三视图与直观图测试题(人教A版)(含答案)

合集下载

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图知,原几何体是由一个长方体与一个三棱柱组成,其体积为,故选B.【考点】根据三视图还原几何体,求原几何体的体积,容易题.3.若某多面体的三视图(单位: cm)如图所示, 则此多面体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】C【解析】由三视图可得,该几何体相当于一个正方体切去一个三个侧棱长为1的三棱锥.所以该几何体的体积为.故选C.【考点】1.三视图.2.空间想象力.3.几何体的体积.4. (2014·孝感模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是( )A.16πB.14πC.12πD.8π【答案】A【解析】由三视图可知,该几何体是球挖去半球.其中两个半圆的面积为π×22=4π.个球的表面积为×4π×22=12π,所以这个几何体的表面积是12π+4π=16π.5.如图,某几何体的三视图都是等腰直角三角形,则几何体的体积是()A.8B.7C.9D.6【答案】C【解析】由三视图可知,几何体是底面为等腰直角三角形,有一侧棱与底面垂直(垂足在非直角处)的三棱锥,其底面面积为×6×3=9,三棱锥的高为3,所以三棱锥的体积=×9×3=9.6.已知某几何体的三视图(如图),正视图和侧视图均为两个相等的等边三角形,府视图为正方形,则几何体的体积为()A.B.4C.9D.9【答案】C【解析】由三视图可知,几何体由两个同底之正四棱锥组成所以其体积为V=2××32×3×=9 7.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.8.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题意,棱锥的高为,底面面积为,∴.【考点】三视图,体积.9.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.10.―个几何体的三视图如图所示(单位:),则该几何体的体积为.【答案】18+9【解析】由三视图可知,此几何体为两个相切的球上方放了一个长方体组成的组合体,所以其体积为:V=3×6×1+2××=18+911.一个空间几何体的三视图如图所示,该几何体的表面积为__________.【答案】152【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,腰长为5.棱柱的高为8.因此表面积为【考点】三视图12.某三棱锥的三视图如图所示,则这个三棱锥的体积为;表面积为.【答案】;.【解析】由三视图知几何体如下图,为一个三棱锥,且三棱锥的一个侧面与底面垂直,底面三角形的一条边长为,该边上的高为,∴几何体的体积.它的表面积为.【考点】由三视图求面积、体积.13.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_______.【答案】【解析】由题意可得该几何体是一个三棱锥,体积.【考点】1.三视图的知识.2.立几中的线面关系.3.三棱锥的体积公式.14.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是【答案】【解析】由三视图,可知该几何体是三棱锥,并且侧棱,,,则该三棱锥的高是,底面三角形是直角三角形,所以这个几何体的体积==.【考点】由三视图求几何体的体积.15.一个几何体的三视图如图所示,则该机合体的体积为( )A.B.C.D.【答案】B【解析】分析可得该几何体是底面为菱形的四棱锥,则高底面面积,所以.故选B【考点】三视图四棱锥体积16.一个几何体的三视图如图所示,则该几何体的体积是【答案】【解析】通过三视图的观察可得,该几何体是一个四棱柱,底面是一个直角梯形,其上下底分别为2,3,梯形的高为2.四棱柱的高为2.所以几何体的体积为.【考点】1.三视图的知识.2.几何体的体积.3.空间想象力.17.某长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.4C.6D.8【答案】D【解析】割补可得其体积为2×2×2=8.18.某几何体的三视图如图所示,则该几何体的体积是________.【答案】16π-16【解析】由三视图知,该几何体是由一个底面半径为2,高为4的圆柱内挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,∴V=(π×22-22)×4=16π-16.19.已知正方体ABCD-A1B1C1D1,M为棱A1B1的中点,N为棱A1D1的中点.如图是该正方体被M,N,A所确定的平面和N,D,C1所确定的平面截去两个角后所得的几何体,则这个几何体的正视图为().【答案】B【解析】对于选项A,由于只是截去了两个角,此切割不可能使得正视图成为梯形.故A不对;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确;对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不对;对于D,正视图是正方形,符合题意,其中的两条实线符合俯视图的特征,故D不对.20.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则该棱柱的体积为()A.B.C.D.6【答案】B【解析】由三视图知该直三棱柱高为4,底面正三角形的高为3,所以正三角形边长为6,所以V=×36×4=36.故选B.【考点】1.三视图;2.柱体体积计算.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意知道,该几何体体积是圆柱体积的,即.【考点】1、三视图;2、几何体体积.22.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A.B.C.D.【答案】B【解析】由三视图可得该几何体是一个圆台,其两底直径分别为2和4,母线长为4,所以该几何体的侧面积是,选B..【考点】三视图,圆台的侧面积.23.如图是一个组合几何体的三视图,则该几何体的体积是 .A.B.C.D.【答案】A【解析】由三视图还原可知该几何体是一个组合体,下面是一个半径为4,高为8的圆柱,,上面是一个三棱柱,故所求体积为.【考点】三视图,圆柱、三棱柱的体积公式.24.已知一个几何体的三视图如图所示,则该几何体的体积为___________【答案】【解析】该几何体为圆柱中挖去半个球而得的组合体,其体积为.【考点】三视图.25.一个几何体的三视图如图所示(单位长度:),俯视图中圆与四边形相切,且该几何体的体积为,则该几何体的高为 .【答案】【解析】由如图所示的几何体的三视图知:这个几何体是一个半径为的球和一个直四棱柱的结合体,且这个直四棱柱的底面是对角线分别为和的棱形,这个直四棱柱的高为,∴这个几何体的体积:V=,解得h=.【考点】1.三视图;2.几何体的面积和体积26.一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D【解析】通过三视图的俯视图可知,该几何体是由两个旋转体组成,故选D.【考点】1.三视图的应用.27.如图为一个几何体的三视图正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图所示,则该几何体的表面积为()A.B.C.D.【答案】D【解析】由三视图可知,这是一个由半个圆柱和一个三棱柱构成的组合体,这个组合体仍为一个柱体。

【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 9-1空间几何体的结构特征及其直观图、三视图 新人教A版

9-1空间几何体的结构特征及其直观图、三视图基础巩固强化1.(文)(2011·合肥市质检)下图是一个几何体的三视图,其中正(主)视图和侧(左)视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 由三视图知,该几何体是两底半径分别为1和2,母线长为4的圆台,故其侧面积S =π(1+2)×4=12π.(理)一个几何体的三视图如图所示,正视图上部是一个边长为4的正三角形,下部是高为3两底长为3和4的等腰梯形,则其表面积为( )A.31π2B.63π2C.π4(57+737) D.π4(41+737) [答案] D [解析]由三视图知,该几何体是一个组合体,上部是底半径为2,高为23的圆锥,下部是两底半径分别为2和32,高为3的圆台,其表面积S =π×2×4+π(2+32)×372+π·(32)2=π4(41+737),故选D. 2.如图所示是水平放置三角形的直观图,D 是△ABC 的BC 边中点,AB 、BC 分别与y ′轴、x ′轴平行,则三条线段AB 、AD 、AC 中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AC ,最短的是AD [答案] B[解析] 由条件知,原平面图形中AB ⊥AC ,从而AB <AD <AC .3.(文)(2012·河南六市联考)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为( )A.14 3 B.6+2 3 C.12+2 3 D.16+2 3 [答案] C[解析] 该几何体是一个正三棱柱,设底面正三角形边长为a,则32a=3,∴a=2,又其高为2,故其全面积S=2×(34×22)+3×(2×2)=12+2 3.(理)(2011·北京西城模拟)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是( )A.①②B.②③C.③④D.①④[答案] B[解析] 根据三视图画法规则“长对正,高平齐、宽相等”,俯视图应与正视图同长为3,与侧视图同宽为2,故一定不可能是圆和正方形.4.(文)(2011·广东文,9)如下图,某几何体的正视图(正视图),侧视图(侧视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2[答案] C[解析] 由三视图知该几何体是四棱锥,底面是菱形,其面积S =12×23×2=23,高h =3,所以V =13Sh =13×23×3=2 3.(理)(2012·保定市一模)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的体积是(单位:m 3).( )A .4+2 6B .4+ 6 C.23 D.43[答案] D[解析] 由侧视图和俯视图是全等的等腰三角形,及正视图为等腰直角三角形可知,该几何体可看作边长AB =BC =3,AC =1的△ABC 绕AC 边转动到与平面△PAC 位置(平面PAC ⊥平面ABC )所形成的几何体,故其体积V =13×(12×2×2)×2=43.5.(文)(2011·广东省东莞市一模)一空间几何体的三视图如图所示,该几何体的体积为12π+853,则正视图与侧视图中x 的值为( )A .5B .4C .3D .2 [答案] C[解析] 根据题中的三视图可知,该几何体是圆柱和正四棱锥的组合体,圆柱的底半径为2,高为x ,四棱锥的底面正方形对角线长为4,四棱锥的高h =32-22=5,其体积为V =13×8×5+π×22×x =12π+853,解得x =3. (理)(2011·新课标全国理,6)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[答案] D [解析]由正视图知该几何体是锥体,由俯视图知,该几何体的底面是一个半圆和一个等腰三角形,故该几何体是一个半圆锥和一个三棱锥组成的,两锥体有公共顶点,圆锥的两条母线为棱锥的两侧棱,其直观图如图,在侧视图中,O 、A 与C 的射影重合,侧视图是一个三角形△PBD ,OB =OD ,PO ⊥BD ,PO 为实线,故应选D.6.(文)(2012·河北郑口中学模拟)某几何体的正视图与侧视图如图所示,若该几何体的体积为13,则该几何体的俯视图不可以是( )[答案] D[解析] 由正视图及俯视图可知该几何体的高为1,又∵其体积为13,故为锥体,∴S 底=1,A 中为三角形,此时其底面积为12,舍去;B 为14个圆,底面积为π4,也舍去,C 为圆,其面积为π舍去,故只有D 成立.[点评] 如果不限定体积为13,则如图(1)在三棱锥P -ABC 中,AC ⊥BC ,PC ⊥平面ABC ,AC =BC =PC =1,则此三棱锥满足题设要求,其俯视图为等腰直角三角形A ;如图(2),底半径为1,高为1的圆锥,被截面POA 与POB 截下一角,OA ⊥OB ,则此时几何体满足题设要求,其俯视图为B ;如图(3),这是一个四棱锥,底面是边长为1的正方形,PA ⊥平面ABCD ,此几何体满足题设要求,其俯视图为D.(理)(2012·大同市调研)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 B.203 C.173D.143[答案] C[解析] 由题可知,原正方体如图所示,被平面EFB 1D 1截掉的几何体为棱台AFE -A 1B 1D 1,则所求几何体的体积V =23-V A 1B 1D 1-AEF =23-13×(2+12+2×12)×2=173,故选C.7.已知一个几何体的三视图如图所示(单位:cm),其中正(主)视图是直角梯形,侧(左)视图和俯视图都是矩形,则这个几何体的体积是________cm 3.[答案] 32[解析] 依据三视图知,该几何体的上、下底面均为矩形,上底面是边长为1的正方形,下底面是长为2,宽为1的矩形,左侧面是与底面垂直的正方形,其直观图如图所示,易知该几何体是四棱柱ABCD -A 1B 1C 1D 1,其体积V =S 梯形ABCD ·AA 1=1+2×12×1=32cm 3. 8.(2011·皖南八校联考)已知三棱锥的直观图及其俯视图与侧视图如下,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图面积为________.[答案] 2[解析] 由条件知,该三棱锥底面为正三角形,边长为2,一条侧棱与底面垂直,该侧棱长为2,故正视图为一直角三角形,两直角边的长都是2,故其面积S =12×2×2=2.9.(2011·安徽知名省级示范高中联考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,过对角线BD 1的一个平面交AA 1于E ,交CC 1于F ,得四边形BFD 1E ,给出下列结论:①四边形BFD 1E 有可能为梯形; ②四边形BFD 1E 有可能为菱形;③四边形BFD 1E 在底面ABCD 内的投影一定是正方形; ④四边形BFD 1E 有可能垂直于平面BB 1D 1D ; ⑤四边形BFD 1E 面积的最小值为62. 其中正确的是________.(请写出所有正确结论的序号) [答案] ②③④⑤[解析] ∵平面ADD 1A 1∥平面BCC 1B 1,平面BFD 1E ∩平面ADD 1A 1=D 1E ,平面BFD 1E ∩平面BCC 1B 1=BF ,∴D 1E ∥BF ;同理BE ∥FD 1,∴四边形BFD 1E 为平行四边形,①显然不成立;当E 、F 分别为AA 1、CC 1的中点时,易证BF =FD 1=D 1E =BE ,∴EF ⊥BD 1,又EF ∥AC ,AC ⊥BD ,∴EF⊥BD ,∴EF ⊥平面BB 1D 1D ,∴平面BFD 1E ⊥平面BB 1D 1E ,∴②④成立,四边形BFD 1E 在底面的投影恒为正方形ABCD .当E 、F 分别为AA 1、CC 1的中点时,四边形BFD 1E 的面积最小,最小值为62. 10.在如图所示的几何体中,四边形 ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ;(2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比. [解析] (1)证明:∵MA ⊥平面ABCD ,PD ∥MA , ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD ⊥BC , ∵四边形ABCD 为正方形,∴BC ⊥DC . ∵PD ∩DC =D ,∴BC ⊥平面PDC .在△PBC 中,因为G 、F 分别为PB 、PC 的中点, ∴GF ∥BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)不妨设MA =1,∵四边形ABCD 为正方形,∴PD =AD =2, 又∵PD ⊥平面ABCD ,所以V P -ABCD =13S 正方形ABCD ·PD =83.由于DA ⊥平面MAB ,且PD ∥MA , 所以DA 即为点P 到平面MAB 的距离, 三棱锥V P -MAB =13×⎝ ⎛⎭⎪⎫12×1×2×2=23.所以V P -MAB :V P -ABCD =1:4.能力拓展提升11.(2011·湖南六市联考)一个几何体的三视图如下图所示,其中正视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为( )A.32B.12 C .1 D .2[答案] A[解析] 由三视图知,该几何体是正六棱锥,底面正六边形的边长为1,侧棱长为2,故侧视图为一等腰三角形,底边长3,高为正六棱锥的高3,故其面积为S =12×3×3=32. 12.(2011·皖南八校联考)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )[答案] B [解析]由三视图间的关系,易知其侧视图是一个底边为3,高为2的直角三角形,故选B. [点评] 由题设条件及正视图、俯视图可知,此三棱锥P -ABC 的底面是正△ABC ,侧棱PB ⊥平面ABC ,AB =2,PB =2.13.(2012·内蒙包头市模拟)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是________.[答案] 16π[解析] 由三视图知,该几何体是一个正三棱柱,底面正三角形边长为3,高为2,故其外接球半径R 满足R 2=(22)2+(23×32×3)2=4,∴R =2,∴S 球=4πR 2=16π.14.(2011·南京市调研)如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.[答案] 13[解析] 如图,将三棱柱侧面A1ABB1置于桌面上,以A1A为界,滚动两周(即将侧面展开两次),则最短线长为AA″1的长度,∴AA1=5,AA″=12,∴AA″1=13.15.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的半径长与两底面面积的和.[解析] 如图所示,设圆台上底面半径为r,则下底面半径为2r,且∠ASO =30°, 在Rt △SA ′O ′中,rSA ′=sin30°, ∴SA ′=2r ,在Rt △SAO 中,2rSA=sin30°,∴SA =4r .∵SA -SA ′=AA ′,即4r -2r =2a ,r =a . ∴S =S 1+S 2=πr 2+π(2r )2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2.16.(文)(2011·青岛质检)如下的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积. [解析] (1)如图.(2)所求多面体体积V =V 长方体-V 正三棱锥 =4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3). (理)多面体PABCD 的直观图及三视图如图所示,E 、F 分别为PC 、BD 的中点.(1)求证:EF ∥平面PAD ; (2)求证:PA ⊥平面PDC .[解析] 由多面体PABCD 的三视图知,该几何体是四棱锥,四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,侧面PAD 是等腰直角三角形,PA =PD =2,且平面PAD ⊥平面ABCD .(1)连接AC ,则F 是AC 的中点, 又∵E 是PC 的中点, ∴在△CPA 中,EF ∥PA , 又PA ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 又CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PA .∵△PAD 是等腰直角三角形,且∠APD =π2.即PA ⊥PD .又CD ∩PD =D ,∴PA ⊥平面PDC .1.(2011·宁夏银川一中检测)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是( )[答案] B[分析] 可以直接根据变化率的含义求解,也可以求出函数的解析式进行判断.[解析] 容器是一个倒置的圆锥,由于水是均匀注入的,故水面高度随时间变化的变化率逐渐减少,表现在函数图象上就是其切线的斜率逐渐减小,故选B.[点评] 本题在空间几何体三视图和函数的变化率交汇处命制,重点是对函数变化率的考查,这种在知识交汇处命制题目考查对基本概念的理解与运用的命题方式值得重视.2.(2011·惠州模拟)用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是( )A.6 B.7 C.8 D.9[答案] A3.(2011·河源模拟)如图所示,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )[答案] B[解析] 箭头所指正面的观察方向与底面直角三角形边长为4的边平行,故该边的射影为一点,与其垂直的直角边的长度3不变,高4不变,故选B.4.(2011·辽宁文,8)一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如右图所示,侧视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3[答案] B[解析] 由题意可设棱柱的底面边长为a ,则其体积为34a 2·a =23,得a =2. 由俯视图易知,三棱柱的侧视图是以2为长,3为宽的矩形.∴其面积为2 3.故选B.5.(2011·天津理,10)一个几何体的三视图如下图所示(单位:m),则该几何体的体积为________m3.[答案] π+6[解析] 根据三视图知该几何体是一个长方体上面放一个圆锥.因而V=V长方体+V圆锥,又知长方体长、宽、高分别为3、2、1,圆锥的底面半径为1,高为3,从而求出体积为(π+6)m3.6.下图是一几何体的直观图和三视图.(1)若F为PD的中点,求证:AF⊥平面PCD;(2)求几何体BEC-APD的体积.[解析] (1)证明:由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,PA=2EB=4.∵PA=AD,F为PD的中点,∴PD⊥AF.又∵CD⊥DA,CD⊥PA,∴CD⊥AF.∴AF ⊥平面PCD .(2)V BEC -APD =V C -APEB +V P -ACD =13×12×(4+2)×4×4+13×12×4×4×4=803.。

空间几何体的三视图及直观图础训练题(有详解)

空间几何体的三视图及直观图础训练题(有详解)

空间几何体的三视图及直观图础训练题(有详解) 1.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为a ,那么这个几何体的体积为( )A .316aB .313aC .312aD .3a 2.如图,网格纸上小正方形的边长为1,粗线画出的是某棱锥的三视图,则该棱锥中最长的棱长为( ) A .B .6 C .D . 3.一个几何体的三视图如图所示,则该几何体的体积为( ) A .210 B .208 C .206 D .204 4.下图虚线网格的最小正方形边长为1,实线是某几何体的三视图,这个几何体的体积为( )A .4πB .2πC .43π D .π 5.某多面体的三视图(单位:)如图所示,则此多面体外接球的表面积是( )A .B .C .D .6.如图是一个水平放置的正四棱柱被截掉一只角后的实物图形,则它的侧视图是( )A .B .C .D .7.某柱体的三视图如图所示(单位:),则该几何体的侧面积(单位:)是( )A .6B .C .D . 8.如图是某几何体的三视图,则这个几何体是( ) A .圆柱 B .球 C .圆锥 D .棱柱9.如图所示,画出四面体AB 1CD 1三视图中的正视图,以面AA 1D 1D 为投影面,则得到的正视图可以为 ( ) A . B . C . D . 10.一几何体的直观图如右图,下列给出的四个俯视图中正确的是( ) A . B . C . D .A .B .C .D . 12.某几何体的三视图如图所示,则其体积为( )A .4B .73. C .43 D .8313.若一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,则原平面图形的周长为( )A .4+B .3C .2D .314.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中1OA OB ==,则原平面图形的面积为( )A .1BC .32 D .215.如图,正方形////O A B C 的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积是( )A .2B .1C .D .16.如下图,是用“斜二测画法”画出的直观图,其中,那么是一个( )A .等边三角形B .直角三角形C .钝角三角形D .三边互不相等的三角形17.一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图所示,则原平面图形的面积为( ) A .4 B .8 C .8 D .8 18.斜二测图的轴间角分别为( ) A ., B ., C ., D .,二、填空题 19.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为(________) 20.一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.21.一个四棱锥的三视图如右图所示,已知该四棱锥的体积为20,则高h=____________.22.利用斜二测画法得到的结论正确的是_________①三角形的直观图是三角形③正方形的直观图是正方形 ④菱形的直观图是菱形; 23.若正ABC ∆的边长为a ,则ABC ∆的平面直观图A B C ∆'''的面积为=____________. 24.如图, '''O A B ∆是水平放置的ABC ∆的直观图,则ABC ∆的周长为 ______.三、解答题 25.画出如图所示几何体的三视图.参考答案1.A【解析】【分析】该几何体为三棱锥,且同一点出发的三条棱长度为1,可以以其中两条棱组成的直角三角形为底,另一棱为高,利用体积公式求得其体积【详解】根据几何体得三视图转换为几何体为:底面为直角边长为a 的等腰直角三角形,高为a 的三棱锥. 故:3111326V a a a a =⨯⨯⨯⨯=. 故选:A .【点睛】本题考查简单的三视图问题,属于基础题2.B【解析】【分析】作出直观图,根据三视图的数据和勾股定理计算各棱长即可.【详解】解:作出四棱锥A ﹣BCDE 的直观图如图所示:由三视图可知底面BCDE 是直角梯形, DE ∥BC ,BC ⊥BE ,DE ⊥面ABE ,AE ⊥BE ,且AE =BE =DE =4,BC =2,∴AD =AB =,AC =6,CD =∴AC 为四棱锥的最长棱.故选:B .【点睛】本题考查了棱锥的结构特征和三视图,考查空间想象能力与计算能力,属于中档题. 3.D【解析】【分析】根据三视图还原出原几何体,并得到各棱的长度,通过切割法求出其体积.【详解】由已知中的三视图可得:该几何体是由一个正方体切去一个三棱锥所得的组合体, 正方体的边长为6,切去一个三棱锥的底面是直角边长分别为6,6的等腰直角三角形,高为2, 故该几何体的体积为311666220432V =-⨯⨯⨯⨯=. 故选D 项.【点睛】本题考查三视图还原几何体,切割法求几何体体积,属于简单题.4.B【解析】【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可.【详解】解:应用可知几何体的直观图如图:是圆柱的一半, 可得几何体的体积为:211422ππ⨯⨯=. 故选:B .【点睛】本题考查三视图求解几何体的体积的求法,判断几何体的形状是解题的关键.5.C【解析】【分析】通过三视图还原几何体,可得多面体为正方体去掉一个角。

三视图识图练习

三视图识图练习

三视图1.将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()2.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①②B.①②③C.③②④D.④②③3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()15.一个几何体的三视图如右图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台5.一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()6.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()7.如图所示为一个简单几何体的三视图,则其对应的几何体是()8.某几何体的直观图如图所示,下列给出的四个俯视图中正确的是()9.一个几何体的三视图如图所示,则该几何体的直观图可以是()10.如果用□表示1个立方体,用表示2个立方体叠加,用■表示3个立方体叠加,那么图中由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()11.一个几何体的三视图如图所示,则该几何体的直观图可以是()A.B.C.D.12.下列三视图所对应的直观图是()A.B.C.D.13.下面的三视图对应的物体是()A.B.C.D.14.如图是哪一个物体的三视图()A.B.C.D.16.如图是一个物体的三视图,则此三视图所描述物体的直观图是()A.B.C.D.17.某几何体的三视图如图所示,则这个几何体的直观图是图中的()A.B.C.D.18.空间几何体的三视图如图所示,则此空间几何体的直观图为()A.B.C.D.19.某建筑物的三视图如图所示,则此建筑物结构的形状是()A.圆锥B.四棱柱C.从上往下分别是圆锥和四棱柱D.从上往下分别是圆锥和圆柱20.如图所示为一个简单几何体的三视图,则其对应的几何体是()A.B.C.D.21.已知一个几何体的三视图如图所示,则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱22.如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.23.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是图中的________.(把你认为所有正确图象的序号都填上)24.若一个正三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.答案解析1.【答案】C【解析】俯视图从图形的上边向下边看,看到一个正方形的底面,在底面上有一条对角线,对角线是由左上角到右下角的线,故选C.2.【答案】D【解析】3.【答案】D【解析】在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.【答案】D【解析】根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D.5.【答案】C【解析】从该几何体可以看出,正视图是一个矩形内有一斜向上的对角线;俯视图是一个矩形内有一斜向下的对角线,没有斜向上的对角线,故排除B、D项;侧视图是一个矩形内有一斜向下的对角线,且都是实线,因为没有看不到的轮廓线,所以排除A项.6.【答案】B【解析】还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.7.【答案】A【解析】对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,故不符合题意.故选A.8.【答案】B【解析】几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可以看见的线段,所以C,D不正确;几何体的上部中间的棱与正视图方向垂直,所以A不正确.故选B.9.【答案】D【解析】由俯视图是圆环可排除A,B,C,进一步将三视图还原为几何体,可得选项D.10.【答案】B【解析】结合已知条件易知B正确.11.【答案】D【解析】由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选D.12.【答案】C【解析】从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切,由侧视图可以看出上下部分高度相同.只有C满足这两点,故选C.13.【答案】D【解析】从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选D.14.【答案】C【解析】经分析可知,该物体应该是一个圆柱竖直放在一个长方体上,A中的不是一个圆柱,故排除.B中的圆柱直径小于长方体的宽.D项中上面不是一个圆柱体.故选C.15.【答案】B【解析】由已知中的三视图可得该几何体是一个组合体,由几何体上部的三视图均为矩形可知上部是四棱柱,由下部的三视图中有两个梯形可得下部为四棱台,故组成该组合体的简单几何体为四棱柱与四棱台,故选B.16.【答案】D【解析】正视图和侧视图相同,说明组合体上面是锥体,下面是正四棱柱或圆柱,由俯视图可知下面是圆柱.故选D.17.【答案】B【解析】由正视图可排除A,C选项;由侧视图可排除D选项,综合三视图可得,B选项正确.故选B.18.【答案】A【解析】由已知中三视图的上部分是锥体,是三棱锥,满足条件的正视图的选项是A与D,由侧视图可知,选项D不正确,由三视图可知该几何体下部分是一个四棱柱,选项都正确,故选A. 19.【答案】C【解析】由图可得该几何体是一个组合体,其上部的三视图有两个三角形,一个圆,故上部是一个圆锥,其下部的三视图均为矩形,故下部是一个四棱柱.故选C.20.【答案】A【解析】对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,故不符合题意.故选A.21.【答案】C【解析】结合图形分析知上为圆台,下为圆柱.故选C.22.【答案】4【解析】由三视图知,由4块木块组成.如图.23.【答案】①②③④【解析】由正视图和侧视图可知几何体为锥体和柱体的组合体.(1)若几何体为圆柱与圆锥的组合体,则俯视图为③;(2)若几何体为棱柱与圆锥的组合体,则俯视图为④;(3)若几何体为棱柱与棱锥的组合体,则俯视图为①;(4)若几何体为圆柱与棱锥的组合体,则俯视图为②.24.【答案】28√33【解析】25.【答案】三视图对应的几何体如下图所示.【解析】。

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是圆锥的四分之一,其底半径为,高为,所以其体积为,故选.【考点】1.三视图;2.几何体的体积.2.若某三棱柱截去一个三棱锥后所剩几何体的三视图如下图所示,则此几何体的体积等于()A.B.C.D.【答案】C【解析】由三视图可知,空间几体体的直观图如下图所示:所求几何体的体积故选C.【考点】1、三视图;2、空间几何体的体积.3.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为A.πB.2πC.3πD.4π【答案】C【解析】原几何体为有一条侧棱垂直于底面的四棱锥,且底面是边长为1的正方形,垂直于底面的侧棱长也为1,因此,该几何体可以补形为一个棱长为1的正方体,其外接球就是这个正方体的外接球,直径为正方体的对角线长,即2R=,故R=故外接球表面积为:4πR2=3π.【考点】三视图,几何体的外接球及其表面积4.如图所示,一个三棱锥的三视图是三个直角三角形(单位: cm),则该三棱锥的外接球的表面积为________cm2.【答案】29π【解析】从三棱锥的三视图可知,三棱锥有两侧面与底面垂直,把三棱锥补成长,宽,高分别为4,2,3的长方体,设外接球的半径为R,由42+22+32=4R2得,S=4πR2=29π(cm2).球5.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.2C.D.8【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形,正方形的边长为2.HD=3,BF =1,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体的体积为×2×2×4=8.6.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.7.一个几何体的三视图如图所示,已知这个几何体的体积为,= .【答案】【解析】由三视图知,原几何体是一个四棱锥,底面是面积为的矩形,高为,所以,解得.【考点】三视图,空间几何体的体积.8.如图,水平放置的正三棱柱的主视图是一边长为2的正方形,则该三棱柱的左视图的面积为.【答案】【解析】左视图为一个矩形,长宽分别为,因此面积为.【考点】三视图9.若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为() A.B.C.D.【答案】B【解析】依题意得,该正三棱柱的底面正三角形的边长为2,侧棱长为1.设该正三棱柱的外接球半径为R,易知该正三棱柱的底面正三角形的外接圆半径是2sin 60°×=,所以R2=+=,则该球的表面积为4πR2=.10.图中的网格是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为________.【答案】16【解析】从三视图可知,这是一个四棱锥,.【考点】三视图.11.如图所示,一个空间几何体的正视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的体积为 ( )A.B.C.D.【答案】B【解析】几何体是圆柱,.【考点】三视图,圆柱的体积.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( )A.1B.C.D.【答案】B【解析】由三视图可知,此几何体为三棱锥,如图,其中正视图为,是边长为2的正三角形,,且,底面为等腰直角三角形,,所以体积为,故选B.13.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.C.D.【答案】C【解析】由题意知,正视图的最大面积为对角面的面积,最小面积为,而,故选C.【考点】三视图.14.已知某几何体的三视图如右图所示,其中俯视图是圆,且该几何体的体积为;直径为2的球的体积为.则()A.B.C.D.【答案】C【解析】由题意,该几何体是一个圆柱挖去一个圆锥得到的几何体,,,∴.选B.【考点】三视图,体积.15.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.B.C.D.【答案】B【解析】过B作BD⊥AC于点D,则BD=2,CD=2,所以BC=,因为SC⊥平面ABC,所以SC⊥BC,所以SB=,故选B.【考点】三视图、直线与平面垂直的性质.16.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱和一个三棱锥拼接而成,且半圆柱的底面是半径为的半圆,高为,其底面积为,故其体积为,三棱锥的底面是一个直角三角形,三棱锥的高也为,其底面积为,故其体积为,所以该几何体的体积为,故选A.【考点】1.三视图;2.组合体的体积17.右图为某几何体的三视图,则该几何体的体积为 .【答案】【解析】所求几何体为一个底面半径为1,高为1的圆柱与半径为1的四分之一的球的组合体,所以体积为【考点】三视图18.一个空间几何体的三视图如图所示,该几何体的体积为______.【答案】96【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,棱柱的高为8.因此所求体积为【考点】三视图19.把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角 C-AB-D的正切值为.【答案】【解析】如图所示,做BD,AB的中点分别为点E,F.则有CE面ABD,由于EF为等腰直角三角形ABD的中位线,故EF AB,则为二面角 C-AB-D的代表角,所以,故填.【考点】二面角三视图20.已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC 的面积为()A.a2B.a2C.a2D.a2【答案】D【解析】斜二测画法中原图面积与直观图面积之比为1∶,则易知S= ( a)2,∴S=a2.21.一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm3【答案】D【解析】由三视图可知,此几何体为底面半径为1cm、高为3cm的圆柱上部去掉一个半径为1cm的半球,所以其体积为V=3π-π=π(cm 3).22. 右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =AD =2EC =2.(1)请画出该几何体的三视图; (2)求四棱锥B-CEPD 的体积.【答案】(1)见解析 (2)2【解析】解:(1)该组合体的三视图如图所示.(2)∵PD ⊥平面ABCD , PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD. ∵四边形ABCD 为正方形,∴BC ⊥CD ,且BC =DC =AD =2. 又∵平面PDCE∩平面ABCD =CD , BC ⊂平面ABCD. ∴BC ⊥平面PDCE.∵PD ⊥平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥DC.又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积: S 梯形PDCE = (PD +EC)·DC =×3×2=3, ∴四棱锥B-CEPD 的体积V B-CEPD =S 梯形PDCE ·BC =×3×2=2.23. 某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】A【解析】将三视图还原成直观图为:上面是一个正四棱柱,下面是半个圆柱体.所以V=2×2×4+×22×π×4=16+8π.24.某几何体的三视图如图所示,则其体积为________.【答案】【解析】由三视图还原几何体为半个圆锥,高为2,底面半圆的半径r=1.∴体积V=×(π×12×2)=.25.如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).(1)求四棱锥P-ABCD的体积;(2)若G为BC上的动点,求证:AE⊥PG.【答案】(1)(2)见解析【解析】(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4 ,BE=2 ,AB=4.∴VP-ABCD =PA·S四边形ABCD=×4 ×4×4=.(2)∵=,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠BEA=∠PBA.∴∠BEA+∠BAE=∠PBA+∠BAE=90°,∴PB⊥AE又∵BC⊥平面APEB,∴BC⊥AE.∵BC∩PB=B,∴AE⊥平面PBC.∵PG⊂平面PBC,∴AE⊥PG.26.如图所示,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为________.【答案】9【解析】由题意知,此几何体是三棱锥,其高h=3,相应底面面积为S=×6×3=9,∴V=Sh=×9×3=9.27.某几何体的三视图如图所示,主视图和侧视图为全等的直角梯形,俯视图为直角三角形.则该几何体的表面积为( )A. B. C. D【答案】B【解析】此几何体直观图如图所示。

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。

人教A版2019高中数学必修二学案12空间几何体的三视图和直观图 含答案

人教A版2019高中数学必修二学案12空间几何体的三视图和直观图 含答案

空间几何体的三视图和直观图 1.2空间几何体的三视图2.1&12.2 中心投影与平行投影1.,思考并完成以下问题~14预习课本P11[新知初探]1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和] [点睛大小完全相同;而中心投影则不同. 3.三视图[点睛] 三视图中的每种视图都是正投影.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)直线的平行投影是直线( )(2)圆柱的正视图与侧视图一定相同( )(3)球的正视图、侧视图、俯视图都相同( )答案:(1)× (2)× (3)√2.一个几何体的三视图如图所示,则该几何体可以是( )A.棱柱 B.棱台D.圆台 C.圆柱解析:选D 先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A、B,由正视图和侧视图都是等腰梯形可排除C,故选D.3.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是( )解析:选D 从上面看依然可得到两个半圆的组合图形,注意看得到的棱画实线.中心投影与平行投影[典例] 下列命题中正确的是( ).矩形的平行投影一定是矩形A.B.平行投影与中心投影的投影线均互相平行C.两条相交直线的投影可能平行D.如果一条线段的平行投影仍是一条线段,那么这条线段中点的投影必是这条线段投影的中点[解析] 平行投影因投影线的方向变化而不同,因而平行投影的形状不固定,故A不正确.平行投影的投影线互相平行,中心投影的投影线相交于一点,故B不正确.无论是平行投影还是中心投影,两条直线的交点都在两条直线的投影上,因而两条相交直线的投影不可能平行,故C不正确.两条线段的平行投影长度的比等于这两条线段长度的比,故D正确.[答案] D[活学活用]OABCDABCDEBBCCF′的中心,点′为面′-′′如图所示,点′的中心,点为正方体BCDOEF在该正方体的面上的正投影可能是________(为′′填出所′的中点,则空间四边形有可能的序号).ABCDBBCC′上的投影为②,在后侧面解析:在下底面′上的投影为③,在右侧面DDCC′上的投影为①.′答案:①②③由几何体画三视图[典例] 画出如图所示的正四棱锥的三视图.正四棱锥的三视图如图所示.] 解[[活学活用]ABCABC,如图所示,则其三视图为( ) 1.已知三棱柱-111CC可见,为实线,只有A其正视图为矩形,侧视图为三角形,俯视图中棱解析:选A 1符合.2.画出如图所示的物体的三视图.解:三视图如图所示.由三视图还原几何体[典例] 根据如图所示的三视图,画出几何体.[解]由正视图、侧视图可知,该几何体为简单几何体的组合体,结合俯视图为大正方形里有一个小正方形,可知该组合体上面为一个正方体,下面为一个下底面是正方形的倒置的四棱台.如图所示.[活学活用]若某几何体的三视图如图所示,则这个几何体的直观图可以是( )中所给几中所给几何体的正视图、俯视图不符合要求;D解析:选B 由题意知,A和CB. B.故选何体的侧视图不符合要求;由侧视图可判断该几何体的直观图是视图与计算BDABCD折起,形成三棱锥沿对角线所示,将一边长为1的正方形[典例] 如图1ABDC),其正视图与俯视图如图2所示,则侧视图的面积为-(2211 C. A. B. D. 2424BDBCDA的中点,由俯] 由正视图可以看出,点在面上的投影为[解析BDCABD的中点,所以其侧视图为如图所示视图可以看出上的投影为点在面21221,于是侧视图的面积为××的等腰直角三角形,直角边为=. 22224A答案[]]活学活用[的正方形,则该正方体的正视图的面的正方体的俯视图是一个面积为11 已知棱长为) ( 积不可能等于...2 B. A.1122-1+ C.D. 22解析:选C 由正方体的俯视图是面积为1的正方形可知正方体的正视图的面积范围属于[1,2 ],故选C.层级一学业水平达标ABCABC所在平面平行,则经过中心投影后所得的三角形,选定的投影面与△.已知△1.ABC( 与△)A.全等 B.相似D.以上都不正确C.不相似ABC相B 根据中心投影的概念和性质可知,经过中心投影后所得的三角形与△解析:选似.2.如图是一个物体的三视图,则此三视图所描述的物体的直观图是( )解析:选D 由三视图知D正确.3.一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.4.若某几何体的正视图、侧视图、俯视图完全相同,则该几何体的正视图不可能是( )解析:选D 满足选项A的有三棱锥,满足选项B的有球,满足选项C的有正方体,故选D. 5.一个长方体去掉一角,如图所示,关于它的三视图,下列画法正确的是( )由于去掉一角后,出现了一个小三角形的面.正视图中,长方体上底面和解析:选A错;侧视图中的线应是虚右边侧面上的三角形的两边的正投影分别和矩形的两边重合,故B D 错.线,故C错;俯视图中的线应是实线,故的中几何体体何可能是下列视图为一个三角形,则这个几的6.一个几何体正.________(填入所有可能的几何体前的编号) ①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.答案:①②③⑤两底面之间(7.若一个正三棱柱的三视图如图所示,则这个三棱柱的高.________和________的距离)和底面边长分别是解析:正三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的4.高,故底面边长为42 答案:CCAACDEFBABCDA的′′′中,′′,8.如图所示,在正方体,-分别是′)(填序号中点,则下列判断正确的是________.ABCDBFDE′内的正投影是正方形;在面①四边形DAADBFDE②四边形′′内的正投影是菱形;在面′AABBAEDDABFD′内的投影是全等的平行四边′内的正投影与在面在面′③四边形′′形.ADBCEBFDABCD,所以正投,内的投影分别是点解析:①四边形,′的四个顶点在面,AGDGDAE,则的中点′影是正方形,即①正确;②设正方体的棱长为2,则=1,取,连接GAEGDEAEDDAAGDAEDBFD,知四在面′,且′内的正投影是四边形′=′,由′∥′四边形AGDEAEDEEAGD不是菱形,即②不正5=,所以四边形,边形′是平行四边形,但=1′′确.对于③,由②可知两个正投影所得四边形是全等的平行四边形,从而③正确.答案:①③.画出如图所示的三棱柱的三视图.9.解:三棱柱的三视图如图所示:10.如图(1)所示是实物图,图(2)和图(3)是其正视图和俯视图,你认为正确吗?如不正确请改正.解:不正确,正确的正视图和俯视图如图所示:层级二应试能力达标1.以下关于几何体的三视图的论述中,正确的是( ) .球的三视图总是三个全等的圆A..正方体的三视图总是三个全等的正方形B .正四面体的三视图都是正三角形C .圆台的俯视图是一个圆DDA 正视方向不同,正方体的三视图不一定是三个全等的正方形,B错误;C,解析:选A.显然错误,故选.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是2)(不可能是该锥体的俯视图,C解析:选C 由几何体的俯视图与侧视图的宽度一样,可知C.故选的等边三角形.若三棱柱3.已知三棱柱的侧棱与底面垂直,且底面是边长为2)( 的正视图(如图所示)的面积为8,则侧视图的面积为4 A.8 B.334D.C.2aaa该三棱柱的侧视图是一个=8,所以4.解析:选C 设该三棱柱的侧棱长为,则2=,所以侧视图的面积为,另一边长等于三棱柱底面等边三角形的高,为4矩形,一边长为3C.43.故选一四面体的三视图如图所示,则该四面体四个面中最大的面积4.)是(2 .BA.23 D.3 BCDA,由三-解析:选D 由四面体的三视图知其直观图为如图所示的正方体中的四面体2.视图知正方体的棱长为1S 22,×2×2所以=2=ABD△231S 2×22×3,=2×2=ADC△221S,22=2×2×2=ABC△2.1S2.×2×2==BCD△2D.23.所以所求的最大面积为故选DBCBABCDACDPA内一-是上底面5.如图所示,在正方体中,点11111111ABCP-.的正视图与侧视图的面积的比值为动点,则三棱锥________ABCP的正视图与侧视图为等底等高的三角形,故它解析:三棱锥-1.们的面积相等,面积比值为1答案:的正方形,则这个正6.已知一正四面体的俯视图如图所示,它是边长为2 cm2.四面体的正视图的面积为______cm DCAABCDB,在此正方体中作出一个解析:构造一个棱长为2 cm 的正方体-1111CDAB2 cm符合题意的正四面体2-2 cm,易得该正四面体的正视图是一个底边长为,高为112.22 cm的等腰三角形,从而可得正视图的面积为2答案:2yx的7.如图,是一个棱柱的三视图,请根据三视图的作图原则列出方程组,求出,值.解:由题意,可知1032? {yxyyxyx,+6410-4=,-=+.,==解得?33?8.图为长方体木块堆成的几何体的三视图,求组成此几何体的长方体木块共有多少块?解:由正视图可知有两列,由侧视图可知有两排,再结合俯视图可得,几.块.如图所示,其中小长方形中的数字表示13块,上面一层有何体共分两层,下面一层有 ).1+=4(块此位置木块的块数,所以长方体木块共有2+1 1.2.3 空间几何体的直观图18,思考并完成以下问题预习课本P16~[新知初探]1.用斜二测画法画平面图形的直观图的步骤xyO,画直观图时,把它们画成轴和(1)在已知图形中取互相垂直的轴,两轴相交于点xyOxOy′=45°(或′,且使∠′对应的′′轴和′轴,两轴相交于点135°),它们确定的平面表示水平面.xyxy′轴的轴的线段,在直观图中分别画成平行于′轴或(2)已知图形中平行于轴或线段.xy轴的线段,长已知图形中平行于轴的线段,在直观图中保持原长度不变,平行于(3)度变为原来的一半.2.用斜二测画法画空间几何体的直观图的步骤(1)画底面,这时使用平面图形的斜二测画法即可.zzOx′轴的夹角为90°,并画出高线画(′轴,′轴过点与原图高线相′,且与(2)等,画正棱柱时只需要画侧棱即可),连线成图.(3)擦去辅助线,被遮线用虚线表示.画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于(1)] 点睛[平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可. 135°).(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)AAxyA=用斜二测画法画水平放置的∠轴和时,若∠轴,且∠的两边分别平行于(1)A=45°( 90°,则在直观图中,∠ )(2)用斜二测画法画平面图形的直观图时,平行的线段在直观图中仍平行,且长度不变( )答案:(1)× (2)×2.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的( )解析:选A 由直观图知,原四边形一组对边平行且不相等,为梯形,且梯形两腰不能与底垂直.ABCABC的面积为________.3.已知△的直观图如图所示,则原△ABCACABACAB=,,且解析:由题意,易知在△3. 中,=⊥61S=×6×3=9.∴ABC△2答案:9水平放置的平面图形的直观图[典例] 画水平放置的直角梯形的直观图,如图所示.OBCDOBx轴,垂直于中,以底边所在直线为[解] (1)在已知的直角梯形OBODyxyxOy′=′轴和′的腰′轴,使∠所在直线为轴建立平面直角坐标系.画相应的′45°,如图①②所示.1xOBOByODODDx′轴的平行′轴上截取,过点′(2)在′作′轴上截取′′=′=,在2llxCDCDCBC′,如图②′′使得′.′=.连接线,在上沿′轴正方向取点OBCDOBCD.的直观图.如图③′就是直角梯形′′′所得四边形(3).][活学活用).45°的平行四边形的直观图(尺寸自定画一个锐角为yxOxOy′,其中∠′解:(1)画轴.如图①,建立平面直角坐标系′,再建立坐标系yxO′′=45°.′1DOBOByOxAOAO′=′=(2)描点.如图②,在轴上截取′轴上截取′′′=,在,′2DCCCxDODDD.′∥′,过点′轴,且′作′=′DABC′′′,′.(3)连线.连接ABCDDBCA的直观′′即为一个锐角为(4)成图.如图③,四边形′′45°的平行四边形图.空间几何体的直观图 2的正三棱台的直观图.] 画出一个上、下底面边长分别为1,2,高为[典例xOyzOxy,使∠(1)[解] 画轴.如图,画轴、轴、轴相交于点xOz=90°.=45°,∠ABABOx=画下底面.以(2)2为线段中点,在,使,轴上取线段3BCCAOCOCABCy为正三棱台的=.连接在,轴上取线段,使,则△2 下底面的直观图.OyOxOOOOxOyOOz,建′′∥′∥,过点′作,′(3)画上底面.在轴上取′,使′=2yxOxyO的画′立坐标系′中,类似步骤′′′.在′(2)CAB′法得上底面的直观图△′′.CCAABB′,去掉辅助线,将被遮住的部分(4)′,′,连线成图.连接CBAABC′即为要求画的正三棱台的直观图.′′-画成虚线,则三棱台.[活学活用]如图是一个几何体的三视图,用斜二测画法画出它的直观图.xyzxOyxOz=90°.=45°,∠轴、轴,使∠解:(1)画轴.如图①,画轴、(2)画底面.由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部ABCDzOOOO′等于三视图中,在′,使轴上截取是一个正四棱锥,利用斜二测画法画出底面OOxOxOyOyOxOy′画出上的平行线′相应高度,过′与′作的平行线′,利用′′′,′ABCD′. 底面′′′OzPPO′等于三视图中相应的高度. (3)画正四棱锥顶点.在,使上截取点PAPBPCPDAABBCCDD,整理得到三视图,,′成图.连接(4),′,′,′′,′,′′表示的几何体的直观图,如图②.直观图的还原与计算ABCD的水平放置边四形的直观图是如]典[例图ABCDABCD)( 的面积是′,则原四边形′′′.2 10 B.14 A.2.14C.28D DBCABCDAADy′′≠′∥′′,解析] ∵′,′′∥′′轴,′[∴原图形是一个直角梯形.DA′,′=4又1S∴原直角梯形的上、下底及高分别是2,5,8,故其面积为=228.5)×8=C[答案]][活学活用CBAABCaABC′的面积′是正三角形,且它的边长为的平面直观图△,那么△′已知△)( 为3322aa B.A.846622aa C.D. 168S23CAB′′△′2aS,,且解析:选D 由于==ABC△S44ABCaaSS. =×所以==ABCBAC△′′△′44416△223622层级一学业水平达标OxOyOzOxOy′,,′,轴画成对应的′1.根据斜二测画法的规则画直观图时,把,′OzxOyxOz′的度数分别为( ′′′,则∠′′′)′与∠A.90°,90° B.45°,90°D.45°或135°,90°C.135°,90°xOy′的度数应为45°或根据斜二测画法的规则,∠′135°,∠′解析:选DxOz′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.′′xOy′平面上,则圆柱的高应画成( ) 的圆柱的底面画在.若把一个高为210 cm′′z10 cm′轴且大小为.平行于A.z5 cm B.平行于′轴且大小为z10 cm C.与45°且大小为′轴成z5 cmD.与45°且大小为′轴成zz的线段,在直观图中的方向和长度都与原来保持一轴上或在解析:选A 平行于)轴( 致.)1 cm的正方形的直观图,可能是下面的( 3.利用斜二测画法画边长为C 正方形的直观图是平行四边形,且边长不相等,故选C项.解析:选CDAB′中4.如右图所示的水平放置的三角形的直观图,′是△′′CADABCADyAB′′′′边的中点,且′′′,′平行于′轴,那么′,′ACABAD)三条线段对应原图形中线段,( ,中ACAB A.最长的是,最短的是ABAC B.最长的是,最短的是ADAB C.最长的是,最短的是ACAD D.最长的是,最短的是CByABCADBCDAD′的中′轴,所以在△,又因为中,′′′∥⊥解析:选C 因为′是ADACDBCAB.点,所以>是=中点,所以ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形.水平放置的△5ABCABC)是′( ′′,则△ B.直角三角形.锐角三角形A C.钝角三角形 D.任意三角形ABCABC′′将△为钝角三角形.′还原,由斜二测画法知,△解析:选CBABCOxOy中,点如图所示,在平面直角坐标系水平放置的正方形6.B′到,则由斜二测画法画出的该正方形的直观图中,顶点的坐标为(4,4)x.′轴的距离为________xEB′轴于点⊥′解析:由斜二测画法画出的直观图如图所示,作ECEBCBEECBB==45°,所以′′,在Rt△′′′中,′,∠′=22CB2. =′′sin 45°=2×22答案:CBOA′是水平放置的一个平面图形的直观′′7.如图,矩形′xCCOBAO′轴,则原平面图形的面′∥′,3′=′,6′=′图,其中积为________.DBCyDO,所以原平面′=解析:在直观图中,设2′′′与′轴的交点为3′,则易得2.=26的平行四边形,所以其面积为366×62图形为一边长为6,高为2答案:36CBOA,则在在直观图中,四边形′′2 cm′′为菱形且边长为8.2OABCxOy.,面积为________cm中原四边形)为________(坐标系填形状OABC为矩形,其中解析:由题意,结合斜二测画法可知,四边形2SOCOABCOA.的面积)=2×4==2 cm,8(cm=4 cm,所以四边形8答案:矩形.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.9xOzzxOyxy轴,使∠解:(1)画轴.如图①,画=90°.轴,=45°,∠轴,OOzOOO′等于三轴上截取画圆台的两底面.利用椭圆模板,画出底面⊙(2)′,使,在OyxOOyOOOx的作′′,′视图中相应的长度,过点的平行线′作′,类似底面⊙的平行线O法作出上底面⊙′.POOPOzOP′(3)画圆锥的顶点.在′′上截取等于三视图中′的长度.,使BABPAPBA,整理得到三视图所表示的几何体的直观图,(4)成图.连接,′,′′,′.如图②CBOA,它是水平放置的一个cm′′′的边长为′如图,正方形10.1平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.AOOAxOyx;,在1 轴上取=cm′′=解:如图,建立直角坐标系BOOBy;2 cm2′=′2=轴上取在.xB的在过点轴的平行线上取CBCB1 cm.′=′=CABO,各点,即得到了原图形.连接,,OABC为平行四边形,由作法可知,22BCOBOC+,=3 cm=8=+12SOABC.的周长为(3+1)×2=8 cm,面积为2 cm∴平行四边形2=1×22=应试能力达标层级二.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面15001∶尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m.如果按)的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为(4 cm,1 cm,2 cm,1.6 cm .A4 cm,0.5 cm,2 cm,0.8 cm .B4 cm,0.5 cm,2 cm,1.6 cm .C4 cm,0.5 cm,1 cm,0.8 cm.D4 cm,1 cm,2 cm解析:选C 由比例尺可知,长方体的长、宽、高和棱锥的高应分别为4 cm,0.5 cm,2 cm,1.6 cm.和1.6 cm,再结合直观图,图形的尺寸应为yAB边平行于2.用斜二测画法画出的某平面图形的直观图如图所示,2ABCDADBCx,则原平面图的面积为,平行于2 cm轴.已知四边形2轴,DCAB)′的面积为′( ′′形.4 cmA.22 2 cm4B.C.DBADABC′为直角梯形,上、′′依题意,可知∠解析:选C ′=45°,22 88 cm 2 cmD则原平面图形BADACADBCB′,且长度为梯形′,′相等,高为′,且长度分别与′下底边分别为′,2ABCD.22倍,所以原平面图形的面积为的高的8 cm的等腰梯13.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为)形,则该平面图形的面积等于(212 1A.++B.2222.2+.C21+D的直角梯形.计算得面积22,高为平面图形是上底长为1,下底长为1+D 解析:选2+为2.ABCBC′=4的斜二测直观图如图所示,已知′4.水平放置的△,ACBCyABCAB)( 边上的中线的长度为中′轴,则△′∥′,3′=′.7373 A.B. 255C.D. 2BCACACBCABC==⊥3,即△,解析:选A 由斜二测画法规则知为直角三角形,其中73ABAB A. .边上的中线长度为故选=73,8,所以22.________ cm5.有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为2S,由平面图形的面积与直观图的面积间的关=5×4=20(cm)解析:该矩形的面积为22SS)52(cm系,可得直观图的面积为.=′=42答案:5BAOBAOB′如图所示,△6.的直观图,点′′表示水平放置的△′OBAOBAOOxAx上的′2′轴垂直,且在′=′轴上,,则△′′与的边 ________.高为OBOAOBOBhB的长度相等,,由直观图中边解析:设△′与原图形中边的边′上的高为11OBBhAOBOOBSShAO上的的边=4=22××2.′′×故△′及′,则=22,得×直观图原图222.高为424答案:BDACACABC,求其水平放上的高cm=7.如图所示,△12 中,12 =cm,边置的直观图的面积.yyOOxx′=45°,作′,使∠′解:法一:画′′轴,′轴,两轴交于1BDACABCACBD′=,△的直观图如图所示,则=′′=,=12 cm6 cm′212SCABDB=,所以′′的高为 cm′=3故△′′2CAB′′△′2212×32=)182(cm,2.2×即水平放置的直观图的面积为182 cm112BDABCAC,由平面图=的面积为法二:△·)×12×12=72(cm222ABC2形的面积与直观图的面积间的关系,可得△的水平放置的直观图的面积是×72=1842 (cm.)8.已知某几何体的三视图如下,请画出它的直观图(单位:cm).解:画法:xyzOxOyxOz=建系:如图①,画轴,,使∠轴,=45°,∠轴,三轴相交于点(1)90°. xOByOAOBOA′为邻边,以轴上取线段和′=(2)画底:在轴上取线段2 =8 cm,在cm OBBA′.′作平行四边形zOCCxy轴的平行线,并在平行线上分,过定点:在(3)分别作轴上取线段轴,=4cm CDCCCDCCCDDC′.′和′为邻边作平行四边形别截取4 cm=,2 cm.′=以ACBDBD′,并加以整理(′′,去掉辅助线,将被遮挡的部分改为虚,′成图:连接(4)线),就得到该几何体的直观图(如图②).。

三视图(含答案)

三视图(含答案)

立体几何三视图1. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π2. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π3. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A. 90πB. 63πC. 42πD. 36π4. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A. 13+23πB. 13+ 23π C. 13+ 26π D. 1+ 26π5.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A. 32B. 23C. 22D. 26.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π7.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3B. 12 cm3C. 32cm33D. 40cm338.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为()A. 13B. 16C. 83D. 439.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A. 圆锥B. 三棱锥C. 三棱柱D. 三棱台10.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是()A. 25500立方尺B. 34300立方尺C. 46500立方尺D. 48100立方尺11.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A. πB. 2πC. 3πD. 4π12.某棱柱的三视图如图示,则该棱柱的体积为()A. 3B. 4C. 6D. 1213. 某几何体的三视图如图所示,则它的体积是( )A. 8−2π3B. 64−16π3C. 8−π3D. 64−12π3答案和解析1.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉其中后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.2.【答案】C【解析】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.3.【答案】B【解析】【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.【解答】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10-•π•32×6=63π,故选:B.4.【答案】C【解析】【分析】本题考查的知识点是由三视图求体积,根据已知的三视图,判断几何体的形状是解答的关键.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得.故,故半球的体积为:,棱锥的底面面积为:1,高为1,故棱锥的体积,故组合体的体积为:.故选C.5.【答案】B【解析】解:由三视图可得直观图,再四棱锥P-ABCD中,最长的棱为PA,即PA===2,故选:B.根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.6.【答案】A【解析】解:由三视图可知,该几何体为一圆柱通过轴截面的一半圆柱,底面半径直径为2,高为2.体积V==π.故选:A.由三视图可知,该几何体为底面半径直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.7.【答案】C【解析】解:由已知中的三视图可得,该几何体是一个正方体与一个正四棱锥的组合体,且正方体的棱长为2,正四棱锥的高为2;所以该组合体的体积为V=V 正方体+V 正四棱锥=23+×22×2=cm 3.故选:C .根据已知中的三视图可分析出该几何体是一个正方体与一个正四棱锥的组合体,结合图中数据,即可求出体积.本题考查了由三视图求体积的应用问题,是基础题目.8.【答案】D【解析】 解:由三视图和题意知,三棱锥的底面是等腰直角三角形,底边和底边上的高分别为、,三棱锥的高是2,∴几何体的体积V==,故选:D .由三视图和题意知,三棱锥的底面边长和三棱锥的高,由锥体的体积公式求出几何体的体积.本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形,则可得出该几何体为三棱柱(横放着的)如图.故选C .如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形,易得出该几何体的形状.本题考查简单几何体的三视图,考查视图能力,是基础题.10.【答案】C【解析】解:由已知,堑堵形状为棱柱,底面是直角三角形,其体积为立方尺.故选C.由三视图得到几何体为横放的三棱柱,底面为直角三角形,利用棱柱的体积公式可求.本题主要考查空间几何体的体积.关键是正确还原几何体.11.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,圆锥的底面半径为2,高为3,圆锥的体积为V圆锥=.此几何体的体积为.故选:B.由三视图可知:此几何体为圆锥的一半,即可得出.本题考查了由三视图恢复原几何体的体积计算,属于基础题.12.【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S=×(2+4)×2=6,棱柱的高为1,故棱柱的体积V=6.故选:C.由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.13.【答案】B【解析】解:由题意,几何体的直观图是正方体挖去一个圆锥,体积为=64-,故选B.由题意,几何体的直观图是正方体挖去一个圆锥,即可求出体积.本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.。

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析

高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。

高一数学空间几何体的三视图与直观图试题答案及解析

高一数学空间几何体的三视图与直观图试题答案及解析

高一数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36cm3B.48cm3C.60cm3D.72cm3【答案】B.【解析】该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.【考点】三视图和几何体的体积.2.一空间几何体的三视图如图所示,则该几何体的体积为( )A.B.C.D.【答案】C【解析】由三视图知几何体是一个简单组合体,上面是一个四棱锥,四棱锥的底面是一个正方形,对角线长是2,侧棱长是2,高是,下面是一个圆柱,圆柱的底面直径是2,高是2,∴组合体的体积是=故答案为:【考点】圆锥和圆柱的体积.3.如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【答案】C【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为4;底面三角形是斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选C.【考点】三视图与几何体的关系;几何体的体积的求法.4.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。

【考点】(1)根据三视图确定几何体的构成,(2)圆柱及长方体的体积公式的应用。

5.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为 .【答案】11【解析】由图可知切去的是直淩柱的一角,先算直棱柱的体积,再算切去部分的体积,所以.【考点】1、立体图形的三视图;2、体积的计算.6.右图中的三个直角三角形是一个体积为的几何体的三视图,则()A.B.C.D.【答案】B【解析】由三视图可知该几何体为三棱锥,其中一侧棱垂直底面,且底面为直角三角形,∴三棱锥的体积为,解得,故选B.【考点】由几何体的三视图求体积.7.已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是()A.3B.C.6D.8【答案】C【解析】通过三视图可作出该几何体的直观图,如图所示.其中底面为矩形,面面,且,,.易得,,,故侧面中面积最大值为6.【考点】几何体的三视图与直观图.8.右图是水平放置的的直观图,轴,,则是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【答案】C【解析】直观图为斜二测画法,原图的画为,因此原为直角三角形.【考点】斜二测画法.9.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.B.C.D.【答案】D【解析】主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是球和圆柱的表面积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和减去圆柱一个底面积,即.故选D.【考点】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用10.如图是一个简单的组合体的直观图与三视图,一个棱长为4的正方体,正上面中心放一个球,且球的一部分嵌入正方体中,则球的半径是()A.B.1C.D.2【答案】B【解析】由已知题中三视图中的俯视图中圆上的点到正方形边长的最小距离为1,已知中的正方体的棱长为4,可得球的半径为1,故选B.【考点】由三视图还原实物图.11.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和左视图可知此几何体为台体,结合俯视图可知此几何体为圆台。

高考数学一轮复习 第八章 立体几何 第50课 空间几何体的三视图和直观图 文(含解析)-人教版高三全

高考数学一轮复习 第八章 立体几何 第50课 空间几何体的三视图和直观图 文(含解析)-人教版高三全

第50课 空间几何体的三视图和直观图1.空间几何体的直观图画法步骤具体画法画轴①原图形中,取互相垂直的x 轴、y 轴、z 轴,三轴相交于点O .②直观图中,画x '轴、y '轴、z '轴,三轴相交于点O ',使45,90x O y x O z ''''''∠=∠=.画线原图形中平行于x 轴、y 轴、z 轴的线段,在直观图分别画成x y z 平行于轴、轴、轴.取长度①原图形中平行于x 轴、z 轴的线段,在直观图中长度保持不变.②原图形中平行于y 轴的线段,在直观图中长度为原来的一半.例1. 平放置的ABC ∆的斜二测直观图如图所示,若112A C =,ABC ∆的面积为22, (1)111A B C ∆的面积(2)求11A B 的长.【解析】由直观图可知AC BC ⊥,112BC B C =,2AC =, 又∵1222AC BC ⋅=,∴22BC =,∴11122B C BC ==,(1)111A B C ∆的面积为111111111sin 4522sin 45122A B C S AC B C ∆=⋅=⨯⨯⨯= (2)2201122222cos45A B =+-⨯⨯⨯2=,∴112A B =.练习:如图,已知ABC ∆的斜二测直观图是边长为2的等边111A B C ∆,求:(1)图中a 的值(2)原ABC ∆的面积【解析】(1)在111A D C ∆中,由正弦定理,得26sin120sin 45a a =⇒=(2)原ABC ∆的面积为122262ABC S a ∆=⨯⨯=归纳:直观图的面积是原平面图形面积的24倍.2.(1)空间几何体的三视图 名称 观察方向 反映物体的正视图 和. 侧视图 和. 俯视图和.B 1x 'C 45 y 'C 1 A 1俯视图正视图侧视图正视图俯视图侧视图正视图侧视图C 1B 1D 1DCBA(2)空间几何体的三视图的画法原则正视图与俯视图:长对正 正视图与侧视图:高平齐侧视图与俯视图:宽相等(3)绘制三视图时:分界线和可见轮廓线都用实线画出,不可见的轮廓线用虚线画出. 例2. (1) 一个体积为的面积为( )A .12B .8C..【答案】D【解析】设正三棱柱的底面边长为a ,高为h , 由三视图可知:sin 6023a=4a=,∴24V h=⨯=3h =.∴3S =侧 (2)(2013某某高考)某四棱台的三视图如图所示,则该四棱台的体积是 ( )A .4B .143C .163D .6【答案】B【解析】由三视图可知,该四棱台的上下底面边 长分别为1和2的正方形,高为2, ∴22114(12)233V =⨯=,故选B . 练习:(1)某几何体的三视图如图所示,则该几何体的体积是( ) A .23B .12C .13D .56 【解析】该几何体是正方体被截去了一个角, 如图:∴3311511326V =-⨯⨯=.正视图侧视图俯视图11113222正视图侧视图俯视图侧视图正视图俯视图31(2)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ) A .3242π-B .243π- C .24π-D .242π-【答案】A【解析】该几何体是一个长方体再挖去半个圆柱,∴213432132422V ππ=⨯⨯-⨯⨯⨯=-. 第50课 空间几何体的三视图和直观图业题1.一个几何体的三视图如图所示,则该几何体可以是( )A .棱柱B .棱台C .圆柱D .圆台解析:根据三视图可知,此几何体是圆台,选D. 2.如图所示,△O ′A ′B ′是△OAB 水平放置的 直观图,则△OAB 的面积为( )A .6B .32C .6 2D .12解析:若还原为原三角形,易知OB =4,OA ⊥OB ,OA =6,所以S △AOB =12×4×6=12.答案:D3.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )解析:被截去的四棱锥的三条可见侧棱中有两条为长方体面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为长方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.答案:D4. 若正三棱柱的三视图如图所示,该三棱柱的表面积( ) A .623+B .932C .63+D .3【答案】A正视图侧视图俯视图俯视图【解析】由三视图可知,三棱柱的高为1,∴正三角形的边长为2,∴三棱柱的侧面积为2316⨯⨯=,两底面积为1222⨯⨯=,∴表面积为6+,选A.5. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积和体积分别是( )A . B .83C.81),3D .8,8【答案】B【解析】由三视图可知四棱锥的底面边长为22,∴四棱锥侧面积为182⨯= 体积为2182233V =⨯⨯=. 6.(2013某某高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240 【答案】D【解析】该几何体为一个直四棱柱,底面如下: 由侧视图可知3,4AE DE ==,∴5AD ==,∴该几何体的表面积为4(28)210(2825)2402+⨯+++⨯=. 7. 某空间几何体的三视图如图所示,则该几何体的表面积为( ) A .180B .240 C .276 D .300 【答案】B【解析】该几何体为一个长方体和四棱锥组成,∴1664664652402S =⨯+⨯⨯+⨯⨯⨯=.8. ACD BE( )A .168π+B .88π+C .1616π+D .816π+【答案】A【解析】该几何体上面是一个长方体,下面是半圆柱,如图:∴21224241682V ππ=⨯⨯+⨯⨯=+.9.如图是一个三棱锥的直观图和三视图,其三视图均为直角三角形,则b 等于________.解析:如题图,由侧视图与俯视图知棱锥的高为32-1=2,再由正视图与侧视图知俯视图的另一直角边为62-22=2,所以b =22+12= 5.答案:510.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什 么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何 体的体积.解析:(1)正六棱锥. (2)其侧视图如其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中正六边形对边的距离,即BC =3a , AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =123a ×3a =32a 2.。

2015高考数学(人教A版,文)一轮开卷速查:9-1空间几何体的结构、三视图和直观图

2015高考数学(人教A版,文)一轮开卷速查:9-1空间几何体的结构、三视图和直观图

开卷速查规范特训课时作业实效精炼开卷速查(39)空间几何体的结构、三视图和直观图一、选择题1.[2014·青岛调研]如图,在下列四个几何体中,其三视图(正(主)视图、侧(左)视图、俯视图)中有且仅有两个相同的是()①棱长为1的正方体②底面直径和高均为1的圆柱③底面直径和高均为1的圆锥④底面边长为1、高为1.2的正四棱柱A.②③④B.①②③C.①③④D.①②④解析:①的三个视图都是边长为1的正方形;②的俯视图是圆,正(主)视图、侧(左)视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正(主)视图、侧(左)视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正(主)视图、侧(左)视图是相同的矩形.答案:A2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1个B.2个C.3个D.4个解析:命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.答案:A3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()正(主)视图侧(左)视图A BC D解析:C选项不符合三视图中“宽相等”的要求,故选C.答案:C4.如图是一几何体的直观图、正(主)视图和俯视图.在正(主)视图右侧,按照画三视图的要求画出的该几何体的侧视图是()侧(左)视图A侧(左)视图B侧(左)视图C侧(左)视图D解析:由直观图和正(主)视图、俯视图可知,该几何体的侧(左)视图应为面PAD,且EC投影在面PAD上,故B正确.答案:B5.如图△A′B′C′是△ABC的直观图,那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形解析:由斜二测画法知B正确.答案:B6.[2014·石家庄质检一]把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.2 2解析:由题意可知,三棱锥C-ABD的直观图如图所示.其中平面CBD⊥平面ABD.取BD的中点E,连接CE,AE,则CE⊥AE,Rt△AEC为三棱锥C-ABD的侧视图.∵AB=AD=BC=CD=2,∴AE=CE=1,∴S△AEC=12×1×1=12,故选B.答案:B二、填空题7.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的__________.(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱解析:只要判断正视图是不是三角形就行了,画出图形容易知道三棱锥、四棱锥、圆锥一定可以,对于三棱柱,只需要放倒就可以了,所以①②③⑤均符合题目要求.答案:①②③⑤8.如图,在斜二测投影下,四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是__________.解析:作DE⊥AB于E,CF⊥AB于F,则AE=BF=AD cos45°=1,∴CD=EF=3.将原图复原(如图),则原四边形应为直角梯形,∠A=90°,AB=5,CD=3,AD=22,∴S四边形ABCD=12·(5+3)·22=8 2.答案:8 29.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为__________.解析:由题意知,正视图就是如图所示的截面PEF,其中E、F分别是AD、BC的中点,连接AO,易得AO=2,而PA=3,于是解得PO=1,所以PE=2,故其正视图的周长为2+2 2.答案:2+2 210.已知一个几何体的三视图如下,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号)__________.①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.解析:由该几何体的三视图可知该几何体是底面边长为a,高为b的长方体,这四个顶点的几何形体若是平行四边形,则其一定是矩形.答案:①③④⑤三、解答题11.正四棱锥的高为3,侧棱长为7,求棱锥的斜高(棱锥侧面三角形的高).解析:如图所示,正四棱锥S-ABCD中,高OS=3,侧棱SA=SB=SC=SD=7,在Rt△SOA中,OA=SA2-OS2=2,∴AC=4.∴AB=BC=CD=DA=2 2.作OE⊥AB于E,则E为AB中点.连接SE,则SE即为斜高,在Rt△SOE中,∵OE=12BC=2,SO=3,∴SE=5,即棱锥的斜高为 5.答案: 512.已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解析:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中V A = 42-⎝ ⎛⎭⎪⎫23×32×232 =12=23,∴S △VBC =12×23×23=6.答案:(1)图略(2)6创新试题教师备选教学积累资源共享教师用书独具1.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A B C D解析:由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.答案:D2.将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的左视图为()A B C D解析:根据“长对正,宽相等,高平齐”原则,易知选项D符合题意.答案:D3.如图为长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块的块数共有()A.3块B.4块C.5块D.6块解析:由几何体的三视图还原出几何体的直观图,如图所示,则可知该几何体是由4块长方体堆放而成的.答案:B4.[2014·深圳模拟]如图所示的几何体中,四边形ABCD 是矩形,平面ABCD ⊥平面ABE ,已知AB =2,AE =BE =3,且当规定正视方向垂直平面ABCD 时,该几何体的侧视图的面积为22.若M ,N 分别是线段DE ,CE 上的动点,则AM +MN +NB 的最小值为__________.解析:依题意得,点E 到直线AB 的距离等于(3)2-⎝ ⎛⎭⎪⎫222=2,因为该几何体的侧视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC=2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA=∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB 2=AE 2+BE 2-2AE·BE cos 120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:35.[2014·北京朝阳]有一个棱长为1的正方体,按任意方向正投影,其投影面积的最大值是( )A .1B .322C . 2D . 3解析:如图所示是棱长为1的正方体.当投影线与平面A 1BC 1垂直时,∵面ACD 1∥面A 1BC 1,∴此时正方体的正投影为一个正六边形.设其边长为a ,则3a =2,∴a =63.∴投影面的面积为6×34×⎝ ⎛⎭⎪⎫632= 3.此时投影面积最大,故D 正确.答案:D6.[2014·北京海淀]已知正三棱柱ABC-A ′B ′C ′的正视图和侧视图如图所示,设△ABC ,△A ′B ′C ′的中心分别是O ,O ′,现将此三棱柱绕直线OO ′旋转,射线OA 旋转所成的角为x 弧度(x 可以取到任意一个实数),对应的俯视图的面积为S(x),则函数S(x)的最大值为__________,最小正周期为__________.(说明:“三棱柱绕直线OO ′旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,OA 旋转所成的角为正角,顺时针方向旋转时,OA 旋转所成的角为负角.)解析:由题意可知,当三棱柱的一个侧面在水平面内时,该三棱柱的俯视图的面积最大.此时俯视图为一个矩形,其宽为3×tan 30°×2=2,长为4,故S(x)的最大值为8.当三棱柱绕OO ′旋转时,当A 点旋转到B 点,B 点旋转到C 点,C 点旋转到A 点时,所得三角形与原三角形重合,故S(x)的最小正周期为2π3.答案:8,2π3.。

高二数学空间几何体的三视图与直观图试题答案及解析

高二数学空间几何体的三视图与直观图试题答案及解析

高二数学空间几何体的三视图与直观图试题答案及解析1.如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的余弦弦值;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。

【答案】(1)(2)不存在【解析】(1)观察三视图,得到边长以及线面关系,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,(2)假设存在,把“ED与面BCD成45°角”作为条件,进行计算.试题解析:(1)由AH⊥面BHCD及三视图知:AH=BH=HC=1,,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,,,;(2)假设在线段AC上存在点E合题意,令E在HC上的射影为F,设(),则,矛盾。

所以,不存在(注:本题也可用向量法)【考点】二面角,线面角.2.某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为A.B.C.D.【答案】C【解析】设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径,得到俯视图中椭圆的长轴长2a=,则椭圆的焦距,根据离心率公式得,;故选:C.【考点】1.三视图;2.椭圆的性质.3.如图,某四棱锥的三视图如图所示,则最长的一条侧棱长度为()A.B.C.D.【答案】C【解析】由三视图知:四棱锥的一条侧棱与底面垂直,且高为1,如图:SA⊥平面ABCD,AD=CD=SA=1,AB=2,∴最长的侧棱为SB=;故选:C.【考点】三视图4.如图是一个空间几何体的三视图,则该几何体的外接球的体积是()A.B.C.D.【答案】C【解析】由三视图可知,该几何体为直三棱锥,底面为等腰直角三角形,把三棱锥补成长方体,三棱锥和长方体具有相同的外接球,,因此,.【考点】球的体积.5.如图是多面体和它的三视图.(1)若点是线段上的一点,且,求证:;(2)求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面垂直,需证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:解:(1)由题意知AA1,AB,AC两两垂直,建立如图所示的空间直角坐标系,则A(0,0,0),A1(0,0,2),B(-2,0,0),C(0,-2,0),C1(-1,-1,2),则=(-1,1,2),=(-1,-1,0),=(0,-2,-2).(1分)设E(x,y,z),则=(x,y+2,z),=(-1-x,-1-y,2-z).(3分)=2,得E(=设平面C1A1C的法向量为m=(x,y,z),则由,得,取x=1,则y=-1,z=1.故m=(1,-1,1),=,BE⊥平面A1CC1.(6分)(2)由(1)知,平面C1A1C的法向量为m=(1,-1,1)而平面A1CA的一个法向量为n=(1,0,0),则cos〈m,n〉===,故二面角的余弦值.(12分)【考点】利用空间向量证明垂直和夹角问题.6.一个几何体的三视图如图所示,则该几何体的体积为A.2B.1C.D.【答案】C【解析】由三视图可知该几何体是一个四棱锥,其底面是一个对角线为2的正方形,高为1,故其底面面积S=×2×=2,则V=•Sh=,故选C.【考点】由三视图求面积、体积.7.右图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于()A.B.24πC.D.12π【答案】A【解析】由题意可得,直观图为底面直径为4,高为4的圆柱的一半,所以该几何体的表面积是正方形面积+圆柱侧面积的一半+圆的面积,即,故选A.【考点】由三视图求表面积.8.某几何体的三视图如图所示,其中正视图为正三角形,则该几何体的体积为 .【答案】【解析】由空间几何体的三视图可知,该几何体为平放的三棱柱,上下底面为边长是2的正三角形,高为3,所以.【考点】空间几何体的三视图、表面积和体积的计算.9.下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F为PD的中点,求证:AF⊥面PCD;(2)证明:BD∥面PEC;(3)求该几何体的体积.【答案】(1)详见解析;(2)详见解析;(3)【解析】由三视图可知底面是边长为4的正方形,,,∥,且。

三视图和直观图(含答案)

三视图和直观图(含答案)

空间几何体的三视图和直观图一、探究 探究一:直观图1.如图,这是长方体、圆柱等四个几何体的直观图。

把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.空间几何体的直观图通常是在 投影下把空间图形展现在平面上,用平面的图形表示空间几何体。

探究二:斜二测画法 1.斜二测画法的方法步骤:①在已知图形中建立直角坐标系xOy ,画直观图时,把x 轴、y 轴画成对应的x '轴和y '轴,两轴交于点O ',使 ,它们确定的平面表示水平面.②已知图形中平行于x 轴或y轴的线段,在直观图中分别画成 于x '轴和y '轴的线段.③已知图形中平行于x 轴的线段,在直观图中 ,平行于y 轴的线段, . 2.空间几何体直观图的画法:立体图形与平面图形相比多了一个z 轴,90xoz ∠=o 。

其直观图中对应于z 轴的是z '轴,''90x oz ∠=o,平行于z 轴的线段,在直观图中画成 于z '轴,长度 . 二、自我检测1.下列结论正确的有 ①相等的线段在直观图中仍然相等。

②若两条线段平行,则在直观图中对应的两条线段仍然平行。

③矩形的直观图是矩形。

④圆的直观图一定是圆。

⑤角的水平放置的直观图一定是角。

2.直角坐标系中一个平面图形上的一条线段AB 的实际长度为4cm ,若AB//x 轴,则画出直观图后对应的线段=''B A ,若y AB //轴,则画出直观图后对应的线段B A ''= 。

3.根据斜二测画法的规则画直观图时,把Ox 、Oy 、Oz 轴画成对应的x O ''、y O ''、z O '',作y O x '''∠与z O x '''∠的度数分别为( )A .οο90,90 B .οο90,45 C .οο90,135D .ο45或οο90,1354.如图,A B C '''△是ABC △的直观图,那么ABC △是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .锐角三角形 三、应用示例例1.用斜二测画法画水平放置的正六边形、任意三角形的直观图。

2022数学课时规范练36空间几何体的结构及其三视图直观图文含解析新人教A版

2022数学课时规范练36空间几何体的结构及其三视图直观图文含解析新人教A版

课时规范练36 空间几何体的结构及其三视图、直观图基础巩固组1.下列说法中正确的是()A.斜三棱柱的侧面展开图一定是平行四边形B。

水平放置的正方形的直观图有可能是梯形C。

一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D。

用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2。

(2020浙江衢州模拟)在一个密闭透明的圆柱筒内装一定体积的水,将该圆柱筒分别竖直、水平、倾斜放置时,指出圆柱桶内的水平面可以呈现出的几何形状不可能是()A.圆B。

矩形C。

梯形D。

椭圆或部分椭圆3。

将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()4。

(2020江西南昌八一中学期中)如图,一个水平放置的面积是2+√2的平面图形的斜二测直观图是等腰梯形,其中A’D'∥B’C',则等腰梯形面积为()A.12+√22B。

1+√22C。

1+√2D。

2+√25.如图所示,O是正方体ABCD-A1B1C1D1对角线A1C与AC1的交点,E为棱BB1的中点,则空间四边形OEC1D1在正方体各面上的正投影不可能是()6.某三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,在此三棱锥的六条棱中,最长棱的长度为()A。

2 B。

2√2C。

√6 D.√27.(2020北京丰台一模)某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积等于√3的有()A.1个B。

2个C。

3个 D.4个8.正方体被一个平面截去一部分后,所得几何体的三视图如图所示,则截面图形的形状为()A.等腰三角形B。

直角三角形C.平行四边形D.梯形9.(2020广东广雅中学模拟)如图,正方形O'A’B'C'的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是cm.10。

(2020北京朝阳一模)已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为。

(第9题图)(第10题图)综合提升组11。

高考数学一轮复习考点规范练36空间几何体的结构及其三视图和直观图含解析新人教A版

高考数学一轮复习考点规范练36空间几何体的结构及其三视图和直观图含解析新人教A版

考点规范练36 空间几何体的结构及其三视图和直观图基础巩固1.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案:A解析:因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱的正视图是圆或矩形,所以选A.2.将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()答案:C解析:因为长方体的侧面与底面垂直,所以俯视图是C.3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案:A解析:根据三视图原则,从上往下看,看不见的线画虚线,则A正确.4.某几何体的正视图和侧视图均为如图(1)所示的图形,则在图(2)的四个图中可以作为该几何体的俯视图的是()图(1)图(2)A.①③B.①④C.②④D.①②③④答案:A解析:由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6√2B.4√2C.6D.4答案:C解析:如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD=√(4√2)2+22=6,故选C.6.如图,Rt △A'B'C'为水平放置的△ABC 的直观图,其中A'C'⊥B'C',B'O'=O'C'=1,则△ABC 的面积为( )A.√2B.2√2C.√3D.2√3答案:B解析:由题意结合直观图的画法,可知△ABC 是底为BC=2,高为AO=2√2的三角形, 则其面积S △ABC =12BC ·AO=12×2×2√2=2√2.7.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图的是( )答案:D解析:易知该三棱锥的底面是直角边分别为1和2的直角三角形,结合A,B,C,D 选项知,D 选项中侧视图、俯视图方向错误,故选D .8.已知三棱柱HIG-EFD 的底面为等边三角形,且侧棱垂直于底面.该三棱柱截去三个角(如图①,A ,B ,C 分别是△GHI 三边的中点)后得到的几何体如图②,则该几何体的侧视图为( )图①图②答案:A解析:因为平面DEHG⊥平面DEF,所以该几何体的侧视图为直角梯形,且直角腰在侧视图的左侧,故选A.9.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC.已知其正视图的面积为23,则其侧视图的面积为.答案:√33解析:设三棱锥V-ABC的底面边长为a,侧面VAC边AC上的高为h,则ah=43,其侧视图是由底面三角形ABC边AC上的高与侧面三角形VAC边AC上的高组成的直角三角形,其面积为12×√32a×h=12×√32×4 3=√33.10.利用斜二测画法得到的以下结论,其中正确的是.(写出所有正确结论的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.答案:①②④解析:①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错误;④正确;原图形中相等的线段在直观图中不一定相等,故⑤错误. 11.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是.答案:①解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD-A1B1C1D1中的四面体ACB1D1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.12.如图,O1,O2为棱长为a的正方体的上、下底面中心,若正方体以O1O2为轴顺时针旋转,则该正方体的所有正视图的最大面积是.答案:√2a2解析:所有正视图的最大面积是长为√2a ,宽为a 的矩形,面积为√2a 2.能力提升13.已知一几何体的正视图、侧视图如图所示,则该几何体的俯视图不可能是( )答案:D14.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C.3D.6答案:A解析:如图,几何体是上下结构,下面是三棱柱,底面是等腰直角三角形,斜边为2,高为1,三棱柱的高是2,上面是三棱锥,平面DA 1C 1⊥平面A 1B 1C 1,且DA 1=DC 1,三棱锥的高是1,故几何体的体积V=12×2×1×2+13×12×2×1×1=73.15.如图,在正方体ABCD-A 1B 1C 1D 1中,点P 是线段A 1C 1上的动点,则三棱锥P-BCD 的俯视图与正视图面积之比的最大值为( )A.1B.√2C.√3D.2答案:D解析:在正视图中,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形,且点P 在正视图中的位置在边A 1D 1上移动,由此可知,设正方体的棱长为a ,则S正视图=12a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S 俯视图=a 2,所以三棱锥P-BCD 的俯视图与正视图面积之比的最大值为a 212a 2=2.16.已知正三棱柱的侧面展开图是相邻边长分别为3和6的矩形,则该正三棱柱的体积是 . 答案:3√32或3√3解析:当正三棱柱的高为6时,底面边长为1,V=12×1×1×√32×6=3√32;当正三棱柱的高为3时,底面边长为2,V=12×2×2×√32×3=3√3.17.(2021全国Ⅰ,文16)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).图①图②图③图④图⑤答案:②⑤或③④解析:根据“长对正、高平齐、宽相等”及图中数据,侧视图只能是②或③.若侧视图为②,如图(1),平面PBC⊥平面ABC,△ABC为等腰三角形(BC为底边),俯视图为⑤;(1)若侧视图为③,如图(2),PB⊥平面ABC,AB=BC,俯视图为④.(2)高考预测18.某三棱锥的正视图如图所示,则下列图①②③④,所有可能成为这个三棱锥的俯视图的是()A.①②③B.①②④C.②③④D.①②③④答案:D解析:①②③④的模型分别如图(1)、图(2)、图(3)、图(4)所示,故选D.图(1)图(2)图(3)图(4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三视图与直观图(人教A版)
一、单选题(共11道,每道9分)
1.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )
A.三棱锥
B.三棱柱
C.四棱锥
D.四棱柱
答案:B
解题思路:
试题难度:三颗星知识点:由三视图还原直观图
2.一个几何体的三视图如图所示,则这个几何体的表面积为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:由三视图求面积
3.一个几何体的三视图如图所示,则其体积为( )
A. B.
C.4
D.
答案:B
解题思路:
试题难度:三颗星知识点:由三视图求体积
4.某几何体的三视图如图所示,其中正视图与侧视图是完全相同的图形,则这个几何体的体积为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:由三视图求体积
5.一空间几何体的三视图如图所示,则此几何体的表面积为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:由三视图求面积
6.一个几何体的三视图如图所示,则这个几何体的体积为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:由三视图求体积
7.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:由三视图求体积
8.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( ).
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:由三视图求体积
9.已知某几何体的三视图如图所示,则该几何体的体积为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:由三视图求体积
10.一个几何体的三视图如图,则该几何体的表面积是( )
A.372
B.360
C.292
D.280
答案:B
解题思路:
试题难度:三颗星知识点:由三视图求体积
11.如图,若,用斜二测画法画一个水平放置的平面图形的直观图为一个边长为1的正方形OABC,则原来图形的面积是( )
A. B.1
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:平面图形的直观图。

相关文档
最新文档