .2=++-+≤++∴++≥(2)()()()()22222222273732x 3xy 2y x y x 2xy y x y x y 2222++=+--+=+--7207.2≤⨯-=故所求值域为1,72⎡⎤⎢⎥⎣⎦. 到底如何配方,读者可从上面的例子中体会.配方法是高考明确要求学生掌握的一种数学方法,在解决一些竞赛问题时也有较广泛的应用.我们必须切实掌握好.请用配方法解决下列问题:1.实数x,y 满足22x 3xy y 2-+=,则22x y +的值域是 .(答:4[,5+∞))(第六届高二第二试第17题)2.若x,y R ∈,且221x y 22≤+≤,则22x 2xy 4y -+的取值范围是 .(答:1,34⎡⎤⎢⎥⎣⎦) 3.已知x,y 满足22x xy y 1++=,求22x xy y -+的取值范围.(答:1,33⎡⎤⎢⎥⎣⎦)4.已知22x xy 2y 1-+=,求表达式22x 2y +的最大值与最小值.(答:822822,77+-) 25.解法1 由x x x y sin 1cos sin ++=,得y x x y =+-cos sin )1(,即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--=+-==+⋅+-1)1(1cos 1)1(1sin )sin(1)1(222y y y y x y ααα,1)1()sin(2+-=+∴y y x α.1)sin(≤+αx ,11)1(2≤+-∴y y ,解得1≤y .故1max =y .解法2 令2tan x t =,则22222221121121211t t t t t t y t t t t -++-++==++++,化为0)1()22()1(2=-+-++y t y t y ,R x ∈ ,0≥∆∴t ,即0)1(4)22(22≥---y y ,解得1≤y .故1max =y .解法3 由1cos ≤x ,得1sin cos sin +≤+x x x (1cos =x 时取等号),0sin 1≠+x ,0sin 1>+∴x ,1sin 1cos sin ≤++∴xxx ,故1max =y .解法4 xx x x x y sin 11cos 1sin 11cos sin 1+-+=+-++= .1cos 1≤≤-x ,1sin 1x -<≤,01cos 2≤-≤-∴x ,21sin 0≤+<x .∴当cos 1x =时,max 1y =.解法5 由xxx y sin 1cos sin ++=,得y x x y =+-cos sin )1(,[][])cos (sin 1)1(cos sin )1(222222x x y x x y y ++-≤+-=∴,2221)1(+-≤∴y y ,解得1≤y .1m ax =∴y .解法6 1sin 1cos 1sin 1cos sin +-+=++=x x x x x y .令1sin 1cos +-=x x u ,它表示动点)cos ,(sin x x 与定点)1,1(-的连线的斜率,即u 表示单位圆上的点与点)1,1(-的连线的斜率,由图易知0max =u ,1m ax =∴y .解法7 显然,1sin -≠x .由xx x y sin 1cos sin ++=得0cos sin )1(=-+-y x x y ①,又1cos sin 22=+x x ②.由①、②可知点)cos ,(sin x x 是uov 坐标系中的直线0)1(=-+-y v u y 与圆122=+v u 的公共点,圆心)0,0(到直线①的距离不大于圆的半径1,即2(1)001(1)1y y d y -⋅+-=≤-+,解之得1≤y ,1m ax =∴y .评析 类似本题分子、分母中含有x sin 、x cos 的一次式的函数的最值问题,总可以通过去分母、移项变为c x b x a =+cos sin 的形式,进而变为c x b a =++)sin(22ϕ(其中ab=ϕtan )的形式,再由1)sin(≤+ϕx 求得最值,解法1正是这样做的,也是解决这类问题的通法. 万能公式可将角x 的各种三角函数表示成2x的正切,这在实质上起到了消元的作用.故解法2令2tan x t =后,便将原函数转化成t 的二次分式函数,进而运用判别式法解决了问题.解法3直接利用分子x x cos sin +不大于分母1sin +x ,从而分式之值不大于1,简捷之至.解法4则是将已知函数变为xx y sin 11cos 1+-+=后,分别求出分子、分母的范围,进而确定y 的范围.解法5将已知函数式变为y x x y =+-cos sin )1(,考虑到左边x x y cos 1sin )1(⋅+-的形式,联想到柯西不等式,巧妙地利用1cos sin 22=+x x 而建立了关于y 的不等式,进而求出最大值,可说是匠心独具.解法7将已知函数式变为0cos sin )1(=-+-y x x y 后,将)cos ,(sin x x 看作坐标系uov 中直线0)1(=-+-y v u y 上的点,而点)cos ,(sin x x 又在单位圆122=+v u 上,故直线与圆应有公共点,从而圆心到直线的距离不大于圆的半径,由此求出了y 的最大值.综合运用了方程思想,转化思想,数形结合思想,充分揭示了数学不同内容之间的内在联系.解法6则是把已知函数式变形为1sin 1cos 1+-+=x x y 后,将1sin 1cos +-x x 看作单位圆上的点)cos ,(sin x x 与定点)1,1(-的连线的斜率,故将求y 的最大值问题转化为求此斜率的最大值问题,本题中此斜率的最大值可由图象直观地得到,若不能直观地看出,则可设斜率为k ,写出过点)1,1(-且斜率为k 的直线方程.由圆心到直线的距离不大于圆的半径便可求出k 的最大值.解法6也是求函数)0(sin cos ≠++=ac d x c b x a y 或)0(cos sin ≠++=ac dx c bx a y 的最值的通法.例 求函数9cos 34sin 2+--=x x y 的最值解 2sin 42sin 23cos 93cos 3x x y x x --==-⋅-+-.令3cos 2sin --=x x u ,则u 是单位圆122=+y x 上的点(cos ,sin )x x 与点)2,3(的连线的斜率.设此斜率为k ,则连线的方程为)3(2-=-x k y ,即032=-+-k y kx ①.由单位圆圆心)0,0(到直线①的距离应当不大于单位圆半径1,即11322≤+-k k ,解得433433+≤≤-k ,即k 的最小值与最大值分别为433-,433+,从而y 的最大值与最小值分别为43332-⋅-、43332+⋅-,即633-,633+-.26.解法1 由均值定理,知()()332332334444111111sin 3sin ,cos 3cos .444444x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++≥⋅++≥⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相加,得()()121244223131sin cos sin cos 12sin cos 16161616x x x x x x +≥+-=--= 2311sin 232832x -+≥.当4x π=时以上不等式同时取等号.故min 132y =. 又[]121222max sin ,cos 1,1,sin cos sin cos 1.1x x y x x x x y ∈-∴=+≤+=∴=.故所求值域为1,132⎡⎤⎢⎥⎣⎦. 解法2 由柯西不等式,知()()()2121212126644111sin cos 11sin cos sin cos (sin cos 222x x x x x x x x +=++≥+=+- 22222131sin cos )1sin 22432x x x ⎛⎫-=-≥ ⎪⎝⎭.又由[]sin ,cos 1,1x x ∈-,知121222sin cos sin cos 1x x x x +≤+=.故所求值域为1,132⎡⎤⎢⎥⎣⎦. 解法3 121212121111111sin x cos x sin x cos x 64646464646464⎛⎫⎛+=+++++++++ ⎪ ⎝⎭⎝ ()5512122266511110115156sin 6cos 6sin cos 64646464646432232x x x x ⎫⎛⎫⎛⎫++-≥+-=⋅+-⎪ ⎪ ⎪⎭⎝⎭⎝⎭651323232=-=,又()61212221sin cos sin cos 1,,1.32x x x x y ⎡⎤+≤+=∴∈⎢⎥⎣⎦解法4 22sin x cos x 1+= ,且22sin 0,cos 0,x x ≥≥∴可设21sin 2x t =+, 663322211111111cos ,,222222444x t t y t t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⎛=--≤≤∴=++-=++++-=+ ⎪ ⎪ ⎪ ⎪ ⎢⎝⎭⎝⎭⎝⎭⎝⎭⎝⎣)3222134tt t ⎛⎫⎤++ ⎪⎦⎝⎭,由所设2104t ≤≤,故当20t =时,3min 112432y ⎛⎫== ⎪⎝⎭;当214t =时, max 1.y =∴所求值域为1,132⎡⎤⎢⎥⎣⎦.评析 因为[]s i n,c o s 1,1x x ∈-,所以[]22sin ,cos 0,1x x ∈ ,由指数函数单调性,易知121222sin cos sin cos 1x x x x +≤+=,故求得了y 的最大值1.如何求y 的最小值是本题的难点,破解的关键在于如何将1212sin cos x x +降次,最好直接与22sin cos x x +建立联系.解法1运用均值定理,解法2运用柯西不等式,都达到了目的,解法3与解法1为同一解法,但显得格外简捷,运用均值定理一步到位地解决了问题.解法4通过对称换元将三角函数的值域问题转化为整式函数的值域问题加以解决,起到了化难为易的作用.解法3显得特别优美,但运用均值定理,必须注意配凑技巧的运用.为什么将12sin x +12cos x 配凑成1212111111111110sin cos 6464646464646464646464x x ⎛⎫⎛⎫+++++++++++- ⎪ ⎪⎝⎭⎝⎭呢?这里有两个问题:一是为什么各凑成6项的和?二是为什么都加5个164?原因就在于只有凑成6项的和,运用均值定理时才会出现六次根号内()1212sin cos x x 与5个数的积,从而才会出现22sin cos 1x x +=(常数).至于为什么各加5个164,是因为运用均值定理时要使两处的“≥”中都取等号,必须221sin cos 2x x ==,而只有12121sin cos 64x x ==时才会有2sin x 21cos 2x ==. 拓展 仿照解法3,我们可以证明下面的 定理 函数()22sincos nn y x x n N +=+∈的值域是12,1n-⎡⎤⎣⎦.证明 222112111sin cos sin 222n n nn n n n n y x x x -⎛⎫⎪⎪=+=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭个222(1)(1)1121112211cos sin cos 222222nn n n n n n n n n n n n n n n x n x n x ---⎛⎫ ⎪- ⎪+++⋅⋅⋅+-≥⋅⋅+⋅⋅ ⎪ ⎪ ⎪⎝⎭ 个()12211min 222222222sin cos 2,222222n n n n n n nn n n n n n x x y -------=⋅+-=-==∴=. 又()2222sincos sin cos 1nnn x x x x +≤+=,即m a x 1y =.故函数()22sin cos n n y x x n N +=+∈的值域为12,1n-⎡⎤⎣⎦.据此定理,我们易知函数100100sincos y x x =+的值域为492,1-⎡⎤⎣⎦.27.解 可从绝对值的几何意义上去想,以|4||3||2||1|-+-+-+-n n n n 为例,如图:1 2 3 4所给的式子的几何意义是数轴上坐标为n 的点N 与坐标为1、2、3、4的4个点的距离的和.显然,当N 在线段AB 之外时,和大于N 在线段AB 上时的和;当N 在线段AB 上时,N 接近AB 的中点,和就逐渐变小,N 重合于AB 的中点时,和达到最小.因为+∈N n ,所以当n 取2或3时,|4||3||2||1|-+-+-+-n n n n 最小.对于和式S=|2001||1950||1949|-+⋯+-+-n n n ,设数轴上的点A 、B 分别表示1949、2001,则线段AB 的中点的坐标是,1975220011949=+|19751949||19751950|S ∴=-+-最小|19752001|(26251)(1226)+⋯+-=+++++++ (261)2627022+⋅=⨯=.评析 本题运用了数形结合的思想方法,根据两数差的绝对值的几何意义,很直观地解决了问题. 拓展 运用同样的思想方法,可以得到下面的 定理1 对于函数)(||)(211n ni ia a a ax x f <⋯<<-=∑=,若n 是奇数,则当21+=n a x 时,)(x f 取得最小值∑∑-=+=-21123n t tnn j jaa ;若n 是偶数,则当],[122+∈n n a a x 时,)(x f 取得最小值∑∑=+=-2112n t tnn j jaa .例1 求函数|10||7||3||4|-+-+-++=x x x x y 的最小值.解 4=n 为偶数,-4<3<7<10,∴当]7,3[∈x 时,y 取得最小值(7+10)-(-4+3)=18. 例2 求函数|10||5||3||6||7|y x x x x x =++++-+-+-的最小值.解 5=n 为奇数,-10<-5<3<6<7,∴当3=x 时,y 取得最小值(6+7)-(-10-5)=28.B A例3 已知,,x y R ∈且{1,3},y ∉求函数|16123||74||2||3||7|),(22+-++-+-+-++++=y y x y y x x x x y x f 的最小值.解 2(,)|(7)||(3)||2||(47)|f x y x x x x y y =--+--+-+--+2|(31216)|x y y +--+-,2247(2)33,y y y -+=-+≥ 161232-+-y y =}3,1{.44)2(32∉-≤---y y , 2222312167.(247)(731216)41632y y y y y y y y ∴-+-≠-∴+-+---+-=-+ 1616)2(42≥+-=y .故当且仅当x =-3且y =2时,),(y x f 取得最小值16.若定理1中的“12,,,n a a a ⋯”中有一组或几组相同的值,则定理仍然成立.但当n 为偶数且122+=n n a a 时,定理中的“122,n n x a a +⎡⎤∈⎢⎥⎣⎦”应该改为“2n a x =”.例4 求函数|3|2|2|2|1|-+-++=x x x y 的最小值.解 已知函数就是|3||3||2||2||1|-+-+-+-++=x x x x x y ,n =5为奇数,12233-<=<=,y x 时,当2=∴取得最小值(33)(12)5+--+=.例5 求函数|5|4|3|3|1||2||10|-+-++++++=x x x x x y 的最小值. 解 n =10为偶数,10213335555-<-<-<==<===.故当3x =时,y 取得最小值(354)(102133)30+⨯----++=.更一般地,还有下面的 定理2 设函数1()||(,,1,2,,,)niiiii f x a x b a b R i n x R ==-∈=∈∑ ,则(1) 当01>∑=ni ia时,)(x f 有最小值min{12(),(),,()n f b f b f b },但无最大值.(2) 当01=∑=ni ia时,)(x f 有最大值max{12(),(),,()n f b f b f b },最小值min{12(),(),,()n f b f b f b }.(3) 当01<∑=ni ia时,)(x f 有最大值max{)(),(),(21n b f b f b f ⋯},但无最小值.证明 不失一般性,设n b b b ≤⋯≤≤21,则-)(111b x b a x a n i ni ii i≤+∑∑==,)(x f = )1,,2,1,)(()(11111-⋯=≤≤---++==+==∑∑∑∑n i b x bb a b a x aai ini j jj ij j j ni j jij j,)(11nni ni ii ib x b a x a ≥-∑∑==,由此可见,函数)(x f 的图象是左右两侧两射线和中间的(n-1)条线段依次连结而成的“折线形”.(1)若01>∑=ni ia,则函数)(x f 的图象中的左右两射线分别由点()(,1,1b f b )和点(,()n n b f b )向上无限延伸,中间是(n-1)条线段依次连结的折线,因此)(x f 有最小值mi n{12(),(),,()n f b f b f b },但无最大值.(2)若01=∑=ni ia,则函数)(x f 的图象中的左右两射线分别由点()(,1,1b f b )和点(,()n n b f b )向左右沿平行于x 轴方向无限延伸,中间是(n-1)条线段依次连结的折线,因此)(x f 有最大值max{)(),(),(21n b f b f b f ⋯},最小值min{)(),(),(21n b f b f b f ⋯}.(3)若01<∑=ni ia,则函数)(x f 的图象中的左右两射线分别由点()1,1,()b f b 和点(),,()n n b f b 向下无限延伸,中间是(n-1)条线段依次连结的折线,因此)(x f 有最大值{}12max (),(),,()n f b f b f b ,但无最小值.根据定理1,不难知道本赛题所求最小值为(1976+1977+…+2001)-(1949+1950+…+1974)=702(当n=1975时取得).想一想下面的问题:假设有一座大楼,从第1949层到第2001层,每层指定1人集中到该楼第k 层(20011949≤≤k )的会议室开会,为使参会人员上、下楼梯所走的路程总和最小,求k 及最短路程(假定每相邻两层楼之间的楼梯长均为1).这一问题与本赛题实质是否是同一问题? 下面的问题供读者练习:1、 求)(|1|2|1|2||)(R x x x x x f ∈-++-=的最小值.2、 求()|26||33||816|f x x x x =-+---的最大值.3、 求()|1||2||3||4||1998||1999|()f x x x x x x x x R =---+---+--+-∈ 的最小值.答案:1、-3 2、5 3、99928.解 若}{n a 是等差数列, n a >0,则da a a a a a a a n n n n n n n n 11111-----=--=+(d N n n ,,2+∈≥是公差).由此,得666111222211123223321101010s =++++=++++<+++++ ⎪⎪⎭⎫ ⎝⎛-+++++++=-+++++110101231121211101022326666 ()()()()66612213210101121101999⎡⎤=+-+-++--=+-+=⎢⎥⎣⎦ .又知110102232122110131211666-++++++>-++++> s =()199810126=+-.19991998<<∴s ,[]1998=s ,∴选B.评析 s 显然是数列⎭⎬⎫⎩⎨⎧n 1的前610项的和,直接求和,无法可依.能否用裂项相消法将每一项拆成异号的两项之和呢?考虑到111--=-+n n n n ,于是将n1变为nn +2,再放大为12-+n n ,或缩小为21n n++,便使问题获解.这是一道用“放缩法”求解不等式问题的好题目。

第二十二届希望杯全国数学邀请赛八年级第1试与简答

第二十二届希望杯全国数学邀请赛八年级第1试与简答

第二十二届“希望杯”全国数学邀请赛 1试初二第_______________30 得分日上午8:30至11:2011年3月13以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英语字分)一、选择题(每小题4分,共40 母写在下面的表格总得2345678910题1DACACCC答CAA( ) 千克,则由此可列出方程为、将a千克含盐10%的盐水配制成含盐15%的盐水,需加盐水x1%15%?(a?x)?a(1?10%)?(a?x)(1?15%)?10a、BA、%15?10%?x?a?a%)1510%)?x(1??a(1、C、 D( )的关系是则所用的时间减少b%,则a,b2、一辆汽车从A地匀速驶往B地,如果汽车行驶的速度增加a%,a100100aa100?b?b?b?b、A C、、 D B、a?a1001?a%1?a%1?1x?|?2x?1|?x?1?m?|x|( )m、当3时,不等式的最大值是恒成立,那么实数4 3 D、、2 C、1 BA、kkx?1y?y?2x?与横、纵坐标都是整数的点称为整点,已知k为整数,若函数4、在平面直角坐标系中,( )k的值有的图象的交点是整点,则个 D、5、2个 B、3个 C、4个A6??1|2?|2x is ( )The sum of all such integers x that satisfy inequality 5、0、2 D、A、8 B、5 C) 满足;inequality 不等式(英汉词典:sum 和;integer 整数;satisfy32220b?c?bc?aab?( ) b,c,且,则这个三角形一定是6、若三角形的三条边的长分别为a, D、等腰直角三角形、等腰三角形 B、直角三角形 C、等三角形Aintersects AG ABCD is a square. the 7、As shown in figure 1,point C is on segment BG and quadrilateralBD and CD at points E and F, respectively. If AE=5 and EF=3, then FG=( )8165 4 D、 BA、、 C、A D 33 E 5 ) 与…相交于…square 正方形;intersect…at… (英汉词典:F3 151?2( ) n能分解成n个质因数的乘积,8、的值是G34 D、A、6 B、5 C、BCfigure 10?x?ay?1?( )没有实数解,则、若关于x,y的方程组9?0??2ya?bx?2?2a?a?1ab??2ab?2?ab?2ab??且 DA、C且、 B、、于点C,AOB°,OP平分∠,PC⊥、如图10OB2,∠AOB=45A( ),则OC的长是若PC=22?2232?、A、7 B、6 C、 D P 2 ) 分4分,共40二、A 组填空题(每小题O BC 549?2图?2?5; 11、化简:5?23x?2y?k?1?k?32y?74x?;,则k的解使的方程组,、若关于12xy的取值范围是?2?3x2?y?1AABC分成一个的线段MN把等边△13、如图3,平行于BC的周长相AMN和四边形MBCN三角形和一个四边形,已知△;MN的长度之比是 4:3 等,则BC与M N 、小华测得自家冰箱的压缩机运转很有规律,每运转5分钟,14 8月份分钟,再停机停机15分钟,再运转515分钟,……,又知CB3图 ),则这台冰箱的压缩度=1千瓦时这台冰箱的耗电量是24.18度 (1 130 瓦;机运转时的功率是1112222??02a???4a?4b?12ca?a?b?c?42的,满足和,则代数式15、已知自然数a,b,c cba;值是 12?y的面AOBO为原点,则△3,5.16、已知A、B是反比例函数设B的图象上的两点,A、的横坐标分别是x16;积是15;的最小值是 121 是11个连续整数的平方和,则A17、设完全平方数A 218,则首尾两个数的和是38个数与第63个数的和为个连续的偶数从小到大排成一行,其中第18、将100 218 ;地,然后下车步行,之间的C。

历届“希望杯”全国数学邀请赛八年级真题及答案

历届“希望杯”全国数学邀请赛八年级真题及答案

希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .?2.C .±2.D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组.C .4组D .5组。

9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( )A .0.B .1.C .2.D .4. 把f 1990化简后,等于( ) A .1-x x . B.1-x. C.x 1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a 0-a 1+a 0-a 1-a 1+a 1-a 0+a 1-a 0+a 1=2a 0-3a 1+3a 1-2a 0=0.故选(A).<3,根据大边对大角,有∠C >∠B >∠A .5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a <0,故选(C).8.有△ABE ,△ABM ,△ADP ,△ABF ,△AMF 等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x ,y 取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A.7.5 B.12. C.4. D.12或42.已知P=2)1988-+⨯,那么P的值是[ ]⨯⨯+198919891(19901991A.1987 B.1988. C.1989 D.19903.a>b>c,x>y>z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx,Q=az+bx+cy,则[ ]A.M>P>N且M>Q>N. B.N>P>M且N>Q>MC.P>M>Q且P>N>Q. D.Q>M>P且Q>N>P4.凸四边形ABCD中,∠DAB=∠BCD=900, ∠CDA∶∠ABC=2∶1,AD∶CB=1,则∠BDA=[ A.30°B.45°. C.60°. D.不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A.是不存在的. B.恰有一种. C.有有限多种,但不只是一种.D.有无穷多种二、填空题:(每题1分,共5分)1.△ABC中,∠CAB?∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA的延长线交于N.已知CL=3,则CN=______.22(2)0ab +-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=300三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5.设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D). 又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a?b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a?b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.是一个定值.2.如图9,重合部分面积SA'EBF证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A 'B '与A 'B 重合时,必有A 'D '与A 'C 重合,故知∠EA 'B=∠FA 'C .在△A 'FC 和△A 'EB 中,∴S A 'EBF =S △A 'BC .∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n .又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP 的长是[ ]A .2;B .3;C .4;D .52.方程x 2-5x+6=0的两个根是[ ] A .1,6 ; B .2,3; C .2,3; D .1,63.已知△ABC 是等腰三角形,则[ ]A .AB=AC;B .AB=BC;C .AB=AC 或AB=BC;D .AB=AC 或AB=BC 或AC=BC(1)B O344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角[ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ]A.179; B.181; C.183; D.18512.1,>+[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ] A.两负根;B.一正根、一负根且负根的绝对值大C.一正根、一负根且负根的绝对值小;D.没有实数根15.甲乙二人,从M地同时出发去N地.甲用一半时间以每小时a公里的速度行走,另一半时间以每小时b公里的速度行走;乙以每小时a公里的速度行走一半路程,另一半路程以每小时b公里的速度行走.若a≠b时,则[ ]到达N地.A.二人同时; B.甲先;C.乙先; D.若a>b时,甲先到达,若a<b时,乙先二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母=______________.3.0x=的解是x=________.4.分解因式:x3+2x2y+2xy2+y3=______.5.若方程x2+(k2-9)x+k+2=0的两个实数根互为相反数,则k的值是______.6.如果2x2-3x-1与a(x-1)2+b(x-1)+c是同一个多项式的不同形式,那么a bc+=__.7.方程x2-y2=1991有______个整数解.8.当m______时,方程(m-1)x2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC中,AD平分∠A,且BD∶DC=2∶1,则∠B等于______度.(2) (3) (4) 10.如图3,在圆上有7个点,A,B,C,D,E,F,和G,连结每两个点的线段共可作出__条.11.D,E分别是等边△ABC两边AB,AC上的点,且AD=CE,BE与CD交于F,则∠BFC 等于__度.12.如图4,△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF∥AB交AE延长线于F,则DF的长为______.13.在△ABC中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是______.14.等腰三角形的一腰上的高为10cm,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x2+px+q=0有两个不相等的整数根,p,q是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为( ) A.ts; Bs-ts; C.1ts s +; D.1s t+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( )A .a <b <c.B .(a-b)2+(b-c)2=0.C .c <a <b.D .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( )A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 2;B. x 2y 2;C. x 2y 2;D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989××.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 22a b=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC 边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989××(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2的一个根,b是方程3y2的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2?b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M .③连结EN 和FM ,则EN ,FM 就是新渠的两条边界线.又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

八年级数学第13届“希望杯”第1试试题

八年级数学第13届“希望杯”第1试试题

山东省滨州市无棣县埕口中学八年级数学第13届“希望杯”第1试试题第一试一、选择题 以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内. 1. 使分式xx x x +--2的值为零的x 的一个值是 ( )(A) 0 (B) 1 (C)-1 (D) -22. 下列各式分解因式后,可表示为一次因式乘积的是( ) (A)2727923-+-x x x (B)272723-+-x x x (C)272734-+-x x x (D) 279323-+-x x x3. 2001年7月13日,北京市获得了第29届奥运会的主办权,这一天是星期五,那么第29届奥运会在北京市举办的那一年的7月13日是( ) (A) 星期四 (B) 星期五 (C)星期六 (D) 星期日4. 设P 是等边△ABC 内任意一点,从点P 作三边的垂线PD 、PE 、PF ,点D 、E 、F 是垂足,则CABC AB PFPE PD ++++等于( )(A)23 (B) 63 (C)232 (D) 21 5. 若三角形的三个内角A 、B 、C 的关系满足A >3B ,C <2B ,那么这个三角形是( ) (A) 钝角三角形 (B) 直角三角形(C) 等边三角形 (D) 不等边的锐角三角形6. 已知34x m -=,43+=x n ,532xp -=,且m >n >p ,那么x 的取值范围是( ) (A) x <1 (B) 514-<x <1 (C) 177-<x <1 (D) 514-<x <177-7. If a <b <0, t hen the following inequality must be hold(英语小词典:following :下面的; inequality :不等式)(A) a 1<b 1 (B)a 1>b 1 (C) b a -1>a1(D) 21⎪⎭⎫ ⎝⎛+a b <21⎪⎭⎫ ⎝⎛+b a8. 已知b <0,0<a <b <c ,且ac cbc ab =2,则a 、b 、c 的大小顺序是( )(A) a <b <c (B) c <b <a (C) b <a <c (D) b <c <a9. 在凸四边形ABCD 中,AB ∥CD ,且AB+BC=CD+DA ,则( )(A) AD >BC (B) AD <BC (C) AD=BC (D) AD 与BC 的大小关系不能确定10. 如图1,在直角△ABC 中,∠C=900,AC=3,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,且OC=24,那么BC 的长等于( )(A) 23 (B) 5 (C) 52 (D) 29二、A 组填空题11. 若对于一切实数X ,等式()()212-+=+-x x q px x 均成立,则q p 42-的值是 .12. 2001年北京市的气候条件较好又无病虫害,这一年北京市海淀区的冬储大白菜的种植面积约为2000亩,与一一年相比,面积持平而亩产量达5000公斤,比上一年的亩产量增加了25%,但平均价格低于上一年,2001年在地头批发的平均价格为每公斤0.20元,假设所有的大白菜都在地头批发,且两年收入相同,则上一年在地头批发大白菜的平均价格约为每公斤 元. 13.若mn a+23和mn a24-都是52a 的同类项,则()()35253212nm m n mn •⎪⎭⎫⎝⎛÷的值是 14. 若012=--x x ,则200223++-x x 的值等于 .15. 若b a ,均为正数,且2222224,4,b a b a b a +++是一个三角形的三条边的长,那么这个三角形的面积等于 .16. In Fig.2,In the Rt △ABC ,∠ACB=900,∠A=300,CD is thebisector to∠ACB ,MD is the perpendicular to BA and MD through themidpoint of segme nt AB ,thrn ∠CDM= .(英语小词典:bisector :平分线;perpendicular :垂线;midpoint :中点)17. 边长为整数且面积为2002的长方形共有 种.(对应边长相等的长方形算作同一种)18. 一个凸n 边形的最小内角为950,其他内角依次增加100,则n 的值等于 19. 如图3,D 、E 分别在△ABC 的边AC ,AB 上,BD 与CE 相交于F ,若2=EB AE ,21=DC AD ,△ABC 的面积S △ABC =21,那么四边形AEFD 的面积等于 .20. 在数轴上,A 和B 是两个定点,坐标分别是-3和2,点P 到点A ,B 的距离的和等于6,那么点的坐标是 . 三、B 组填空题21. 方程01552=-+--y x xy x 的整数解是 或 .22. 两个凸多边形,它们的边长之和为12,对角线的条数之和为19,那么这两个多边形的边数分别是 和 .FEOAB图1A B C M DE图2 A DEB图3F23. 方程0185=++-+y y x 的解是 或 .24. 在一个三位数的百位和十们之间插入:0,1,2,…,9中的一个数码得到的四位数恰是原三位数的9倍,那么这样的三位数中最小的是 ,最大的是 .25. 已知n 是自然数,且73172+-n n 是完全平方数,那么n 的值是 或 . 答案题号 1 2 3 4 5 6 7 8 9 10 答案 D A D B A C D B CB 二、A 组填空题题号 11 121314 1516 17 18 19 20答案 90.25 362001150866题号 2122 232425答案 5和7125;675 8或9。

2013年第二十四届“希望杯”全国数学邀请赛初二第1试试题(含答案)

2013年第二十四届“希望杯”全国数学邀请赛初二第1试试题(含答案)

第二十四届“希望杯”全国数学邀请赛初二 第1试试题(2013年3月17日 上午8:30至10:00)一、选择题(每小题4分,共40分) 1.有下列五个等式:( ) ①13+=x y ;②122-=x y ;③x y =;④x y =;⑤x y =;其中,表示“y 是x 的函数”的有( )(A )1个. (B )2个. (C )3个. (D )4个.2.点()m ,7-和点()n ,8-都在直线62--=x y 上,则m 和n 的大小关系是( ) (A )n m >. (B )n m <. (C )nm =. (D )不能确定的. 3.下列命题中,正确的是( ) (A )若0>a ,则aa 1>. (B )若2a a >,则1>a . (C )若10<<a ,则2a a >. (D )若a a =,则0>a .4.若定义“⊙”:a ⊙b a b =,如3⊙283==2,则3⊙21等于( ) (A )81. (B )8. (C )61. (D )23.5.以下关于平行四边形的判定中,不正确的是( ) (A )两组对角分别相等的四边形是平行四边形; (B )两组对边分别相等的四边形是平行四边形. (C )对角线相等的四边形是平行四边形;(D )一组对边平行且相等的四边形是平行四边形.6.用一根长为a ,并且没有伸缩性的线围成面积为S 的等边三角形.在这个等边三角形内任取一点P ,则点P 到等边三角形三条边的距离之和为( ) (A )a S 2. (B )a S 4. (C )a S 6. (D )aS 8. 7.若199199<<-x ,且100-=x m 的值为整数,则m 的值有( )(A )100个. (B )101个. (C )201个. (D )203个.8.已知32+=x ,且()86148+=+y x x ,则y 的值是( )(A )10. (B )15. (C )20. (D )30.9.If a right triangle has edge lengths b a -,a ,and b a +(a and b are both positive integers ),then the perimeter of the triangle might be ( )(A )60. (B )70. (C )80. (D )90.(英语小词典:right triangle 直角三角形;positive integers 正整数;perimeter 周长) 10.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等( )(正确时间) (A )26分钟. (B )28分钟. (C )30分钟. (D )32分钟. 二、A 组填空题(每小题4分,共40分) 11.若125512=+x ,则()=-+xx 20122. 12.计算:=------1222222201120122013 . 13.用边长为1cm 的小正方形在桌面上摆放成如图1所示的塔状图形,则第n 次所摆图形的周长是 cm .(用关于n 的代数式表示)14.有两个函数b ax y +=和5+=cx y ,学生甲求出它们图象的交点的正确坐标()23-,,学生乙因抄错c 而得出交点坐标⎪⎭⎫⎝⎛4143,,则函数b axy +=的解析式是 .15.如图2,三个正比例函数的图象分别对应解析式:①ax y =,②bx y =,③cx y =,若将c b a,,从小到大排列,则应当是 . 16.如图3,在正方形ABCD 中,E 、G 、F 分别是AB 、AD 、BC 边上的点,若BE =2AE ,AG =1,BF =2,︒=∠90GEF ,则GF 的长是 .17.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,23-x ,12-x .若这两个三角形全等,则x 的值是 .18.有甲、乙、丙三种商品,购甲3件,乙7件,丙1件,需3.15元;购甲4件,乙10件,丙1件,需4.20元.若购甲、乙、丙各1件,则需 元. 19.设a ,b 是实数,且ab b a -=+-+11111,则b a a b +++++1111的值时 . 20.将不大于20的正偶数分成两组,使得第一组中数的乘积能被第二组中数的乘积整除,则商的最小值是 .三、B 组填空题(每小题8分,共40分)21.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图4所示.观察此图可知,每位同学答对的题的个数组成的样本众数是 ,中位数是 .22.方程312=+-x x 的解是 或 . 23.若关于x 的方程234222+=-+-xx mx x 有增根,则=m 或 . 24.Let 20131=⎪⎭⎫ ⎝⎛+x y x ,x and y are both positive integers ,then the largest value of y x + is ,the smallest value of y x +is . (英语小词典:value 值)25.已知00≠≥≥=++a c b a c b a ,,,则ac的最大值是 ,最小值是 .附加题(每小题10分,共20分)1.A 商品的单价是50元,B 商品的单价是60元,几所学校各付款1220元购买了这两种商品,任意2所学校购买的A 商品的数量都不同.则参加这次采购的学校最多有 所.2.十进制中,右边的数码比左边的数码大的数叫做上升数,如134,258.那么三位数中的上升数有 个;在三位上升数中,3的倍数有 个.参考答案。

希望杯第8届八年级第1试及答案

希望杯第8届八年级第1试及答案

希望杯第八届(1997年)初中二年级第一试试题一、选择题:1.下列四个从左到右的变形中,是因式分解的是[]A.(x+1)(x-1)=x2-1. B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1).2.关于x的方程(5-2a)x=-2的根是负数,那么a所能取的最大整数是[]A.3 B.2. C.1 D.03.直角三角形的两个锐角的外角平分线所夹的锐角的大小是[]A.30°B.45°. C.60°. D.15°或75°4.P是线段AB上的一点,AB=1,以AP和BP为边分别作两个正方形,当这两个正方形的面积的差的绝对值为时,AP的长是[ ]A.;B.;C.;D..5.若a使分式没有意义,那么a的值应是[ ]A.0;B.;C.;D..6.已知四个代数式:①m+n;②m-n;③2m+n;④2m-n.当用2m2n乘以上述四个式中的两个时,便得到多项式4m4n-2m3n2-2m2n3,那么这两个式子的编号是[]A.①与② B.①与③. C.②与③D.③与④7.△ABC中,AB=5,AC=3,则BC边上的中线AD的长l的取值范围是[]A.1<l<4 B.3<l<5. C.2<l<3 D.0<l<58.A、B、C为平面上的三点,AB=2,BC=3,AC=5,则[]A.可以画一个圆,使A、B、C都在圆周上B.可以画一个圆,使A、B在圆周上,C在圆内C.可以画一个圆,使A、C在圆周上,B在圆外D.可以画一个圆,使A、C在圆周上,B在圆内9.已知:m、n是整数,3m+2=5n+3,且3m+2>30,5n+3<40,则mn的值是[]A.70 B.72. C.77 D.8410.甲、乙两种茶叶,以x∶y(重量比)相混合制成一种混合茶,甲种茶叶的价格每公斤50元,乙种茶叶的价格每公斤40元,现在甲种茶叶的价格上调了10%,乙种茶叶的价格下调了10%,但混合茶的价格不变,则x∶y等于[]A.1∶1 B.5∶4. C.4∶5 D.5∶6二、A组填空题:11.已知x0,化简所得的结果是____________.12.五个连续奇数的平均数是1997,那么其中最大数的平方减去最小数的平方等于___.13.现有8根木棍,它们的长分别是1,2,3,4,5,6,7,8,若从8根木棍中抽取3根拼三角形,要求三角形的最长边为8,另两边之差大于2(以上单位:厘米).那么可以拼成的不同的三角形的种数为______.14.如图1,△ABC中,∠C=90°,∠BAC的平分线交BC于D,且CD=15,AC=30,则AB 的长为______.15.已知,那么的值是________.16.已知:a=-2000,b=1997,c=-1995,那么a2+b2+c2+ab+bc-ac的值是______.17.如图2,△ABC中,∠1=∠2,∠EDC=∠BAC,AE=AF,∠B=60°,则图中的线段AF、BF、AE、EC、AD、BD、DC、DF中与DE的长相等的线段有______条.18.如图3,∠A=60°,线段BP、BE把∠ABC三等分,线段CP、CE把∠ACB三等分,则∠BPE的大小是______.19. 已知,那么的值是______.20.某仓库贮存水果a吨,为保证每天供应市场20吨,则需每天从外地调入b吨水果,现实际调入量每天多了2吨,而市场每天供应量不变,那么比原来多供应的天数是______(用a、b表示).三、B组填空题21.若|a|-|b|=1,且3|a|=4|b|,则在数轴上表示a、b两数对应的点的距离是______或______.22.△ABC的周长为19,且满足a=b-1,c=b+2,则a、b、c的长分别为a=______,b =______,c=______.23.x,y为实数,且,则x=________,y=_____.24.如图4,△ABC中,AD平分∠BAC,EG⊥AD,分别交AB、AD、AC、BC的延长线于E、H、F、G,已知下列四个式子:其中有两个式子是正确的,它们是______和______.25.已知abc0,且,则的值是_______或_________.答案·提示一、选择题提示:1.根据因式分解的概念,选(C).2.由题意,方程的根为负,即∴ a所能取的最大整数是2,选(B).3.两个外角分别等于其不相邻的锐角与直角之和,因此两个外角之和等于270°.所以选(B).4.两正方形的面积差=AP2-(1-AP)2=2AP-16.对多项式做因式分解:原式=2m2n(2m2-mn-n2)=2m2n(2m+n)(m-n),故选(C).7.如图5,延长AD到E,使DE=AD,连接EC,△DEC与△ABD全等,∴ EC=AB=5.在△AEC中,AC+EC>AE,也就是3+5>2l,即l<4.AC+AE>EC,即3+2l>5,∴ l>1.因此有1<l<4.故选(A).8.由题意,A、B、C三点依次在同一直线上.排除(A),且(B)、(C)均不可能成立,选(D).如果选(A),只能n=7,m=10,与题中等式相驳.如果选(B),72=8×9或6×12,与题中不等式相驳.如果选(C),77=11×7,也与题中等式相驳,只有选(D)正确.10.由题意有50x+40y=50(1+10%)x+40(1-10%)y二、A组填空题提示:12:由题意可知这五个奇数是:1993,1995,1997,1999和2001.20012-19932=(2001+1993)(2001-1993)=3994×8=31952.13:三角形其他两边可以是:7和4、7和3、7和2、6和3,可拼成四种不同的三角形.因为,7+4=11>8且满足7-4=3>2;7+3=10>8且满足7-3=4>2;7+2=9>8且满足7-2=5>2;6+3=9>8且满足6-3=3>2.14.如图6,作DE⊥AB,则△ABC≌△DBE,在直角△DBE中,BD2=DE2+BE2即(2y-15)2=y2+152化简得到 y(y-20)=0,∴ y=20.AB=AE+BE=30+20=50.16.(a+b)2+(b+c)2+(a-c)2=a2+2ab+b2+b2+2bc+c2+a2-2ac+c2=2(a2+b2+c2+ab+bc-ac)将a、b、c的值代入(a+b)2+(b+c)2+(a-c)2=(-3)2+(2)2+(-5)2=38.∴原式=19.17.连接FE交AD于O,△AFE为等腰三角形.∵∠1=∠2,∴AO⊥EF,且FO=OE,得到DF=DE.∵∠EDC=∠BAC,∴△ABC≌△EDC,∵∠ABC=60°,∴∠DEC=60°,∠AED=120°,则∠AFD=120°,∴△FBD为等边三角形.∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等.)17解:连接FE交AD于O,△AFE为等腰三角形.∵∠1=∠2,∴AO⊥EF,且FO=OE,得到DF=DE.∵∠EDC=∠BAC,∴△ABC∽△EDC,∵∠ABC=60°,∴∠DEC=60°,∠AED=120°,则∠AFD=120°,∴△FBD为等边三角形.∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等)故答案为:3.18.在△BPC中,∵BE平分∠CBP,CE平分∠BCP,∴PE是∠BPC的平分线.∵∠A=60°,∴∠ABC+∠ACB=120°.b(a2+b2)+a(a2+b2)+2(a+b)ab=0,a2b+b3+a3+ab2+2a2b+2ab2=0.20.设原来供应x天,现在供应y天.三、B组填空题提示:21.如图7,由题意|a|=1+|b|,∴3|a|=3+3|b|=4|b|,∴|b|=3,b=±3.|a|=1+|b|=4,∴a=±4.22.将a=b-1,c=b+2代入a+b+c=19,得b=6,则a=5,c=8.当b+c=-a,+b=-c,a+c=-b时,当b=c,a=b,a=c即a=b=c时,。

第24届初中“希望杯”全国数学邀请赛第2试_参考答案

第24届初中“希望杯”全国数学邀请赛第2试_参考答案

a a SәAEF = , SәADF = , 8 2
从而
P Q 1 = , PD 4
于是
图1
S梯 形APCQ =SәAPQ +SәCPQ
因此
S梯 形APCQ 3 = . S▱ABCD 2 0
a a 3 a = + = . 2 0 1 0 2 0
( 1 5分)
另解 因为 所以 因此
设 S▱ABCD =a. E㊁ F 分别是 A B 和B C 的中点 ,
) n( n -1 ( 1 0分) . 2 )个整数a ( ) n ȡ2 3 n( < 1 <a 2 <a 3 <

l ɤk. 同 理, 对 于 每 一 个 差 整 数 对 ( a i, , 于是可以构造 a a i -a j) j 也在这n 个整数中 , 出一个 和整数对 ( a a . i -a j, j)
)三角形每滚动 3 次 , 来自 A 运动的路程是图3
1 4 π πˑ1ˑ2= , ˑ2 3 3 所以当点 C 落在x = 点 A 走过的路 2 0 1 3处时 , 程是 4 π 2 π ( 1 0分) 7 0+ 9 4 π. ˑ6 =8 3 3 ( )设点 A 走过 的 路 程 8 3 9 4 π是半径为 R 2 π R =8 9 4 π,
所以 因为 于是 所以
1 池水变为水深 0 正好 . 6 米时 , 6 增加了满池水的
a a SәAPD =4ˑ = . 2 0 5 , A Q ʊP C SәAPQ =SәACQ , SәACQ +SәADQ = SәCDQ = a a 3 a - = . 2 5 1 0 a , 2 a , 5
a a x, x= , -x =4 4 2 0

希望杯数学八年级竞赛真题及答案(1-23届)

希望杯数学八年级竞赛真题及答案(1-23届)

1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

第24届希望杯全国数学竞赛八年级决赛试题(含答案)

第24届希望杯全国数学竞赛八年级决赛试题(含答案)

初二奥数题一、选择题(本大题共10小题,每小题4分,菜40分。

)1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形 2、设a 、b 、C 是不为零的实数,那么||||||a b cx a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( )(A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( ) (A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号 5、实数 a 、b 、m 、n 满足a <b , -1<n <m , 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M >N (B)M =N (C)M <N (D)无法确定的。

6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm 7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <329、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( ) (A )48人 (B )45人 (C )44人 (D )42人图2二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。

【2013】希望杯竞赛数学试题详解(31-40题)

【2013】希望杯竞赛数学试题详解(31-40题)

题31 已知+∈R z y x 、、,求函数()222,,xy yzu x y z x y z+=++的最大值. (第九届高二培训题第61题)题32 已知a,b R ∈,且a b 10++=,则()()2223a b -+-的最小值是 .(第十届高二培训题第44题)题33 实数x ,y 满足方程94622--=+y x y x ,则y x 32-的最大值与最小值的和等于_______.(第十届高二第二试第17题)题34 线段AB 的端点坐标是A (-1,2),B (2,-2),直线y=kx+3与线段AB 相交的充要条件是 ( )A 、125≤≤-k B 、251≤≤k C 、125≤≤-k 且k ≠0 D 、125≥-≤k k 或 (第八届高二培训题第2题)题35 过点()1,1P 且与两条坐标轴围成面积为2的三角形的直线的条数是 .(第十届高二第一试第18题) 题36 某工厂安排甲、乙两种产品的生产.已知每生产1吨甲产品需要原材料A 、B 、C 、D 的数量分别为1吨、2吨、2吨、7吨;每生产1吨乙产品需要原材料A 、B 、D 的数量分别为1吨、4吨、1吨.由于原材料的限制,每个生产周期只能供应A 、B 、C 、D 四种原材料分别为80吨、80吨、60吨、70吨.若甲、乙产品每吨的利润分别为2百万元和3百万元.要想获得最大利润,应该在每个生产周期安排生产甲产品 吨,期望的最大利润是 百万元.(第十三届高二第一试第25题)题37 点M ()00,y x 是圆()0222>=+r r y x 内圆心以外的一点,则直线200r y y x x =+与该圆的位置关系是 ( )(A )相切 (B )相交 (C )相离 (D )相切或相交(第七届高二第一试第5题)题38 过圆016222=+-++y x y x 与圆0176622=+--+y x y x 的交点的直线方程是 .(第二届高二第二试第15题)题39 若实数x 、y 适合方程014222=+--+y x y x ,那么代数式2+x y的取值范围是——. (第九届高二第一试第17题)题40 圆()1122=-+y x 上任意一点()y x P ,都使不等式0≥++c y x 成立,则C 的取值范围是( )A 、(]0,∞-B 、[2,)+∞ C 、[21,)-+∞ D 、[12,)-+∞(第七届高二第一试第10题)31.解法1 取待定正数βα、,由均值不等式得()()11xy yz x y y z αβαβ⎛⎫⎛⎫+=+⎪ ⎪⎝⎭⎝⎭222222222222222111111,22x y y z x y z αβαβαβαβ⎛⎫⎡⎤⎛⎫≤+++=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,112222ββαα=+=则.21,2,2,244422==∴==βαααα于是()()2222222222z y x z y xyz xy ++=++≤+α ()222,,xy yzu x y z x y z +∴=++ ()222222222,2x y z x y z ++≤=++当1,2,1===z y x 时取等号..22max=∴u 解法2 (),1,,,22222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛++=+++=∈+y z y x y zy x zy x yzxy z y x u R y 可化为,01122=+⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛u y z y x y z y x 配方,得.1212121222-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-u u y z u y x 由上式可得,01212≥-u 即,,,.2222+∈≤≤-R z y x u 由已知,显然有20,0.2u u >∴<≤ max 22u ∴=(当22==y z y x 时,u 取得最大值).解法3 由已知,得(),,,.222+∈+++=R z y x z y x yz x u 且,22222z x z x +≤⎪⎭⎫ ⎝⎛+ ()()222222222222.22x z yy x z u xz y y x z +⋅+∴≤≤=+++当且仅当z x =且,222y z x =+即 y z x 22==时取等号..22max =∴u 解法4 ,,,x y z R +∈ 22222221122x y z x y y z ∴++=+++ 22122x y ≥⋅22122y z +⋅()2,xy yz =+当且仅当y z x 22==时取等号. ()222,,xy yzu x y z x y z +∴=++ ()2.22xy yz xy yz +≤=+∴当且仅当y z x 22==时,u 取得最大值.22解法5 222222211122x y y z x y z u xy yz xy yz ⎛⎫⎛⎫+++ ⎪ ⎪++⎝⎭⎝⎭==++ 112222xy yz xy yz+≥+A D BC 1A 1D 1B 1C ()22,xy yz xy yz+==+,22≤∴u 当且仅当,21222z y x ==即y z x 22==时取等号,.22max =∴u 解法6 (),2,222222y x yx xy y x +≥+≥+ ()222222xy yz xy yzu x y z x z y ++∴=≤++++ ()()()()()22222.2222xy yz x z y x z yx z y++=≤=+++当且仅当∴y z x 22==时,.22max =u 解法7 构造如图长方体1AC ,设对角线11,AC d AC =与交于点1C 的三个面所成的锐角分别为γβα,,,长方体的三条棱分别为.,,z y x 则有.s i n ,s i n ,s i n .2222dzd y d x z y x d ===++=γβα ()1sin sin sin222=++γβα于是2222sin sin sin sin xy yz xy yz x y y z u x y z d d d d dαββγ++===⋅+⋅=+++ 222222211sin sin sin sin sin sin sin 222.2222αβγβαβγ++++≤+==,sin 2sin sin γβα==∴当且仅当即y z x 22==时,.22max =u 解法8 由,222zy x yzxy u +++=得()()2220uy x z y u x z -+++=(1),0,,,>∈+u R z y x ∴关于y 的一元二次方程(1)的判别式()()042222≥+-+=∆z x u z x ,解得()().2144222222222222=++++≤+++≤z x z x z x z x xz z x u 当且仅当z x =时取得等号. 2max 1,2u ∴= max 2.2u ∴=把z x =代入(1)可得x y 2=,.2222m ax ===∴u y z x 时,当且仅当 评析 222,xy yz u x y z +=∴++ 若()222xy yz k x y z +≤++,则u k ≤,这就是说,只要xy yz +与222x y z ++的倍数之间建立了不大于的关系,则u 的最大值就求出了.因而解决问题的关键就在于找出这样的关系.解法1通过引入正参数α、β,并运用,222b a ab +≤解法3运用公式22222b a b a +≤⎪⎭⎫ ⎝⎛+,解法4、解法5运用ab b a 2≥+,解法6运用()2222222y x yx xy y x +≥+≥+及,圆满解决了这一关键问题.解法2通过将u 的分子、分母同除以2y ,巧妙地通过配平方,得到2110,2u-≥进而得202u <≤,很富新意.解法7通过构造长方体(若三条棱分别为z y x ,,的长方体的对角线长为l ,则有,2222z y x l ++=而222z y x ++恰好是u 的分母,且长方体中有1s in s in s in 222=++γβα)解决问题.解法8则把222xy yz u x y z+=++变为()()2220uy x z y u x z -+++=,看作关于y 的一元二次方程,利用其有正根的条件得到22≤u ,是方程思想的典型运用. 拓展 设,x y R +∈,显然有()22,xy u x y x y =+的最大值为12,即c o s 3π;设,,x y z R +∈,已解出()222,,xy yz u x y z x y z +=++的最大值为22,即cos .4π我们不妨猜想:命题 若()01,2,,2,k a k n >=≥ 则1223122212n n n n a a a a a a f a a a -++⋯+=++⋯+的最大值是.1cos +n π证明 取正参数有,,,,21n λλλ⋯()()()⎪⎪⎭⎫ ⎝⎛+⋯+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⋯++----n n n n n n a a a a a a a a a a a a 1113222211113221111λλλλλλ 22222221122112221211111.2n n n n n a a a a λλλλλλ----⎡⎤⎛⎫⎛⎫≤+++⋯+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦令222121222121111n n n λλλλλλ---=+=⋯=+=(1),因求最大值,故还必须有,1,,1,111132222111n n n n a a a a a a ---=⋯==λλλλλλ此即,1221a a =λ.,,1212322--=⋯=n n n a a a a λλ将上式代入(1),得nn n n n a a a a a a a a a a 11223112---=+=⋯=+= (2),令21,r λ=则21132211,,,,.n n n n n a ra a a ra a a ra a ra ---=+=⋯+==观察(2)的形式,考虑作代换(),1.,1112---+⎪⎪⎭⎫ ⎝⎛+==+∈∈+=k k k k a q q ra a a R r C q q q r q qa a k k 11=-∴-()()123,k k a qa k n ---≤≤故数列{}1k k a qa --是公比为1q 的等比数列, ()112111221111.k k k k k a a qa a qa q a qa q q q q ----⎡⎤⎛⎫∴-=-=+-=⎢⎥ ⎪⎝⎭⎣⎦于是111k k k k q a q a a ---= (3).再令则,1k k k a qb -=(3)为()11112a b b b q b k k =+=-注意,上式变形为.11211221⎪⎪⎭⎫⎝⎛--=---q b b q q b b k k 这样,又得到一个公比为2q 的等比数列()12211212111,1-⎪⎪⎭⎫ ⎝⎛--=--∴⎭⎬⎫⎩⎨⎧--k k k q q b b q b b q b b ,即22112211,11k kk q q b b a q q --==-- ()()211121,1k kk k k q a b a q q q ---∴==-故有()()2211221,1n n n q a a q q ----=-()()211211q q a q a n n n --=-.而 11,n n n a ra q a q -⎛⎫==+ ⎪⎝⎭故有()()()()22211221211111n nn n q a q a q q q q q q-----⎛⎫=+ ⎪--⎝⎭,整理得()2221n q q -- ()()2211,n q q =-+化简得22 1.cossin 11n m m q q i n n ππ+=∴=+++(),021m Z m n ∈≤≤+. n f 的最大值唯一,∴应能求出m 的一个确定的值,对于这个m 的值,我们有()().1cos 2112121max+=+=⎪⎪⎭⎫ ⎝⎛+==n m q q q q r f n π12231122212n n n n na a a a a a a a f a a a -++⋯++<++⋯+ ()()()()()222222221223111223112n n n n n n a a a a a a a a a a a a a a a a --⎡⎤=++⋯++÷++++⋯++++⎡⎤⎣⎦⎣⎦()()()122311max 12231121,1,2n n n n n n n a a a a a a a a f a a a a a a a a --++⋯++≤=∴<++⋯++从而0.m ≠又 (1)和(2)是n f 取最大值的充要条件,由(1)(2)可推得()()211211kk k q a a q q --=-(3).将cos sin 11m m q i n n ππ=+++代入(3),化简得1sin1,sin1kkm n a a m n ππ+=+ 对任意1,,k n k Z ≤≤∈都有0,k a >∴应取1m =.至此,已推知()max cos.1n f n π=+32.解法1 (),a b 是直线10x y ++=上的动点,点()2,3A 到此直线上各点距离的最小值是点A 到该直线的距离231322d ++==,()()222min 2318a b d ⎡⎤∴-+-==⎣⎦.解法2 ()()()()()2222211232232322a b a b a b ⎡⎤-+-=⋅-+-≥-+-⎣⎦()()221116061822a b =++-=-=.当23a b -=-,即1,0a b =-=时取等号.∴所求最小值为18. 解法3 ()()()()()()()222222211a 2b 3a 2b 311a 21b 3122⎡⎤-+-=-+-+≥-⋅+-⋅⎡⎤⎣⎦⎣⎦ ()()22112361822a b =-+-=-=.当2311a b --=,即1,0a b =-=时取等号.∴所求最小值为18. 解法4 ()()()()()()()222222a 2b 3a 2b 3a 2b 3a b 5⎡⎤-+-=-+-+---=+-⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()21a b +-+,()()()()()22222111123515(2222a b a b a b a b a b ∴-+-=+-+-+≥+-=+()22116)6182+-=⋅-=.当10,a b -+=即1,0a b =-=时取等号()()22,23a b ∴-+-的最小值为18.解法5 ()()()()2222210,1,23242a b b a a b a a a ++=∴=--∴-+-=-+--=+()24202118.a a +=++∴当1a =-时,()()2223a b -+-有最小值18.解法6 设()()22230,a b t -+-=>又设2cos ,3sin ,a t b t θθ-=-=则a =cos 2,sin 3,t b t θθ+=+由10,a b ++=得cos sin 60,t t θθ++=即2sin()4t πθ+60.22sin()2,262sin()626,44t t t t t t ππθθ+=-≤+≤∴-+≤++≤+ 即2t -6026,t +≤≤+解得()()2218.23t a b ≥∴-+-的最小值为18.解法7 构造向量()221,1,(2,3),cos ,x y a b x y x y x y x y θ==--⋅=⋅⋅≤⋅∴⋅2,x y ≥⋅ 即()()()()()()222222112312135a b a b a b ⎡⎤+⋅-+-≥⋅-+⋅-=+-⎡⎤⎣⎦⎣⎦ ()()()2221636,2318.a b a b =++-=∴-+-≥∴当且仅当1,0a b =-=时, ()()2223a b -+-取得最小值18.评析 因为已知10,a b ++= 所以要求()()2223a b -+-的最小值,关键就是得到()()2223a b -+-与关于a b +的式子之间的大于等于关系.解法2利用()()2222,a b a b +≥+解法3利用柯西不等式()()()22222,ab c d ac bd ++≥+解法4巧妙地利用配方法,都顺利地解决了这一关键问题.解法5则是把1b a =--代入所求式,使之变为关于a 的二次函数,再求其最小值,是函数思想的具体运用.解法6设()()2223a b t -+-=后,运用三角代换,最终转化成解关于t 的不等式,是等价转化思想在解题中的一次妙用.解法7通过构造向量,利用x y x ⋅≤⋅,y即222x y x y ⋅≥⋅ 使问题获解,充分发挥了新教材中向量这一工具在求代数最值中的作用.应当指出,许多最值问题都可以通过构造向量,利用向量的上述性质得到解决.而解法1则是将()()2223a b -+-看作定点()2,3A 与直线10x y ++=上的动点的距离的平方,故能直观地知道点()2,3到直线10x y ++=的距离的平方就是所求的最小值,简洁明了,充分显示了等价转化与数形结合思想的威力.拓展 将此赛题一般化,便得下面的定理 若x,y 满足0Ax By C ++=(A 、B 、C 是实常数,A 、B 不全为零),m ,n 是实常数,则()()22x m y n -+-的最小值是()222Am Bn C A B+++.证明 ()()()()22222x m y n x m y n ⎡⎤-+-=-+-⎢⎥⎣⎦,表示定点(),m n 与直线Ax By ++0C =上的动点之间的距离d 的平方.()()2222,Am Bn C d x m y n A B++=∴-+-+ 的最小值是()222Am Bn C A B +++.运用该定理解本赛题:1,2,3,A B C m n =====∴ 所求最小值是222(12131)1811⨯+⨯+=+. 下面的题目供读者练习:1.已知x ,y 满足x 2y 40+-=,求()()22x 3y 2-++的最小值. 2.已知p,q R ∈,且2p 3q 60++=,求()()22p 1q 3++-的最小值. 3.已知m,n R ∈,且3m 2n 120--=,求()()22m 2n 3++-的最小值.答案 241.52.133.131333.解法1 题设方程就是()22(3)24x y -++=,设⎩⎨⎧=+=-θθs i n 22c o s 23y x ,即⎩⎨⎧+-=+=θθs i n 22c o s 23y x ,则232(32cos )3(22sin )x y θθ-=+--+4cos 6sin 12θθ=-+ 213cos()12θψ=++(3tan 2ψ=),13212)32(max +=-∴y x , 13212)32(m in -=-y x .24)32()32(m in m ax =-+-∴y x y x .解法2 题设方程就是()22(3)24x y -++=,根据柯西不等式,22222[2(3)(3)(2)][2(3)][(3)(2)]13452x y x y -+-+≤+--++=⨯=,即52)1232(2≤--y x ,52123252≤--≤-∴y x ,5212325212+≤-≤-y x , 24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .解法3 题设方程就是()22(3)24x y -++=,结合23u x y =-, 又配方2222)523()1232(])2()3[(13-++--=++-y x y x y x ,于是2)1232(413--≥⨯y x ,即5212325212+≤-≤-y x .m in m ax )32()32(y x y x -+-∴24)5212()5212(=-++=.解法4 设23u x y =-,则233uy x =-,代入94622--=+y x y x ,整理得 2213(430)12810x u x u u -++-+=,R x ∈ , 22(430)413(u u ∴∆=+-⨯⨯-1281)0u +≥,即224920u u -+≤,解之得12521252u -≤≤+. 24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .解法5 已知等式()22(3)24x y -++=表示一个圆,令t y x =-32,即y x 32-0=-t ,表示一直线,若直线与圆有公共点,则圆心到直线的距离应小于等于圆的半径,即2)2(3|)2(332|22≤-+--⨯-⨯t ,即132|12|≤-t ,解得52125212+≤≤-t ,24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .解法6 已知方程就是()22(3)24x y -++=,构造向量)3,2(-=→a ,)2,3(+-=→y x b .|||||||cos |||||a b a b a b θ→→→→→→⋅=⋅≤⋅ ,222||||||→→→→⋅≤⋅∴b a b a ,即[]()()22222222(3)3(2)2(3)(3)(2)13452x y x y --+≤+-⋅-++=⨯=.即 2(2312)52x y --≤,于是,5212-521232+≤-≤y x ,24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .评析 因为已知方程就是()22(3)24x y -++=,而要求的是一次式y x 32-的最大值与最小值的和,所以解法1运用三角换元,将问题转化为求三角函数的值域,这是解决这类问题的通法,已知方程表示椭圆时,此法仍然适用.解法2运用柯西不等式求解,之所以凑成2)]2()3()3(2[+⨯-+-⨯y x ,是因为这样才会出现y x 32-,并可利用()22(3)24x y -++=.解法3运用的是配方法,请读者思考为什么如此配方:2222)523()1232(])2()3[(13-++--=++-y x y x y x ?解法4运用的是待定参数法及方程思想,也是解决这类问题的通法.解法5运用数形结合思想,将抽象的代数问题转化成直观的几何问题,轻松解决问题.解法6通过已知方程()22(3)24x y -++=联想到向量模的平方,从而通过构造向量,运用222||||||a b a b →→→→⋅≤⋅解决问题,思路清晰,体现了向量在解题中的工具作用.拓展 将此赛题一般化,便得命题1 实数y x ,满足()),0()(222>=-+-r r n y m x ,实数q p ,不全为零,则m ax )(qy px +min ()2()px qy pm qn ++=+.证明 设px qy u +=,即0px qy u +-=①,又已知()222)(r n y m x =-+-②,由题意,直线①与圆②有公共点,故圆心),(n m 到直线①的距离小于等于圆的半径r ,即22||pm qn u r p q +-≤+,即22|()|u pm qn r p q -+≤+,22()r p q u pm qn ∴-+≤-+22,r p q ≤+即qn pm q p r +++-22u ≤≤qn pm q p r +++22,∴m ax )(qy px + qn pm q p r qy px +++-=++22min )()(222qn pm qn pm q p r +=++++.将命题1中的圆改为椭圆,又得命题2 实数y x ,满足),0,(1)()(2222b a b a b n y a m x ≠>=-+-,q p ,不全为零,则m ax )(qy px +min ()2()px qy pm qn ++=+.证明 设θcos a m x =-,θsin b n y =-即θcos a m x +=,θsin b n y +=,qy px +∴(cos )(sin )cos sin p m a q n b pa qb pm qn θθθθ=+++=+++ 2222cos()p a q b θϕ=+-2222[,pm qn p a q b pm qn ++∈-+++]2222qn pm b q a p +++,(其中paqb=ϕtan ). ∴m ax )(qy px +min ()2()px qy pm qn ++=+.34.解法1 线段AB 的方程为212222---=++x y ,即4x+3y-2=0(-1≤x ≤2),由⎩⎨⎧=-++=02343y x kx y ,得k x 347+-=,令-1≤k347+-≤2,解得125≥-≤k k 或,选D.解法2 如图1所示,y=kx+3是过定点M (0,3)的直线系方程,易求得直线MA 、MB 的斜率分别是25,1-==MBMA k k ,当直线MA绕点M 逆时针旋转与线段AB 相交时,其斜率由1增加到+∞;当直线MB 绕点M 顺时针旋转与线段AB 相交时,其斜率由25-减小到-∞,所以125≥-≤k k 或,故选D.解法3 如图2,设直线MA 与MB 分别与x 轴交于点A ’,B ’,易求得直线MA 、MB 的方程分别为y=x+3,y=25-x+3,从而可求得A ’(-3,0),B ’(-56,0),在△MA ’B ’ 中,过M 任作一条直线y=kx+3交边A ’B ’于点N ,则直线也必与线段AB 相交,反之亦然.OM ⊥A ’B ’,|OM|=3,k=tan ∠MNO (N 在OA ’上)或k=tan (π-∠MNO )(N 在OB ’上)两种情形,但都有ON OM k -=,所以k ON 3-=,由5633≤-≤-k ,解得125≥-≤k k 或,故选D.解法4 设直线3y k x =+与线段AB 交于点00(,3)N x kx +,点N 内分AB 所成的比为λ,则001212231x kx λλλλ-+⎧=⎪⎪+⎨-⎪+=⎪+⎩,消去0x ,得1025k k λ-=>+,得52k <-或1k >.又当直线3y kx =+过点A 、B 时,k 的值分别为51,2-,所以所求充要条件为125≥-≤k k 或.故选D.解法5 当k=0时,直线y=kx+3即y=3与线段AB 显然不相交,所以排除含0的A 、B ,又当k=-1时,直线xy 图1O ABM -332 -2xy 图2O ABM-332 -2A ’B ’Ny=kx+3y=kx+3即y=-x+3与线段AB 也不相交,所以又排除含-1的C,故选D.评析 解法1运用的是方程思想,若运用这个思想,先求出直线MA 、MB 与x 轴的交点A ’,B ’的横坐标A x ’,B x ’,并求出直线y=kx+3与x 轴的交点N 的横坐标N x ,再解A x ’≤ N x ≤B x ’,同样可以解决问题.解法2直接通过观察图象,看直线y=kx+3与线段AB 相交时的k 与MB MA k k 、之间的关系而选D ,显得直观明了.解法3运用平面几何知识求N x ,别具一格.解法4运用定比分点知识求解,也是解此类问题的通法之一.解法5运用了特殊值法,显得最为简捷.值得注意的是,如果取k=1,发现直线y=kx+3与线段AB 相交,此时就选A 那就错了,请读者想想这是什么原因.拓展 已知直线:(,)10l f x y x y =--=,显然点A (0,1)、B (1,3)与点C (1,-1)、D (3,1)都在l 的同侧,点A 、C 与点B 、D 都在l 的异侧,∵f (0,1)=-2<0,f (1,3)=-3<0,f (1,-1)=1>0,f (3,1)=1>0∴f (0,1)与f (1,3)同号,f (1,-1)与f (3,1)同号,f (0,1)与f (1,-1)异号,f (1,3)与f (3,1)异号,是否对于任意直线l 的同侧或异侧的任意两点都有此结论呢?经研究,我们有下面的定理1 已知两点M (x 1,y 1)、N(x 2,y 2)及直线:(,)0l f x y Ax By C =++= (1) 若点M 、N 在l 的同侧,则f (x 1,y 1)f (x 2,y 2)>0; (2) 若点M 、N 在l 的异侧,则f (x 1,y 1)f (x 2,y 2)<0.证明 (1)10当B ≠0时,不妨设点M 、N 都在l 的上方,则,,2211BC x B A y B C x B A y -->--> 所以当B>0时,有0,02211>++>++C By Ax C By Ax ,即f (x 1,y 1)>0,f (x 2,y 2)>0;当B<0时,有0,02211<++<++C By Ax C By Ax ,即f (x 1,y 1)<0,f (x 2,y 2)<0,所以当B ≠0时,f (x 1,y 1)f (x 2,y 2)>0;20当A ≠0,B=0时,l 的方程为(,)0f x y Ax c =+=,此时l ⊥x 轴,不妨设设点M 、N 都在l 的右侧,则ACx A C x ->->21,,所以当A>0时,0,021>+>+C Ax C Ax ,即f (x 1,y 1)>0,f (x 2,y 2)>0;当A<0时,0,021<+<+C Ax C Ax ,即f (x 1,y 1)<0,f (x 2,y 2)<0,所以当A ≠0,B=0时,f (x 1,y 1)f (x 2,y 2)>0.综上可知,当点M 、N 在l 的同侧时,f (x 1,y 1)f (x 2,y 2)>0. (2)10当B ≠0时,不妨设点M 、N 分别在l 的上、下方,则1122,A C A Cy x y x B B B B>--<--,故当B>0时,有11220,0Ax By C Ax By C ++>++<, 即f (x 1,y 1)>0, f (x 2,y 2)<0; 当B<0时,有0,02211>++<++C By Ax C By Ax , 即f (x 1,y 1)<0,f (x 2,y 2)>0;所以当B ≠0时,f (x 1,y 1)f (x 2,y 2)<0;20当A ≠0,B=0时,l 的方程为f(x,y)=Ax+c=0,此时l ⊥x 轴,不妨设设点M 、N 分别在l 的左、右侧,则ACx A C x ->-<21,.所以当A>0时,0,021>+<+C Ax C Ax ,即f (x 1,y 1)<0,f (x 2,y 2)>0;当A<0时,0,021<+>+C Ax C Ax ,即f (x 1,y 1)>0,f (x 2,y 2)<0,所以当A ≠0,B=0时,f (x 1,y 1)f (x 2,y 2)<0.综上可知,当点M 、N 在l 的异侧时,f (x 1,y 1)f (x 2,y 2)<0. 根据定理1,不难得到定理2 直线Ax+By+C=0与以点P 1(x 1,y 1)、P 2 (x 2,y 2)为端点的线段相交的充要条件是0))((2211≤++++C By Ax C By Ax .运用定理2,可得本赛题的如下解法:直线y=kx+3即kx-y+3=0,由定理2,可知(-k-2+3)(2k+2+3)≤0,即125≥-≤k k 或为所求的充要条件,故选D.35.解法 1 记过点()1,1P 的动直线为l ,()O Q ,1,0为坐标原点(如图),则当直线l 从OP 的位置绕点P 顺时针转动到直线PQ 的位置时,它和坐标轴在第二象限内围成的三角形的面积从零增加到∞+,故围成的三角形在第二象限时,满足条件的直线l 有且只有一条,同理,围成的三角形在第四象限时,满足条件的直线l 也有且只有一条,并且,满足条件的三角形在第三象限不存在.当围成的三角形在第一象限时,显然l 存在斜率k ,设l 的方程为l k x k y ),0(),1(1<-=-与x 轴、y 轴的正半轴分别交于点A 、B ,则1(1,0),(0,1).A B k k --111(1)(1)22S OA OB k k∴=⋅=-- ()()∴≥⎥⎦⎤⎢⎣⎡-+-+=,21211k k 当1-=k 时,S 的最小值为2,故当围成的三角形在第一象限时,满足题设的直线也只有一条.综上,所求的直线为3条. 下面的解法中,对“围成的三角形在第二、四象限时,满足题设的直线l 都只有一条,且满足题设的三角形在第三象限不存在”不再一一叙述,仅对围成的三角形在第一象限时加以解答.解法 2 设直线l 与x 轴,y 轴的正半轴分别交于点),0,0(),,0(),0,(>>b a b B a A 则直线l 的方程为.1=+b y a x 直线l 过点.111),1,1(=+∴b a P 故设θθ22s i n 1,c o s 1==b a (其中20πθ<<),则θθ22sin 1,cos 1==b a ,故θθθθ2222cos sin 42cos sin 2121===ab S 2122sin 22=≥=θ (当4πθ=时取等号),即2m in =S .故所求的直线共有3条. 解法3 同解法2,得4,2111,111≥∴≥+=∴=+ab abb a b a ,(当且仅当2111==b a ,即 2==b a 时取等号), 114222S ab ∴=≥⨯=,即2m in =S .故所求的直线共有3条. 解法 4 设直线l 与x 轴、y 轴的正半轴分别交于点),0(),0,(b B a A ,点)1,1(P 分AB所成的比为λ,则110,11a b λλλλ⎧=⎪⎪+>⎨⎪=⎪+⎩,即)0(111>⎪⎩⎪⎨⎧+=+=a b a λλ.故211)1(211)11)(1(212121=+≥++=++==⋅=λλλλab OB OA S 1.=λ时,.2m in =S 故所求直线共有3条. 评析 上述解法都是用运动变化的观点与数形结合的思想方法分析答案的可能性.围成的三角形在第二、四象限时,l 只有一条,围成的三角形在第三象限不可能,这些是容易看到的,关键是围成的三角形在第一象限时,满足题设的直线l 有几条.直观地看,可能性有三个:0条,1条,2条.那么到底有多少条?四种解法分别用不同的方法求出了三角形面积的最小值为2,故此时的l 只有一条,从而解决了问题.此题也可直接求解:不论围成的三角形在第几象限, l 的斜率总是存在的.设l 的方程为xO 1 AP1 y B Q)1(1-=-x k y .则l与x轴,y轴的交点分别为)1,0(),0,11(k B kA --.故k k kk k k S 4)1(,2)1(211112122=-=-=-⋅-=①.当0>k 时,①就是016,4)1(22=+-=-k k k k ,有两个不等的正数解;当0<k 时,①就是,4)1(2k k -=-1,0)1(2-==+k k .故所求直线为3条.拓展 将此题内容拓广,可得定理 1 动直线l 过定点)0)(,(≠mn n m P ,则直线和坐标轴在点P 所在象限内围成三角形的面积的最小值是.2mn证明 设直线l 与x 轴,y 轴分别交于点OAB b B a A ∆ ),,0(),0,(在点),(n m P 所在象限,0,0>>∴bn am ,直线l 的方程为.1=+bya x 直线l 过点ab mn b n a m b n a m n m P 21,1),,(≥+=∴=+∴,即mn ab 4≥,当且仅当n b m a 2,2==时取等号..221mn ab S OAB ≥=∴∆ 定理2 直线l 过定点)0)(,(≠mn n m P 且和坐标轴围成的三角形的面积为S ,则 ⑴当mn S 20<<时,满足条件的直线l 有且仅有两条. ⑵当mn S 2=时,满足条件的直线l 有且仅有三条. ⑶当mn S 2>时,满足条件的直线l 有且仅有四条.根据定理1的结论及图象不难知道定理2的正确性.证明从略. 题意可知求36.解 设生产甲、乙两种产品的吨数分别为x 、y .则根据函数23z x y =+的最大值,限制条件为80,2480,260,770,0,0.x y x y x x y x y +≤⎧⎪+≤⎪⎪≤⎨⎪+≤⎪≥≥⎪⎩如图,上述不等式组约束区域即图中的阴影部分.区域的顶点坐标为M (0,20),N (10,0),R ⎪⎭⎫⎝⎛13210,13100,O (0,0),直线k y x =+32的斜率321-=k .直线8042=+y x 的斜率212-=k .由图可知,y x 32+在点R 处取得最大值,最大值为13830132103131002=⨯+⨯(百万元). 故填13830;13100. 评析 可用若干不等式表示的限制条件下某二元一次函数的最大(小)值的应用题,通常可用线性规划知识求解,其步骤如下:x+y=807x+y=70X =302x+3y=k2x+4y=80yxOMRN1、设变量(如y x ,),建立目标函数()y x f z ,=(如y x z 32+=).2、根据约束条件列出不等式组.3、画出不等式组表示的平面区域.4、作出直线()0,=y x f ,并将其向上或向下平移确定最优解.5、将最优解代入()y x f z ,=便得所求最值. 37.解法1 圆222ry x =+的圆心是O()0,0,它到直线200ry y x x =+的距离220222020000y x r y x r y x d +=+-⋅+⋅=, 点M ()00,y x 在圆222ry x =+的内部且不在圆心,∴r d r y x >∴<+<,02020.可知直线200r y y x x =+与圆222r y x =+相离.故选C.解法2 令1,200===y x r ,满足题设.此时,直线4=+y x 与圆422=+y x 相离.由正确选择支的唯一性,选C.评析 解析几何中,判断直线与圆的位置关系就看圆心到直线的距离d 与圆的半径r 的大小关系: ⇔>r d 直线与圆相离; ⇔=r d 直线与圆相切;⇔<r d 直线与圆相交.对于二次曲线()0,:=y x f C 与点M ()00,y x 的位置关系,有下面的结论: 点M 在曲线C 上()0,00=⇔y x f ; 点M 在曲线C 内()0,00<⇔y x f ; 点M 在曲线C 外()0,00>⇔y x f .所谓二次曲线内是指曲线把平面分成的两(或三)部分中含有焦点(或圆心)的部分. 以上这些就是解法1的依据.由于是选择题,解法2运用特殊化思想求解,显得更简捷.应当指出,特殊值法(包括适当选取特殊点、特殊角、特殊函数、特殊曲线、特殊位置等)通常应是解选择题时首先考虑的方法,一旦用上,简单快捷,可以大量节省时间.此题来源于课本上的一道习题:“已知圆的方程是222r y x =+,求经过圆上一点M ()00,y x 的切线方程.”答案是200r y y x x =+.拓展 给定圆C :222r y x =+与定点M ()00,y x ,(02020≠+y x ),则直线200:r y y x x l =+就是存在且确定的,它与定圆到底是什么样的位置关系呢?经研究,有下面的结论.结论1 若点,C M ∈则l 与C 切于点M.(这是显然的,证明略)结论2 若点M 在圆外,过点M 引圆C 的两条切线1MT 与2MT ,则200r y y x x =+为过两切点的直线方程,因而l 与C 相交.证明 设()111,y x T 和()222,y x T 是两个切点,由结论1,直线1MT 与2MT 的方程分别是211r y y x x =+与222r y y x x =+.因为它们相交于点M ()00,y x ,于是20101r y y x x =+与20202r y y x x =+同时成立.于是得200r y y x x =+表示直线21T T 的方程.l 与C 显然相交.结论3 若点M 在圆C 内且不是圆心,以M 为中点的圆的弦为AB ,过A 、B 的两条切线相交于点N ,则200r y y x x =+表示过点N 且平行于AB 的直线方程,因而l 与C 相离.证明 令N ()n m ,,由结论2,直线AB 的方程一定是2r ny mx =+.因为M 是AB 的中点,所以200r ny mx =+,这说明点N 在直线200:r y y x x l =+上.下面证明AB ∥l .①当000≠y x 时,由于O 、M 、N 三点共线,可知0≠mn ,过M 、N 引同一坐标轴的垂线,由点的坐标定义及直角三角形的相似关系,易知22001r r y n x m --=≠=,故AB ∥l .②当000=y x 时,由于02020≠+y x ,则有0,00==m x 或0,00==n y .无论哪种情况,两直线都同时垂直于同一坐标轴,并且在该坐标轴上截距不等.故AB ∥l .此时l 与C 显然相离.38.解 解方程组⎪⎩⎪⎨⎧=+--+=+-++0176601622222y x y x y x y x ,得⎩⎨⎧==32y x ,故两圆相切于点(2,3),所以所求直线方程是()()032=-+-y x μλ,其中μλ,为参数.评析 先通过解方程组求出两圆的交点坐标,如果交点有两个:()()2211,,,y x y x ,则所求直线方程为()()()()112112x x y y y y x x --=--.但此题中的两圆只有一个交点()3,2,过点()3,2的所有直线该如何表达呢?有人表述为()23-=-x k y (k 为参数),这就错了,因为方程()23-=-x k y 表示的所有直线中并不包括直线2=x (即过点()3,2且垂直于x 轴,亦即过点()3,2且斜率不存在的那一条).而()()032=-+-y x μλ(μλ,为参数)才能表示过点()3,2的所有直线.当0≠λ且0=μ时,该直线方程就是2=x .一般地,过点()00,y x 的所有直线组成的直线系方程为()()000=-+-y y x x μλ(其中μλ,为参数).拓展 我们先看下面的问题:求过两圆074422=+--+y x y x 与03661222=+--+y x y x 的交点的直线方程.分析:按上面评析中的思路,先解方程组得两交点坐标,再求出过这两点的直线方程为02928=-+y x . 如果将两圆方程相减,也得02928=-+y x ,恰好就是过两圆交点的直线方程.这是否是一种巧合呢?非也.设两圆交于A 、B 两点,则A 、B 的坐标既是方程组⎩⎨⎧=-+=+--+02928074422y x y x y x 的 解,也是方程组⎩⎨⎧=-+=+--+0292803661222y x y x y x 的解,即A 、B 的坐标都适合方程02928=-+y x ,故02928=-+y x 就是直线AB 的方程.那么,当两圆外切时,两圆方程相减所得方程又表示什么样的直线呢?就拿此赛题为例,016222=+-++y x y x 与0176622=+--+y x y x 两边相减,得2=x .由图形,可知直线2=x 恰好是过两圆切点的公切线.这也不是偶然的,道理与两圆相交时一样.当两圆内切时,此结论也成立.于是,我们有下面的 定理 已知两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,则⑴当两圆相切时,过切点的公切线方程是()()0212121=-+-+-F F y E E x D D ; ⑵当两圆相交时,公共弦所在的直线方程是()()0212121=-+-+-F F y E E x D D . 39.解法1 已知方程就是()()42122=-+-y x ,()202---=+x y x y ,所以题意就是求圆()()42122=-+-y x 上的点()y x ,与定点A ()0,2-的连线的斜率的取值范围.如图,,只须求切线AN 的斜率k .易知20.1(AM k -==--tAN k NAx ∴=∠()2222123tan 2.41519AM AMk MAx k ⋅=∠===-- 120,.25y x ⎡⎤∴∈⎢⎥+⎣⎦注:切线AN 的斜率k 的另一种求法:设AN 的方程是(),20+=-x k y 即02=+-k y kx ,则圆心M 到切线AN 的距离等于圆M 的半径,即212212=++-⋅k kk ,解得0=k (舍去),512=k . 解法 2 已知方程就是()()42122=-+-y x ,故设,s i n 22,c o s 21θθ=-=-y x 即,sin 22,cos 21θθ+=+=y x 则.cos 23sin 222θθ++=+x y 令k =++θθcos 23sin 22,得,23c o s 2s i n 2-=-k k θθ即()()223244sin 32,sin .44k k k k θϕθϕ-++=-+=+ ()232sin 1,1,44k k θϕ-+≤∴≤+ 解得,5120≤≤k 即.512,02⎥⎦⎤⎢⎣⎡∈+x y 解法3 设k x y=+2,则,2k kx y +=代入014222=+--+y x y x 并整理,得()().018424412222=+-+--++k k x k kx k 由()22442k k ∆=--()()22414810,k k k -+-+≥得1205k ≤≤.由,014222=+--+y x y x 即()()42122=-+-y x 可知,212≤-≤-x 即.31≤≤-x 经验证,当5120≤≤k 时,(1)0,(f f -≥≥且对称轴()[]224421,3.21k k x k --=-∈-+故.512,02⎥⎦⎤⎢⎣⎡∈+x y x1-2OA NMy评析 解法1将2+x y 看作()20---x y ,进而看作圆()()42122=-+-y x 上的动点()y x ,与定点()0,2-的连线的斜率,将问题转化为求此斜率的范围;解法2 通过换元,将问题转化为求三角函数的值域;解法3 通过整体换元并消去y 后,利用二次方程在某区间内有解的条件求出所求范围.都体现了化归转换的思想.由于椭圆()012222>>=+b a by a x 有性质22b a y x +≤+(请读者自证),故本赛题又有如下解法:设t x y =+2,则02=+-t y tx .已知方程就是()()12122=-+-y x ,则()()1424222=-+-y t t tx ,由上面的性质,得4422+≤+--t y t tx ,即44322+≤-t t ,解得120,5t ≤≤∴.512,02⎥⎦⎤⎢⎣⎡∈+x y 拓展 让我们进一步思考下面的问题:1、若将题中的条件方程改为()(),1429122=-+-y x 则答案是什么?2、若将题中的条件方程改为()(),42122=---y x 则答案是什么?与本赛题同样的思考方法,不难得到上面两题的答案分别是[).,,0R +∞若将原题中的2+x y 改为y x 2+或632+x y ,结果又怎样?事实上,用同样的方法还可以求()0≠++ac bax dcx 的取值范围.解法1 ()∴=-+,1122y x 可设.sin 1,cos θθ=-=y x 于是0≥++c y x 化为01sin cos ≥+++c θθ,即,14sin 2--≥⎪⎭⎫ ⎝⎛+c πθ1sin .42c πθ--⎛⎫∴+≥⎪⎝⎭ 1sin 14πθ⎛⎫-≤+≤ ⎪⎝⎭.∴由题意得121-≤--c ,解得12-≥c ,故选C. 解法2 图1、图2、图3依次表示0≥++c y x ,()1122=-+y x ,及1 图 1 图2 图3()⎩⎨⎧=-+≥++11022y x c y x 的图象.在图3中,直线0:=++c y x l 过Ⅱ、Ⅲ、Ⅳ象限,切圆M 于N ,这时圆M 上所有的点(N 点除外)都在l 的上方,因而圆M 上N 点以外的点的坐标()y x ,都使0>++c y x 成立,而N 点坐标使--c -c 0 y x -c -c Nl 2 0 y x M 1 2 0 y x M 1 x+y+c ≥00=++c y x 成立,结合题意,易求得此时的12,21-=-=-c c ,故当21-≤-c ,即12-≥c 时,圆M 都在l 的上方(含相切),因而圆M 上的点的坐标()y x ,可使不等式0≥++c y x 成立,故选C.解法3 21,23=-=y x 满足()1122=-+y x ,此时,若0=c ,则0≥++c y x 不成立,故排除含0的A 、D ;若1=c ,则0≥++c y x 成立,又排除不含1的B ,故选C.评析 从代数角度看,0≥++c y x ,即()y x c +-≥恒成立,有()[]m ax y x c +-≥,因此问题的关键就是如何求()[]m ax y x +-.由于()y x ,满足()1122=-+y x ,故解法1运用三角代换将问题转化成求三角函数的最大值问题,通过三角函数的有界性使问题获解.从几何角度看,原问题的实质就是c 在什么范围内时,才能保证圆()1122=-+y x 在直线0=++c y x 的上方(相离或相切).解法2便是运用数形结合思想,直观地解决问题的.由于是选择题,解法3运用特殊值排除干扰支,从而选出正确答案,这种抓住题目本质特征,避开常规思路的创新解法更值得提倡.拓展 按照上面所说的思想方法,请读者思考并解决下列问题:⒈ 圆()1122=-+y x 上任意一点()y x P ,都使不等式0178222≥+++-+c y x y x 成立,求c 的取值范围.(答案:22627c ≥-)⒉ 圆()1122=-+y x 上任意一点()y x P ,都使不等式2222120x y x y c +-++->成立,求c 的取值范围.(答案:552c <-)。

2013年第24届希望杯初一第1试试题及答案(word版)

2013年第24届希望杯初一第1试试题及答案(word版)

1第二十四届“希望杯”全国数学邀请赛初一 第1试试题2013年3月17日 上午8:30至10:00一、选择题(每小题4分,共40分)1.计算:()()=+----⨯-1233113( ) A .1- B .1 C .2 D .3解析:计算。

原式=—2÷2=—1,答案为A 。

2.已知图1是图2中正方体的表面的展开图,其中有五个面内标注了数字,则图2中涂有阴影的面在图1中标注的数字是( )A .2B .3C .4D .5 解析:正方体侧面展开图。

标有数字1和3的面相对,标有数字2和4的面相对,标有数字5和有半圆的面相对。

答案为D 。

3.若2011999a =,20121000b =,20131001c =,则( )A .c b a <<B .a c b <<C .a b c <<D .b c a <<解析:分数大小比较。

方法一:观察,三个分数的分子与分母差相等,找一个标准作为参考。

20111012-1a =,20121012-1b =,20131012-1c =,因为201310122012101220111012>>,所以a<b<c 。

方法二:两两比较。

2011999<20121000,因为999+2012=2011+1000,所以999×2012<2011×1000。

同理可得20121000<20131001,所以答案为A 。

4.若0232=+-x x ,则10423+--x x x 的值是( )A .6B .8C .10D .12 解析:多项式计算。

解法一:x 2—3x+2=(x —1)(x —2)=0,所以x=1或x=2,将x=1带入计算x 3—x 2—4x+10=1-1-4+10=6。

解法二:降幂,整体代入法。

x 3—x 2—4x+10=x (x 2—3x+2)+2(x 2—3x+2)+6=6(因为x 2—3x+2=0)答案为A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四届“希望杯”全国数学邀请赛
初二 第1试试题
2013年3月17日 上午8:30至10:00
一、选择题(每小题4分,共40分) 1.有下列五个等式:( ) ①13+=x y ;②122-=x y ;③x y =;④x y =;⑤x y =;其中,表示“y 是x 的函数”的有
( )
(A )1个. (B )2个. (C )3个. (D )4个.
2.点()m ,7-和点()n ,8-都在直线62--=x y 上,则m 和n 的大小关系是( ) (A )n m >. (B )n m <. (C )n m =. (D )不能确定的. 3.下列命题中,正确的是( ) (A )若0>a ,则a
a 1>
. (B )若2
a a >,则1>a .
(C )若10<<a ,则2
a a >. (D )若a a =,则0>a . 4.若定义“⊙”:a ⊙
b a b =,如3⊙283==2,则3⊙2
1等于( )
(A )
8
1. (B )8. (C )
6
1. (D )
2
3.
5.以下关于平行四边形的判定中,不正确的是( )
(A )两组对角分别相等的四边形是平行四边形. (B )两组对边分别相等的四边形是平行四边形. (C )对角线相等的四边形是平行四边形. (D )一组对边平行且相等的四边形是平行四边形. 6.用一根长为a ,并且没有伸缩性的线围成面积为S 的等边三角形.在这个等边三角形内任取一点P ,则点P 到等边三角形三条边的距离之和为( ) (A )
a
S 2. (B )
a
S 4. (C )
a
S 6. (D )
a
S 8.
7.若199199<<-x ,且100-=x m 的值为整数,则m 的值有( )
(A )100个. (B )101个. (C )201个. (D )203个.
8.已知32+=x ,且()8614
8
+=+y x x ,则y 的值是( )
(A )10. (B )15. (C )20. (D )30.
9.If a right triangle has edge lengths b a -,a ,and b a +(a and b are both positive integers ),
then the perimeter of the triangle might be ( ) (A )60. (B )70. (C )80. (D )90.
(英语小词典:right triangle 直角三角形;positive integers 正整数;perimeter 周长)
10.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等( )(正确时间)
(A )26分钟. (B )28分钟. (C )30分钟. (D )32分钟. 二、A 组填空题(每小题4分,共40分) 11.若125512=+x ,则()=
-+x
x 20122
. 12.计算:=
------1222222201120122013 . 13.用边长为1cm 的小正方形在桌面上摆放成如图1所示的塔状图形,则第n 次所摆图形的周长是 cm .(用关于n 的代数式表示)
14.有两个函数b ax y +=和5+=cx y ,学生甲求出它们图象的交点的正确坐标()23-,,学生乙因抄错
c 而得出交点坐标⎪⎭

⎝⎛4143,,则函数b ax y +=的解析式是 .
15.如图2,三个正比例函数的图象分别对应解析式:①ax y =,②bx y =,③cx y =,若将c b a
,,从小到大排列,则应当是 .
16.如图3,在正方形ABCD 中,E 、G 、F 分别是AB 、AD 、BC 边上的点,若BE =2AE ,AG =1,BF =2,︒=∠90GEF ,
则GF 的长是 .
17.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,23-x ,12-x .若这两个三角形全等,则x 的值是 .
18.有甲、乙、丙三种商品,购甲3件,乙7件,丙1件,需3.15元;
购甲4件,乙10件,丙1件,需4.20元.若购甲、乙、丙各1件,则需 元.
19.设a ,b 是实数,且
a
b b a -=+-+1
1111
,则b a a b +++++1111的值
时 .
20.将不大于20的正偶数分成两组,使得第一组中数的乘积能被第二组中数的乘积整除,则商的最小值是 .
三、B 组填空题(每小题8分,共40分)
21.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图4所示.观察此图可知,每位同学答对的题的个数组成的样本众数是 ,中位数是 . 22.方程312=+-x x 的解是 或 . 23.若关于x 的方程
23
422
2+=
-+-x x mx x 有增根,则=m 或 . 24.Let 20131=⎪⎭


⎛+
x y x ,x and y are both positive integers ,then the largest value of y x + is ,the smallest value of y x +
is . (英语小词典:value 值) 25.已知00≠≥≥=++a c b a c b a ,,,则a
c 的最大值是 ,最小值是 .
附加题(每小题10分,共20分)
1.A 商品的单价是50元,B 商品的单价是60元,几所学校各付款1220元购买了这两种商品,任意2所学校购买的A 商品的数量都不同.则参加这次采购的学校最多有 所.
2.十进制中,右边的数码比左边的数码大的数叫做上升数,如134,258.那么三位数中的上升数有 个;在三位上升数中,3的倍数有 个.
答案。

相关文档
最新文档