等可能事件的概率教案

合集下载

高二数学教案:随机事件的概率(3)——等可能事件的概率(2)

高二数学教案:随机事件的概率(3)——等可能事件的概率(2)

随机事件的概率(3)——等可能事件的概率(2)一、课题:随机事件的概率(3)——等可能事件的概率(2)二、教学目标:1.巩固等可能性事件及其概率的概念;2.掌握排列组合的基本公式计算等可能性事件概率的基本方法与求解的一般步骤。

三、教学重、难点:等可能性事件概率的定义和计算方法;排列和组合知识的正确运用。

四、教学过程:(一)复习:1.基本事件、等可能性事件的概念;2.等可能性事件的概率公式及一般求解方法;3.练习:(1)甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率。

解:基本事件:甲、乙、丙;甲、乙、丁;甲、丙、丁;乙、丙、丁分别选为代表,其中甲被选上的事件个数为3,所以,甲被选上的概率为34.(2)下列命题:①任意投掷两枚骰子,出现点数相同的概率是16;②自然数中出现奇数的概率小于出现偶数的概率;③三张卡片的正、反面分别写着1、2;2、3;3、4,从中任取一张朝上一面为1的概率为16;④同时投掷三枚硬币,其中“两枚正面朝上,一枚反面朝上”的概率为38,其中正确的有①③④(请将正确的序号填写在横线上).(二)新课讲解:例1 在100件产品中,有95件合格品,5件次品,从中任取2件,计算:(1)2件都是合格品的概率;(2)2件是次品的概率;(3)1件是合格品,1件是次品的概率。

解:(1)记事件1A=“任取2件,2件都是合格品”,∴2件都是合格品的概率为29512100893 ()990CP AC==.(2)记事件2A=“任取2件,2件都是次品”,∴2件都是次品的概率为25321001 ()495CP AC==.(3)记事件3A=“任取2件,1件是合格品,1件是次品”∴1件是合格品,1件是次品的概率119553210019 ()198C CP AC⋅==.例2 储蓄卡上的密码是一种四位数字号码,每位上的数字可以在0至9这10个数字中选出,(1)使用储蓄卡时,如果随意按下一个四位数字号码,正好按对着张储蓄卡的密码的概率是多少?(2)某人未记住储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时,如果前三位号码仍按本卡密码,而随意按下最后一位数字,正好按对密码的概率是多少? 解:(1)由分步计数原理,这种四位数字号码共410个,又由于随意按下一个四位数字号码,按下其中哪一个号码的可能性都相等,∴正好按对密码的概率是14110P =; (2)按最后一位数字,有10种按法,且按下每个数字的可能性相等,∴正好按对密码的概率是2110P =. 例3 7名同学站成一排,计算:(1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率。

等可能事件的概率教案

等可能事件的概率教案

等可能事件的概率教案一、教学目标1. 了解等可能事件和概率的定义。

2. 掌握等可能事件的概率计算方法。

3. 能够通过实例掌握等可能事件的概率计算方法。

二、教学方式课堂讲授+小组讨论+个人练习三、教学内容1. 等可能事件定义:在实验中,每个事件发生的可能性相等,被称为等可能事件。

例如:掷一个硬币的正面或反面出现的概率均为1/2。

2. 概率定义:概率是事件发生的可能性大小的度量,它是介于0和1之间的实数。

例如:掷一个骰子,出现1的概率为1/6,出现6的概率也为1/6。

3. 等可能事件的概率计算对于等可能事件,它们的概率是相等的。

我们可以通过“有利结果数÷ 总体结果数”来计算等可能事件的概率。

例如:掷一个骰子,出现1的概率为1/6,出现2的概率也为1/6,出现3的概率也为1/6,以此类推。

4. 实例演示下面通过几个实例来演示等可能事件的概率计算方法。

例1:一个盒子里有5个红球和3个黑球,从盒子里任取一个球的概率是多少?答:由于每个球都有同等的可能性被选中,因此概率为:有利结果数(选到一个球)÷ 总体结果数(8个球)= 1/8。

例2:一个有10枚棋子的棋盘(其中2枚是绿色的,8枚是红色的),从中任选一个棋子的概率是多少?答:由于每一个棋子都有同等的可能性被选中,因此概率为:有利结果数(选到一个棋子)÷ 总体结果数(10枚棋子)= 1/10。

四、教学总结在本节课中,我们了解了等可能事件和概率的定义,并掌握了等可能事件的概率计算方法。

通过实例演示,我们更好地理解了等可能事件的概率计算方法。

在今后的学习和生活中,我们可以运用这些知识来解决各种问题,如赌场游戏等。

北师大初中数学七年级下册《 3 等可能事件的概率:等可能事件的概率计算》公开课教案_14

北师大初中数学七年级下册《 3 等可能事件的概率:等可能事件的概率计算》公开课教案_14

第六章概率初步3 等可能事件的概率(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。

学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经体验事件发生的等可能性及游戏规则的公平性,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。

本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。

一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。

学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。

本节教学目标如下:1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣教学重点:1.概率的意义及其计算方法的理解与应用。

招教《等可能条件下的概率(一)》教案

招教《等可能条件下的概率(一)》教案

《等可能条件下的概率(一)》教案一、教学目标【知识与技能】理解和掌握在相等条件下,事件发生的概率的计算公式。

【过程与方法】通过具体的情境,进一步理解概率的意义,提高初步的抽象概括能力。

【情感态度与价值观】提高学习数学的兴趣,培养对数学的亲近感、合作意识,在合作中体现团队精神。

二、教学重难点【教学重点】等可能条件下,事件发生的概率。

【教学难点】在具体的情境中,能借助概率的计算判断事件发生的可能性的大小。

三、教学过程(一)导入新课抛掷一枚骰子,提问:(1)朝上点数的试验的结果是有限的吗?请大家一一列举出来。

(2)事件1:朝上点数大于4的情况有哪几种?事件2:朝上点数不大于4的情况有哪几种?学生在教师的引导下,列举出所有的情况,并将属于事件1和事件2的情况归类。

那么大家想计算事件1和事件2发生的概率怎么计算呢,大家一起来学习本堂课的知识,进而板书课"等可能条件下的概率"(二)生成新知1.组织小组讨论总结规律小组展开讨论,小组汇报讨论结果:符合事件1的是朝上点数为4点,朝上点数为5点,有两种情况。

符合事件2的有4种情况。

说明:我们所研究的事件大都是随机事件,所以其概率在0和1之间。

(三)深化新知不透明的袋子里有3个白球,4个红球,这些球除开颜色以外都相同,均匀搅拌后从中抽取1个球,问:(1)会出现哪些结果?(2)摸出白球的概率?(3)摸出红球的概率?(四)小结作业小结:引导学生自主思考本节所学,通过提问的方式总结全部知识点并补充。

作业:抛掷一枚均匀的骰子,它落地时,朝上点数为4的概率是( ),朝上点数是奇数的概率是( ),朝上点数是0的概率是( ),朝上点数大于3的概率是( )。

四、板书设计。

教案及说课稿:等可能性事件的概率

教案及说课稿:等可能性事件的概率

课题:等可能性事件的概率(一)一、教学目标:(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。

(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。

通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。

(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。

了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。

二、教学重点:等可能性事件的概率的意义及其求法。

三、教学难点:等可能性事件的判断以及如何求某个事件所包含的基本事件数。

四、教学方法:启发式探索法五、教学过程:1、复习引入、创设情境问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?(生)必然事件,随机事件,不可能事件。

(师)好!问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。

是不是所有的随机事件都需要大量的重复试验来求得呢?(生)不一定。

(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。

问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?2、逐层探索,构建新知问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。

问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。

九年级数学苏科版上册 第四单元《4.3等可能条件下的概率(二)》教学设计 教案

九年级数学苏科版上册 第四单元《4.3等可能条件下的概率(二)》教学设计 教案

等可能条件下的概率(二)教学设计一、教学内容概述本节课为九年级上册,第4章等可能条件下的概率第3小节第2课时教学内容,本节课的主要任务是理解能转化为古典概型的几何概型概率的求法。

结合实际生活中的转盘模型及抽奖等生活实际,进一步理解概率在生活中的应用。

二、教学目标设计知识目标:1.在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型.2.进一步理解等可能事件的意义,会解决能转化为古典概型的几何概型概率问题,会把事件分解成等可能的结果(基本事件).能力目标:通过学生动手操作、实验、探索的过程,培养学生观察能力、动手能力、合作讨论的能力和转化思想解决问题的能力;情感目标:通过观察、实验、理解几何概型概率的求法,探索能转化为古典概型的几何概型概率的求解思想,掌握这类事件概率在实际生活的应用。

三、教学重难点设计1.教学重点:学会求一类事件的概率(能转化为古典概型的几何概型)的概率,理解概率的大小和面积大小有关,掌握这类问题在实际生活的应用,会用列举法(包括列表、画树状图)计算一些随机事件所含的可能结果(基本事件)数及事件发生的概率.2.教学难点:会将能转化为古典概型的几何概型概率转化成古典概型,理解这类事件概率的大小和面积大小有关,并利用概率公式并解决实际问题,并会灵活运用列举法(包括列表、画树状图)计算几何概型这类事件概率.四、学生学情分析学生在学习过程中,古典概型由于有八年级学习的基础和上节课学习的准备,易于理解,但要真正理解能转化为古典概型的几何概型的这一类问题中概率的大小与面积的大小有关,并能转化成古典概型利用概率公式解决实际问题,还有一定难度,让学生边学习边体会这些区别和变化。

五、教学策略设计说明本课题设计的基本理念是通过实验、观察、操作,主要采用的小组合作、讨论、研究和探索等策略,重点是探索和发现,几何概型概率求法和古典概型之间的关系,难点是理解几何概型问题中概率的大小和面积大小有关,并利用概率公式并解决实际问题,并由浅入深,逐渐深入研究本节课在实际问题的应用,采用探究、合作、交流、讨论法等教学方法。

北师大版数学七年级下册3 等可能事件的概率教案与反思

北师大版数学七年级下册3 等可能事件的概率教案与反思

3 等可能事件的概率人非圣贤,孰能无过?过而能改,善莫大焉。

《左传》原创不容易,【关注】店铺,不迷路!第1课时概率的计算方法教学目标一、基本目标理解和掌握概率的计算方法,体会概率是描述随机现象的数学模型.二、重难点目标【教学重点】概率的计算方法.【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P147~P148的内容,完成下面练习.【3min反馈】1.设一个试验的所有可能的结果有n种,每次试验有且只有其中一种结果出现.如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发生的概率为P(A)=m n .3.完成教材P147“议一议”第1题:解:(1)会摸到1号球、2号球、3号球、4号球、5号球这5种可能的结果.(2)相同.它们的概率均为1 5 .4.完成教材P147“议一议”第2题:解:所有可能的结果有有限个,每种结果出现的可能性相等.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】一只不透明的箱子里共有8个球,其中2个白球、1个红球、5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2? 【互动探索】(引发学生思考)(1)从袋中任意摸出一个球,可能出现的结果有多少种?满足条件的结果有多少种?(2)已知摸到白球的概率,可以根据概率公式列方程求解.【解答】(1)因为一只不透明的箱子里共有8个球,其中2个白球, 所以从箱子中随机摸出一个球是白球的概率是28=14.(2)设再往箱子中放入x 个黄球. 根据题意,得28+x=0.2, 解得x =2.故再往箱子中放入2个黄球,可以使摸到白球的概率变为0.2.【互动总结】(学生总结,老师点评)(1)求概率主要是求随机事件发生的概率,关键是分别求出事件所有可能出现的结果数和所求的随机事件可能出现的结果数,后者与前者的比值即为该事件发生的概率.(2)第(2问也可以根据概率公式直接用除法求出盒子中球的总数,从而求出还需要往箱子中放入的黄球个数.活动2 巩固练习(学生独学)1.完成教材P148“习题6.4”第1~3题. 略2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.解:(1)因为一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,所以从随机抽取出一个黑球的概率是47 .(2)因为口袋中有3个白球、4个黑球,再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是1 4,所以x+37+x+y=14,则y=3x+5.环节3 课堂小结,当堂达标(学生总结,老师点评)一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发的概率为P(A)=m n .练习设计请完成本课时对应练习!第2课时游戏的公平性及按要求设计戏教学目标一、基本目标理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.二、重难点目标【教学重点】判断游戏的公平性,根据题目题目要求设计游戏方案.【教学难点】按题目要求设计游戏方案.教学过程环节1 自学提纲,生成问题【5mi阅读】阅读教材P19~P150的内容,完成下面练习.【3min反馈】1.用概率判断游戏的公平性:若获胜的概率相同,则游戏公平;若获胜的概率不相同,则游戏不公平.2.按要求设计游戏:若设计公平的游戏,则要使随机事件发生的概率相等;若设计不公平的游戏,则要使随机事件发生的概率不相等.3.完成教材P149“议一议”: 解:(1)第二位同学说的有道理.(2)不公平.游戏否公平,应看双方获胜的概率是否相等. 4.完成教材P149“做一做”:解:(1)在一个不透明的口袋里装入除颜色外完全相同的2个红球、2个白球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球的概率也为12.(2)在一个不透明的口袋里装入除颜色外完全相同的2个红球、1个白球和1个黄球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球和黄球的概率都为14.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】小明和小红一起做游戏,在一个不透明的袋中有8个白球和6个红球,它们除颜色外都相同,从袋中任意摸出一球,若摸到白球小明胜;若摸到红球小红胜,这个游戏公平吗?请说明理由;若你认为不公平,请你改动一下规则,使游戏对双方都是公平的.【互动探索】(引发学生思考)根据概率公式可计算出P (小明胜)和P (小红胜),再比较两个概率的大小即可判定游戏不公平,然后改动规则,满足袋中白球和红球的个数相等即可.【解答】不公平.理由如下: 因为P (小明胜)=88+6=47,P (小红胜)=68+6=37, 而47>37,即P (小明胜)>P (小红胜), 所以这个游戏不公平.可改为:从袋中取出2个白球或放入2个红球,使袋中白球和红球的个数相等,这样游戏对双方都是公平的.【互动总结】(学生总结,老师点评)判断游戏对双方是否公平,关键是看双方在游戏中所关注的事件发生的概率是否相等.【例2】用12个除颜色外完全相同的球设计一个摸球游戏. (1)使得摸到红球、白球和蓝球的概率都是13;(2)使得摸到红球的概率为13,摸到白球的概率为12,摸到蓝球的概率为16.【互动探索】(引发学生思考)根据摸到各种颜色球的概率,求出它们的个数,便可进行游戏的设计.【解答】(1)根据概率的计算公式可知,P (摸到红球)=摸到红球可能出现的结果数所有可能出现的结果数,所以摸到红球可能出现的结果数=所有可能出现的结果数×P (摸到红球)=12×13=4;同理可得摸到白球和蓝球可能出现的结果数均为4,所以只要使得红球、白球和蓝球的数目均为4个,就能满足题目要求.(2)同理,由(1)可知,只要使得红球的数目为4个,白球的数目为6个,蓝球的数目为2个,就能满足题目要求.【互动总结】(学生总结,老师点评)灵活运用概率的计算公式求出各色球的个数是解题的关键.活动2 巩固练习(学生独学)1.有8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0,则白球有4个,红球有2个,绿球有0个.2.有一盒子中装有3个白色乒乓球、2个黄色乒乓球、1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是白色颜色; (2)请你计算摸到每种颜色乒乓球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?解:(2)P (摸到白色乒乓球)=36=12,P (摸到黄色乒乓球)=26=13,P (摸到红色乒乓球)=1 6 .(3)公平.理由如下:因为P(摸到白色乒乓球)=12,P(摸到其他球)=2+16=12,所以这个游戏对双方公平.3.现在有足够多除颜色外均相同的球,请你从中选12个球设计摸球游戏.(要求写出设计方案)(1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.解:(1)12个球中,有6个红球、6个白球可使摸到红球的概率和摸到白球的概率相等.(2)12个球中,有4个红球、4个白球、4个黑球可使摸到红球、白球、黑球的概率都相等.(3)12个球中,有3个红球、3个白球、6个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.环节3 课堂小结,当堂达标(学生总结,老师点评)1.游戏的公平性2.按要求设计游戏练习设计请完成本课时对应练习!第3课时几何图形中的概率教学目标一、基本目标1.理解和掌握与面积有关的一类事件发生的概率的计算方法,并能进行简单的计算.2.能设计符合要求的简单概率模型,进一步体会概率的意义.二、重难点目标【教学重点】能计算与面积有关的一类事件发生的概率.【教学难点】能设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P151~P152的内容,完成下面练习.【3min反馈】1.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型.2.与面积有关的几何概率也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形的面积除以所有可能结果所组成的图形的总面积.3.完成教材P152“想一想”:解:(1)图中共有20块方砖组成,这些方砖除颜色外其他完全相同,小球停留在任何一块方砖上的概率都相等,所以P(小球停留在白砖上)=1520=34.(2)同意.因为袋中共有20个球,这些球除颜色外其他都相同,从中任意摸出一个球,这20个球被摸到的概率都相等,所以P(任意摸出一球是白球)=15 20=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2 B.P1<P2C .P 1=P 2D .以上都有可能【互动探索】(引发学生思考)由图甲可知,黑色方砖6块,共有16块方砖,所以黑色方砖在整个地板中所占的比值为616=38,所以在甲种地板上最终停留在黑色区域的概率为P 1=38;由图乙可知,黑色方砖3块,共有9块方砖,所以黑色方砖在整个地板中所占的比值=39=13,所以在乙种地板上最终停留在黑色区域的概率为P 2=13.因为38>13,所以P 1>P 2.【答案】A【互动总结】(学生总结,老师点评)利用公式求几何概率通常分为三步:(1)分析事件所占面积与总面积的关系;(2)计算出各部分的面积;(3)代入公式求出几何概率.【例2】如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少? (2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【互动探索】(引发学生思考)(1)先确定在图中阴影区域的面积在整个面积中所占的比例,根据这个比例即可求出指针指向阴影区域的概率;(2)根据概率等于相应的面积与总面积之比得出阴影部分面积即可.【解答】(1)因为转盘被均匀的分成了20个扇形区域,阴影部分占其中的6份,所以转动转盘,当转盘停止时,指针落在阴影部分的概率=620=310.(2)如图所示,当转盘停止时,指针落在阴影部分的概率变为12 .【互动总结】(学生总结,老师点评)在几何概型中若是等分图形,则只需求出总的图形个数与某事件发生的图形个数;若不是等分图形,则需求出各图形面积的大小.活动2 巩固练习(学生独学)1.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( C )A.116B.18C.14D.122.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( D )A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘43.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是1 8 .4.向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是3 8;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:如图所示,要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑2个小正三角形(涂法不唯一).环节3 课堂小结,当堂达标(学生总结,老师点评)几何图形中的概率计算公式:P(A)=事件A发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积练习设计请完成本课时对应练习!第4课时转盘问题教学目标一、基本目标计算转盘问题中的概率,进一步理解几何概型,能设计出符合要求的简单概率模型.二、重难点目标【教学重点】计算转盘问题中的概率.【教学难点】设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P154~P155的内容,完成下面练习.【3min反馈】1.转盘问题中的概率计算:指针停留在某扇形内的概率等于该扇形的面积除以圆的面积,即P(指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.2.完成教材P154“想一想”:解:P(落在红色区域)=110°360°=1136,P(落在白色区域)=360°-110°360°=250°360°=2536.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】某商场柜台为了吸引顾客,打出了一个小广告如下:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:(1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为38,并说出此事件.【互动探索】(引发学生思考)(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小;(2)指针落在某一区域的事件发生概率为38,则该区域应该有6份,据此解答即可.【解答】(1)因为转盘被等分为16份,黄色占1份,白色占11份,所以获得50元、5元购物券的概率分别是116,1116.(2)根据概率的意义可知,若指针落在某一区域的事件发生概率为38,那么该区域应有16×38=6(份).根据等级越高,中奖概率越小的原则,此处应涂绿色,事件为获得10元购物券.【互动总结】(学生总结,老师点评)(1)转盘中哪种区域的面积越大,则指针指向哪种区域的概率越大;(2)根据几何概率的大小设计概率模型就是选定一个图形,再分割图形,使其中一部分图形的面积与总面积的比值等于几何概率.活动2 巩固练习(学生独学)1.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是25.2.完成教材P155“随堂练习”第1~2题. 略3.有一个质地均匀的正12面体,12个面上分别写有1到12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A 为“向上一面的数字是3的整数倍”,记事件B 为“向上一面的数字是4的整数倍”请你判断事件A 与事件B ,哪个发生的概率大,并说明理由.解:因为P (A )=412=13,P (B )=312=14,13>14,所以事件A 发生的概率大于事件B 发生的概率.4.如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.解:(1)指针指向奇数区的概率是36=12. (2)答案不唯一,如:自由转动的转盘停止时,指针指向大于2的区域. 环节3 课堂小结,当堂达标(学生总结,老师点评)转盘问题的概率计算公式:P (指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数练习设计请完成本课时对应练习!【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。

古典概型教学设计--【教学参考】

古典概型教学设计--【教学参考】

古典概型教学设计教学目标:1、知识与技能目标⑴理解等可能事件的概念及概率计算公式;⑵能够准确计算等可能事件的概率。

2、过程与方法根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

3、情感态度与价值观概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

教学重点等可能事件的概念及等可能事件概率公式的简单应用。

教学难点判断一个试验是否为等可能事件。

教学方法探究式和启发式教学方法。

教具:多媒体课件和自制教具。

教学过程一、温故知新,提出问题上节课我们学习了随机事件及其概率,现在请大家思考下面两个问题:1、什么是随机事件?2、什么是随机事件/的概率?强调:对于概率的定义,我们可以从以下三方面来理解:1、概率从数量上反映了一个事件发生的可能性的大小,它可以做为我们决策的理论依据。

问大家两个问题:①福利彩券一等奖的资金是多少?②中一等奖的概率是多少?有没有人算过?(因此,买彩券只能做为我们生活中的一种娱乐,而不可以做为主题投资)2、概率与频率的区别:一定条件下,事件的概率是一个确定的值,而频率则是随机变化的,在概率附近摆动。

3、概率的定义,实际上也是求一个事件概率的基本方法:即进行大量重复试验,用事件发生的频率近似做为事件的概率。

我们知道“大量重复试验”在实践中操作起来是很困难的。

有人要问了:是不是随机事件的概率只有通过大量重复试验才能求得?有没有一些或一类随机事件,不进行大量重复试验也能求出其概率呢?这也是今天我们要研究的问题。

二、设置情境,引出新课:现在,我们进行一个免费的抽奖活动:1、规则说明口袋中装有大小相同的红球、黄球、白球各一个,一个人一次只能从口袋中摸出一个球。

等可能事件教案

等可能事件教案

等可能事件教案教案标题:等可能事件教案教案目标:1. 理解等可能事件的概念。

2. 能够识别和描述等可能事件。

3. 能够计算等可能事件的概率。

教学资源:1. 白板/黑板和彩色粉笔/白板笔。

2. 学生练习册。

3. 骰子、扑克牌或其他适合展示等可能事件的物品。

教学步骤:引入活动:1. 引发学生对等可能事件的兴趣,可以通过提问或展示一些例子。

例如,你认为抛硬币会出现正面还是反面?抽一张红色的牌还是黑色的牌?2. 引导学生思考这些例子中事件的可能性是否相等,以及如何确定等可能事件。

概念讲解:1. 解释等可能事件的概念:等可能事件指的是在给定条件下,每个事件发生的可能性相等。

2. 通过具体的例子进一步解释等可能事件的特征和判断方法。

例如,投掷一枚公正的骰子,每个面出现的可能性相等,因此骰子的每个面都是一个等可能事件。

示例演练:1. 分发骰子给学生,让他们观察骰子的面,并讨论每个面出现的可能性是否相等。

2. 请学生选择一个面,并解释为什么选择这个面是一个等可能事件。

3. 继续选择其他的等可能事件,并让学生解释他们的选择。

练习与巩固:1. 分发练习册,让学生完成一些关于等可能事件的练习题,例如判断事件是否等可能、计算等可能事件的概率等。

2. 在课堂上解答学生的问题,并纠正他们的错误。

拓展活动:1. 将学生分成小组,每个小组选择一个日常生活中的场景,并确定其中的等可能事件。

2. 让学生在小组内互相交流和讨论,并展示他们的选择和理由。

总结:1. 回顾本节课学习的内容,强调等可能事件的概念和判断方法。

2. 确保学生对等可能事件有清晰的理解,并能够应用到实际生活中。

3. 鼓励学生提出问题和思考更多与等可能事件相关的情境。

等可能事件的概率第四课时思政教育目标

等可能事件的概率第四课时思政教育目标

等可能事件的概率第四课时思政教育目标以等可能事件的概率第四课时思政教育目标为标题概率是数学的一个分支,它研究的是不确定事件的可能性。

在日常生活中,我们经常会遇到一些不确定的事情,比如抛硬币的结果、摇骰子的点数等等。

这些事件都可以看作是等可能事件,因为它们的发生概率是相等的。

在这种情况下,我们可以用一个简单的公式来计算概率,即概率等于事件发生的次数除以总的可能性的次数。

在思政教育中,概率的概念也有着重要的应用。

比如在讲解历史事件时,我们可以通过概率的概念来说明某个事件发生的可能性有多大。

这样可以帮助学生更好地理解历史事件的发生原因及其背后的规律。

同时,概率还可以帮助学生培养辨别信息的能力,提高思维的灵活性。

因为在计算概率的过程中,学生需要分析问题,找到问题的关键点,并进行逻辑推理。

这样可以锻炼学生的思维能力,提高其综合素质。

除了在思政教育中的应用,概率在日常生活中也有着广泛的应用。

比如在购买彩票时,我们可以通过计算概率来判断购买彩票的收益率。

在投资股票时,我们可以通过计算概率来判断股票的涨跌趋势。

在制定个人计划时,我们可以通过计算概率来评估计划的可行性。

总之,概率的应用无处不在,它可以帮助我们做出更加明智的决策,提高我们的生活质量。

然而,概率并不是万能的,它只能帮助我们评估事情发生的可能性,而不能确定事情一定会发生。

因为在现实生活中,很多事情是不确定的,无法用概率来描述的。

比如在天气预报中,我们可以根据历史数据来预测未来的天气情况,但是仍然无法确定具体的天气状况。

因为天气受到很多因素的影响,比如气候、地理环境等等。

所以在使用概率时,我们需要注意其局限性,不能过分依赖概率来做出决策。

概率是一个重要的数学概念,它可以帮助我们评估事情发生的可能性。

在思政教育中,概率的应用可以帮助学生理解历史事件的发生原因及其背后的规律。

在日常生活中,概率的应用可以帮助我们做出更加明智的决策,提高我们的生活质量。

然而,概率并不是万能的,我们需要注意其局限性,不能过分依赖概率来做出决策。

《等可能条件下的概率(一)》word教案 (公开课获奖)2022苏教版 (2)

《等可能条件下的概率(一)》word教案 (公开课获奖)2022苏教版 (2)

4.2 等可能条件下的概率(一)教学目标:1.进一步理解等可能事件的意义,掌握等可能条件下的古典概型的两个基本特征,会把事件分解成等可能的结果(基本事件);2.通过具体实例学会用列举法(即列表或画树状图)列举出古典类型的随机实验的所有等可能结果(基本事件)并计算一些随机事件发生的概率. 教学重点:通过列表、树状图来表示等可能条件下的概率. 教学难点:通过列表、树状图来表示等可能条件下的概率. 创设情境抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率有多大?对抛掷一枚质地均匀的硬币2次的试验,我们将第1次正面朝上,第2次正面朝上,记作(正,正);第1次正面朝上,第2次反面朝上,记作(正,反);第1次反面朝上,第2次正面朝上,记作(反,正);第1次反面朝上,第2次反面朝上,记作(反,反).这样,我们可以利用表格列出所有可能出现的结果:结果 正 反 正 (正,正) (正,反) 反(反,正)(反,反)这4种结果是等可能的.其中,2次抛掷的结果都是“正面朝上”只有1种,所以P (正,正)=41. 我们还可以画图,列出2次抛掷所有等可能出现的结果:像这样的图,我们称之为树状图,它可以帮助我们不重复、不遗漏地列出所有可能出现的结果.思考 “先后两次掷一枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗? 探索活动活动1 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.正面反面问题1 如果把题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?小结1 当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.活动2 甲、乙、丙三只不透明的口袋中都装有1个白球、1个红球,它们除颜色外都相同,搅匀后分别从三只口袋中任意摸出1个球,问从三只口袋摸出的都是红球的概率是多少?问题2 此时,列表能否列举出所有可能的结果?小结2 当一次试验要涉及3个或更多的因素(例如从三只口袋中摸球)时,列表就不方便了,为了不重不漏地列出所有可能的结果,通常采用树形图.当事件要经过多次步骤(三步以上)完成时,用这种“树形图”的方法求事件的概率很有效.思考(1)列举法有哪些?列表与画树状图分别有哪些适用条件?(2)若从三只口袋摸出的球中有一只白球、两只红球的概率是多少?例题选讲例1 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从袋中任意摸出1个球,记录颜色后放回、摇匀,再从中任意摸出1个球.求两次摸到红球颜色的概率.例2 北京2008年奥运会吉祥物“福娃”是“贝贝、晶晶、欢欢、迎迎、妮妮”:将5张分别印有5个“福娃”图案的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件的发生的概率:(1)取出的2张卡片相同;(2)取出的2张卡片中,1张为“欢欢”,1张为“贝贝”;(3)取出的2张卡片中,至少有1张为“欢欢”.拓展延伸一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?课堂小结举例说明,如何利用“树状图”“表格”列出所有等可能出现的结果?它们各有怎样的特点?作业布置习题4.2第5、6、7、9.教后记9.1 单项式乘单项式力.教学重点:理解单项式相乘的法则,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法则解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?(1)体积的表示方法;(2)面对你的侧面积的表示方法.探索新知让学生在交流的基础上思考下列问题:(1)体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.(2)从不同的表示中你发现了什么?(3)通过下面两个计算我们来进一步的探讨:(2a2b)(3ab2)=[2 ×3]•(a2•a)(b•b2)=6a3b3系数相乘相同字母相同字母(4ab2)(5b)=[4×5]•(b2•b)•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢? 通过探索得到单项式乘单项式的计算法则: (1)将它们的系数相乘; (2)相同字母的幂相乘;(3)只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式规范,板书过程.(通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.) 练习1: 判断正误:(1)3x 3·(-2x 2)=5x 3; (2)3a 2·4a 2=12a 2; (3)3b 3·8b 3=24b 9; (4)-3x ·2xy =6x 2y ; (5)3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:(1)(2x )3·(-3xy 2); (2)(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算. 练习3:计算:(1)(a 2)2·(-2ab ); (2)-8a 2b ·(-a 3b 2) ·14b 2 ;(3)(-5an +1b ) ·(-2a )2;(4)[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。

等可能性教案

等可能性教案

等可能性教案一、教学目标:1. 了解等可能性的概念及其在日常生活中的应用;2. 掌握计算等可能事件的概率的方法;3. 能够应用等可能性原理解决实际问题。

二、教学重点:1. 等可能性概念的理解;2. 概率计算方法的掌握。

三、教学难点:1. 等可能性原理的应用;2. 解决实际问题的能力培养。

四、教学过程:1. 导入新知引导学生回顾已学内容,复习概率的基本概念及计算方法。

2. 引入新知介绍等可能性的概念。

解释等可能性指的是几种可能性发生的概率相等的情况。

3. 探究活动设计实际情境,让学生通过掷硬币的实验来探究等可能性。

引导学生观察抛掷硬币时出现正面和反面的概率,帮助他们得出结论:抛掷硬币的结果有两种可能性,即正面和反面,出现的概率相等,所以这是一个等可能事件。

4. 深化理解通过多组数据的实验,引导学生总结等可能性事件的特点,如抛掷一颗骰子、从一副牌中抽出一张扑克牌等都属于等可能事件。

5. 计算概率介绍等可能事件的概率计算方法。

以抛掷一颗骰子为例,解释如何计算某一面朝上的概率。

假设骰子的面数为6,每个面朝上的可能性相等,所以某一面朝上的概率为1/6。

6. 解决问题通过一些实际问题的讨论,引导学生应用等可能性原理解决问题。

例如,从一副牌中随机抽3张牌,求其中至少有一张红桃牌的概率。

根据等可能性原理,总共抽取的可能性为52*51*50,而其中至少有一张红桃牌的情况为:不包括红桃的情况:非红桃的牌数为39,所以不包括红桃的情况为39*38*37;至少有一张红桃的情况:1张红桃+2张非红桃的情况为13*39*38;至少有两张红桃的情况:2张红桃+1张非红桃的情况为13*12*39。

根据该题目的要求,所以需求的概率为(13*39*38+13*12*39)/(52*51*50)。

7. 小结总结等可能性的概念及其在概率计算中的应用方法。

强调等可能事件的条件是各种可能性概率相等,通过计算概率解决实际问题的步骤。

五、课堂练习1. 设计一组实验,让学生通过实际操作考察等可能事件的特点。

苏科版九年级数学上册《等可能条件下的概率》教案及教学反思

苏科版九年级数学上册《等可能条件下的概率》教案及教学反思

苏科版九年级数学上册《等可能条件下的概率》教案及教学反思教学背景本节课是九年级数学上册中的一节关于概率的内容,主要涉及等可能条件下的概率的概念、计算方法以及实际应用。

学生在初中阶段已学习过概率基础知识,如样本空间、事件的概念等,本节课旨在巩固基础,拓宽概率应用知识。

课堂时间为一课时。

教学内容教学目标1.理解等可能条件下的概率的定义;2.掌握等可能条件下的概率的计算方法;3.能够分析实际问题,运用等可能条件下的概率计算。

教学重点1.等可能条件下的概率的定义;2.等可能条件下的概率的计算方法。

教学难点能够分析实际问题,运用等可能条件下的概率计算。

教学方法1.讲授法;2.提问法;3.课堂练习。

教学过程导入教师在黑板上写出以下问题:在硬币正反面各出现一次的情况下,抛出两次,正面朝上一次的概率是多少?请学生们就这个问题进行讨论,找到规律并尝试计算。

讲授教师在学生自主讨论的基础上,讲解等可能条件下的概率的定义及计算方法,并通过样例进行演示。

等可能条件下的概率的定义:在所有可能结果发生的条件下,某个事件发生的概率等于该事件所包含的基本事件总数与所有基本事件总数的比值。

等可能条件下的概率的计算方法:P(A) = n(A)/ n(S)。

其中,P(A)表示事件A发生的概率,n(A)表示事件A所包含的基本事件总数,n(S)表示所有基本事件数。

练习教师出示以下问题:小明有一张10元的纸币,他随意从钱包中取出一张充值卡,其中有一张面额为5元,另一张为10元,小明又随意从钱包中取出一张优惠卡,其中有一张打88折,另一张打95折,求小明搭配使用卡片将面额和折扣各不重复的概率?请学生们在课上解决问题。

总结教师引导学生梳理本堂课学习的重点和难点,加深对概率概念的理解,加强实践运用能力。

教学反思本次课堂中,教师通过提问和练习等方式,让学生对概率的概念和计算方法有了更深入的理解,并且能够应用到实际生活中。

为帮助学生更好理解概率知识,教师不断提醒学生注意细节,同时巧妙地结合实际状况,将概率知识贯穿其中。

等可能事件的概率优秀教案

等可能事件的概率优秀教案

等可能事件的概率【课时安排】2课时【第一课时】【教学目标】一、知识与技能:了解一类事件发生概率的计算方法,并能进行简单计算,能设计符合要求的简单概率模型。

二、过程与方法:具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型。

三、情感与态度:体会数学与生活实际的紧密联系,鼓励学生积极参与,培养学生学习数学的兴趣。

【教学重难点】了解一类事件发生概率的计算方法,并能进行简单计算,能设计符合要求的简单概率模型。

【教学过程】—、准备。

活动内容:趣味游戏。

以“传球游戏”开始,诱发学生的学习兴趣,寓教于乐。

要求:学生座位安排成方阵形式,开展传球活动。

(教师可以对学生活动给予一定的指导,发出口令“开始”、“停”,学生进行循环传球游戏。

让学生体验事件的随机性。

)游戏结束后提出问题:(把问题写在精致的卡片上,以下简称“题卡”)。

球落在男、女生的概率分别为多大?(用地砖及小球剪贴画演示小球在方砖上随机行走的过程,使学生初步感受小球停留在黑砖上的可能性的大小。

)设计说明:不成熟的地区,便可用这种形象的演示来代替,以期达到形象感知的效果。

若有设备,便可用动画演示,会更形象。

卧室书房思考下列问题:(一)小球在卧室和书房中自由地滚动,并随机停留在某块方砖上,在哪个房间里,小球停留在黑砖上的概率大?(学生:在卧室里)(二)你是怎样分析的?(生:黑色方砖的块数多些)(三)你觉得小球停留在黑砖上的概率大小与什么有关?活动目的:由这些问题引发学生的思考,使知识间的过渡自然、轻松、直观初步体验几何概型。

通过这个活动,假设每个人所占的座位面积相等,计算概率大小。

能从游戏中获取尽可能多的信息,体会概率在社会生活中的实际意义,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识,并在此过程中培养学生勇于探索、团结协作的精神。

同时这个活动为课题的引入奠定了良好的基础,在课堂中用源于学生真实、有趣的活动展开教学,必将极大地激发学生学习的积极性与主动性。

6.3等可能事件的概率(教案)

6.3等可能事件的概率(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《6.3等可能事件的概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抽奖、掷骰子或抛硬币的情况?”这些问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等可能事件概率的奥秘。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:1.数据分析观念:通过实例使学生能够运用列表法或树状图法对等可能事件进行分析,提高数据处理能力;2.逻辑推理能力:在学习等可能事件概率计算过程中,培养学生严谨的逻辑推理和论证能力;3.数学建模能力:让学生在实际问题中建立数学模型,运用概率知识解决问题,提高数学建模能力;4.数学抽象能力:引导学生理解概率的抽象概念,学会运用数学语言描述等可能事件的概率;5.问题解决能力:培养学生将所学概率知识应用于实际情境,形成解决实际问题的能力。这些核心素养目标与新教材要求相符,有助于提升学生的综合素养。
三、教学难点与重点
1.教学重点
-理解等可能事件的概念:重点讲解等可能事件的定义,使学生明确在何种情况下,事件可以被视为等可能事件。
-掌握概率的计算方法:强调使用概率公式计算等可能事件概率的过程,例如,通过事件总数除以事件发生次数的方法。
-列表法与树状图法的应用:详细解释如何利用列表法或树状图法分析等可能事件,并通过实例让学生练习。
在总结回顾环节,我觉得可以做得更好。今后,我会尽量用简洁明了的语言,帮助学生梳理本节课的重点和难点,让学生的知识体系更加完善。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等可能事件概率的基本概念。等可能事件是指在所有可能事件中,每个事件发生的可能性相同的情况。它是研究不确定现象的重要工具,广泛应用于日常生活和各种科学领域。

《等可能性》教案

《等可能性》教案

《等可能性》教案一、教学目标1. 让学生理解等可能性的概念,知道在相同条件下,各种结果出现的可能性是相等的。

2. 培养学生运用概率知识解决实际问题的能力。

3. 引导学生通过观察、分析、推理等方法,探索等可能性原理。

二、教学内容1. 等可能性的定义2. 等可能性原理的应用3. 实际问题中的等可能性分析三、教学重点与难点1. 教学重点:等可能性的概念及应用。

2. 教学难点:如何引导学生运用等可能性原理解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探索等可能性原理。

2. 运用实例分析法,让学生直观地理解等可能性在实际问题中的应用。

3. 利用小组讨论法,培养学生的合作与交流能力。

五、教学准备1. 教具:多媒体课件、实物道具、统计图表等。

2. 学具:学生手册、练习题、小组讨论卡片等。

【导入】教师通过一个简单的概率实验,如抛硬币、抽签等,引导学生思考:在相同条件下,各种结果出现的可能性是否相等?【新课讲解】1. 等可能性的定义教师讲解等可能性的概念,让学生理解在相同条件下,各种结果出现的可能性是相等的。

2. 等可能性原理的应用教师通过实例分析,展示等可能性原理在实际问题中的应用,如彩票中奖概率、掷骰子等。

【课堂练习】1. 学生自主完成练习题,巩固等可能性的概念。

2. 教师选取部分学生的练习题进行点评,解答学生心中的疑问。

【小组讨论】1. 教师提出讨论话题:如何运用等可能性原理解决实际问题?2. 学生分组讨论,分享各自的思路和成果。

3. 教师总结讨论成果,引导学生深入理解等可能性原理。

【课堂小结】教师带领学生回顾本节课的主要内容,强调等可能性原理的重要性。

【课后作业】1. 学生完成课后练习,巩固所学知识。

2. 教师批改作业,及时了解学生的学习情况,为下一步教学做好准备。

六、教学过程1. 课堂导入:通过简单的概率实验,如抛硬币、抽签等,引导学生思考:在相同条件下,各种结果出现的可能性是否相等?2. 新课讲解:讲解等可能性的定义,让学生理解在相同条件下,各种结果出现的可能性是相等的。

高二数学教案:等可能事件的概率(3)

高二数学教案:等可能事件的概率(3)

随机事件的概率(4)——等可能事件的概率(3)一、课题:随机事件的概率(4)——等可能事件的概率(3) 二、教学目标:1.掌握求解等可能性事件的概率的基本方法;2.能正确地对一些较复杂的等可能性事件进行分析。

三、教学重点:等可能性事件及其概率的分析和求解。

四、教学难点:对事件的“等可能性”的准确理解。

四、教学过程: (一)复习:1.等可能性事件的概率公式及一般方法、步骤; 2.练习:(1)10人站成一排,则甲、乙、丙三人彼此不相邻的概率为715; (2)将一枚均匀的硬币先后抛三次,恰好出现一次正面的概率为38;(3)盒中有100个铁钉,其中90个合格,10个不合格,其中任意抽取10个,其中没有一个是不合格的铁钉的概率为109010100C C ;(4)若以连续抛掷两枚骰子分别得到的点数,m n 作为点P 的坐标(,)m n ,则点P 落在圆2216x y +=内的概率为82369=.(列举法) (二)新课讲解:例1 4个球投入5个盒子中,求:(1)每个盒子最多1个球的概率;(2)恰有一个盒子放2个球,其余盒子最多放1个球的概率。

解:4个球投入5个盒子中,每个球有5个选法,4个球有45种不同选择结果, (1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果,∴所求概率为454245125A =.(2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩余的4个盒子中的2个中,有122544C C A ⋅⋅个不同结果,∴所求概率为1225444725125C C A ⋅⋅=.说明:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等。

例2 袋中有4个白球和5个黑球,连续从中取出3个球,计算:(1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率。

解:(1)每一次取球都有9种方法,共有39种结果,顺序为黑白黑的有111545100A A A ⋅⋅=种,∴所球的概率为11154531009729A A A ⋅⋅=.(2)3次取球,有39A 种结果,2黑1白的取法有213543480C C A ⋅⋅=种,∴所求概率为213543391021C C A A ⋅⋅=. 说明:模型中的“球”,可以是一种颜色或几种不同颜色、编号、不编号的真实球,也可以是合格和不合格产品,也可以是不同币值的货币,或几枚骰子、扑克等,解题时要分清“有放回”与“无放回”、“有序”与“无序”,不能混淆。

《等可能性》教案

《等可能性》教案

《等可能性》教案一、教学目标1. 让学生理解等可能性的概念,知道等可能性是指在一定条件下,每个结果出现的概率相等。

2. 培养学生运用等可能性解决实际问题的能力。

3. 培养学生合作交流的能力,提高学生的逻辑思维能力。

二、教学内容1. 等可能性的定义2. 等可能性的应用3. 实际问题中的等可能性三、教学重点与难点1. 教学重点:等可能性的概念及应用。

2. 教学难点:如何运用等可能性解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究等可能性。

2. 运用实例分析法,让学生直观地理解等可能性。

3. 采用小组合作交流法,培养学生合作解决问题的能力。

五、教学准备1. 教学课件或黑板2. 实例材料3. 小组合作学习表格六、教学过程1. 导入:通过一个简单的概率游戏,引导学生思考概率问题。

2. 新课导入:介绍等可能性的概念,解释等可能性的含义。

3. 实例分析:分析实际问题中的等可能性,让学生理解等可能性在生活中的应用。

4. 小组讨论:让学生分组讨论如何运用等可能性解决实际问题。

5. 总结提升:总结等可能性的应用,强调等可能性在解决问题中的重要性。

七、课堂练习1. 布置一些有关等可能性的练习题,让学生巩固所学知识。

2. 挑选几名学生上台演示解题过程,加深学生对等可能性的理解。

八、课后作业2. 收集有关等可能性的相关资料,进行拓展学习。

九、教学反思1. 反思本节课的教学效果,观察学生对等可能性的掌握程度。

2. 针对学生的反馈,调整教学方法,为后续教学做好准备。

十、课时安排1. 本节课计划用2课时完成,第一课时讲解等可能性的概念和应用,第二课时进行练习和拓展。

六、教学评估1. 课堂表现评估:观察学生在课堂上的参与程度、提问回答情况,以及小组合作交流的表现。

2. 练习题评估:检查学生完成练习题的正确率,以及对等可能性概念的理解程度。

3. 课后作业评估:评估学生运用等可能性解决实际问题的能力,以及学生的拓展学习能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:等可能性事件的概率
教材:人民教育出版社的全日制普通高级中学教科书(试验修订本.必修)《数学》第二册(下B)第十一章概率第一节(第二课时)
教学目标;
(1)知识与技能目标:了解等可能性事件的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事件的概率。

(2)过程和方法目标:通过学习、生活中的实际问题的引入,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力;通过计算等可能性事件的概率,提高综合运用排列、组合知识的能力和分析问题、解决问题的能力。

(3)情感与态度目标:营造亲切、和谐的氛围,以“趣”激学;随机事件的发生既有随机性,又有规律性,使学生了解偶然性寓于必然性之中的辩证思想;引导学生树立科学的人生观和价值观,培养学生的综合素质。

教学重点:
等可能性事件的概率的意义及其求法。

教学难点:
等可能性事件概率计算公式的重要前提:每个结果出现的可能性必须相同。

教学方法:
启发式探索法
教学手段:
计算机辅助教学、实物展示台
教具准备:
转盘一个
教学过程:
附:课前兴趣阅读:
生活中的数学
1、你做过这样的调查吗?我们班在座的同学中至少有两位同学在同一天生日的可能性
多大?
2、无为一中进行演讲比赛,参赛选手的演讲顺序通过抽签决定,抽签时有先有后,你
认为公平吗?
同学们,要想解决上面的问题,就让我们继续学习概率吧!
一、复习旧知:
抛掷一枚均匀硬币,
(1)出现正面向上;(2)出现正面向上或反面向上;(3)出现正面向上且反面向上.
各是什么事件?概率分别是多少?(学生回答)(1)随机事件,概率是1/2
(2)必然事件,概率是 1
(3)不可能事件,概率是0
二、设置情境,引入新课:
同学们,你们参加过商场抽奖吗?
我们美丽的无为的大商场即将在五一黄金周进行有奖销售活动(拿出转盘,一面是
把转盘均匀6份,一面是不均匀的6份)
出示不均匀的一面
情境一:
无为商之都五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:1:电冰箱一台2:可口可乐一听3:色拉油250ml
4:谢谢光顾5:洗衣粉一袋6:光明酸奶500ml
你希望抽到什么?抽到电冰箱的可能性与抽到洗衣粉一袋相同吗?
出示均分6份一面
情境二:
无为百货大楼五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:
1:雪碧250ml一听2:可口可乐一听3:洗衣粉一袋
4:光明酸奶125ml 5:康师傅方便面一盒
6:娃哈哈矿泉水一瓶
现在你觉得抽到可口可乐一听与洗衣粉一袋的可能性相同吗?抽到1的可能性是多少呢?你是怎么的到的呢?
求一个随机事件的概率的基本方法是通过大量的重复试验;那么能否不进行大量重复试验,只通过一次试验中可能出现的结果求出其概率呢?
这就是今天我们要学习的等可能性事件的概率(板书课题)
三、逐层探索,构建新知:
问题1 :掷一枚均匀的硬币,可能出现的结果有几种?
它们的概率分别为多少?
正面向上反面向上
1/2 1/2
问题2:在情境2摇奖中,指针指向的数字可能有几种?它们的概率分别为多少?
1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6
这里是怎么得到概率的值的?
引导发现:
1、分析一次试验可能出现的结果n个
2、每个结果出现的可能性是相同的
(演示转盘的两面帮助学生理解每个结果出现的可能性是相同的这一前提)
问题3:在问题2中指针指向的数字是3的倍数的概率为多少呢?是偶数的概率是多少?(学生回答)
1/2 1/3
(强调等可能性)
引入公式:
基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。

如果一次试验由n个基本事件组成,而且所有的基本事件出现的可能性都相等,那么每一个基本事件的概率都是1/n 。

等可能性事件的概率:
如果某个事件A包含的结果有m个,那么事件A的概率
P(A)=m/n
在一次试验中,等可能出现的n个结果组成一个集合I,
包含m个结果的事件A对应于I的含有m个元素的
Card(A)
P(A)= ——————— = m/n
Card(I)
跟踪练习:1、请同学们自己设计一个有关求等可能性事件的问题。

2.先后抛掷2枚均匀的硬币
(1)一共可能出现多少种不同的结果?
(2)出现“1枚正面、1枚反面”的结果有多少种。

(3)出现“1枚正面、1枚反面”的概率有多少种。

(4)出现“1枚正面、1面反面”的概率是1/3,对吗?
四、师生共做,循环上升:
例1、一个口袋内装有大小相等的1个白色和已编有
不同号码的3个黑球,从中摸出2个球。

(1)共有多少种不同的结果?
(2)摸出2个黑球有多少种不同的结果?
(3)摸出2个黑球的概率是多少?
(学生举手回答或个别提问,注意从组合知识和集合两个角度分析求解)
(1)一共有多少种不同的结果?
(2)其中向上的数之和是5的结果有多少种?
(3)向上的数之和是5的概率是多少?
解:(1)将骰子抛掷1次,它落地时向上的数有1,2,3,4,5,6这6种结果。

根据分步计数原理,先后将这种玩具抛掷2次,
一共有
6×6=36
种不同的结果。

答:先后抛掷骰子2次,一共有36种不同的结果。

(2)在上面所有结果中,向上的数之和是5的结果有
(1,4),(2,3),(3,2),(4,1)
4种,其中每一括号内的前后两个数分别为第1、2次抛掷后向上
的数。

上面的结果可用下图表示
答:在2次抛掷中,向上的数之和为5的结果有4种
(3)由于骰子是均匀的,将它抛掷2次的所有36种结果是等可
能出现的。

其中向上的数之和是5的结果(记为事件A)有4种,因此所求的概率
第二次抛掷后向上的数
6 7 8 9 10 11 12
5 6 7 8 9 10 11
4 5 6 7 8 9 10
3 4 5 6 7 8 9
2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
第一次抛掷后向上的数
9
1
36
4
)
(=
=
A
P
答:抛掷骰子次,向上的数之和为5的概率是1/9
变式练习:
在例2中,向上的数之积为6的概率是多少?
模拟预案:
小明说,抛掷两枚骰子,向上一面数字之和最小为2,最大为12,共有11种不同的结果,则向上一面的数字之和为5的概率是1/11,对吗?为什么?
五.课堂小结:通过这节课的学习,同学们能不能归纳梳理本节课的主要内容?(学生自主小结)
1、等件可能性事件的特征:
a、一次试验中有可能出现的结果是有限的;
b、每一结果出现的可能性相等。

2、求等可能性事件概率的步骤:
(1)审清题意,判断本试验是否为等可能性事件.
(2)计算所有基本事件的总结果数n
(3)计算事件A所包含的结果数m.
(4)计算P(A)=m/n
六.课后作业:
1、必做题:P132 习题11.1 2,3
2、选做题:P132 习题11.1 8
结束语:同学们,上课之前大家看到了概率在生活中的应用,譬如,一年365天计算,我们班某一位同学在今天过生日的概率是多少?根据等可能性事件的概率计算应该是1/365,那么某两位同学在今天生日的概率是多少?我们班至少有两位同学在今天生日的概率又是多少?等等问题,大家想不想知道,这些问题有待于我们以后进一步概率的学习。

七、说明:
为了贯彻新课程理念,这次评比我选取的内容是人教版高中数学第二册(下B)第十一章概率中的一节《等可能性事件的概率》,概率是新课程改革新增内容,与社会生活密切相关,在生产生活中应用及其广泛,符合新课程理念倡导的教育观。

本节课在数学教材的选取上,力求贴近生活实际,如抽奖,摸球游戏等,并且就地取材,创设学生熟悉的感兴趣的问题情境,使学生能在轻松、愉快的教学情境中学习有用的数学,同时也能运用数学知识来分析问题和解决问题。

教案的设计“以人为本,以学定教”,教师始终扮演的是组织者、引导者、参与者的角色,通过问题教学法,变“教的课堂”为“学的课堂”,学生成为课堂学习真正的主人。

通过布置分层练习,面对全体学生,使不同的人在数学上有不同的发展,让不同的学生在数学学习上都能成功;倡导合作式学习,通过学生小组合作设计问题、小组交流解决问题的方式,提高学生合作学习、主动探究的能力,而且大大促进了学生对知识的理解和灵活运用。

本节内容是随机性的思维方法,学生的辨证思维不成熟,可能存在理解不到位的现象,反思这一点,如何加以改进,这是在后续教学中需要思考的问题。

相关文档
最新文档