27.2.1相似三角形的判定(第3课时)

合集下载

27.2.1相似三角形的判定(SSS和SAS)

27.2.1相似三角形的判定(SSS和SAS)
答案:(1)略; (2)△P2P5D,△P4P5F,△P2P4D, △P4P5D,△P2P4P5,△P1FD.
网格中的相似 如何判断网格中的三角形是? 三角形相似的两个判定: 三边成比例的两个三角形相似 两边成比例且夹角相等的两个三角形相似
网格中的相似
如图,在正方形网格上有6个斜三角形:①△ABC, ②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK, 在②~⑥中,与三角形①相似的是(B )
A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥
网格中的相似
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格 点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个 点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三 角形,并在图中连结相应线段,不必说明理由).
∴△ABC~△A'B'C'.
判定的应用
∴ΔABC∽ΔADE ∴∠BAC=∠DAE ∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE.
判定的应用 提示:先把线段乘积转化为比例
判定的应用
如图,在三角形纸片ABC中,AB=6,BC=8,AC=4. 沿虚线剪下的涂色部分的三角形与△ABC相似的是(C )
相似三角形的判定(SSS和SAS)
教学目标 理解三边成比例的两个三角形相似. 理解两边成比例且夹角相等的两个三角形相似.
教学重点 运用三角形相似的判定证明三角形相似.
教学难点 运用三角形相似的判定证明三角形相似.
知识回顾
1.对应角_相___等___,对应边成___比__例__的两个三角形, 叫做相似三角形. 2.相似三角形性质:对应角相等,对应边成比例.

《相似三角形的判定定理》练习题

《相似三角形的判定定理》练习题
(2)∵△ADE∽△ABC,∴∠ADE=∠B. 又∵∠AFD=∠AGB=90°,∴△AFD∽△AGB. ∴AAGF =AADB .∵AD=3,AB=5,∴AAGF =35.
15.(导学号 40134043)(2017·泰安)如图,四边形ABCD中,AB=AC= AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD. (1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.
九年级下册数学(人教版)
第二十七章 相 似
27.2 相似三角形
27.2.1 相似三角形的判定 第3课时 相似三角形的判定定理3
知识点1:相似三角形的判定定理3
1.如图在矩形ABCD中,E,F分别是CD,BC上的点,若∠AEF=90°,
则一定有(
)C
A.△ADE∽△AEF B.△ECF∽△AEF
C.△ADE∽△ECF D.△AEF∽△ABF
DP·BD=AD·BC,∴AB2+AD·BC=DB·PB+DP·BD=DB(PB+DP)=
DB2,即BD2=AB2+AD·BC.
2.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三 角形有( B) A.4个 B.3个 C.2个 D.1个
3.如图,在△ABC中,∠ADE=∠B,则下列等式成立的是( A ) A.AADB=AACE B.ABEE=CADD C.AADC=AAEB D.DBCE=AADC
8 4.如图,∠C=∠E=90°,AC=3,BA=5,AE=2,则DE=__3__.
证明:(1)∵AD∥BC,∴∠ADB=∠DBC.∴A︵B=D︵C.∴AB=DC.
(2)易证△ADP∽△DBC,∴ABDD=BDCP.∴DP·BD=AD·BC.

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

27.2.1相似三角形的判定(第3课时)一、内容和内容解析1.内容判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.2.内容解析全等是相似中放缩比例为1的特殊情形,这为我们提供了一个思路:类比判定两个三角形全等的“SSS”“SAS”方法,发现并提出判定两个三角形相似的简单方法.在探究“三边成比例的两个三角形相似”的过程中,学生通过度量,发现结论成立,再通过作与△A'B'C'相似的三角形,把证明相似的问题转化为证明所作三角形与△ABC全等的问题.“两边成比例且夹角相等的两个三角形相似”的证法与前一个判定方法的证明方法类似,再次体现了定理“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的基础性作用.基于以上分析,确定本节课的教学重点是:判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.二、目标和目标解析1.目标(1)理解三角形相似的两个判定定理.(2)会运用三角形相似的两个判定定理解决简单的问题.2.目标解析达成目标(1)的标志是:理解两个判定定理的含义,能分清条件和结论,能用文字语言、图形语言和符号语言表示.达成目标(2)的标志是:会用两个判定定理判定两个三角形相似,从而解决简单的问题.三、教学问题诊断分析在两个判定定理的证明过程中,教科书作了一个中介三角形,使之与要证的三角形相似,再利用相似三角形对应边成比例和已知条件证明“中介三角形”与原三角形全等,这种转化的方法学生往往难以想到.其中通过线段的比相等证明线段相等,不同于以往常用的证明线段相等的方法,也会给定理的证明带来一定难度.基于以上分析,确定本节课的教学难点是:判定定理“三边成比例的两个三角形相似”的证明.四、教学过程设计 1.问题引入,类比猜想问题1 (1)两个三角形全等有哪些简便的判定方法?(2)全等是相似比为1的特殊情形.如图1,类比三角形全等的判定,判定△ABC 与△A'B'C'相似,是否有简便的判定方法?你有什么猜想?师生活动:问题(1)由学生口答.问题(2)组织学生分小组讨论,然后全班交流.如果学生对“两角对应相等的两个三角形相似”是否正确存在疑问,可存疑,留在下一节课解决.对学生提出的判断三角形相似的方法进行归纳整理,指出本节课先研究“三边”和“两边及其夹角”的情形.设计意图:通过全等三角形与相似三角形之间特殊与一般的关系,运用类比的思维方式,让学生猜想出两三角形相似的简单判定方法,从而引出下一步要探究的问题.2.画图探究,初步感知问题2 在△ABC 与△A'B'C'中,如果满足B A AB ''=C B BC ''=C A AC''=k ,那么能否判定这两个三角形相似?师生活动:(1)画图探究.教师引导学生任意画△ABC ,取一个便于操作的k 值(如21,2等),得到△A'B'C'的三边长,再作出△A'B'C'.指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似.(2)教师借助《几何画板》对k 取任意值的情况进行演示,让学生归纳发现的结论.并说明k =1时两个三角形全等,即全等是相似的特殊情况.设计意图:在教师的指导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.k 取1时,两个三角形全等,取其他值时,两个三角形相似,进一步感受相似与全等的紧密联系.《几何画板》的动态演示,有利于学生更直观地发现结论.ABCA 'B 'C '图13.构造中介,证明定理问题3 怎样证明“三边成比例的两个三角形相似”呢? 师生活动:(1)学生结合图形写出已知、求证并交流讨论.(2)当学生感到无处入手时,教师用学生剪出的△ABC 与△A'B'C'的纸片为模型,用较小的△ABC 放置于较大△A'B'C'的上(学生取的k 值不同,可能会出现两种图形,但证明的本质是相同的),点A 与点A'重合,点B 在边A'B'上,记为点D ,将点C 在A'C'上的位置记为点E .教师追问1:B'C'与DE 有什么位置关系?为什么? 师生活动:学生直观发现B'C'∥DE .教师追问2:由B'C'与DE 的位置关系可得到△A'DE 与△A'B'C'相似吗?为什么? 师生活动:学生回答由“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,得到△A'DE 与△A'B'C'相似.教师追问3:我们先构造了一个与△ABC 全等的中介△A'DE ,得到△A'DE ∽△A'B'C',然后可得△ABC ∽△A'B'C'.这为我们证明“三边成比例的两个三角形相似”提供了一个思路:能否在△A'B'C'上作一个与△A'B'C'相似的△A'DE ,再证明它与△ABC 全等呢?如何作?师生活动:(1)学生思考交流.教师展示学生的不同作法,并请学生说明△A'DE 与 △ABC 全等的原因.(2)由学生整理出证明思路,教师板书,从而得到三角形相似的判定定理.设计意图:让学生在操作中发现解决问题的方法:作DE ∥B'C',证明△A'DE ∽△A'B'C',从而把证明“△ABC 与△A'B'C'相似”的问题转化为证明△ABC ≌△A'DE 的问题.4.类比实验,自主探究问题4 全等三角形有“SAS ”的判定方法,类似地,△ABC 和△A'B'C'中,如果满足B A AB''=C A AC''=k ,且∠A =∠A',那么能否判定这两个三角形相似? 师生活动:(1)教师借助《几何画板》对k 取任意值的情况进行演示,看△ABC 和△A'B'C'的另一组对应边的比是否为k ,另两组对应角是否相等.问:图中的△ABC 与△A'B'C'相似吗?为什么?学生提出猜想的结论.(2)学生模仿上一个定理的证明,讨论问题4的证明思路,在课后完成证明过程. (3)师生小结判定定理二的内容.并追问:对于△ABC 和△A'B'C',如果B A AB ''=C B BC'',且∠B =∠B',这两个三角形一定相似吗?如果将∠B =∠B'换成∠C =∠C',这两个三角形一定相似吗?为什么?让学生试着画画看,找出反例即可.设计意图:学生有前面探究活动的经验,教师提出问题后,利用《几何画板》辅助,学生容易获取初步结论,而且仿照上一个定理的证明,容易得到这个命题的证明思路.最后,学生通过考虑“两边和其中一边的对角”的情形,加强对三角形相似条件的理解与记忆.5.运用结论,解决问题例 根据下列条件,判断△ABC 和△A'B'C'是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm , A'B'=12 cm ,B'C'=18 cm ,A'C'=24 cm . (2)∠B =120°,AB =7 cm ,AC =14 cm , ∠A'=120°,A'B'=3 cm ,A'C'=6 cm .师生活动:师生共同分析从题干的条件中是否可能得到两个三角形相似的条件,教师提醒学生注意第(2)题中的角是不是已知两边的夹角.设计意图:使学生学会从现有条件中得到判定三角形相似的条件. 6.变式训练,巩固提高判断图中的两个三角形是否相似,并求出x 和y .师生活动:学生自主答题,写出相应的解答过程,然后互评. 设计意图:巩固本节课所学的相似三角形的判定定理. 7.回顾小结回顾本节课的学习,回答下列问题: (1)你学到了哪些判定三角形相似的方法? (2)你认为证明两个三角形相似的思路是什么?设计意图:引导学生归纳本节课的知识点及判定定理的证明思路. 8.布置作业A BDE C y ° x 4530 54 36 46°20 图2152025402745图11.教科书第34页练习第1,3题. 2.教科书第42页习题27.2第2(1),3题.3.证明判定定理“两边成比例且夹角相等的两个三角形相似”(画图,写出已知、求证,并进行证明).六、目标检测设计1.下列条件中可以判定△ABC ∽△C B A '''的是( ). A .AC AB =''''C A B A B .AC AB =''''C A B A ,∠B =∠B' C .B A AB ''=''C A AC =C B BC''D .''B A AB =''C A AC设计意图:考查对三角形相似的两个判定定理的条件特征的理解. 2.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( ).设计意图:考查判定定理“两边成比例且夹角相等的两个三角形相似”的应用. 3.在△ABC 和△A'B'C'中,AB =6,BC =8,AC =5,A'B'=3,B'C'=4,则当A'C'=______时,△ABC ∽△A'B'C'.设计意图:考查用“三边成比例的两个三角形相似”判定两个三角形相似.4.如图,在平面直角坐标系中,A (4,0),B (0,2),如果点C 在x 轴的正半轴上(点C 与点A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.设计意图:结合平面直角坐标系的知识,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.5.如图,在正方形ABCD 中,点P 是BC 上的一点,BP =3PC ,点Q 是CD 中点,求证:△ADQ ∽△QCP .ABCDQP (第5题)A B C 555 555 55 56675° 75°30° 40° A B CD(第4题)设计意图:结合勾股定理,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.。

人教版数学九年级下册数学:27.2.1 相似三角形的判定 同步练习(附答案)

人教版数学九年级下册数学:27.2.1 相似三角形的判定  同步练习(附答案)

27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.如图所示,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE ACC.AD AE =AC AB =DE BC D.AD AB =AE EC =DE BC2.两个三角形相似,且相似比k =1,则这两个三角形 .3.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( )A .1B .2C .3D .44.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ,直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .5.如图,在▱ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE ∶EA =3∶4,EF =3,则CD 的长为( )A .4B .7C .3D .126.如图,点E ,F 分别在△ABC 的边AB ,AC 上,且EF ∥BC ,点M 在边BC 上,AM 与EF 交于点D ,则图中相似三角形共有( )A .4对B .3对C .2对D .1对7.在△ABC 中,AB =6,AC =9,点P 是直线AB 上一点,且AP =2,过点P 作BC 边的平行线,交直线AC 于点M ,则MC 的长为 .8.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF9.如图,AG∶GD=4∶1,BD∶DC=2∶3,则AE∶EC的值是()A.3∶2B.4∶3C.6∶5D.8∶510.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上,若线段AB=4 cm,则线段BC=cm.11.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,线段BE,CD相交于点O,若OD=2,则OC=.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F,若CD=5,BC=8,AE=2,则AF=.13.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择作MN的平行线BC,并测得AM=900米, AB=30米,BC=45米,求直线隧道MN的长.14.如图,延长正方形ABCD的一边CB至点E,ED与AB相交于点F,过点F作FG∥BE 交AE于点G,求证:GF=FB.15.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.第2课时 相似三角形的判定定理1,21.将一个三角形的各边长都缩小12后,得到的三角形与原三角形( )A .一定相似B .一定不相似C .不一定相似D .无法确定2.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF = cm 时,△ABC ∽△DEF. 3.试判断图中的两个三角形是否相似,并说明理由.4.网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF.5.能判定△ABC ∽△A ′B ′C ′的条件是( )A.AB A ′B ′=ACA ′C ′B.AB AC =A ′B ′A ′C ′且∠A =∠A ′ C.AB BC =A ′B ′A ′C ′且∠B =∠C ′ D.AB A ′B ′=ACA ′C ′且∠B =∠B ′6.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是()7.如图,AB与CD相交于点O,OA=3,OB=5,OD=6,当OC=时,△AOC∽△BOD.8.如图,点C,D在线段AB上,∠A=∠B,AE=3,AD=2,BC=3,BF=4.5,DE=5,求CF的长.9.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A,D,E为顶点的三角形与△ABC相似.10.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P 1B.P2C.P3D.P411.如图,在△ABC中,点P在AB上,下列四个条件:①AP∶AC=AC∶AB;②AC2=AP·AB;③AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件有()A.1个 B.2个C.3个D.0个12.如图,已知∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.13.如图,AB∥DE,AC∥DF,BC∥EF,求证:△DEF∽△ABC.14.如图,在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.求证:△ADB∽△EAC.15.如图,正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ ∽△QCP.16.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是.第3课时相似三角形的判定定理31.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.已知△ABC中,∠A=40°,∠B=75°,下图各三角形中与△ABC相似的是.3.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形.(用相似符号连接) 4.如图,点B,D,C,F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.5.如图,∠1=∠2,∠C =∠D.求证:△ABC ∽△AED.6.在△ABC 和△A ′B ′C ′中,∠C =∠C ′=90°,AC =12,AB =15,A ′C ′=8,则当A ′B ′= 时,△ABC ∽△A ′B ′C ′.7.一个直角三角形的一条直角边长和斜边长分别为8 cm 和15 cm ,另一个直角三角形的一条直角边长和斜边长分别是6 cm 和454 cm ,这两个直角三角形 (填“是”或“不是”)相似三角形.8.一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 (填“一定”“不一定”或“一定不”)相似.9.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,且∠DCE =∠B.那么下列判断中,错误的是( )A .△ADE ∽△ABCB .△ADE ∽△ACDC .△DEC ∽△CDBD .△ADE ∽△DCB10.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .811.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.12.如图,已知∠ACB=∠ABD=90°,AB=6,AC=2,求AD的长为多少时,图中两直角三角形相似?13.如图,在▱ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.求证:△ABF∽△BEC.14.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?15.如图,在△ABC中,AD,BF分别是BC,AC边上的高,过点D作AB的垂线交AB于点E,交BF于点G,交AC的延长线于点H,求证:DE2=EG·EH.参考答案:27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.A2. 全等.3.B4. 2.5.B6.B7. 6或12.8.D9.D10.12.11.4.12.169.13.解:∵BC ∥MN ,∴△ABC ∽△AMN.∴AB AM =BC MN ,即30900=45MN .∴MN =1 350.答: 直线隧道MN 的长为1 350米.14.证明:∵GF ∥AD ,∴GF AD =EFED .又FB ∥DC ,∴FB DC =EFED .又AD =DC ,∴GF AD =FBAD .∴GF =FB.15.解:∵在△ABC 中,EG ∥BC ,∴△AEG ∽△ABC ,∴EG BC =AEAB .∵BC =10,AE =3,AB =5,∴EG 10=35,∴EG =6. ∵在△BAD 中,EF ∥AD ,∴△BEF ∽△BAD ,∴EF AD =BE AB. ∵AD =6,AE =3,AB =5,∴EF 6=5-35.∴EF =125. ∴FG =EG -EF =185.第2课时 相似三角形的判定定理1,21.A2.3.3.解:相似.理由如下:在Rt △ABC 中,BC =AB 2-AC 2=32-2.42=1.8,在Rt △DEF 中,DF =DE 2-EF 2=62-3.62=4.8,∴AB DE =BC EF =AC DF =12. ∴△ABC ∽△DEF.4.证明:∵AC =2,BC =12+32=10,AB =4,DF =22+22=22,EF =22+62=210,ED =8,∴AC DF =BC EF =AB DE =12. ∴△ABC ∽△DEF.5.B6.C7. 1858.解:∵AE BF =34.5=23,AD BC =23,∴AE BF =AD BC.又∵∠A =∠B ,∴△AED ∽△BFC.∴AD BC =DE CF .∴23=5CF. ∴CF =152. 9. 125或53. 10.C11.B12. AD AB =AE AC 13.证明:∵AB ∥DE ,∴△ODE ∽△OAB.∴DE AB =OE OB. ∵BC ∥EF ,∴△OEF ∽△OBC.∴EF BC =OE OB =OF OC. ∵AC ∥DF ,∴△ODF ∽△OAC.∴DF AC =OF OC. ∴DE AB =EF BC =DF AC. ∴△DEF ∽△ABC.14.证明:∵AB =AC ,∴∠ABC =∠ACB.∴∠ABD =∠ACE.∵AB 2=DB ·CE ,∴AB CE =DB AB . 又AB =AC ,∴AB CE =DB AC. ∴△ADB ∽△EAC.15.证明:设正方形的边长为4a ,则AD =CD =BC =4a.∵Q 是CD 的中点,BP =3PC ,∴DQ =CQ =2a ,PC =a.∴DQ PC =AD CQ =21. 又∵∠D =∠C =90°,∴△ADQ ∽△QCP.16.3__s 或4.8__s .第3课时 相似三角形的判定定理31.A2. △EFD ,△HGK .3. 答案不唯一,如△BDE ∽△CDF ,△ABF ∽△ACE 等.4.证明:∵AB ∥EF ,AC ∥DE ,∴∠B =∠F ,∠ACB =∠EDF.∴△ABC ∽△EFD.5.证明:∵∠1=∠2,∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠EAD.又∵∠C =∠D ,∴△ABC ∽△AED.6.10.7.是.8.不一定.9.D10.B11.6017. 12.解:①若△ABC ∽△ADB ,则AB AD =AC AB.∴AD =3; ②若△ABC ∽△DAB ,则AB AD =BC AB.∴AD =3 2.综上所述,当AD =3或32时,两直角三角形相似.13.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AD =BC.∴∠D +∠C =180°,∠ABF =∠BEC.又∵∠AFB +∠AFE =180°,且∠AFE =∠D , ∴∠C =∠AFB.又∵∠ABF =∠BEC ,∴△ABF ∽△BEC.14.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD.∴△APQ ∽△CDQ.(2)当DP ⊥AC 时,∠QCD +∠QDC =90°.∵∠ADQ +∠QDC =90°,∴∠DCA =∠ADP. 又∵∠ADC =∠DAP =90°,∴△ADC ∽△PAD.∴AD PA =DC AD .∴10PA =2010,解得PA =5. ∴t =5.15.证明:∵AD ,BF 分别是BC ,AC 边上的高, ∴∠ADB =∠BED =90°.∴∠EBD +∠EDB =∠EDB +∠ADE.∴∠EBD =∠EDA.∴△AED ∽△DEB.∴AE DE =DE BE,即DE 2=AE ·BE. 又∵∠HFG =90°,∠BGE =∠HGF ,∴∠EBG =∠H.∵∠BEG =∠HEA =90°,∴△BEG ∽△HEA.∴EG AE =BE EH,即EG ·EH =AE ·BE. ∴DE 2=EG ·EH.。

相似三角形的判定教案

相似三角形的判定教案

27.2.1 相似三角形的判定(1)一、教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.二、重点、难点1.重点:相似三角形的定义与三角形相似的预备定理.2.难点:三角形相似的预备定理的应用.3.难点的突破方法(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,A C CA C B BC B A AB ''=''=''每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):如△ABC ∽△A′B′C′的相似比k A C CA C B BC B A AB =''=''='',那么△A′B′C′∽△ABC 的相似比就是k 1CA A C BC C B AB B A =''=''='',它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.三、例题的意图本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.四、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A′B′C′相似,记作△ABC ∽△A′B′C′,k 就是它们的相似比.反之如果△ABC ∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且A C CA C B BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P30的思考,并引导学生探索与证明.3.【归纳】三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.五、例题讲解例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式; (2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD 、DC 的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD 与DC 的长.解:略(AD=3,DC=5)例2(补充)如图,在△ABC 中,DE ∥BC ,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长.分析:由DE ∥BC ,可得△ADE ∽△ABC ,再由相似三角形的性质,有AC AE AB AD =,又由AD=EC 可求出AD 的长,再根据ABAD BC DE =求出DE 的长. 解:略(310DE =). 六、课堂练习1.(选择)下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形2.(选择)如图,DE ∥BC ,EF ∥AB ,则图中相似三角形一共有( )A .1对B .2对C .3对D .4对3.如图,在□ABCD 中,EF ∥AB ,DE:EA=2:3,EF=4,求CD 的长. (CD= 10)七、课后练习1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式.2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.27.2.1 相似三角形的判定(2)一、教学目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.2.难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3.难点的突破方法(1)关于三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解.(2)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法.(3)讲判定方法1时,要扣住“对应”二字,一般最短边与最短边,最长边与最长边是对应边.(4)判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA 条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.(5)要让学生明确,两个判定方法说明:只要分别具备边或角的两个独立条件——“两边对应成比例,夹角相等”或“三边对应成比例”就能证明两个三角形相似.(6)要让学生学会自觉总结如何正确的选择三角形相似的判定方法:这两种方法无论哪一个,首先必需要有两边对应成比例的条件,然后又有目标的去探求另一组条件,若能找到一组角相等,而这组对应角又是两组对应边的“夹角”时,则选用判定方法2,若不是“夹角”,则不能去判定两个三角形相似;若能找到第三边也成比例,则选用判定方法1.(7)两对应边成比例中的比例式既可以写成如CA ACB A AB ''=''的形式,也可以写成C A B A AC AB ''''=的形式. (8)由比例的基本性质,“两边对应成比例”的条件也可以由等积式提供.三、例题的意图本节课安排的两个例题,其中例1是教材P33的例1,此例题是为了巩固刚刚学习过的两种三角形相似的判定方法,(1)是复习巩固“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法;(2)是复习巩固“三组对应边的比相等的两个三角形相似” 的判定方法.通过此例题要让学生掌握如何正确的选择三角形相似的判定方法.例2是补充的题目,它既运用了三角形相似的判定方法2,又运用了相似三角形的性质,有一点综合性,由于学生刚开始接触相似三角形的题目,而本节课的内容有较多,故此例题可以选讲.四、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?2.(1)提出问题:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】三角形相似的判定方法 1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.(1)提出问题:怎样证明这个命题是正确的呢?(2)教师带领学生探求证明方法.4.用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?(2)让学生画图,自主展开探究活动.(3)【归纳】三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.五、例题讲解例1(教材P33例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边.解:略※例2 (补充)已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长.分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出ACCD CD AB =,结合∠B=∠ACD ,证明△ABC ∽△DCA ,再利用相似三角形的定义得出关于AD 的比例式AD AC AC CD =,从而求出AD 的长.解:略(AD=425). 六、课堂练习1.教材P34.2.2.如果在△ABC 中∠B=30°,AB=5㎝,AC=4cm ,在△A’B’C’中,∠B’=30°A’B’=10 cm ,A’C’=8 cm ,这两个三角形一定相似吗?试着画一画、看一看?3.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△DEF .七、课后练习1.教材P42.1、3.2.如图,AB•AC=AD•AE,且∠1=∠2,求证:△ABC∽△AED.※3.已知:如图,P为△ABC中线AD上的一点,且BD2=PD•AD,求证:△ADC∽△CDP.27.2.1 相似三角形的判定(3)一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似.三、例题的意图本节课安排了两个例题,例1是教材P35的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的方法、让学生自己写出证明过程.并让学生掌握遇到等积式,应先将其化为比例式的方法.例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课的学习打基础.四、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC 相似吗?说说你的理由.(3)如(2)题图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD 与△ABC相似吗?——引出课题.五、例题讲解例1(教材P35例2).证明:略(见教材P35例2).例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF 这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310). 六、课堂练习 1.教材P36的练习1、2.2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .3.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.七、课后练习1.已知:如图,△ABC 的高AD 、BE 交于点F .求证:FDEF BF AF .2.已知:如图,BE 是△ABC 的外接圆O 的直径,CD 是△ABC 的高.(1)求证:AC•BC=BE•CD ;(2)若CD=6,AD=3,BD=8,求⊙O 的直径BE 的长.年级九年级 课题 27.2.1相似三角形的判定(第三课时) 课型 新授 教学媒体多媒体 教学目标 知识 技能 1.掌握用两个角对应相等判定三角形相似的方法. 2.进一步熟悉运用相似三角形的判定方法解决相关问题. 过程 方法 类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法. 情感 态度 发展学生的探究能力,渗透类比思想,体会特殊与一般的关系.教学重点掌握相似三角形的判定,能运用相似三角形的判定方法判定两个三角形相似. 教学难点 探究、发现结论教学程序及教学内容师生行为 设计意图 复习引入1.现在我们怎么样判断两个三角形相似?引出本课,揭示课题二、自主探究计算''B A AB ''C B BC ''C A AC 教师提出问题,学生 复习相关知识,建附赠材料优秀的教学是练出来的在上一堂课里,你已经学会了区分高效教学法和低效教学法之间的区别。

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。

一、说教材首先进入我的第一个大板块“说教材”。

我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。

1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。

是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。

本节课是判定三角形相似的起始课,是本章的重点之一。

一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。

因此,这节课在本章中有着举足轻重的地位。

2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。

(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。

(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。

3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。

教学难点:探究两个三角形相似的预备定理的过程。

二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。

老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。

27.2.1相似三角形的判定课件sss (3)

27.2.1相似三角形的判定课件sss (3)

∵ A A, B B, C C C B′ C′
Bቤተ መጻሕፍቲ ባይዱ
∴ △ABC ∽ △A´B´C´
2、(平行线法)平行于三角形一边的直线和其他两(或两边的延 长线)相交,所构成的三角形与原三角形相似.
“A”型
D B A E C
E “X”型
D
A C
符号语言: ∵ DE∥BC
∴△ADE∽△ABC
∴ △ABC~ △A′B′C′
相似,因为三组对应边的比相等.
解一解 (2)在△ABC 和△A′B′C′中,已知:
AB=12cm BC=15cm AC=24cm A′B′=16cm B′C′=20cm A′C′ = 30cm△ABC 与 A′B′C′是否相似并说明理由. 试判定
解: ∵

∴ △ABC与△A′B′C′不相似
27.2
三角形相似的判定SSS (2)
1、 你现在有哪些方法可判定两个三角形相似? 定义法 平行线法
相似三角形的判定
1、(定义法)对应角相等, 对应边的比也相等的两个三角形 是
A
相 似
A′
三 角 形. 符号语言:
在△ABC和△A´B´C´中,
AB BC CA . AB BC CA
∴ A1DE≌ABC(SSS) ∵ A1DE∽A 1B 1C1 ∴ ABC∽A1B1C1
知识要点
三角形相似判定定理之一 如果两个三角形的三组对应边的比 相等,那么这两个三角形相似。简称:
三边对应成比例,两三角形相似。
A
A1 即:
C
B
B1
C1
AB BC AC 如果 A B B C A C , 1 1 1 1 1 1 那么 △ABC∽△A1B1C1.

数学课件-27.2.1 第3课时 相似三角形判定定理3

数学课件-27.2.1 第3课时 相似三角形判定定理3
图形的相似
第三课时
探究1:两角相等的两个三角形是否相似? 问题1: 请大家拿出你们的含30°角的直角三角板,观察是否与 老师手里拿的含30°角的直角三角板相似?
它们相似.
问题2:请观察老师在几何画板中的演示,你发现了什么?你能 得出什么结论?
A A
B
C B
C
两角分别相等的两个三角形相似.
问题3: 你能结合图形用符号语言表述上述结论吗?
谢谢观赏
You made my day!

(1)∠AED=∠B,或者 AD AE 等.
(2)
AC AB ∠A=∠C,或者∠B=∠D,或者
AE CE
BE DE
等.
课堂小结 ,能力提升
(1) 判定三角形相似的方法有哪些?判定直角三角形相似的 方法有哪些?它们是怎么探究出来的?主要运用了什么思想? (2)利用相似主要能解决一些什么样的问题? (3)本节课你还有什么收获与困惑?
A A
B
C B
C
如果 A A,B B,
那么 △ABC∽△ABC.
问题4:你能尝试证明上述结论吗?
A A
D
E
B
C B
C
分析:如图所示,作平行线,构造全等三角形.
我们一起写出证明过程.
探究2:如果是两个直角三角形,判定相似的方法是否会更简洁? 问题1:你能想到哪些判定两个直角三角形相似的方法呢?
解:∵ED⊥AB,∴∠EDA=90°. 又∵∠C=90°, ∠A=∠A, ∴△AED∽△ABC.
∴ AE AD , AB AC
∴ AD AC AE 8 5 4. AB 10
追问1:目前我们见到过哪些常见的相似基本图形?
DE ∥ BC

相似三角形的判定第课时3-完整版PPT课件

相似三角形的判定第课时3-完整版PPT课件

∴ △ABC ∽ △A′B′C′ . B'
A' A
C' B
C
探究新知
27.2 相似三角形/
【思考】对于△ABC和 △A′B′C′,如果 A′B′ : AB= A′C′ : AC. ∠C=∠C′,这两个三角形一定会相似吗?
不一定,如下图,因为能构造符合条件的三角形有两个,其中 一个和原三角形相似,另一个不相似.
AC=5,CD 7 1 ,求 AD 的长.
2
解:∵AB=6,BC=4,
CD 7 1
2
A
AC=5,∴ AB BC 4 . ,
D
CD AC 5
又∵∠B=∠ACD,∴ △ABC ∽ △DCA,
B
C
∴ AC BC 4 , ∴ AD 25 .
AD AC 5
4
课堂检测
27.2 相似三角形/
拓广探索题
解: △ABC∽△A'B'C' . 理由如下:

, AC 15 1 ,
A'C' 30 2

.
又∵ ∠A=∠A', ∴△ABC∽△A'B'C'.
探究新知 素养考点 2
27.2 相似三角形/
利用三角形相似求线段的长度
例2 如图,D,E分别是 △ABC 的边 AC,AB 上的点,
AE=1.5,AC=2,BC=3,且
求证 :∠ACB=90°.
C
证明: ∵ CD 是边 AB 上的高,

∠ADC
=∠CDB∵
AD CD
CD, BD
A
D
B
∴△A=D90C°∽.△CDB,∴ ∠ACD =∠B,

仙游县第四中学九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定第3课时由两

仙游县第四中学九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定第3课时由两

14.已知抛物线 y=14 x2+1 具有如下性质:该抛物线上任意一点到定 点 F(0,2)的距离与到 x 轴的距离始终相等.如图,点 M 的坐标为( 3 ,3), P 是抛物线 y=14 x2+1 上一个动点,则△PMF 周长的最小值是__5__.
15.(5 分)能否通过适当地上下平移二次函数 y=13 x2 的图象,使得到 的新的函数图象过点(3,-3)?若能,说出平移的方向和距离;若不能, 说明理由.
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
(三)解答题(共42分) 12.(12分)(杭州中考)如下图 , 在△ABC中 , AB=AC , AD为BC边上的 中线 , DE⊥AB于点E. (1)求证 : △BDE∽△CAD ; (2)假设AB=13 , BC=10 , 求线段DE的长.
17.(10 分)如图,抛物线 y=-34 x2+3 与 x 轴交于 A,B 两点,与直线
y=-34 x+b 相交于 B,C 两点,连接 A,C (1)令 y=0,则-34 x2+3=0, 解得 x=±2,∴点 B 的坐标为(2,0), 代入 y=-34 x+b 得 b=32 , ∴直线 BC 的解析式为 y=-34 x+23
,∴AD=2
5
(一)选择题(每道题6分 , 共12分) 9.(牡丹江中考)如下图 , 在矩形ABCD中 , AB=3 , BC=10 , 点E在BC 边上 , DF⊥AE , 垂足为F.假设DF=6 , 那么线段EF的长为( B ) A.2 B.3 C.4 D.5
10.如下图 , AB为⊙O的直径 , BC为⊙O的切线 , 弦AD∥OC , 直线CD

27.2.1相似三角形的判定定理(教案)

27.2.1相似三角形的判定定理(教案)
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.掌握相似三角形判定定理,提高空间想象和几何直观能力,使学生能够运用几何知识分析并解决实际问题。
2.培养学生逻辑推理和数学论证能力,通过相似三角形的判定过程,学会运用严密的逻辑思维进行推理和证明。
3.增强学生合作交流意识,通过小组讨论和问题探究,提高团队合作能力和解决问题的能力。
我还注意到,在小组讨论环节,学生们对于相似三角形在实际生活中的应用提出了很多有趣的想法。这让我意识到,将数学知识与学生们的日常生活联系起来,可以极大地提高他们的学习兴趣和积极性。在未来的教学中,我会继续寻找更多实际案例,让数学变得更加生动和有趣。
此外,实践活动中的实验操作部分,学生们表现出很高的热情。他们通过亲手操作,直观地感受到了相似三角形的原理。这也让我认识到,动手操作对于抽象几何概念的理解是非常有帮助的。因此,我计划在后续的教学中,增加更多这样的实践活动。
-对于实际问题的解决,引导学生从问题中发现相似三角形的特征,如角度关系、边长关系等,并运用判定定理进行解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的判定定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的物体?”(如照片的放大缩小、不同尺寸的三角形装饰等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
在学生小组讨论的过程中,我发现有些学生不太愿意主动参与讨论,可能是因为他们对自己的观点缺乏信心。为了鼓励这些学生,我会在接下来的课程中,更多地采用肯定和鼓励的语言,让他们感受到自己的观点是有价值的,从而增强他们的自信心。

人教版九年级下册数学第3课时 相似三角形的判定(3)教案与教学反思

人教版九年级下册数学第3课时 相似三角形的判定(3)教案与教学反思

27.2相似三角形镇海中学陈志海27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想. 【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力. 【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法.【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?思考如果一个三角形中的两个角与另一个三角形中的两个角对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC和△A′B′C′,使∠A=∠A′,∠B=∠B′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.判定定理3 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.试一试 如图,点D 是AB 边上一点,且∠ACD=∠B ,试问:图是否存在能够相似的二角形?如果存在,请指出来,并说明理由.【教学说明】现学现用,巩固所学新知识.问题3 对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而得结论.然后让学 生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2 如图,Rt △ABC 中,CD 是斜边AB 边上的高线.求证:(1)△ABC ~△CBD ;(2)CD2=AD •DB.【教学说明】 例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • F.3. 如图,△BC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)

新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)

27.2.1 相似三角形的判定第3课时 两边成比例且夹角相等的两个三角形相似1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似 【类型一】 直接利用判定定理判定两个三角形相似已知:如图,在△ABC 中,∠C =90°,点D 、E 分别是AB 、CB 延长线上的点,CE =9,AD =15,连接DE .若BC =6,AC =8,求证:△ABC ∽△DBE .解析:首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB ∶AB 的值,再计算出EB ∶BC 的值,继而可判定△ABC ∽△DBE .证明:∵在Rt △ABC 中,∠C =90°,BC =6,AC =8,∴AB =BC 2+AC 2=10,∴DB =AD -AB =15-10=5,∴DB ∶AB =1∶2.又∵EB =CE -BC =9-6=3,∴EB ∶BC =1∶2,∴EB ∶BC =DB ∶AB ,又∵∠DBE =∠ABC =90°,∴△ABC ∽△DBE .方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题【类型二】 添加条件使三角形相似如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,△ADP 和△ABC 相似.解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型三】 利用三角形相似证明等积式如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .解析:先证明△ADC ∽△CDB 可得AD CD =AC BC ,再结合条件证明△FDC ∽△F AD ,可得AD CD=DF CF,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△F AD ,∴DF CF =AD DC ,∴AC BC =DF CF,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.【类型四】 利用相似三角形的判定进行计算如图所示,BC ⊥CD 于点C ,BE ⊥DE 于点E ,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD =32,解得AD =103,∴CD =AD +AC =103+3=193. 方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 利用相似三角形的判定解决动点问题如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间△ABC和△PQC相似?解析:由AC与AB的关系,设出AC=3x cm,AB=5x cm,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,进而得到AB与AC的长.然后设出动点运动的时间为t s,根据相应的速度分别表示出PC与CQ的长,由△ABC和△PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值.解:由5AC-3AB=0,得到5AC=3AB,设AB为5x cm,则AC=3x cm,在Rt△ABC 中,由BC=8cm,根据勾股定理得25x2=9x2+64,解得x=2或x=-2(舍去),∴AB=5x =10cm,AC=3x=6cm.设经过t秒△ABC和△PQC相似,则有BP=2t cm,PC=(8-2t)cm,CQ=t cm,分两种情况:①当△ABC∽△PQC时,有BCQC=ACPC,即8t=68-2t,解得t=3211;②当△ABC∽△QPC时,有ACQC=BCPC,即6t=88-2t,解得t=125.综上可知,经过125或3211秒△ABC和△PQC相似.方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC∽△PQC 与△ABC∽△QPC分别列出比例式来解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2.应用判定定理解决简单的问题.本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似

27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似

第 1 页 共 1 页
B 11
AB
A B 11AC A C 11AC A C 11AB A B 7
3
11AB A B 11AC A C 1
4
27.2.1 相似三角形的判定
第3课时 两边成比例且夹角相等的两个三角形相似
学习目标: 姓名: 评价:
掌握判定两个三角形相似的方法,让学生经历从实验探究到归纳证明的过 程,发展学生的合情推理能力。

学习重点与难点:
两个三角形相似的判定方法2探究过程及其应用 学习过程: 新课引入:
1、复习两个三角形相似的判定方法1与全等三角形判定方法(SSS )的区别与联系: 三边成比例的两三角形相似。

(相似的判定方法1)
2、如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

简单说成:两边成比例且夹角相等的两个三角形相似。

若∠A=∠A 1 , = = k 则 ∆ABC ∽∆A 1B 1C 1
3、例1:根据下列条件,判断 ∆ABC 与∆A 1B 1C 1是否相似,并说明理由: (1)∠A =1200,AB=7cm ,AC=14cm , ∠A 1=1200,A 1B 1= 3cm ,A 1C 1=6cm 。

(2)∠B =1200,AB=2cm ,AC=6cm , ∠B 1=1200,A 1B 1= 8cm ,A 1C 1=24cm 。

分析: (1) = = ,∠A=∠A 1=1200 得 ∆ABC ∽∆A 1B 1C 1
(2) = = ,∠B=∠B 1=1200但∠B 与∠B 1不是AB ﹑AC ﹑ A 1B 1 ﹑A 1C 1
的夹角,所以∆ABC 与∆A 1B 1C 1不相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)
A’
B
(C3)B’
D C’
C’
B
(2)
D
(4)
E A
E C
例2 如图,弦AB和CD相交于OO内一点P,

求证:PA ▪ PB = PC▪PD
A
证明:连接AC,DB. ∵∠A和∠D都是弧CB
所对的圆周角, ∴ ∠A= ∠D. 同理 ∠C= ∠B.
D ▪P O
B
C
∴ △PAC∽ △PDB.
PA PC . PD PB
即PA·PB=PC·PD.
引申1:如果弦AB和CD相交于圆O外一点P,结论还成立吗?
A
B P
D C
引申2:上题中A,B重 合为一点时,又会有什么 结论?
A P
D
C
思考:对于两个直角三角形,我们可以利用“HL”判定
它们全等.那么,满足斜边的比等于一组直角边的比的两个
直角三角形相似吗? 已知:在Rt △ABC和Rt △A'B'C'
k.
BC
BC
BC
BC
BC AB AC . BC AB AC
∴Rt △ABC∽Rt △A'B'C'.
1、已知如图直线BE、DC交于A , ∠E= ∠C 求证:DA·AC=AB·AE
证明:
∵ ∠E=∠C ∠DAE=∠BAC D
E
∴ △ABC ∽ △ADE
A
∴ AC :AE=AB :AD
∴ DA ·AC=AB ·AE
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线。
方法3:三边对应成比例。
方法4:两边对应成比例且夹角。
方法5:通过两角对应相等。 方法6:斜边直角边对应成比例
A
2 1
A
C
O
B
C
A
C
D
O
D
E
B
CA
B D
A
D E
BB
C
基本图形的形成、变化及发展过程:
平行型
.
旋转

斜交型 .
探究:
作△ABC 和△DEF,使得∠A=∠D, ∠B= ∠E,这时它 们的第三个角满足∠C= ∠F吗?分别度量这两个三角形
的边长,计算 AB , AC , BC ,你有什么发现? DE DF EF
把你的结果与邻座的同学比较,你们的结论一样吗?
问题:如图⊿ABC和⊿A′B′C′中,∠A=∠A′,
知识回顾
我们学习了哪些判定三角形相似的方法,请你
用几何语言叙述。
A
D
A
D
E
B
C
(2)∵DE∥BC ∴△ADE∽△ABC
E
F
B
C
(3)∵ AB AC BC DE DF EF
∴△ABC∽△DEF
(4) ∵ AB AC DE DF
∠A=∠D ∴△ABC∽△DEF
问题引入:
观察两副三角尺,其中同样角度(30°与60°,或 45°与45°)的两个三角尺大小可能不同,但它们看 起来是相似的。一般地,如果两个三角形有两组对应角 相等,它们一定相似吗?
A 已知DE ∥BC 且∠1=∠B ,则图
D
E 中共有 4 对相似三角形。
1
B
C
∵ DE∥BC
∴△ADE∽△ABC
∵ ∠1=∠B ,∠A=∠A
∴△ACD∽△ABC
∴△ADE ∽△ACD
∵ DE∥BC
∵ ∠EDC=∠DCB, 又∵ ∠1=∠B
∴△DEC∽△CDB
课堂小结
三角形相似的识别方法有那些?
2.如图直线BE、DC交于A, AD·AC=AE·BA,
求证:∠E=∠C
E
A
D
将△DAE绕A点旋转
D
A
E
B
C
B
C
如何证明∠DEA=∠C?
A
A
D
D
E
B
C
B
C
3.已知如图, ∠ABD=∠C AD=2 , AC=8,求AB
解: ∵ ∠ A= ∠ A ∠ABD=∠C
∴ △ABD ∽ △ACB
∴ AB : AC=AD : AB
判定定理3:如果一个三角形的两个角与另一个三角
形的两个角对应相等,那么这两个三角形相似。
可以简单说成:两角对应相等,两三角形相似。
用数学符号表示:
∵ ∠A=∠A', ∠B=∠B' ∴ ΔABC ∽ ΔA'B'C'
A
A'
B
C B' C'
基础演练
1、下列图形中两个三角形是否相似?
A’
B
A
A
C
B A
C B’
∠B=∠B′,试猜想△ABC和△A′B′C′是否相似?
并证明你的猜想成立。
A
A′
B
CD
E
B′
C′
证明:在AB上截取A′D=AB,画DE∥B′C′交A′C′与点E,
则:△A′DE∽△A′B′C′,∠A′DE=∠B′,
∵∠B=∠B′
∴∠B=∠A′DE
∵A′D=AB, ∠A=∠A′
∴△ABC≌△A′DE
∴△ABC∽△A′B′C′
∴ ΔACD∽ΔABC(两角对应相等,两 三角形相似)。
同理 ΔCBD ∽ ΔABC 。
C
∴ ΔABC∽ΔCBD∽ΔACD。
AD
B
求证(2)AC2=AD ·AB
CD2=AD ·DB
A
D
B
C
3、如图:在Rt △ ABC中, ∠ABC=900,BD⊥AC于D 若 AB=6 AD=2 则AC= 18 BD= 4 √2 BC= 12√2
∴ AB2 = AD ·AC
∵ AD=2 AC=8
∴ AB =4
A D
A D
B
C
B
C
4、如图:在Rt △ ABC中, ∠ABC=900,BD⊥AC于D
问:图中有几个直角三角形?它们相似吗?为什么? 解: 图中有三个直角三角形,分别是:
△ ABC、 △ ADB、 △ BDC
△ ABC ∽ △ ADB ∽ △ BDC
.
.
平移
特 殊 垂直型
平移
B
C
2、判断题:
基础演练
⑴ 所有的直角三角形都相似 .
⑵ 所有的等边三角形都相似.
⑶ 所有的等腰直角三角形都相似.
⑷ 有一个角相等的两等腰三角形相似 .
(× ) (√ ) (√ )
(× )
顶角相 底角相


顶角与底角 相等
顶角相等
A
A'




B'
C'

B
C
∴ ΔABC ∽ ΔA'B'C'
底角相等 A
A'




B'
C'

B
C
∴ ΔABC ∽ ΔA'B'C'
A
顶角与底角相等
A'
B'
B
C
两三角形不相似
第 三 C' 种 情 况
例1、求证:直角三角形被斜边上的高分成的两个直角三角形 和原三角形相似。
已知:在RtΔABC中,CD是斜边AB上的高。
求证:ΔACD ∽ ΔABC ∽ ΔCBD 。
证明: ∵ ∠A=∠A,∠ADC=∠ACB=900,
A′
A
中, ∠C=90°, ∠ C'=90 °,
AB AC . AB AC
求证:Rt △ABC∽Rt △A'B'C'.
B
C B′
C′
证明:
设 AB AC k. AB AC
则AB kAB, AC kAC.
由勾股定理,得 BC AB2 AC 2 , BC AB2 AC2 .
BC
AB2 AC 2 k 2 AB2 k 2 AC2 kBC
相关文档
最新文档