辽宁省沈阳二中2014-2015学年高二上学期10月月考试题 数学 Word版含答案
辽宁省沈阳二中2014-2015学年高二上学期期中考试数学文试题Word版含答案
21.(本小题满分 12 分)
某单位有员工 l000 名,平均每人每年创造利润 l0 万元。 为了增加企业竞争力, 决定优化
产业结构,调整出 x( x N ) 名员工从事第三产业,调整后他们平均每人每年创造利润为
3x
10( a
) 万元 (a 0) ,剩下的员工平均每人每年创造的利润可以提高
1.命题“ x R,| x | x2 0 ”的否定是(
)
A. x R,| x | x2 0 B.
C.
x0
R, | x0 |
2
x0
0
D.
x R,| x | x2 0
2
x0 R,| x0 | x0 0
2.设 a,b, c R , 且 a b , 则 ( )
A. ac bc
B. 1 1 ab
C. a 2 b2
13.已知函数 f ( x)
x2
2x 3, x
0 ,满足 f ( x)
0 的 x 的取值范围是
。
1 log 4 x, x 0
14 . 已 知 P(1,1) 是 直 线 l 被 椭 圆 x2 y2 1 所 截 得 的 线 段 的 中 点,则 直 线 l 的 方 程 43
为
。
15.已知正项等比数列 { an } 满足 a7 a6 2a5 ,若存在两项 am , an 使得 am an 2a1,
且点 B 在 x 轴上的射影恰好为右焦点
1
F,若
k
1 , 则椭圆离心率的取值范围是 (
)
3
2
A. ( 1 , 9) 44
2 B . ( ,1)
3
12
1
C. ( , ) D . ( 0, )
辽宁省实验中学分校2014-2015学年高二10月月考数学试题 Word版含答案(人教A版)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知1,,4x --成等比数列,则x 的值为( )A .2 B. 52-C. 2 或2- D .2.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是 ( )A. 1a <1b B .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c | 3.已知等差数列{}n a 中,247,15a a ==,则前10项的和10S = ( ) A 100 B 210 C 380 D 4004.等比数列中,a 5a 14=5,则a 8·a 9·a 10·a 11= ( )A .10B .25C .50D .755.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *)那么a n +1-a n 等于 ( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为 ( ) A .M <N B .M ≤N C .M >N D .M ≥N7.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1)2 C .4n -1 D.13(4n -1)8.已知221(2),2(0)2b m a a n b a -=+>=≠-,则,m n 的大小关系是 ( ) A m n > B m n < C m n = D 不确定9.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .1810.在数列{a n }中,a 3=2,a 7=1,如果数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,那么a 11等于 ( )A.13B.12C.23D .111.若{}n a 是等差数列,首项110071008100710080,0,0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是 ( ) A.2012 B.2013 C.2014 D .201512.设{}n a 是由正数组成的等差数列,{}n b 是由正数组成的等比数列,且11a b =,20032003a b =,则必有( )A.10021002a b >B.10021002a b =C.10021002a b ≥D.10021002a b ≤二、填空题(本大题共4小题,每小题5分,共20分) 13.已知22ππαβ-≤<≤,则2βα-的范围为 。
辽宁省沈阳二中2014-2015学年高二上学期10月月考试卷数学Word版含答案
沈阳二中2014—2015学年度上学期第一次阶段测试 高二( 16 届)数学试题命题人: 高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0,0,a b c d >><<则一定有( )A .a b c d > B .a b c d < C .a b d c > D .a b d c < 2.不等式2601x x x --->的解集为( )A . {}2,3x x x -<或>B .{}213x x x -<,或<<C .{}213x x x -<<,或>D . {}2113x x x -<<,或<<3.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .1894.已知a >b >0,且ab =1,设c =2a +b,P =log c a ,N =log c b ,M =log c ab ,则有( )A. P <M <NB. M <P <NC. N <P <MD. P <N <M 5.若关于x 的不等式ax 2+bx -2>0的解集是⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3121, ,则ab 等于( )A .-24B .24C .14D .-146.已知{}n a 是等比数列,对任意*N n ∈都有0>n a ,如果25)()(644533=+++a a a a a a ,则=+53a a ( ) A .5B .10C .15D .207.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有( )A .最小值21和最大值1B .最小值43和最大值1 C .最小值21和最大值43D .最小值18.已知⎩⎪⎨⎪⎧x -y ≤0x +y ≥0y ≤a,若z =x +2y 的最大值是3,则a 的值是( )A .1 B.-1 C. 0 D. 2 9.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a , 则1a 为( ) A .22.5-B .21.5-C .20.5-D .20-10.若关于x 的不等式4104822<<>---x a x x 在内有解,则实数a 的取值范围是( )A . 4-<aB .4->aC .12->aD .12-<a11.设函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集是( ) A . (1,2)∪(3,+∞) B .(10,+∞) C .(1,2)∪(10,+∞) D .(1,2) 12.记f (n)为自然数n 的个位数字,a n = f (n 2)- f (n).则a 1+a 2+a 3+ +a 2016的值为( )A .2B .6C .8D .10第Ⅱ卷 (90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大,则参数m 的取值范围是 。
辽宁省沈阳二中2014-2015学年高二上学期10月月考试题 数学 Word版含答案(人教A版)
沈阳二中2014—2015学年度上学期第一次阶段测试高二( 16 届)数学试题命题人: 高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0,0,a b c d >><<则一定有( )A .a b c d > B .a b c d < C .a b d c > D .a b d c < 2.不等式2601x x x --->的解集为( ) A . {}2,3x x x -<或> B .{}213x x x -<,或<< C .{}213x x x -<<,或> D . {}2113x x x -<<,或<<3.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .1894.已知a >b >0,且ab =1,设c =2a +b,P =log c a ,N =log c b ,M =log c ab ,则有( )A. P <M <NB. M <P <NC. N <P <MD. P <N <M5.若关于x 的不等式ax 2+bx -2>0的解集是⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3121, ,则ab 等于( )A .-24B .24C .14D .-146.已知{}n a 是等比数列,对任意*N n ∈都有0>n a ,如果25)()(644533=+++a a a a a a ,则=+53a a( ) A .5B .10C .15D .207.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有( )A .最小值21和最大值1 B .最小值43和最大值1C .最小值21和最大值43D .最小值1 8.已知⎩⎪⎨⎪⎧x -y ≤0x +y ≥0y ≤a,若z =x +2y 的最大值是3,则a 的值是( )A .1 B.-1 C. 0 D. 2 9.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a , 则1a 为( ) A .22.5-B .21.5-C .20.5-D .20-10.若关于x 的不等式4104822<<>---x a x x 在内有解,则实数a 的取值范围是( )A . 4-<aB .4->aC .12->aD .12-<a11.设函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集是( ) A . (1,2)∪(3,+∞) B .(10,+∞) C .(1,2)∪(10,+∞) D .(1,2)12.记f (n)为自然数n 的个位数字,a n = f (n 2)- f (n).则a 1+a 2+a 3+ +a 2016的值为( )A .2B .6C .8D .10第Ⅱ卷 (90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大,则参数m 的取值范围是 。
辽宁省沈阳市第二中学14至15学年度上学期高二(16届)第三阶段测试数学(文)(附答案)
沈阳二中2014—2015学年度上学期第三阶段测试高二(16届)数学试题(文科)说明:1.测试时间:120分钟 总分:150分 2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷 (选择题 共60分)一 .选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线3322=-y x 的渐近线方程是( )A. x y 3±=B. 13y x =±C. x y 3±=D. x y 33±=2.若0,1a b a b <<+=,则221,,2,2a ab a b +中最大的数为( )A. aB.12C. 2abD. 22a b + 3.对于常数m 、n ,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的( )条件 A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要. 4.在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是( )A. 1B. 2C.5.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1、F 2,离心率为3,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A.22132x y += B. 2213x y += C.221128x y += D.221124x y += 6.设函数()f x 2ln x x=+ 则( ) A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点 C .2x =为()f x 的极大值点 D .2x =为()f x 的极小值点7.已知抛物线24y x =,P 是抛物线上一点,F 为焦点,一个定点(5,3)A 。
则PA PF + 的最小值为( )A. 5B. 6C. 7D. 88.抛物线24x y =上一点到直线54-=x y 的距离最短,则该点的坐标是 ( )A .)1,21(B .)0,0(C .)2,1(D .)4,1( 9.已知12,F F 为椭圆2221(010)100x y b b+=<<的左、右焦点,P 是椭圆上一点,若1260F PF ∠= 且12F PF ∆的面积为3,椭圆离心率为( ) A.35 B. 45 C. 925 D. 162510.已知双曲线中心在原点,且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( ) A. 14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )A.-5B.3C.-5或3D.5或-312.已知a ,b ∈R +,直线ax +by =6平分圆x 2+y 2-2x -4y +m =0的周长,则2a +b +a +5b 的最大值为( )A .6B .4C .3 D. 3第Ⅱ卷(非选择题 共90分)二 .填空题:(本大题共4小题,每小题5分,共20分) 13.函数2()x f x x e =,则(1)f '=.14.已知0x >,0y >,3x y xy ++=,则x y +的最小值是. 15.命题:,x y R ∀∈,如果0xy =,则0x =或0y =的否命题是.16.在平面直角坐标系中,动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W ,给出下列四个结论:①曲线W 关于原点对称;②曲线W 关于直线y =x 对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;④曲线W 上的点到原点距离的最小值为2其中,所有正确结论的序号是________;三 .解答题:(本大题共6小题,满分70分,写出必要文字说明和演算步骤)17.在等差数列{}n a 中,246,20a S ==.(1)求数列{}n a 的通项公式;(2)设**122(),()(12)n n n n b n N T b b b n N n a =∈=+++∈- ,求n T .18.已知命题p :“11,1x x a x ∀>+≥-” ,命题q :“方程220x ax a -+=有两个不等实根”,p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围。
【数学】辽宁省沈阳市第二中学2014-2015学年高二上学期期末考试(文).docx
沈阳二中2014-2015 学年度上学期期末考试高二( 16 届)数学试题 (文科 )说明: 1.测试时间: 120 分钟总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上.第Ⅰ卷( 60 分)一、选择题 :本大题共 12 小题 ,每小题 5 分,共 60分 ,在每小题给出的四个选项中,只有一项是符合题目要求的 .1.已知命题p:x R ,| x | 0,那么命题p 为()A .x R,| x | 0B.x R ,| x | 0C.x R,| x | 0D.x R ,| x | 02.已知质点按规律s2t24t (距离单位:m,时间单位:s)运动,则其在 t 3s 时的瞬时速度为()(单位: m / s)。
A . 30 B.28 C.24 D.163.设抛物线的顶点在原点,准线方程为x 2 ,则抛物线的方程是()A .y28x B. y24x C.y28x D.y24x4.a,b为非零实数,且a b ,则下列命题成立的是()A. a2b2B. a2b ab2C.11D.b aab 2 a 2b a b5.等比数列a n的前 n 项和为S n,且 4a1,2 a2, a3成等差数列。
若a1=1,则 S4=()A . 7 B. 15 C.31 D.82x y26.设变量 x,y 满足约束条件x 2 y2z2x y 的最大值是(x0,则目标函数)y0A . 1 B.2 C. 42 D.37.设函数 f (x) 在定义域内可导,y f (x) 的图象如图,则导函数 y f ' ( x) 的图象可能为()8.已知抛物线y2 2 px( p0)的焦点F 恰为双曲线x2y21(a0, b0) 的右焦点,a2b2且两曲线交点的连线过点 F ,则双曲线的离心率为()A.25B.22C.15D.129.定义n为 n个正数p1, p2,..., p n的“均倒数”若.已知正数数列{ a n} 的前n p1p2 ...p n项的“均倒数”为1,又bna n 1,则11...1()4b1b2b2b3b10b112n 1A.1B.1C.1011 111211D.1210. 已知P是抛物线y2 4 x 上的一个动点,Q是圆x 32y121上的一个动点 , N (1,0)是一个定点 ,则PQ PN 的最小值为()A. 3B. 4C. 5D.21.设x2在 (0,) 内单调递增, q : m 5 ,则p是q的p : f ( x) e ln x 2 x mx 111()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件x2y21(x 0, y0) 上的动点,F1, F2为椭圆的两个焦点, O 是12 .已知点P是椭圆816原点,若 M 是 F PF 的角平分线上一点,且FM1MP ,则OM的取值范围是()12A . [0,3]B.[0,2 2)C.[22,3)D. [0,4]第Ⅱ卷( 90 分)二、填空题:本大题共4 小题,每小题5 分,共 20 分.把答案填在题中横线上.13成等比数列,且不等式x23x 2 0的解集为 (b , c) ,则 ad =。
辽宁省沈阳二中2015-2016学年高二上学期10月月考数学试卷
沈阳二中2015—2016学年度上学期10月份小班化学习成果阶段验收高二(17届)数学试题命题人:高二数学组审校人:高二数学组说明:1.测试时间:120分钟总分:150分2.客观题涂在答题卡上,主观题答在答题纸的相应位置上第Ⅰ卷(满分60分)一、选择题(每题5分,共40分)1.已知集合A=,则A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.设,是两个不同的平面,是直线且.“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.已知平面向量满足,且,则向量与的夹角为()A.B.C.D.4.下列不等式一定成立的是()A.B.C.D.5.已知函数 (,且)的图象恒过定点,若点在一次函数的图象上,其中,则的最小值为()A.1 B.C.2 D.46.已知实数满足,是关于的方程的两个实根,则不等式成立的概率为()A.B.C.D.7.已知椭圆的左、右焦点分别为F1、F2,则,点A在椭圆上且,则椭圆的离心率为()A.B.C.D.8.若P点是以A(-3,0)、B(3,0)为焦点,实轴长为的双曲线与圆的一个交点,则=()A.B.C.D.9.设函数,则使得成立的的取值范围是()A.B.C.D.10.已知直线与抛物线相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则实数k的值为()A.B.C.D.11.执行如图的程序框图,若,则输出的()A.B.C.D.12.如图,设为内的两点,且,=+,则的面积与的面积之比为()A.B.C.D.第Ⅱ卷(满分90分)二.填空题:(本大题共4小题,每小题5分,共20分)13.在中,,则=_________14.已知c是椭圆x2a2+y2b2=1(a>b>0)的半焦距,则b+ca的取值范围是________.15.设x,y满足约束条件,则的取值范围是___________.16.数列中,则=_______________三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知中,角的对边分别为, ,向量,,且.(Ⅰ)求的大小;(Ⅱ)当取得最大值时,求角的大小.18.设数列的前项和为,已知(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,数列的前项和为.求19.如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M、N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积20.已知二次函数 (为常数且)满足且方程有等根.(1)求的解析式;(2)设的反函数为若对恒成立,求实数的取值范围.21.已知点为抛物线的焦点,点在抛物线上,且.(Ⅰ)求抛物线的方程;(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.22.已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.(I)求椭圆的离心率;(II)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.沈阳二中2015—2016学年度上学期10月份小班化学习成果阶段验收高二(17届)数学答案命题人:高二数学组 审校人:高二数学组1-5CBCCD 6-10ADCAD 11-12DB13、 14、(1,2] 15、16、 17、(1)因为,所以即,因为,所以所以(2)由,故73sin cos()sin cos()sin )12626B C B B B B B πππ+-=+-=+=+ 由,故最大值时,18、(Ⅰ)由可得,而,则(Ⅱ)由及可得.19、(1)证明:连接AB ′,AC ′,由题意知,ABB ′A ′为平行四边形,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′.又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.(2)连接BN ,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,∴A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC . 又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.21、解法一:(I )由抛物线的定义得.因为,即,解得,所以抛物线的方程为.(II )因为点在抛物线上,所以,由抛物线的对称性,不妨设.由,可得直线的方程为.由,得,解得或,从而.又,所以,,所以,从而,这表明点到直线,的距离相等,故以为圆心且与直线相切的圆必与直线相切.解法二:(I)同解法一.(II)设以点为圆心且与直线相切的圆的半径为.因为点在抛物线上,所以,由抛物线的对称性,不妨设.由,可得直线的方程为.由,得,解得或,从而.又,故直线的方程为,从而.又直线的方程为,所以点到直线的距离.这表明以点为圆心且与直线相切的圆必与直线相切.22、(I)过点(c,0),(0,b)的直线方程为,则原点O到直线的距离,由,得,解得离心率.(II)解法一:由(I)知,椭圆E的方程为. (1) 依题意,圆心M(-2,1)是线段AB的中点,且.易知,AB不与x轴垂直,设其直线方程为,代入(1)得设则由,得解得.从而.于是.由,得,解得.故椭圆E的方程为.解法二:由(I)知,椭圆E的方程为. (2)依题意,点A,B关于圆心M(-2,1)对称,且.设则,,两式相减并结合得.易知,AB不与x轴垂直,则,所以AB的斜率因此AB直线方程为,代入(2)得所以,.于是.由,得,解得.故椭圆E的方程为.。
辽宁省沈阳二中2015—2016学年度上学期10月月考数学试卷(含答案)
沈阳二中2015—2016学年度上学期10月月考高二数学试题说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸的相应位置上第Ⅰ卷 (满分60分)一、选择题(每题5分,共40分)1. 已知集合A=2{|430},{|24}x x x B x x -+<=<<,则A B = A .(1,3) B .(1,4) C .(2,3) D .(2,4)2. 设,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知平面向量,a b 满足()=3a a +b ⋅,且2,1==a b ,则向量a 与b 的夹角为 ( )A .6πB .3π C .32π D .65π 4. 下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+D .)(1112R x x ∈>+ 5. 已知函数1x y a -=(0a >,且1a ≠)的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0m n >,则11m n+的最小值为 ( )A .1BC .2D .46. 已知实数,a b 满足0404a b ≤≤⎧⎨≤≤⎩,12,x x 是关于x 的方程2230x x b a -+-+=的两个实根,则不等式1201x x <<<成立的概率为 ( )A .332B .316 C .532D .9167. 已知椭圆22221x y a b+=的左、右焦点分别为F 1、F 2,则12||2F F c =,点A 在椭圆上且2112120AF F F AF AF c == 且,则椭圆的离心率为( )A B C D8. 若P 点是以A (-3,0)、B (3,0)为焦点,实轴长为52的双曲线与圆922=+yx 的一个交点,则PB PA += ( )A .134B .142C .132D .1439. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭ C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭10. 已知直线)0)(2(>+=k x k y 与抛物线x y C 8:2=相交于A,B 两点,F 为C 的焦点,若|FA|=2|FB|,则实数k 的值为 ( ) 11. A .31 B .32C .32D .322执行如图的程序框图,若9p =,则输出的S = ( )A .910B .718 C .89D .2512. 如图,设,P Q 为ABC ∆内的两点,且2155AP AB AC =+ ,AQ =23AB +14AC ,则ABP ∆的面积与ABQ ∆的面积之比为( )A .15 B .45 C .14 D .13第Ⅱ卷 (满分90分)二.填空题:(本大题共4小题,每小题5分,共20分)13. 在ABC ∆中, 112(tan A)(tan B )++=,则2log sinC =_________ 14. 已知c 是椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距,则b +c a的取值范围是________.15. 设x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则132+++x y x 的取值范围是___________.16. 数列{}n a 中n a a a n n 23,111+==+,则n a =_______________三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆中,角A B C 、、的对边分别为a b c 、、,a =向量(1,1)m =-, (cos cos ,sin sin n B C B C = ,且m n ⊥ .(Ⅰ)求A 的大小; (Ⅱ)当7sin cos()12B C π+-取得最大值时,求角B 的大小. 18. 设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,数列{}n b 的前n 项和为n T .求413312n T -19. 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′-MNC 的体积20. 已知二次函数2()f x ax bx =+(,a b 为常数且0a ≠)满足(1)(1),f x f x -=+ 且方程()f x x =有等根.(1)求()f x 的解析式;(2)设()12()(1)g x f x x =->的反函数为1(),g x -若12(2)(32)x x g m ->-对[1,2]x ∈恒成立,求实数m 的取值范围.21. 已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.22. 已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.沈阳二中2015—2016学年度上学期10月份小班化学习成果阶段验收高二(17届)数学答案命题人:高二数学组 审校人:高二数学组1-5CBCCD 6-10ADCAD 11-12DB 13、12-14、(1,2] 15、 ⎥⎦⎤⎢⎣⎡11,23 16、)21(3251n a n n +-⨯=-17、(1)因为m n ⊥ ,所以cos cos sin sin 02B C B C -+-=即()cos 2B C +=-,因为A B C π++=,所以cos()cos B C A +=-所以 c o s,24A A π== (2)由3,44A CB ππ==-,故73sin cos()sin cos()sin )12626B C B B B B B πππ+-=+-==+由3(0,)4B π∈,cos()4B C π-+最大值时,3B π= 18、(Ⅰ)由233nn S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥而11133a -=≠,则13,1,3, 1.n n n a n -=⎧=⎨>⎩(Ⅱ)由3log n n n a b a =及13,1,3, 1.n n n a n -=⎧=⎨>⎩可得311,1,log 31, 1.3n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩ 2311123133333n n n T --=+++++ . 2234111123213333333n n n n n T ---=++++++ 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n n n nn T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅ 111321413413211321124331231243123n n n n n n n n T T --+++=-⇒-=--=⋅⋅ 19、(1)证明:连接AB ′,AC ′,由题意知,ABB ′A ′为平行四边形,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′.又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.(2)连接BN ,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,∴A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC . 又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N-A ′BC =12V A ′-NBC =16.21、解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以m =±(2,A .由(2,A ,()F 1,0可得直线F A的方程为)1y x =-.由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,所以G k A ==,()G 01312k B ==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切.解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以m =±(2,A .由(2,A ,()F 1,0可得直线F A的方程为)1y x =-.由)214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,故直线G A的方程为30y -+=,从而r ==. 又直线G B的方程为30y ++=,所以点F 到直线G B的距离d r ===. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 22、(I )过点(c,0),(0,b)的直线方程为0bx cy bc +-=, 则原点O到直线的距离bcd a==, 由12d c =,得2a b ==c a . (II)解法一:由(I )知,椭圆E 的方程为22244x y b +=. (1)依题意,圆心M(-2,1)是线段AB的中点,且|AB|易知,AB 不与x 轴垂直,设其直线方程为(2)1y k x =++,代入(1)得2222(14)8(21)4(21)40k x k k x k b +++++-=设1122(,y ),B(,y ),A x x 则221212228(21)4(21)4,.1414k k k b x x x x k k ++-+=-=-++ 由124x x +=-,得28(21)4,14k k k +-=-+解得12k =.从而21282x x b =-.于是12|AB ||x x =-==由|AB|=23b =.故椭圆E 的方程为221123x y +=. 解法二:由(I )知,椭圆E 的方程为22244x y b +=. (2) 依题意,点A ,B 关于圆心M(-2,1)对称,且|AB|设1122(,y ),B(,y ),A x x 则2221144x y b +=,2222244x y b +=, 两式相减并结合12124,y 2,x x y +=-+=得()1212-4()80x x y y -+-=. 易知,AB 不与x 轴垂直,则12x x ≠,所以AB 的斜率12121k .2AB y y x x -==-因此AB 直线方程为1(2)12y x =++,代入(2)得224820.x x b ++-= 所以124x x +=-,21282x x b =-.于是12|AB ||x x =-==由|AB|=23b =.故椭圆E 的方程为221123x y +=.。
辽宁省沈阳二中高二数学上学期10月月考试卷(含解析)
2015-2016学年辽宁省沈阳二中高二(上)10月月考数学试卷一、选择题(每题5分,共40分)1.已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=( )A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分不要条件 D.既不充分也不必要条件3.已知平面向量,满足•(+)=3,且||=2,||=1,则向量与的夹角为( ) A.B.C.D.4.下列不等式一定成立的是( )A.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z)C.x2+1≥2|x|(x∈R)D.(x∈R)5.已知函数y=a x﹣1(a>0,且a≠1)的图象恒过定点,若点在一次函数y=mx+n的图象上,其中m,n>0,则+的最小值为( )A.4 B.C.2 D.16.已知实数a,b满足,x1,x2是关于x的方程x2﹣2x+b﹣a+3=O的两个实根,则不等式0<x1<1<x2成立的概率是( )A.B.C.D.7.已知椭圆的左、右焦点分别为F1、F2,且|F1F2|=2c,点A在椭圆上,,,则椭圆的离心率e=( )A.B.C.D.8.若P点是以A(﹣3,0)、B(3,0)为焦点,实轴长为2的双曲线与圆x2+y2=9的一个交点,则|PA|+|PB|=( )A.4B.2C.2D.39.设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )A.(,1)B.∪(1,+∞)C.() D.(﹣∞,,+∞)10.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=( )A.B.C.D.11.执行如图的程序框图,若p=9,则输出的S=( )A.B.C.D.12.如图,设P、Q为△ABC内的两点,且,=+,则△ABP的面积与△ABQ的面积之比为( )A.B.C.D.二.填空题:(本大题共4小题,每小题5分,共20分)13.在△ABC中,(1+tanA)(1+tanB)=2,则log2sinC=__________.14.已知c是椭圆(a>b>0)的半焦距,则的取值范围是__________.15.设x,y满足约束条件的取值范围是__________.16.数列{a n}中,a1=1,a n+1=3a n+2,则通项a n=__________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC中,角A、B、C的对边分别为a、b、c,a=,向量=(﹣1,1),=(cosBcosC,sinBsinC﹣),且⊥.(Ⅰ)求A的大小;(Ⅱ)当sinB+cos(﹣C)取得最大值时,求角B的大小.18.设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log3a n,数列{b n}的前n项和为T n.求|T n﹣|.19.如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B 和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′﹣MNC的体积.(椎体体积公式V=Sh,其中S为底面面积,h为高)20.已知二次函数f(x)=ax2+bx(a,b为常数且a≠0)满足f(1﹣x)=f(1+x),且方程f(x)=x有等根.(1)求f(x)的解析式;(2)设g(x)=1﹣2f(x)(x>1)的反函数为g﹣1(x),若g﹣1(22x)>m(3﹣2x)对x∈恒成立,求实数m的取值范围.21.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.22.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.2015-2016学年辽宁省沈阳二中高二(上)10月月考数学试卷一、选择题(每题5分,共40分)1.已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=( )A.(1,3) B.(1,4) C.(2,3) D.(2,4)【考点】交集及其运算.【专题】集合.【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分不要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.【解答】解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.3.已知平面向量,满足•(+)=3,且||=2,||=1,则向量与的夹角为( ) A.B.C.D.【考点】数量积表示两个向量的夹角;平面向量数量积的运算.【专题】计算题;平面向量及应用.【分析】根据向量数量积的性质,得到=2=4,代入已知等式得•=﹣1.设与的夹角为α,结合向量数量积的定义和=2,=1,算出cosα=﹣,最后根据两个向量夹角的范围,可得与夹角的大小.【解答】解:∵=2,∴=4又∵•(+)=3,∴+•=4+•=3,得•=﹣1,设与的夹角为α,则•=cosα=﹣1,即2×1×cosα=﹣1,得cosα=﹣∵α∈,∴α=故选C【点评】本题给出两个向量的模,并且在已知它们的和向量与其中一个向量数量积的情况下,求两个向量的夹角.着重考查了平面向量数量积的运算和两个向量夹角等知识,属于基础题.4.下列不等式一定成立的是( )A.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z)C.x2+1≥2|x|(x∈R)D.(x∈R)【考点】不等式比较大小.【专题】探究型.【分析】由题意,可对四个选项逐一验证,其中C选项用配方法验证,A,B,D三个选项代入特殊值排除即可【解答】解:A选项不成立,当x=时,不等式两边相等;B选项不成立,这是因为正弦值可以是负的,故不一定能得出sinx+≥2;C选项是正确的,这是因为x2+1≥2|x|(x∈R)⇔(|x|﹣1)2≥0;D选项不正确,令x=0,则不等式左右两边都为1,不等式不成立.综上,C选项是正确的.故选:C.【点评】本题考查不等式大小的比较,不等式大小比较是高考中的常考题,类型较多,根据题设选择比较的方法是解题的关键5.已知函数y=a x﹣1(a>0,且a≠1)的图象恒过定点,若点在一次函数y=mx+n的图象上,其中m,n>0,则+的最小值为( )A.4 B.C.2 D.1【考点】基本不等式.【分析】根据指数函数的性质,可以求出定点,把定点坐标代入一次函数y=mx+n,得出m+n=1,然后利用不等式的性质进行求解.【解答】解:∵函数y=a x﹣1(a>0,且a≠1)的图象恒过定点,可得定点坐标(1,1),∵定点在一次函数y=mx+n的图象上,∴m+n=1,∵m,n>0,∴m+n=1≥2,∴mn≤,∴+==≥4(当且仅当n=m=时等号成立),∴+的最小值为4,故选A;【点评】此题主要考查的指数函数和一次函数的性质及其应用,还考查的均值不等式的性质,把不等式和函数联系起来进行出题,是一种常见的题型6.已知实数a,b满足,x1,x2是关于x的方程x2﹣2x+b﹣a+3=O的两个实根,则不等式0<x1<1<x2成立的概率是( )A.B.C.D.【考点】一元二次方程的根的分布与系数的关系;几何概型.【专题】不等式的解法及应用.【分析】构造函数,利用0<x1<1<x2,可得a,b的范围,作出图形,计算面积,可得概率.【解答】解:构造函数f(x)=x2﹣2x+b﹣a+3,则∵0<x1<1<x2,∴,∴,作出可行域,如图所示,阴影部分的面积为正方形的面积为4×4=16∴不等式0<x1<1<x2成立的概率是=故选A.【点评】本题考查方程根的研究,考查几何概型,正确计算面积是关键.7.已知椭圆的左、右焦点分别为F1、F2,且|F1F2|=2c,点A在椭圆上,,,则椭圆的离心率e=( )A.B.C.D.【考点】平面向量数量积的运算;椭圆的简单性质.【专题】计算题.【分析】本题考查的知识点是平面向量的数量积运算及椭圆的简单性质,由,,我们将两式相减后得到AF1的长度,再根据椭圆的定义,即可找到a与c之间的数量关系,进而求出离心率e.【解答】解:∵∴AF1⊥F1F2即A点的横坐标与左焦点相同又∵A在椭圆上,∴A(﹣C,±)又∴=c2即=2=c2即AF1=c则2a=c+ c∴e=故选C【点评】求椭圆的离心率,即是在找a与c之间的关系,我们只要根据已知中的其它条件,构造方程(组),或者进行转化,转化为一个关于e的方程,解方程(组),易得e值.8.若P点是以A(﹣3,0)、B(3,0)为焦点,实轴长为2的双曲线与圆x2+y2=9的一个交点,则|PA|+|PB|=( )A.4B.2C.2D.3【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】由题意,AP⊥BP,由勾股定理和双曲线的定义,结合完全平方公式,计算即可得到.【解答】解:由题意,AP⊥BP,即有|PA|2+|PB|2=|AB|2=36,①由双曲线的定义可得||PA|﹣|PB||=2a=2,②②两边平方可得|PA|2+|PB|2﹣2|PA|•|PB|=20,即有2|PA|•|PB|=36﹣20=16,再由①,可得(|PA|+|PB|)2=36+16=52,则|PA|+|PB|=2.故选:C.【点评】本题考查双曲线的定义和性质,用好双曲线的定义和直径所对的圆周角为直角,是解本题的关键.9.设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )A.(,1)B.∪(1,+∞)C.() D.(﹣∞,,+∞)【考点】函数的单调性与导数的关系;函数单调性的性质.【专题】开放型;函数的性质及应用;不等式的解法及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣导数为f′(x)=+>0,即有函数f(x)在.【考点】椭圆的简单性质.【专题】计算题.【分析】根据题意,化简()2,结合椭圆的性质,可得其取值范围;进而可得答案.【解答】解:根据题意,,即1<()2≤2解可得,1<≤;故答案为(1,].【点评】本题考查椭圆的性质,涉及不等式的有关性质,解题时,要注意椭圆的参数a、b、c 之间的关系及运用.15.设x,y满足约束条件的取值范围是.【考点】简单线性规划.【专题】数形结合.【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与(﹣1,﹣1)构成的直线的斜率问题,求出斜率的取值范围,从而求出目标函数的取值范围.【解答】解:由z==1+2×=1+2×,考虑到斜率以及由x,y满足约束条件所确定的可行域.而z表示可行域内的点与(﹣1,﹣1)连线的斜率的2倍加1.数形结合可得,在可行域内取点A(0,4)时,z有最大值11,在可行域内取点B(3,0)时,z有最小值,所以≤z≤11.故答案为:.【点评】本题利用直线斜率的几何意义,求可行域中的点与(﹣1,﹣1)的斜率,属于线性规划中的延伸题,解题的关键是对目标函数的几何意义的理解.16.数列{a n}中,a1=1,a n+1=3a n+2,则通项a n=2×3n﹣1﹣1.【考点】数列递推式.【专题】计算题;转化思想.【分析】由题意知a n+1+1=3(a n+1),所以 {a n+1}是一个以a1+1=2为首项,以3为公比的等比数列,由此可知an=2×3n﹣1﹣1.【解答】解:设a n+1+k=3(a n+k),得a n+1=3a n+2k,与a n+1=3a n+2比较得k=1,∴原递推式可变为a n+1+1=3(a n+1),∴,∴{a n+1}是一个以a1+1=2为首项,以3为公比的等比数列,∴an+1=2×3n﹣1,∴an=2×3n﹣1﹣1.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC中,角A、B、C的对边分别为a、b、c,a=,向量=(﹣1,1),=(cosBcosC,sinBsinC﹣),且⊥.(Ⅰ)求A的大小;(Ⅱ)当sinB+cos(﹣C)取得最大值时,求角B的大小.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【专题】计算题;函数思想;向量法;三角函数的求值.【分析】(Ⅰ)利用已知向量的坐标结合⊥列式,再结合三角形内角和定理求得A的大小;(Ⅱ)由(Ⅰ)中求得的A值,把sinB+cos(﹣C)化为仅含有B的三角函数式,可得当sinB+cos(﹣C)取得最大值时角B的大小.【解答】解:(Ⅰ)∵⊥,∴,即,∵A+B+C=π,∴cos(B+C)=﹣cosA,∴cosA=,A=;(Ⅱ)由,故=.由,故取最大值时,.【点评】本题考查平面向量的数量积运算,考查了三角函数中的恒等变换应用,是基础的计算题.18.设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log3a n,数列{b n}的前n项和为T n.求|T n﹣|.【考点】数列的求和;数列递推式.【专题】计算题;方程思想;分析法;等差数列与等比数列.【分析】(Ⅰ)当n≥2时,通过a n=S n﹣S n﹣1计算即得结论;(Ⅱ)通过(I)、利用对数性质可知数列{b n}的通项公式,进而利用错位相减法计算即得结论.【解答】解:(Ⅰ)∵2S n=3n+3,∴当n≥2时,a n=S n﹣S n﹣1=(3n+3)﹣(3n﹣1+3)=3n﹣1,又∵a1=S1=(3+3)=3不满足上式,∴a n=;(Ⅱ)由(I)可知b n==,∴T n=+++…+,∴T n=+++…++,两式错位相减得:T n=+﹣+++…+﹣=﹣+(+++…+)﹣=+﹣=﹣,∴T n=﹣,∴|T n﹣|=.【点评】本题考查数列的通项及前n项和,考查错位相减法计算即得结论,注意解题方法的积累,属于中档题.19.如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B 和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′﹣MNC的体积.(椎体体积公式V=Sh,其中S为底面面积,h为高)【考点】直线与平面平行的判定;棱柱的结构特征;棱柱、棱锥、棱台的体积.【专题】综合题.【分析】(Ⅰ)证法一,连接AB′,AC′,通过证明MN∥AC′证明MN∥平面A′ACC′.证法二,通过证出MP∥AA′,PN∥A′C′.证出MP∥平面A′ACC′,PN∥平面A′ACC′,即能证明平面MPN∥平面A′ACC′后证明MN∥平面A′ACC′.(Ⅱ)解法一,连接BN,则V A′﹣MNC=V N﹣A′MC=V N﹣A′BC=V A′﹣NBC=.解法二,V A′﹣MNC=V A′﹣NBC﹣V M﹣NBC=V A′﹣NBC=.【解答】(Ⅰ)(证法一)连接AB′,A C′,由已知∠BAC=90°,AB=AC,三棱柱ABC﹣A′B′C′为直三棱柱,所以M为AB′的中点,又因为N为B′C′中点,所以MN∥AC′,又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,所以MN∥平面A′ACC′;(证法二)取A′B′中点,连接MP,NP.而M,N分别为AB′,B′C′中点,所以MP∥AA′,PN∥A′C′.所以MP∥平面A′ACC′,PN∥平面A′ACC′;又MP∩PN=P,所以平面MPN∥平面A′ACC′,而MN⊂平面MPN,所以MN∥平面A′ACC′;(Ⅱ)(解法一)连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=B′C′=1,故V A′﹣MNC=V N﹣A′MC=V N﹣A′BC=V A′﹣NBC=.(解法二)V A′﹣MNC=V A′﹣NBC﹣V M﹣NBC=V A′﹣NBC=.【点评】本题考查线面关系,体积求解,考查空间想象能力、思维能力、推理论证能力、转化、计算等能力.20.已知二次函数f(x)=ax2+bx(a,b为常数且a≠0)满足f(1﹣x)=f(1+x),且方程f(x)=x有等根.(1)求f(x)的解析式;(2)设g(x)=1﹣2f(x)(x>1)的反函数为g﹣1(x),若g﹣1(22x)>m(3﹣2x)对x∈恒成立,求实数m的取值范围.【考点】反函数;二次函数的性质.【分析】(1)先由f(1﹣x)=f(1+x)得函数对称轴,再由方程f(x)=x有等根,得方程f(x)=x的判别式等于零,最后解方程即可;(2)由(1)得出g(x)的解析式,再将x用y表示,最后交换x、y,即可求出反函数的解析式,从而得1+2x>m(3﹣2x)对x∈恒成立,t=2x,转化成关于t的一次函数恒成立问题,根据函数在上的单调性建立不等式,从而求出所求.【解答】解:(1)∵f(1﹣x)=f(1+x),∴函数的对称轴为x=1,即=1∵方程f(x)=x有等根,∴△=(b﹣1)2=0∴b=1,a=﹣∴.(2)由(1)得g(x)=x2﹣2x+1,当x>1时,y=(x﹣1)2>0⇒x=1+⇒g﹣1(x)=1+(x>0),∵g﹣1(22x)>m(3﹣2x)对x∈恒成立,即1+2x>m(3﹣2x)对x∈恒成立,令t=2x,则(m+1)t+1﹣3m>0,对t∈恒成立,∴⇒﹣5<m<3.【点评】本题考查了二次函数解析式的求法,解题时要熟练掌握二次函数的图象特征,还考查了反函数,以及反函数与原函数的之间的关系,同时考查了恒成立问题和最值问题,是一道综合题.21.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】解法一:(I)由抛物线定义可得:|AF|=2+=3,解得p.即可得出抛物线E的方程.(II)由点A(2,m)在抛物线E上,解得m,不妨取A,F(1,0),可得直线AF的方程,与抛物线方程联立化为2x2﹣5x+2=0,解得B.又G(﹣1,0),计算k GA,k GB,可得k GA+k GB=0,∠AGF=∠BGF,即可证明以点F为圆心且与直线GA相切的圆,必与直线GB相切.解法二:(I)同解法一.(II)由点A(2,m)在抛物线E上,解得m,不妨取A,F(1,0),可得直线AF的方程,与抛物线方程联立化为2x2﹣5x+2=0,解得B.又G(﹣1,0),可得直线GA,GB的方程,利用点到直线的距离公式可得:点F(1,0)到直线GA、GB的距离,若相等即可证明此以点F为圆心且与直线GA相切的圆,必与直线GB相切.【解答】解法一:(I)由抛物线定义可得:|AF|=2+=3,解得p=2.∴抛物线E的方程为y2=4x;(II)证明:∵点A(2,m)在抛物线E上,∴m2=4×2,解得m=,不妨取A,F(1,0),∴直线AF的方程:y=2(x﹣1),联立,化为2x2﹣5x+2=0,解得x=2或,B.又G(﹣1,0),∴k GA=.k GB==﹣,∴k GA+k GB=0,∴∠AGF=∠BGF,∴x轴平分∠AGB,因此点F到直线GA,GB的距离相等,∴以点F为圆心且与直线GA相切的圆,必与直线GB相切.解法二:(I)同解法一.(II)证明:点A(2,m)在抛物线E上,∴m2=4×2,解得m=,不妨取A,F(1,0),∴直线AF的方程:y=2(x﹣1),联立,化为2x2﹣5x+2=0,解得x=2或,B.又G(﹣1,0),可得直线GA,GB的方程分别为:x﹣3y+2=0,=0,点F(1,0)到直线GA的距离d==,同理可得点F(1,0)到直线GA的距离=.因此以点F为圆心且与直线GA相切的圆,必与直线GB相切.【点评】本小题主要考查抛物线、直线与抛物线及其圆的位置关系及其性质、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,属于难题.22.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.【考点】直线与圆锥曲线的综合问题;曲线与方程.【专题】创新题型;直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出经过点(0,b)和(c,0)的直线方程,运用点到直线的距离公式,结合离心率公式计算即可得到所求值;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①设出直线AB的方程,代入椭圆方程,运用韦达定理和弦长公式,结合圆的直径和中点坐标公式,解方程可得b2=3,即可得到椭圆方程.【解答】解:(Ⅰ)经过点(0,b)和(c,0)的直线方程为bx+cy﹣bc=0,则原点到直线的距离为d==c,即为a=2b,e===;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①由题意可得圆心M(﹣2,1)是线段AB的中点,则|AB|=,易知AB与x轴不垂直,记其方程为y=k(x+2)+1,代入①可得(1+4k2)x2+8k(1+2k)x+4(1+2k)2﹣4b2=0,设A(x1,y1),B(x2,y2),则x1+x2=.x1x2=,由M为AB的中点,可得x1+x2=﹣4,得=﹣4,解得k=,从而x1x2=8﹣2b2,于是|AB|=•|x1﹣x2|=•==,解得b2=3,则有椭圆E 的方程为+=1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法和椭圆方程的运用,联立直线方程和椭圆方程,运用韦达定理和弦长公式,同时考查直线和圆的位置关系,以及中点坐标公式和点到直线的距离公式的运用,属于中档题.- 21 -。
辽宁省沈阳二中2014-2015学年高二上学期期末考试数学(理)试题
辽宁省沈阳二中2014-2015学年高二上学期期末考试数学(理)试题沈阳二中2014-2015学年度上学期期末考试高二(16届)理科数学试题命题人:高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷(60分)一.选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的)1.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( ) A .,0x R x ∃∈≤ B .,0x R x ∀∈≤ C. ,0x R x ∃∈< D .,0x R x ∀∈<2. 已知a b >,则下列不等关系正确的是( ) A .22a b > B .22ac bc > C .22a b> D .22log log a b >3. 设直线::(0)l ykx m m,双曲线2222:1(0,0)x yC a b a b-=>>,则“bka”是“直线l 与双曲线C 恰有一个公共点“的( ) A .充分不必要条件 B .必要不充分条件 C .充分条件D .既不充分也不必要条件4. 有下列四个命题:(1)已知A ,B ,C ,D 是空间任意四点,则0AB BC CD DA +++=;(2)若两个非零向量AB CD 与满足0AB CD +=,则AB ‖CD;(3)分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量;(4)对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP xOA yOB zOC =++(,,)x y z R ∈,则P,A,B,C 四点共面。
其中正确命题的个数是( ) A.3B.2C.1D.0 5.设变量x,y 满足约束条件222200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数2z x y=-+的最大值是( )A.4B.2C.1D. 23- 6. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且2OM OA =,N 为BC 中点,则MN =( )A .121-232a b c + B .211322a b c -++ C .112-223a b c + D .221-332a b c + 7.已知数列{}na 是等比数列,其前n 项和为nS ,若612369,S S S S ==则( )A.9B.18C.64D.658.已知双曲线22145x y -=的右焦点与抛物线2yax=的焦点重合,则该抛物线的准线被双曲线所截的线段长度为( ) A.4B.5C. 5259.定义12...nn p p p +++为n 个正数12,,...,np p p 的“均倒数”.若已知正数数列{}na 的前n 项的“均倒数”为121n +,又14n na b+=,则12231011111...b bb b b b +++= ( ) A.111B.112C.1011D.111210.已知P 是抛物线xy42=上的一个动点,Q 是圆()()22311x y -+-=上的一个动点,)0,1(N 是一个定点,则PQ PN+的最小值为( )A.3B.4C.5D.21+11.已知直三棱柱ABC -A 1B 1C 1的各棱长均为1,棱BB 1所在直线上的动点M 满足1BB BM λ=,AM 与侧面BB 1C 1C 所成的角为θ,若⎥⎦⎤⎢⎣⎡∈2,22λ,则θ的取值范围是( ) A.⎥⎦⎤⎢⎣⎡6,12ππ B.⎥⎦⎤⎢⎣⎡4,6ππ C.⎥⎦⎤⎢⎣⎡3,4ππD.⎥⎦⎤⎢⎣⎡125,3ππ12.已知双曲线22221(0,0),,x y a b M N a b -=>>是双曲线上关于原点对称的两点,P 是双曲线上的动点,直线PM ,PN 的斜率分别为1212,(0)k k k k⋅≠,若12k k +的最小值为1,则双曲线的离心率为( ) 25 3D. 32第Ⅱ卷(90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题纸上)13. 若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________14. 已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 _______ .15. 平行六面体ABCD —A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为2,且两两夹角为60°,则1DB 和11C A 所成角大小为____________.16. 若0,y 0x >>,且1322x y x y+=++,则65x y +的最小值为___________.三、解答题(共6小题,共70分。
辽宁省沈阳二中2014-2015学年上学期10月月考高三数学(理)试题
辽宁省沈阳二中2014-2015学年上学期10月月考高三数学(理)试题说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)1.已知集合A ={x|0<log 4x<1},B ={x|x≤2},则A∩B =( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2] 2.有关下列命题的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D .命题“若x=y,则sinx=siny ”的逆否命题为真命题3.已知函数()()2531m f x m m x--=--是幂函数且是()0,+∞上的增函数,则m 的值为( )A .2B .-1C .-1或2D .04.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ) A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2) D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13 5.函数)42sin(log 21π+=x y 的单调减区间为 ( )A .)(],4(Z k k k ∈-πππB .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππ D .)(]83,8(Z k k k ∈++ππππ6.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值( )A .2413- B. 2213-C. 2313-D. 231-7.已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +等于( )A .-1 B.0 C. 1 D. 28.tan70°cos10°(1-3tan20°)的值为( )A .-1B .1C .-2D .29.已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.3210..已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(-∞,0)B.⎝ ⎛⎭⎪⎫0,12 C .(0,1) D .(0,+∞)11. 设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 ( ) A . 32παβ-=B.32παβ+=C.22παβ-=D.22παβ+=12. 已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=, 若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )A.]61,61[-B.]66,66[-C. ]31,31[- D. ]33,33[-第Ⅱ卷 (90分)二.填空题:本大题共4小题,每小题5分,共20分. 13.计算定积分=+⎰-dx x x 112)sin (__________14..设()f x R 是上的奇函数,且2'(1)0,0(1)()2()0f x x f x xf x -=>+-<当时,,则不等式()0f x >的解集为15.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x≤⎧=⎨>⎩给出下列四个命题:①该函数是以π为最小正周期的周期函数②当且仅当()x k k Z ππ=+∈时,该函数取得最小值是-1 ③该函数的图象关于直线52()4x k k Z ππ=+∈对称④当且仅当22()2k x k k Z πππ<<+∈时,0()f x <≤其中正确命题的序号是 (请将所有正确命题的序号都填上) 16. 已知函数())0(212<-+=x e x x f x与())ln(2a x x x g ++=图象上存在关于y 轴对称 的点,则a 的取值范围是__________________________.三、 解答题:(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)已知函数()sin 4f x A x π⎛⎫=+ ⎪⎝⎭,x R ∈,且53122f π⎛⎫= ⎪⎝⎭. (1)求A 的值;(2)若()()32f f θθ+-=,0,2πθ⎛⎫∈ ⎪⎝⎭,求34f πθ⎛⎫- ⎪⎝⎭.18. .(本小题满分12分)已知函数2()4sin sin ()cos 242x f x x x π=++ (1)设ω>0为常数,若()y f x ω=在区间223ππ-[,]上是增函数,求ω的取值范围;(2)设集合2A {x |x }63ππ=≤≤,{||()|2}B x f x m =-<,若A ⊆B ,求实数m 的取值范围.19.(本小题满分12分)若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.20.(本小题满分12分)设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数.(1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值.21.(本小题满分12分)函数1)(23+--=x x x x f 的图象上有两点A (0,1)和B (1,0)(Ⅰ)在区间(0,1)内,求实数a 使得函数)(x f 的图象在x =a 处的切线平行于直线 AB ; (Ⅱ)设m>0,记M (m ,)(m f ),求证在区间(0,m )内至少有一实数b ,使得函数 图象在x =b 处的切线平行于直线AM.22.(本小题满分12分) 已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.沈阳二中2014——2015学年度上学期10月份小班化学习成果阶段验收高三( 15 届)数学试题答案一.选择题: DDBCB ADBCB CB二.填空题: 13. 3214. (,1)(0,1)-∞- 15. ③④ 16. ),(e -∞ 17.(1)()f x )4π=+ (4)(2)430………………10 18.解:(1)f(x) =1cos(x)24sinx cos2x 2sinx 1,2π-++=+g ……………………2 ∵f(ωx)=2sin ωx+1在223π-π[,]上是增函数.∴22322ππππ-⊆-ωω[,][,],即23,(0.32224ππ-π-π≤≥∴ω∈ωω,,]…………………………………………………6 (2)由|f(x)-m|<2得:-2<f(x)-m <2, 即 f(x)-2<m <f(x)+2.∵A ⊆B,∴当2x 63π≤≤π时,f(x)-2<m <f(x)+2恒成立 ∴()()max min f x 2m f x 2,-+[]<<[] (9)又2x 63ππ∈[,]时,()()max min f x f ()3;f x f ()226ππ====,∴m ∈(1,4) (12)19. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1.又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1 (6)(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).……………………………….12 20. 解:∵f (x )是定义域为R 的奇函数,∴f (0)=0,∴k -1=0,即k =1…………………………………………………2 (1)∵f (1)>0,∴a -1a>0,又a >0且a ≠1,∴a >1,f (x )=a x -a -x,∵f ′(x )=a x ln a +a -x ln a =(a x +a -x)·ln a >0,∴f (x )在R 上为增函数.……………………………………………………………4 原不等式可化为f (x 2+2x )>f (4-x ), ∴x 2+2x >4-x ,即x 2+3x -4>0, ∴x >1或x <-4,∴不等式的解集为{x |x >1,或x <-4}.…………………………………….6 (2)∵f (1)=32,∴a -1a =32,即2a 2-3a -2=0,∴a =2或a =-12(舍去), (8)∴g (x )=22x+2-2x-4(2x -2-x )=(2x -2-x )2-4(2x -2-x)+2.令t (x )=2x -2-x(x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知), 即t (x )≥t (1)=32,∴原函数变为w (t )=t 2-4t +2=(t -2)2-2, ∴当t =2时,w (t )min =-2, 此时x =log 2(1+2).即g (x )在x =log 2(1+2)时取得最小值-2…………………………………………………………12 21. (Ⅰ)解:直线AB 斜率k AB =-1 123)(2--='x x x f 令1123)10(1)(2-=--<<-='a a a a f 即解得 32=a …………………………………………………………………………4 (Ⅱ)证明:直线AM 斜率 101)1(223--=--+--=m m m m m m k AM考察关于b 的方程1)(2--='m m b f 即3b 2-2b -m 2+m=0在区间(0,m )内的根的情况令g(b)= 3b 2-2b -m 2+m ,则此二次函数图象的对称轴为31=b 而0121)21(31)31(22<---=-+-=m m m g g(0)=-m 2+m=m(1-m)g(m)=2m 2-m -m(2m -1) (8)∴(1)当),0(0)(,0)(,0)0(,210m b g m g g m 在区间方程时=<><<内有一实根 (2)当)31,0(0)(,0)31(,0)0(,121在区间方程时=<><≤b g g g m 内有一实根(3)当),31(0)(,0)(,0)31(,1m b g m g g m 在区间方程时=><≥内有一实根综上,方程g(b)=0在区间(0,m )内至少有一实根,故在区间(0,m )内至少有一实数b ,使得函数图象在x =b处的切线平行于直线AM …………………………………………………12 22.解:(I )(),()1af x xg x a x''=+=+, ∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, 即2(1)()0a x a ++≥恒成立, ∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x <-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- (6)(II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a x x--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--,∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=-设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--, ∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''> ∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. (12)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳二中2014—2015学年度上学期第一次阶段测试高二( 16 届)数学试题说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0,0,a b c d >><<则一定有( )A .a b c d > B .a b c d < C .a b d c > D .a b d c < 2.不等式2601x x x --->的解集为( ) A . {}2,3x x x -<或> B .{}213x x x -<,或<< C .{}213x x x -<<,或> D . {}2113x x x -<<,或<<3.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .1894.已知a >b >0,且ab =1,设c =2a +b,P =log c a ,N =log c b ,M =log c ab ,则有( )A. P <M <NB. M <P <NC. N <P <MD. P <N <M5.若关于x 的不等式ax 2+bx -2>0的解集是⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3121, ,则ab 等于( )A .-24B .24C .14D .-146.已知{}n a 是等比数列,对任意*N n ∈都有0>n a ,如果25)()(644533=+++a a a a a a ,则=+53a a( ) A .5B .10C .15D .207.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有( )A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43D .最小值18.已知⎩⎪⎨⎪⎧x -y ≤0x +y ≥0y ≤a,若z =x +2y 的最大值是3,则a 的值是( )A .1 B.-1 C. 0 D. 2 9.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a , 则1a 为( ) A .22.5-B .21.5-C .20.5-D .20-10.若关于x 的不等式4104822<<>---x a x x 在内有解,则实数a 的取值范围是( )A . 4-<aB .4->aC .12->aD .12-<a11.设函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集是( ) A . (1,2)∪(3,+∞) B .(10,+∞) C .(1,2)∪(10,+∞) D .(1,2)12.记f (n)为自然数n 的个位数字,a n = f (n 2)- f (n).则a 1+a 2+a 3+ +a 2016的值为( )A .2B .6C .8D .10第Ⅱ卷 (90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大,则参数m 的取值范围是 。
14、若数列{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是 。
15.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,当n >4时,f (n )= . 16.已知ABC ∆的三边长,,a b c 满足2b c a +≤,2c a b +≤,则ba的取值范围是 。
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)已知a >0,b >0,m >0,n >0,求证:a m +n +b m+n≥ a m b n +a n b m .18.(本小题满分12分)例解关于的不等式:<-∈.12 x 1a(a R)xx -119.(本小题满分12分)一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有254cm 的面积,问应如何设计十字型宽x 及长y ,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.20.(本小题满分12分) 若数列{}n a 满足前n项之和()124,2n n nn n S a n ba b *+=-∈=+N 且12b =, (1)求数列{}n a 的通项公式 (2)证明:⎭⎬⎫⎩⎨⎧n n b 2是等差数列 (3)求n b 的前n 项和n T .21.(本小题满分12分)设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列. (1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.22.(本小题满分12分)设A (x 1,y 1),B(x 2,y 2)是函数f(x)=x x -+1log 212的图象上任意两点,且)(21OB OA OM +=,已知点M 的横坐标为21. (1) 求证:M 点的纵坐标为定值; (2) 若S n =f(n nn f nf n),1()2()1-+⋯++∈N *,且n ≥2,求S n ; (3) 已知a n =⎪⎪⎩⎪⎪⎨⎧≥++=+2)1)(1(11 321n S S n n n,其中n ∈N *.T n 为数列{a n }的前n 项和,若T n <λ(S n+1+1)对一切n ∈N *都成立,试求λ的取值范围.沈阳二中2014——2015学年度上学期10月份小班化学习成果 阶段验收高二( 16 届)数学试题答案二、填空题13.-2<m <0 14.4006 15.21(n +1)(n -2) 16. 2332b a << 三.解答题17. 证明:a m +n +b m +n -(a m b n +a n b m )=(a m +n -a m b n )-(a n b m -b m +n =a m (a n -b n )-b m (a n -b n )=(a m -b m )(a n -b n ).当a >b 时,a m >b m ,a n >b n ,∴(a m -b m )(a n -b n )>0; 当a <b 时,a m <b m ,a n <b n ,∴(a m -b m )(a n -b n )>0; 当a =b 时,a m =b m ,a n =b n ,∴(a m -b m )(a n -b n )=0. 综上,(a m -b m )(a n -b n )≥0,即a m +n +b m +n ≥a m b n +a n b m .18.解原不等式变为--<,即<, (1a)00x x ax ax -+--111进一步化为(ax +1-a)(x -1)<0. (1)当a >0时,不等式化为:(x )(x 1)01{x|a 1a x 1}--<,易见<,所以不等式解集为<<;a a a a ---11(2)a =0时,不等式化为x -1<0,即x <1,所以不等式解集为{x|x <1};(3)a 0(x )(x 1)01{x|x 1x }<时,不等式化为-·->,易见>,所以不等式解集为<或>.a a a aa a---111综上所述,原不等式解集为:当>时,<<;当=时,<;当<时,>或<.a 0{x|a 1ax 1}a 0{x|x 1}a 0{x|x x 1}--a a119.解:设,2h x y +=由条件知:,5442=+xh x 即,4542xx h -=设外接圆的半径为R ,即求R 的最小值,,55425252),20(1085585880454)(2),22(2)2(422224222222222+=+≥∴<<++=+-+-+==∴++=++=R R x xx x x x x x x x f R h hx x x h x R等号成立时,,2108522=⇒=x x x∴当2=x 时R 2最小,即R 最小,从而周长l 最小, 此时.152,2cm x h y cm x +=+==20.解:⑴当1n =时,4421111=⇒-==a a S a ; 当2≥n 时,11124242---=+--=-=n n n n n n n a a a a S S a 即 ∴12nn a a -= ,∴12n n a +=。
(2)于是 1122n n n b b ++=+,∴11122n nn nb b ++-=. (3)1112b =,∴()1112n n b n n =+-⋅=,∴2n n b n =⋅(n *∈N ); ()13212221.....222122.....2221++⋅+⋅-++⨯+⨯=⋅++⨯+⨯=n nn n n n n T n T两式相减得 ()2211+⋅-=+n n n T ,n *∈N . 21解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q , ∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2nn .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n .当n ≥2时,S n -b n =S n -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .22.(1)证明:∵),(21OM +=∴M 是AB 的中点.设M 点的坐标为(x,y ), 由21(x 1+x 2)=x=21,得x 1+x 2=1,则x 1=1-x 2或x 2=1-x 1.而y=21(y 1+y 2)= 21[f(x 1)+f(x 2)] =21(21+log 2)1log 21122211x x x x -++-=21(1+log 2)1log 122211x x x x -+- =21(1+log 2)1·12211x x x x --=21(1+log 2,21)0121··2121=+=()x x x x ∴M 点的纵坐标为定值21. (2)由(1)知x 1+x 2=1,f(x 1)+f(x 2)=y 1+y 2=1,S n =f(),1()2()1n n f n f n -+⋯++S n =f()1()2()1nf n n f n n +⋯+-+-, 两式相加得:2S n =[f()1()1n n f n -+)+[f()2()2n n f n -+)+…+[f()1()1nf n n +-) =1111-+⋯++n ∴S n =21-n (n ≥2,n ∈N *). (2)当n ≥2时,a n =).21·11(4)2)(1(4)1)(1(11++=++=+++n n n n S S n nT n =a 1+a 2+a 3+…+a n =432+[()1111()4131+-++⋯+-n n ) =432+(.22)2131+=+-n nn 由T n <λ(S n+1+1)得22+n n <λ·.22+n ∴λ>.444444)2(422++=++=+nn n n n n n ∵n+n4≥4,当且仅当n=2时等号成立,∴.21444444=+≤++nn因此λ>21,即λ的取值范围是(,21+∞).。