运筹学第9章动态规划解析

合集下载

动态规划

动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。

动态规划(生产和存储问题)

动态规划(生产和存储问题)

动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。

20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。

1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。

例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。

二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。

通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。

阶段变量一般用k=1.2….n.表示。

1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。

它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。

通常还要求状态是可以直接或者是间接可以观测的。

描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。

变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。

用X(k)表示第k阶段的允许状态集合。

n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。

运筹学课件--动态规划

运筹学课件--动态规划
J 表示留在左岸的仆人人数
初始状态s1是T(3,3)
结束状态sn是 T(0,0)
可达状态有哪些?(3,J) (2,2) (1,1) (0,J) J 3 2 1 0
2013-6-9
A
1
运筹学课件
2
3
I
阶段指标——每阶段选定决策xk后所产生的效益,记
vk= vk(Sk, xk)。
指标函数——各阶段的总效益,记相应于Pkn的指标函数
2013-6-9 运筹学课件
动态规划模型的分类: 以“时间”角度可分成:
离散型和连续型。
从信息确定与否可分成:
确定型和随机型。
从目标函数的个数可分成: 单目标型和多目标型。
2013-6-9 运筹学课件
8.2基本概念与方程
1.基本概念
阶段(Stage)——分步求解的过程,用阶段变量k表示,k=1,,n 状态(State)——每阶段初可能的情形或位置,用状态变 量Sk表示。 按状态的取值是离散或连续,将动态规划问题分为
当 k 3,f Max f v
3 0
3 3
3
4
Max 3x 5s 13.6(0.9s 0.2x )
0
3 3
3
3
3
3
Max 0.28x 17.24s
0
3 3
3
3

x s , f 17.52s ,即第3年初将全部完好机器都 投入高负荷。
指标函数vkn=
v

5
表示第k至5年的总产量;
1
递推公式:f Max f v
6

f 0, k 5, ,1
2013-6-9
运筹学课件

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。

1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。

二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。

2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。

三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。

3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。

3.3 确定边界条件边界条件是指初始状态和最终状态的取值。

3.4 求解最优解根据状态转移方程和边界条件,求解最优解。

四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。

4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。

4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。

5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。

教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。

六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。

韩伯棠管理运筹学(第三版)_第九章_目标规划

韩伯棠管理运筹学(第三版)_第九章_目标规划

• step • • • • • • • • • • • • •
3 目标函数值为 : 1100 变量 解 相差值 --------------------x1 166.667 0 x2 250 0 d10 0 d1+ 36666.667 0 d233.333 0 d2+ 0 15.167 d30 26 d3+ 0 26 d41100 0 d4+ 0 2
练习:某厂生产Ⅰ、Ⅱ 两种产品,有关数据如 表所示。试求获利最大 的生产方案?
Ⅰ 原材料 设备(台时) 2 1
Ⅱ 1 2
拥有量 11 10
单件利润
8
10
在此基础上考虑: 1、产品Ⅱ的产量不低于产品Ⅰ的产量; 2、充分利用设备有效台时,不加班; 3、利润不小于 56 元。 解: 分析 第一目标:P1d1 即产品Ⅰ的产量不大于Ⅱ的产量。 第二目标: P2 ( d2 d2 )
运筹学
运筹谋划
一石多鸟
第九章 目标规划
1
第七章
目标规划
• §1 目标规划问题举例 • §2 目标规划的图解法
• §3 复杂情况下的目标规划
• §4.加权目标规划
2
§1 目标规划问题举例
例1.企业生产 • 不同企业的生产目标是不同的。多数企业 追求最大的经济效益。但随着环境问题的 日益突出,可持续发展已经成为全社会所 必须考虑的问题。因此,企业生产就不能 再如以往那样只考虑企业利润,必须承担 起社会责任,要考虑环境污染、社会效益、 公众形象等多个方面。兼顾好这几者关系, 企业才可能过引入目标值和偏差变量,可 以将目标函数转化为目标约束。 目标值:是指预先给定的某个目标的一个 期望值。 实现值或决策值:是指当决策变量xj 选定 以后,目标函数的对应值。 偏差变量(事先无法确定的未知数):是 指实现值和目标值之间的差异,记为 d 。 正偏差变量:表示实现值超过目标值的部 分,记为 d+。 负偏差变量:表示实现值未达到目标值的 部分,记为 d-。

运筹学动态规划

运筹学动态规划
许多问题用动态规划的方法去处理,常比 线性规划或非线性规划方法更有效。特别对于 离散性的问题。
特别注意:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算法 (如线性规划是一种算法)。
因而,动态规划没有标准的数学表达式和明 确定义的一组规则,而必须对具体问题进行具体 分析处理.
动态规划
8.1 多阶段决策过程及实例 8.2 动态规划的基本概念和
基本方程 8.3 动态规划的最优性定理 8.4 动态规划与静态规划关系
综述
动态规划是运筹学的一个分支,是解决多 阶段决策过程最优化问题的一种数学方法。
该方法是由美国数学家贝尔曼(R.Bellman)等 人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,把多阶段 决策问题变换为一系列互相联系单阶段问题,然 后逐个加以解决。
1
2
3
始点
5
B1
6 3
A
4 B2 4 6
2
5
B3 6
C1
1 2
2
C2 2
3
C3
3
4 终点
D1 2
D2 3
E
4
D3
2、状态
5
B1
6 3
A 4 B246
25
B3 6
C1
1 2
2
C2 2
C3 3 3
D1 2
D2 3 E 4
D3
各个阶段开始时所处的自然状况和客观条件称为
状态,描述了研究问题过程的状况(称不可控因素).
一些与时间没有关系的静态规划(如线性 规划,非线性规划)问题,只要人为地引进 “时间”因素,也可把它视为多阶段决策问题, 用动态规划方法去处理。

运筹学动态规划

运筹学动态规划

运筹学动态规划运筹学是一门综合运筹学、优化学、决策学和统计学等多学科知识的学科,它的核心内容是对决策问题进行建模和分析,并通过数学方法进行求解和优化。

动态规划是运筹学中的一种重要方法,它通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

下面将详细介绍运筹学中的动态规划方法。

动态规划方法的核心思想是将原问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来求解原问题的最优解。

为了可以使用动态规划方法,必须满足以下两个条件:子问题的最优解可以作为原问题的最优解的一部分;子问题之间必须具有重叠性,即一个子问题可以被多次使用。

动态规划方法的具体步骤如下:首先,将原问题分解为若干个子问题,并定义出每个子问题的状态和状态转移方程;其次,通过迭代求解每个子问题的最优解,直到求解出原问题的最优解;最后,根据子问题的最优解和状态转移方程,得到原问题的最优解。

动态规划方法的应用非常广泛,可以用于求解各种各样的优化问题。

例如,在物流配送中,可以使用动态规划方法求解最短路径问题;在生产计划中,可以使用动态规划方法求解最优生产计划;在股票投资中,可以使用动态规划方法求解最优投资策略等。

动态规划方法的优点是可以通过求解子问题的最优解来求解原问题的最优解,避免了穷举法的复杂性。

此外,动态规划方法还可以通过引入一定的约束条件,来对问题进行更精确的建模和求解。

然而,动态规划方法也存在一些局限性。

首先,动态规划方法要求问题能够满足子问题的最优解可以作为原问题的最优解的一部分,这限制了动态规划方法的应用范围。

其次,动态规划方法通常需要建立较为复杂的状态转移方程,并进行复杂的计算,使得算法的实现和求解过程比较困难。

综上所述,动态规划是运筹学中的一种重要方法,通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

动态规划方法的优点是可以高效地求解优化问题,但同时也存在一些局限性。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划教案章节一:引言1.1 课程目标:让学生了解动态规划的基本概念和应用领域。

让学生掌握动态规划的基本思想和解决问题的步骤。

1.2 教学内容:动态规划的定义和特点动态规划的应用领域动态规划的基本思想和步骤1.3 教学方法:讲授法:介绍动态规划的基本概念和特点。

案例分析法:分析动态规划在实际问题中的应用。

教案章节二:动态规划的基本思想2.1 课程目标:让学生理解动态规划的基本思想。

让学生学会将问题转化为动态规划问题。

2.2 教学内容:动态规划的基本思想状态和决策的概念状态转移方程和边界条件2.3 教学方法:讲授法:介绍动态规划的基本思想。

练习法:通过练习题让学生学会将问题转化为动态规划问题。

教案章节三:动态规划的求解方法3.1 课程目标:让学生掌握动态规划的求解方法。

让学生学会使用动态规划算法解决问题。

3.2 教学内容:动态规划的求解方法:自顶向下和自底向上的方法动态规划算法的实现:表格化和递归化的方法3.3 教学方法:讲授法:介绍动态规划的求解方法。

练习法:通过练习题让学生学会使用动态规划算法解决问题。

教案章节四:动态规划的应用实例4.1 课程目标:让学生了解动态规划在实际问题中的应用。

让学生学会使用动态规划解决实际问题。

4.2 教学内容:动态规划在优化问题中的应用:如最短路径问题、背包问题等动态规划在控制问题中的应用:如控制库存、制定计划等4.3 教学方法:讲授法:介绍动态规划在实际问题中的应用。

案例分析法:分析实际问题,让学生学会使用动态规划解决实际问题。

教案章节五:总结与展望5.1 课程目标:让学生总结动态规划的基本概念、思想和应用。

让学生展望动态规划在未来的发展。

5.2 教学内容:动态规划的基本概念、思想和应用的总结。

动态规划在未来的发展趋势和挑战。

5.3 教学方法:讲授法:总结动态规划的基本概念、思想和应用。

讨论法:让学生讨论动态规划在未来的发展趋势和挑战。

教案章节六:动态规划的优化6.1 课程目标:让学生了解动态规划的优化方法。

运筹学课程动态规划课件

运筹学课程动态规划课件

5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2

运筹学教案动态规划ppt课件

运筹学教案动态规划ppt课件

(uk ,u2un )
注: 指标函数的含义是多样的,如:距离、 利润、成本、产品产量、资源消耗等。
最优化原理与动态规划问题基本方程
最优化原理
“作为全过程的最优策略具有这样的性质: 无论过去的状态和决策如何,对于前面决策所形 成的状态(即该最优策略上某一状态)而言,余 下的诸决策必须构成以此状态为初始状态的最优 策略。
3 A5
4
1 阶段
B
9
1
5
4
B
3
2
5
1 B
3
7
2
阶段
C1
1
5
D
1
4
8
C
4
2 D6
E 1
1
2
6
29
F
2 E
4 C
4
3
2
3
阶段
7
D
3
5
4 阶段
2
5 阶段
状态与状态变量
状态: 表示每个阶段开始时所处的自然状 况或客观条件,又称为不可控因素,是阶段的特 征,通常一个阶段有若干个状态。
如:前例,第一阶段状态为点A,第二阶段 的状态有B1,B2,B3三个状态。
但是要受到维数限制。
求解动态规划问题的过程: (1)将问题过程划分恰当阶段,选择阶段
变量k.。 正确(描2过)程正的确演选变择,状又态要变满量足x无k. 后应效注性意。:既能够
(3)正确选择决策变量uk,确定允许集合 。 (4)正确写出状态转移方程 xk+1= Tk(xk, uk)。 (5) 列出按阶段可分的准则函数V1,n ,要 满足几个性质。
概述
▪ 动态规划为运筹学的一个分支,是用于求解 多个阶段决策过程的最优化数学方法。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
基本模型
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>

运筹学中的动态规划原理-教案

运筹学中的动态规划原理-教案

运筹学中的动态规划原理-教案一、引言1.1动态规划的基本概念1.1.1动态规划的定义:动态规划是一种数学方法,用于求解多阶段决策过程的最优化问题。

1.1.2动态规划的特点:将复杂问题分解为简单的子问题,通过求解子问题来得到原问题的最优解。

1.1.3动态规划的应用:广泛应用于资源分配、生产计划、库存控制等领域。

1.2动态规划的基本原理1.2.1最优性原理:一个最优策略的子策略也是最优的。

1.2.2无后效性:某阶段的状态一旦确定,就不受这个状态以后决策的影响。

1.2.3子问题的重叠性:动态规划将问题分解为子问题,子问题之间往往存在重叠。

1.3动态规划与静态规划的关系1.3.1静态规划:研究在某一特定时刻的最优决策。

1.3.2动态规划:研究在一系列时刻的最优决策。

1.3.3动态规划与静态规划的区别:动态规划考虑时间因素,将问题分解为多个阶段进行求解。

二、知识点讲解2.1动态规划的基本模型2.1.1阶段:将问题的求解过程划分为若干个相互联系的阶段。

2.1.2状态:描述某个阶段的问题情景。

2.1.3决策:在每个阶段,根据当前状态选择一个行动。

2.1.4状态转移方程:描述一个阶段的状态如何转移到下一个阶段的状态。

2.2动态规划的基本算法2.2.1递归算法:通过递归调用求解子问题。

2.2.2记忆化搜索:在递归算法的基础上,保存已经求解的子问题的结果,避免重复计算。

2.2.3动态规划算法:自底向上求解子问题,将子问题的解存储在表格中。

2.2.4动态规划算法的优化:通过状态压缩、滚动数组等技术,减少动态规划算法的空间复杂度。

2.3动态规划的经典问题2.3.1背包问题:给定一组物品,每种物品都有自己的重量和价值,求解在给定背包容量下,如何选择物品使得背包中物品的总价值最大。

2.3.2最长递增子序列问题:给定一个整数序列,求解序列的最长递增子序列的长度。

2.3.3最短路径问题:给定一个加权有向图,求解从源点到目标点的最短路径。

运筹学课件(动态规划)

运筹学课件(动态规划)

(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3

运筹学 第9章_动态规划应用举例

运筹学 第9章_动态规划应用举例
其中g(u1)和h(u1)为已知函数,且g(0)=h(0)=0。这种资源在投入A、B生产 后,年终还可回收再投入生产。设年回收率分别为0<a<1和0<b<1,则在 第一年生产后,回收的资源量合计为
s2 au1 b(s1 u1) 第二年再将资源数量s2中的u2和s2− u2分别再投入A、B两种生产,则第二年 又可得到收入为
f4
(s4
)
max
0u4 s4
8u4 5(s4 u4 ) f5
0.7u4 0.9(s4 u4 )
max 0u4 s4
8u4 5(s4 u4 ) 8
0.7u4 0.9(s4 u4 )
max
0u4 s4
13.6u4
12.2( s4
u4
)
max 0u4 s4
1.4u4 12.2s4
g(u2 ) h(s2 u2 )
如此继续进行n年,试问:应当如何决定每年投入A生产的资源量
u1,u2 ,L ,un 才能使总的收入最大?
14
清华大学出版社
1.1资源分配问题
此问题写成静态规划问题为
max z g(u1) h(s1 u1) g(u2 ) h(s2 u2 ) L g(un ) h(sn un )
g(uk ) h(sk uk ) fk1 auk b(sk uk )
k n 1,L , 2,1
最后求出f1(s1)即为所求问题的最清大华总大收学入出版。社
16
1.1资源分配问题
例2 机器负荷分配问题
某种机器可在高低两种不同的负荷下进行生产,设机器在高负荷下生产 的产量函数为g=8u1 ,其中u1为投入生产的机器数量,年完好率a=0.7;在 低负荷下生产的产量函数为h=5y,其中y为投入生产的机器数量,年完好率 为b=0.9。

9-《运筹学》-第九章

9-《运筹学》-第九章

第九章 动态规划应用举例§1 资源分配问题与背包问题1. 一维分配问题问题:一种数量为a 的资源,分配给n 个用户。

若分配给第k 个用户的数量为k x ,相应可得到的收益为)(k k x g 。

求总收益最高的分配方案。

其数学模型为:)(max 11≥≤=∑∑==k nk knk k k x axx g f用动态规划方法求解:将其划分为n 阶段决策问题,第k 阶段确定分配给第k 个用户的资源数量 第k 阶段初的状态变量k s 为当前这种资源的剩余量。

],0[,1a s a s k ∈=(若模型要求},...1,0{,a s Z x k k ∈∈)决策变量k x :第k 阶段的剩余资源量为k s 时对第k 个用户分配的数量],0[k k s x ∈(若},...1,0{,k k k s x Z x ∈∈)状态转移方程:k k k x s s -=+1 动态规划基本方程:{}0)(1,...1,,)()(max )(1111],0[=-=+=++++∈n n k k k k s x k k s f n n k s f x g s f k k[例]将4台机器分配给甲、乙、丙三个工厂,其收益表如下(单位:万元):求总收益最高的分配方案。

解:分为3个阶段,用逆序方法求解:3=k ,求4,3,2,1,0),(333=s s f2=k ,求4,3,2,1,0),(222=s s f1=k ,求4),(111=s s f问题的最大收益值为:)(11s f =17万元,最优分配方案有如下两个:方案1:*1x =1(*2s =3),*2x =2(*3s =1),*3x =1,即分别分配给甲1台,、乙2台、丙1台。

方案2:*1x =2(*2s =2),*2x =2(*3s =0),*3x =0,即分别分配给甲2台,、乙2台、丙0台。

2. 二维分配问题问题:两种数量分别为b a ,的资源,分配给n 个用户。

若分配给第k 个用户的两种资源数量分别为k k y x ,,相应可得到的收益为),(k k k y x g 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g=g(u1)
这时,机器的年完好率为a,即如果年初完好机器的数量为u,到年终时完好 的机器就为au,0<a<1,在低负荷下生产时,产品的年产量h和投入生产的机 器数量u2的关系为
h=h(u2)
相应的机器年完好率为b,0<b<1。 假定开始生产时完好的机器数量为s1。要求制定一个五年计划,在每年开始 时,决定如何重新分配完好的机器在两种不同的负荷下生产的数量,使在五年 内产品的总产量达到最高。
8
第2节 动态规划的基本概念和基本方程
例1中求A到G的最短路线问题是动态规划中一个典型例子。现通过讨论它 的解法,说明动态规划方法的基本思想,并阐述有关基本概念。
由图8-2可知,从A点到G点可以分为6个阶段。在第一阶段,A为起点,终 点有B1、B2两个,因而这时走的路线有两个选择,一是走到B1;一是走到B2 ,若选择走到B2的决策,则B2就是第一阶段决策的结果。它既是第一阶段路 线的终点,又是第二阶段路线的始点。在第二阶段,再从B2点出发,有一个 可供选择的终点集合{C2,C3,C4};若选择由B2走至C2,则C2就是第二阶段 的终点,同时又是第三阶段的始点。递推下去可看到:各个阶段的决策不同 ,路线就不同。显然,当某阶段的始点给定后,会影响后面各阶段的行进路 线和整个路线的长短,而后面各阶段路线的发展不受这点以前各阶段决策的 影响。故此问题的要求是:在各个阶段上选则一个恰当的决策,使得由这些 决策组成的一个决策序列所决定的一条路线是总路程最短的一条。
5
第1节 多阶段决策过程及实例
• 多阶段决策过程
– 在生产和科学实验中,有一类活动的过程,由于它的特殊性,可 将过程分为若干个互相联系的阶段,在它的每一个阶段都需要作 出决策,从而使整个过程达到最好的活动效果。因此,各个阶段 决策的选取不是任意确定的,它依赖于当前面临的状态,又影响 以后的发展。当各个阶段决策确定后,就组成了一个决策序列, 因而也就决定了整个过程的一条活动路线。这种把一个问题可看 作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策 过程,也称序贯决策过程。
9
2.1 动态规划的基本概念
• 1.阶段
– 把所给问题的过程,恰当地分为若干个相互联系的阶段,以便能 按一定的次序去求解。描述阶段的变量称为阶段变量,常用k表示。 阶段的划分,一般是根据时间和空间的自然特征来划分,但要便 于把问题的过程能转化为多阶段决策的过程。如例1可分为6个阶 段来求解,k分别等于1、2、3、4、5、6。
– 根据决策过程的演变是确定性的还是随机性的,又可分为确定性决策 过程和随机性决策过程。
– 组合起来可分为
• 离散确定性 • 离散随机性 • 连续确定性 • 连续随机性
本主要研究离散决策过程。
4
第9章 动态规划的基本方法
第1节 多阶段决策过程及实例 第2节 动态规划的基本概念和基本方程 第3节 动态规划的最优性原理和最优性定理 第4节 动态规划和静态规划的关系
五 动态规划
第9章 动态规划的基本方法 第10章 动态规划应用举例
1
动态规划
• 什么是动态规划
– 解决多阶段决策过程最优化的一种数学方法。
• 动态规划的形成
– 产生于20世纪50年代。1951年美国数学家贝尔曼(R.Bellman)等人,根 据一类多阶段决策问题的特点,把多阶段决策问题变换为一系列互相联 系的单阶段问题,然后逐个加以解决。与此同时,他提出了解决这类问 题的“最优性原理”,研究了许多实际问题,从而创建了解决最优化问 题的一种新的方法——动态规划。
• 动态规划的应用
– 在工程技术、企业管理、工农业生产及军事等部门中都有广泛的应用, 并且获得了显著的效果。
2
动态规划
• 动态规划在企业管理中的主要应用领域
– 最优路径问题 – 资源分配问题 – 生产调度问题 – 库存问题 – 装载问题 – 排序问题 – 设备更新问题 – 生产过程最优控制问题 – 等等
动态规划是求解某类问题的一种方法,是考查问题的一种途径,而不是一种特 殊算法(如线性规划是一种算法)。因而,它不像线性规划那样有一个标准的数学 表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
3
动态规划
• 动态规划模型的分类
– 根据多阶段决策过程的时间参量是离散的还是连续变量,分为离散决 策过程和连续决策过程。
11
2.1 动态规划的基本概念
描述过程状态的变量称为状态变量。它可用一个数、一组数或一向量(多维情形) 来描述。常用Sk表示第k阶段的状态变量。如在例1中第三阶段有四个状态,则状 态变量Sk可取四个值,即C1、C2、C3、C4。点集合{C1,C2,C3,C4}就称为第 三阶段的可达状态集合。记为S3={C1,C2,C3,C4}。有时为了方便起见,将 该阶段的状态编上号码1,2…这时也可记S3={1,2,3,4}。第k阶段的可达 状态集合就记为Sk。
10
2.1 动态规划的基本概念
• 2.状态
– 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过 程的状况,又称不可控因素。在例1中,状态就是某阶段的出发位置。它 既是该阶段某支路的起点,又是前一阶段某支路的终点。通常一个阶段有 若干个状态,第一阶段有一个状态就是点A,第二阶段有两个状态,即点 集合{B1,B2},一般第k阶段的状态就是第k阶段所有始点的集合。
6
第1节 多阶段决策过程及实例
• 例1 最短路线问题
给定一个线路网络,两点之间连线上的数字表示两点间的距离(或费用), 试求一条由A到G的铺管线路,使总距离为最短(或总费用最小)。
7
第1节 多阶段决策过程及实例
例2 机器负荷分配问题
某种机器可以在高低两种不同的负荷下进行生产。在高负荷下进行生产时, 产品的年产量g和投入生产的机器数量u1的关系为
马尔科夫性 这里所说的状态应具有下面的性质:如果某阶段状态给定后,则在这阶段以后 过程的发展不受这阶段以前各段状态的影响。换句话说,过程的过去历史只能 通过当前的状态去影响它未来的发展,当前的状态是以往历史的一个总结。这 个性质称为无后效性(即马尔科夫性)。
12
2.1 动态规划的基本概念
相关文档
最新文档