§122函数的表示法

合集下载

§2 2.2 函数的表示法

§2  2.2  函数的表示法

像这样, 像这样,用图像把两个变量间的函数关系表示出来 的方法,称为图像法. 的方法,称为图像法. 特点:图像法可以直观地表示函数的局部变化规律, 特点:图像法可以直观地表示函数的局部变化规律, 进而可以预测它的整体趋势. 进而可以预测它的整体趋势.
3.解析法 3.解析法
一个函数的对应关系可以用自变量的解析表达式 (简称解析式)表示出来,这种方法称为解析法. 简称解析式)表示出来,这种方法称为解析法. 例如,设正方形的边长为x 面积为y 例如,设正方形的边长为x,面积为y,则y 是x的函数,用解析式表示为 y 的函数,
2.2 函数的表示法
1. 通过丰富的实例,体会函数的三种表示方法. 通过丰富的实例,体会函数的三种表示方法. 体会三种表示方法的使用情境与各自的特点. 2. 体会三种表示方法的使用情境与各自的特点. 3.通过具体实例,了解简单的分段函数, 3.通过具体实例,了解简单的分段函数,并能 通过具体实例 简单应用. 简单应用.
= x , x ∈ (0, +∞).
2
特点: 特点:解析法表示的函数关系能较便利地通过计算 等手段研究函数性质.但是,一些实际问题很难找到它的 等手段研究函数性质.但是, 解析式. 解析式.
例题讲解
例1.国内跨省市之间邮寄信函,每封信函的质量和对应的 1.国内跨省市之间邮寄信函, 国内跨省市之间邮寄信函 邮资如下表: 邮资如下表:
在研究函数的过程中, 在研究函数的过程中,采用不同的方法表示函 数,可以帮助我们从不同的角度理解函数的性质, 可以帮助我们从不同的角度理解函数的性质, 同时也是研究函数的重要手段. 同时也是研究函数的重要手段. 初中学习过的函数的表示法有三种: 初中学习过的函数的表示法有三种: 法一:列表法,即题中的表格. 法一:列表法,即题中的表格. 法二:解析法, 法二:解析法, 法三:图像法. 法三:图像法. y

必修1课件:1.2.2函数的表示法

必修1课件:1.2.2函数的表示法
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日
云在漫步
§1.2.2 函数的表示方法
学习目标
第一课时
1、掌握函数的三种表示法:列表法、图象法、解析法, 、掌握函数的三种表示法:列表法、图象法、解析法, 体会三种表示方法的特点。 体会三种表示方法的特点。 2、能根据实际问题情境选择恰当的方法表示一个函数。 、能根据实际问题情境选择恰当的方法表示一个函数。 3、体会数形结合思想在理解函数概念中的重要作用, 、体会数形结合思想在理解函数概念中的重要作用, 在图形的变化中感受数学的直观美。 在图形的变化中感受数学的直观美。
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日 云在漫步
图象法
列表法
二、由实际问题引入分段函数的概念 某市空调公交车的票价按下列规则制定: 例6 某市空调公交车的票价按下列规则制定: 公里以内(含 公里),票价 公里),票价2元 (1)5公里以内 含5公里),票价 元; ) 公里以内 公里以上, 公里, (2)5公里以上,每增加 公里,票价增加 元(不足 ) 公里以上 每增加5公里 票价增加1元 5公里的按 公里计算)。 公里的按5公里计算 公里的按 公里计算)。 如果某条线路的总里程为20公里 请根据题意, 公里, 如果某条线路的总里程为 公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象。 票价与里程之间的函数解析式,并画出函数的图象。
1、正比例函数、反比例函数的一般式是怎样的? 正比例函数、反比例函数的一般式是怎样的?
y = kx( k ≠ 0)
k y = (k ≠ 0) x
S = 100t
C = 2πr

122函数的表示法一课件

122函数的表示法一课件

§1.2.1函数的概念
例2.下表是某校高一(1)班三名同学在高一学年 度六次数学测试的成绩及班级平均分表.
第一次 第二次 第三次
王伟
98
87
91
张城
90
76
88
赵磊
68
65
73
班级平均分 88.2 78.3 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
46.4 44.5 41.9 39.2 37.9
§1.2.1函数的概念
一、函数的表示方法
解析式
1.解析法:用数学表达式表示两个变量之 间的对应关系.
s 6t2
f (x) 5x 3
优点:函数关系清楚,容易根据自变量的值求出 其对应的函数值.便于用解析式来研究函数的性 质.
§1.2.1函数的概念
y = x -9.
y
x2 9, 9 x,
0 ≤ x 4, 4 ≤ x 9,
x 9,
9 ≤ x ≤ 12.
§1.2.1函数的概念
x 2, x ≤ 1,
已知函数
f
(
x)
x
2
Байду номын сангаас
,
1 x 2,

f(x)=3,
则x的值是……2…x,……x ≥(
2.
D
).
A. 1
B.
1,或
3 2
C.
1,
表格能否直观地分析出三位同学成绩高低? 如何才能更好的比较三个人的成绩高低?
§1.2.y1函数的概念
. 100
. 90 班 ♦▲ 平
80 均

122函数的表示法第二课时教案.docx

122函数的表示法第二课时教案.docx

2011-2012学年上学期高一数学备课组教案应用举例探究性质(1)A跟B这两个集合有先后顺序,/:A->B和/:B-A是截然不同的;(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.(3)集合A中的元素不可剩,集合B中的元索可剩余.补充:映射/:A-B 'I', A中元索成为原象,B屮与A屮元索相对应的元素称为象.例1:下列哪些对应是从集合A到集合B的映射?(1) A={P\P是数轴上的点}, B二R,对应关系数轴上的点与它所代表的实数对应;(2 ) A={P\P是平面直角坐标中的点}, B = [(x,y)\xe R,ye/?},对应关系/ :平面直角处标系中的点与它的坐标对应;(3) A={三角形}, B={x|兀是圆},对应关系/:每一个三角形都对应它的内切圆;(4 ) A={x\x是新华中学的班级},B = {x\x是新华屮学的学生},对应关系/:每一个班级都对应班里的学生.思考:将(3)小的对应关系/改为:每一个圆都对应它的内接三角形;(4)中的对应关系/改为:每一个学生都对应他的班级,那么对•应f : B-A是从集合B到集合A的映射吗?例2:在下图中,图(1), (2), (3)用箭头所标明的A中元素与B中元素的对应法则,下列情况是不是映射?明,挖掘概念中学生难理解,易混乱的问题.通过例题讲解进一步掌握本节课的重点内容探究性质,激发学生学习兴趣.例题讲解,便于理解.性质课堂练习及延展A 求平方B、49 /判定是否是映射主要看两点:一是A集合屮的元素都要有象,但B屮元素未必要有原象;二是A中元素与B中元素只能出现“一对一”或“多对一”的对应形式,不能出现“多对一”的形式.完成下面练习.1. (x, y)在/下象是(x+y, xy),则(3, 4)的象是_________(1, -6)的原象是____________ .归纳知识、构建知识网及时体验提髙,增加题目多样性.析:原象象(x, y) (x+y, xy)(3, 4) (7,⑵(2,・3)或者(・3, 2) (1, -6)⑵ /(%) = <的图象X, (x> 1)5.设兀w (-oo,+oo),求函数/(x) = 2|x-l|-3|x| 的解析式, 并画出它的图象.解:函数的解析式为一2—3兀,兀>1;-3,x = l;/(%) = < 一5x + 2,0 v x < 1;2,兀=0;x + 2,x v 0.图像变式:求函数/(x) = 2|x-l|-3|x|的最大值. 析:出上面可得/(x)max = 2.1. 映射的定义;2. 彖与原彖定义;3. 判断是否是映射的条件;4. 画分段函数的图像;5. 求函数的解析式.主备课教师: 邱惠彬 备课组老师:课堂小 结课堂小 结,构造 知识体 系.。

1.2.2函数的表示法(1)

1.2.2函数的表示法(1)
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆 规律
TIP1:我们可以选择巩固记忆的时间! TIP2:人的记忆周期分为短期记忆和长期记忆两种。 第一个记忆周期是 5分钟 第二个记忆周期是30分钟 第三个记忆周期是12小时 这三个记忆周期属于短期记忆的范畴。
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
( x {1, 2,3, 4,5})个笔记本需要y元,试用函数
的三种表示法表示函数 y f (x)

例2.(书P20)下表是某校高一(1)班三名 同学在高一年度六次数学测试的成绩及班级 平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王伟 张城 赵磊
班级 平均分
98 90 68 88.2
2.已知
f
(x)
(x 0)
1
(x 0)
画出它的图象。
例5作出 y x 1 x 2 (3 x 3)
的图像并求值域。
三、小结:
1.表示函数的方法有解析法、列表法和图 象法三种. 掌握分段函数的概念,
2.函数的图象通常是一段或几段光滑的曲线, 但有时也可以由一些孤立点或几段线段组成。 必须根据定义域画图,利用描点法或图象变 换法
1.2.2 函数的表示法(一)
一、讲解新课:

新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

题型一 题型二 题型三
反思列表法、图像法和解析法分别从三个不同的角度刻画了自 变量与函数值的对应关系.采用列表法的前提是定义域内自变量的 个数较少;采用图像法的前提是函数的变化规律清晰;采用解析法 的前提是变量间的对应关系明确.
题型一 题型二 题型三
【变式训练1】 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个 笔记本需要y元,试用三种表示法表示函数y=f(x).
123456
解析:由题意知该学生离学校越来越近,故排除选项A;又由于开始 匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C. 答案:C
123456
3若g(x+2)=2x+3,则g(3)的值是( ) A.9 B.7 C.5 D.3 答案:C
123456
4某航空公司规定,乘客所携带行李的质量(kg)与其运费(元)由图中 的函数图像确定,则乘客可免费携带行李的最大质量为( )
题型一 题型二 题型三
题型一 函数的表示方法 【例1】 某商场新进了10台彩电,每台售价3 000元,试分别用列 表法、图像法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与 收款总额y(元)之间的函数关系. 分析:明确函数的定义域 明确函数的值域 用三种表示 方法表示函数
2.2 函数的表示法
第1课时 函数的三种表示方法
1.掌握函数的三种表示方法——解析法、图像法、列表法. 2.会作简单函数的图像,掌握求函数解析式的一般方法.
1.函数的表示法
名师点拨函数的三种表示方法的优缺点比较.
【做一做1】 以下形式中,不能表示“y是x的函数”的是 ( )
A.
x
1
2
3
4

函数的表示法

函数的表示法
复习回顾
函数的定义 设A、B是非空的数集, 如果按照某都有唯一确定的数 f (x)与 之对应, 那么就把对应关系 f 叫作定义在集合A上的函数.
记作 f:A→B,或 y=f (x), x∈A.
其中x叫做自变量, x的取值范围A叫做函数的定义域, 与x的值相对应的 y [或 f (x)]值叫做函数值, 函数值的集 合{y |y=f (x), x∈A}叫做函数的值域.

二、例题与练习:
1.作函数的图像
x, x 0, 例1.请画出下面函数的图像:y x x, x 0.
解: 图像为第一和第二象限的角平分线,如图, y
1 o
1 2
x
x 4, 2 例2.已知函数 f ( x) x 2 x, x 2,
f f (5) f (3) 3 4 1.
( x 1) 2 , x 0, 练习1.已知函数 f ( x ) x 0. x, (2)画出函数的图像. (1)求 f f f 1 的值;


2.求函数的解析式 例3.国内跨省市之间邮寄信函,每封信函的质量和对应的邮资 如表.画出图像,并写出函数的解析式.
§2.2函数的表示法
一、函数的表示:
把函数的两个变量之间的函数关系, 用一个等式来表示, (1)解析法: 这个等式叫做函数的解析表达式,简称解析式.
函数的表示法 (2)列表法: 列出表格来表示两个变量的函数关系. (3)图象法:用函数的图象表示两个变量之间的函数关系.

(1)函数关系清楚. 解析法的优点:(2)给自变量一个值,可求它的函数值. (3)便于研究函数的性质. 列表法的优点:不必计算,查表可得到自变量与函数的对应值. 图象法的优点:直观形象地表示出函数值随自变量的变化规律.

函数的表示法 课件

函数的表示法 课件
x 1 x2
【解题指导】
【规范解答】令 1 1, t…………………………………2分
x
则x 1 , t, …1①…………………………………………4分
t 1
1

f
t
1
t (
1 1
)2……t2t…12…t .………………………8分
t 1
又t2-2t≠0,∴t≠0且t≠2,
∴t≠0,且t≠1,t≠2②, …………………………………10分 ∴f(x)= x (x1≠0,且x≠1,x≠2).……………………12分
缺 只能近似求出自变量的

值所对应的函数值,而 且有时误差较大
2.函数三种表示方法的内在联系 (1)解析法、图象法和列表法分别从三个不同的角度刻画了自 变量和函数值的对应关系.
(2)在已知函数的解析式研究函数的性质时,可以先由解析式确 定函数的定义域,然后通过取一些有代表性的自变量的值与对 应的函数值列表,描点连线作出函数的图象,利用函数图象形 象直观的优点,能够帮助我们理解概念和有关性质.数形结合是 研究数学的一种重要的数学思想,是解题的一种有效途径.
【规范训练】(12分)用长为l的铁丝弯成下部为矩形,上部为
半圆形的框架,若矩形底边长为2x,求此框架围成的面积y
与x的函数关系式,并指出其定义域.
【解题设问】(1)矩形的另一边怎样表示? l 2x . x
2
(2)矩形的边长应满足什么关系?_两__边__均__大__于__0.
【规范答题】由条件知,矩形的底边长为2x,即半圆的半径
【想一想】(1)解答题2的关键点是什么? (2)用换元法求函数解析式应注意什么问题? 提示:(1)解答题2的关键点是设出所求函数解析式利用恒等式 求解. (2)用换元法求函数解析式时,要注意新元的取值范围,即换 元后的函数的定义域.

122函数的表示法解读

122函数的表示法解读

函数的表示法【学习目标】1、掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数;2、了解简单的分段函数,并能简单的应用;3、会用列表、描点、连线的三步作图法画一些简单函数的图象,并能通过几何直观得到函数的有关信息(性质);4、了解映射的概念,会解决简单的映射问题。

【学习重点】1、函数的的三种表示方法(图象法、列表法、解析法);2、数形结合思想的应用。

【探索新知】1.函数有哪些表示方法?2.不同的函数表示方法各自的特点?3、映射的定义:【典型例题】例1(教科书第19页例3)思考:(1)比较函数的三种表示法,各自的有哪些优、缺点?(2)所有的函数都能用解析法表示吗?(3)右图能表示某个函数的图象吗?为什么?练习P23:1例2(教科书第20页例4)练习P23:2例3(教科书第21页例5)练习P23:3例4(教科书第21页例6)练习:国内投寄信函(外埠),假设每封信函不超过20g,付邮资80分,超过20g而不超过40g付邮资160分,每封xg(0<x≤100)的信函应付邮资为(单位:分)例5(教科书第2页例7)练习P23:4【课后反思】学习本节课你有什么新的收获?还有什么疑问?【作业】课本P24习题1.2A组7、9【巩固练习】1、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程。

在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下列图形中符合该生走法的是2、作下列函数的图象。

(1),||1y x x=≤;(2)21x xyx-=-;(3)2243,03y x x x=--≤≤。

3、课本P24习题1.2A组8、104、某质点在30s内运动速度vcm/s是时间t的函数,它的图像如下图.用解析式表示出这个函数, 并求出9s时质点的速度O。

122函数的表示法(二)——映射的概念.doc

122函数的表示法(二)——映射的概念.doc

§1.2.2函数的表示法(二)——映射的概念一、内容与解析(―)内容:映射(二)的军析:⑴映射是两个集合4与B中,元素Z间存在的某种对应关系.说其是一种特殊的对应,就是因为它只允许存在“一对一”与“多对一”这两种对应,而不允许存在“一对多” 的对应.⑵映射中只允许“一对一”与“多对一"这两种对应的特点,从A到B的映射f.A^B实际是要求集合人中的任一元素都必须对应于集合〃中唯一的元素•但对集合〃中的元素并无任何要求,即允许集合〃中的元素在集合A中可能有一个元素与之对应,可能有两个或多个元素与Z对应,也口J能没冇元素与Z对应.⑶映射屮对应法则/是有方向的,一般来说从集合A到集合B的映射与从集合B到集合A的映射是不同的.(4)我们可以把对应关系看成一而镜子,集合A中的元素在这而镜子中存在一个像,一个相对应的元素,原像则是集合A中的元素.这样像和原像的概念就比较容易理解.并11映射中集合A的每一个元素在集合B中都有它的像,通过对应关系——即通过镜子总存在像,而且像是唯一的,不会“照”出许多的像來,这是映射区别于一般対应的本质特征.二、目标及其解析:(-)教学口标(1)了解映射的概念及表示方法;结合简单的对应图示,了解一一映射的概念.(2)解析:重点把握映射与函数的区别。

三、问题诊断分析函数与映射的区别与联系⑴函数包括三要素:定义域、值域、两者Z间的对应关系;映射包括三要索:集合A,集合B,以及A,BZ间的对应关系(2)函数定义中的两个集合为非空数集;映射中两个集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个兀,在值域中都冇唯一确定的函数值和它对应;在映射中, 对集合A中的任意元素a ,在集合B中都有唯一确定的像方和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的口变量的值和它对应;在映射中,对于集合B中的任一元索方,在集合A中不一定冇原像.(5)函数实际上就是非空数集A到非空数集B的一个映射f:AfB⑹通过右图我们可以清晰的看到这三者的关系.四、教学支持条件分析在木节课一次递推的教学屮,准备使用PowerPoint 2003o因为使用PowerPoint 2003, 有利于提供准确、最核心的文字信息,有利于帮助学牛顺利抓住老师上课思路,节省老师板书时间,让学牛尽快地进入对问题的分析当中。

新教材高中数学第二章函数2函数 函数的表示法第1课时函数的表示法课件北师大版必修第一册

新教材高中数学第二章函数2函数 函数的表示法第1课时函数的表示法课件北师大版必修第一册

列表法
量对应的函数值
对应的函数值
基础自测
1.已知 f(x)=π(x∈R),则 f(π2)等于
A.π2
B.π
C. π
D.不确定
[解析] 因为π2∈R,所以f(π2)=π.
( B)
2.已知函数y=f(x)的图象如图,则f(x)的定
义域是
( C)
A.(-∞,1)∪(1,+∞)
B.R
C.(-∞,0)∪(0,+∞)
关键能力•攻重难
题型探究
题型一
列表法表示函数
例 1某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收 款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.
[ 分 析 ] 函 数 的 定 义 域 是 {1 , 2 , 3 , … , 10} , 值 域 是 {3 000 , 6 000 , 9 000,…,30 000},可直接列表、画图表示.分析题意得到表达y与x关系的解 析式,注意定义域.
[解析] (1)列表法:
x(台) 1 2 3 4 5 6 7 8 9 10 12 15 18 21 24 27 30
y(元) 3 000 6 000 9 000 000 000 000 000 000 000 000
(2)图象法:如图所示: (3)解析法:y=3 000x,x∈{1,2,3,…,10}.
第1课时 函数的表示法
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点 表示函数的三种方法
解析法 列表法 图象法
用__数__学__表__达__式____表示两个变量之间的对应关系 列出__表__格____来表示两个变量之间的对应关系 用__图__象____表示两个变量之间的关系

122函数的表示法(三)课件(2)

122函数的表示法(三)课件(2)
(6)设A={三角形},B=R,对应关系是“求面积”;
(7)设A={x|x>0},B={y|y>0},对应关系是
f:x→y =x2,x∈A,y∈B.
注意:集合A到集合B的映射与集合B到集合 A的映射一样吗?
§1.2.2函数的表示法
【1】已知集合 M {x 0≤ x ≤6}, P y 0≤ y ≤3
解:(1)0∈A,在对应关系f 的作用下,02=0B, 故不是.
(2)0∈A,在对应关系f的作用下,2×0-1=-
1N,故不是.
(3)对表示法
例3.判断下列对应是否为从集合A到B的映射: (5)设A={x|x>0},B=R,对应关系是“求算术 平方根”;
1)对于任何一个实数a,数轴上有唯一的点P
和它对应.
P

a
2)对于坐标平面内的任何一点A,都有唯一的
一个有序实数对(x, y)和它对应; y A(x,y)
3)对于任何一个三角形,都有
唯一的面积和它对应;
o
x
4)本班每一个学生和教室内的座位对应; 5)本班每一个学生和班主任对应; 6)某人和他的书对应.
§1.2.2函数的表示法
函数是两个非空数集间的一种确定的对 应关系.若将数集扩展到任意的集合时,会 得到什么结论?
阅读课本 P22~23.
§1.2.2函数的表示法



座位
对应是两个集合的元素之间的一种关系,对 应关系可用图示的方法或文字描述等来表示.一 个对应由两个集合和对应关系三部分组成.
§1.2.2函数的表示法
§1.2.2函数的表示法
例1.下面7个对应,其中哪些是集合A到B的映射?
不是
a1
b1
a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2函数的表示法
教学目的:(1)明确函数的三种表示方法;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学过程:
一、引入课题
1.复习:函数的概念;
2.常用的函数表示法及各自的优点:
(1)解析法;(2)图象法;(3)列表法.
二、新课教学
(一)典型例题
例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;
○2解析法:必须注明函数的定义域;
○3图象法:是否连线;
○4列表法:选取的自变量要有代表性,应能反映定义域的特征.
巩固练习:课本P27练习第1题
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:
第一次第二次第三次第四次第五次第六次
王伟98 87 91 92 88 95
张城90 76 88 75 86 80
赵磊68 65 73 72 75 82
班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;
○2本例能否用解析法?为什么?
巩固练习:
课本P27练习第2题
例3.画出函数y = | x | .
解:(略)
巩固练习:课本P27练习第3题
拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.
课本P27练习第3题
例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).
已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里
程只能取整数值.
解:设票价为y 元,里程为x 公里,同根据题意,
如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.
由空调汽车票价制定的规定,可得到以下函数解析式:
(*N x ∈)
根据这个函数解析式, 可画出函数图象,
如右图所示: 注意:

1 本例具有实际 背景,所以解题时应考 虑其实际意义;
○2 本题可否用列表法表示函数,如果可以,应怎样列表?
实践与拓展:请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)
说明:象上面两例中的函数,称为分段函数.
注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
三、归纳小结,强化思想
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.
四、作业布置
课本P 28 习题1.2(A 组) 第8—12题 (B 组)第2、3题
(05)(510)(1015)(1519)
x x x x <≤<≤<≤<≤234
5y ⎧⎪⎪=⎨⎪⎪⎩。

相关文档
最新文档