数学七年级上总复习(实数)

合集下载

七年级初一数学第六章 实数(讲义及答案)含答案

七年级初一数学第六章 实数(讲义及答案)含答案

七年级初一数学第六章 实数(讲义及答案)含答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .666 2.2(4)-的平方根与38-的和是( )A .0B .﹣4C .2D .0或﹣4 3.下列结论正确的是( ) A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D .327-=﹣34.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③5.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .46.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 7.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个B .2个C .3个D .4个 9.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0 10.下列各组数中互为相反数的是( )A .32(3)-B .﹣|2|2)C .﹣38和38-D .﹣2和12二、填空题11.若已知()21230a b c -+++-=,则a b c -+=_____.12.64的立方根是___________.13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.写出一个3到4之间的无理数____.15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.49的平方根是________,算术平方根是______,-8的立方根是_____.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. 三、解答题21.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方”(初步探究)(1)直接写出计算结果:2③,(﹣12)③.(深入思考)2④2 111111 2222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧23.观察下列各式:111122-⨯=-+;11112323-⨯=-+;11113434-⨯=-+;…(1)你发现的规律是_________________.(用含n的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯⎪ ⎪⎝⎭⎝⎭24.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.25.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ …. 按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.2.D解析:D【分析】【详解】=4,4的平方根是±2,的平方根为±2,2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.0或﹣4.故选:D.【点睛】本题考查的是实数的运算,熟知平方根的定义及立方根的定义是解答此题的关键.3.D解析:D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.4.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A.【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.5.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.6.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.7.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 8.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 9.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.B解析:B【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题11.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a、b、c的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.-5【解析】∵32<10<42,∴的整数部分a=3,∵b 的立方根为-2,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.14.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.17.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.19.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.-3 【分析】先确定的范围,再确定的范围,然后根据题意解答即可. 【详解】 解:∵3<<4 ∴-3<<-2 ∴-3故答案为-3. 【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3 【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34 ∴-3<1--2∴1⎡=⎣-3故答案为-3. 【点睛】三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783 【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案一、教学内容1. 实数的定义:有理数和无理数的分类,实数的性质。

2. 实数的运算:加法、减法、乘法、除法的运算规则。

3. 实数与方程:一元一次方程的解法,方程的解与实数的关系。

二、教学目标1. 理解实数的定义和性质,能够正确分类实数。

2. 掌握实数的运算规则,能够熟练进行实数的四则运算。

3. 学会解一元一次方程,理解方程的解与实数的关系。

三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。

2. 教学重点:实数的运算规则,一元一次方程的解法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、练习本、彩色笔。

五、教学过程1. 实践情景引入:讲解生活中实数应用的例子,如购物时价格的计算。

2. 实数的定义与分类:回顾实数的定义,讲解有理数和无理数的分类,举例说明。

3. 实数的运算:讲解实数的加法、减法、乘法、除法规则,结合实际例子进行演示。

4. 实数与方程:讲解一元一次方程的解法,结合实际例子进行演示。

5. 随堂练习:布置练习题,让学生实时巩固所学知识。

6. 例题讲解:挑选具有代表性的例题进行讲解,分析解题思路。

7. 课堂小结:回顾本节课所学内容,强调实数的运算规则和方程的解法。

六、板书设计1. 实数的定义与分类2. 实数的运算规则3. 实数与方程七、作业设计1. 作业题目:(3)解下列方程:2x + 1 = 7, 3x 4 = 22. 答案:(1)√3:无理数;2:有理数;0.333:有理数(2)(3) + 4 = 1, 5 2.5 = 2.5, 2 × (1.5) = 3, (2.5) ÷ 1.25 = 2(3)2x + 1 = 7,解得:x = 3;3x 4 = 2,解得:x = 2八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义、分类和运算规则掌握较好,但在解方程方面仍需加强。

2. 拓展延伸:讲解实数在实际生活中的应用,如测量长度、面积等,让学生体会实数的重要性。

七年级上学期数学单元复习 实数

七年级上学期数学单元复习 实数

七年级上学期数学单元复习 实数黄冈教育 辅导教师:杨义茂一、考点知识 理解应用考点1 平方根1.平方根的定义:一般地,如果一个正数的________________________ 2.平方根的特性:一个正数有正、负两个_________________________ 3.开平方的定义:求一个数的平方根的________________________4.算术平方根的定义:正数的正的平方根称为_______________________ 5.概念的应用:(1)(2014•杭州)已知边长为a 的正方形的面积为8,则下列说法中,错误的是( ) A .a 是无理数 B .a 是方程x 2-8=0的一个解 C .a 是8的算术平方根 D .a 满足不等式组⎩⎨⎧--0403<>a a(2)若一个自然数的算术平方根是x ,则下一个自然数的算术平方根是( )A .x+1B .x 2+1x +y +m |=0,且y 为负数,则m的取值范围是( )A .m >6B .m <6C .m >-6D .m <-6(4)设7的小数部分为b,则b b )(+4的值是( ) A 、1 B 、是一个无理数 C 、3 D 、无法确定(7)已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a ,b 的值.考点2 实数 1.实数的分类:(1)按定义分类:⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小分数整数有理数 (2)按大小分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正无理数正有理数正实数0 (3)还可以这样分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数和无限循环小负有理数零正有理数有理数 2.无理数常见的类型:(1)所有开不尽方的方根都是无理数,如39,12,3,2-等; (2)圆周率π及含有π的数都是无理数,如2π,12+π等; (3)构造型无理数,如0.1010010001…(两个1之间依次多1个0)。

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析一、选择题1.下列说法中正确的是( )A .4的算术平方根是±2B .平方根等于本身的数有0、1C .﹣27的立方根是﹣3D .﹣a 一定没有平方根2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C 倍D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.2-是( )A .负有理数B .正有理数C .自然数D .无理数 5.下列数中,有理数是( )A B .﹣0.6 C .2π D .0.151151115… 6.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧7.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 9.下列说法中不正确的是( )A .是2的平方根B 2的平方根C .2D .2 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.如果一个数的平方根和它的立方根相等,则这个数是______. 15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 17.34330035.12=30.3512x =-,则x =_____________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____. 20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘. 你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试: ①3310001000000100==,又1000593191000000<<,31059319100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9. ③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=-⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 23.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子 (2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 24.我们规定:a p -=1p a (a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值.25.z 是64的方根,求x y z -+的平方根26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A 、4的算术平方根是2,故A 错误;B 、平方根等于本身的数是0,故B 错误;C 、(-3)3=-27,所以-27的立方根是-3,故C 正确;D 、﹣a 大于或等于0时,可以有平方根,故D 错误.故选:C.【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.2.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴,故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A、实数包括有理数和无理数,故此命题是假命题;B、有理数就是有限小数或无限循环小数,故此命题是假命题;C、无限不循环小数就是无理数,故此命题是假命题;D、无论是无理数还是有理数都是实数,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B、C错误;∴2-是负有理数,A正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.5.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A是无理数,故选项错误;B、﹣0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.l51151115…是无理数,故选项错误.故选:B.【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.6.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.7.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】17.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 19.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力. 20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a ==479<<<<23<<∴的整数部分是2,即2b =则6212ab =⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b 的值是解题关键.三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.23.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.24.(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a 为不同值时,p 的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14; (2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4; (3)由于a 、p 为整数,所以当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.故答案为(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2.【点睛】 本题考查新定义,能够理解a 的负P 次幂等于a 的p 次幂的倒数这个规定定义是解题关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去 ②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。

浙教版 七年级上册 数学 实数提纲(有详细解释,理解) 适合第一轮复习

浙教版 七年级上册 数学 实数提纲(有详细解释,理解) 适合第一轮复习

第三章:实数
知识点:平方根、立方根、实数及其运算
1、平方根:
·如果一个数的平方等于a,那么这个数叫做a的平方根,或者a的二次方根(平方=二次方)。

a 叫做被开方根
·正数的平方根:正平方根(算术平方根)、负平方根,且正负平方根互为相反数
·负数的平方根:负数没有平方根(平方根*平方根=一个正数)
·0的平方根是0(算术平方根)
·求一个数的平方根的运算叫做开平方,开平方是平方运算的逆运算
2、实数:
·有理数和无理数统称为实数
·无理数:无限不循环小数称为无理数(根号二、根号三、π),无理数也可分为正无理数和负无理数
·有理数:如果把整数看做小数部分为0的有限小数,那么有理数便是有限小数(不循环)和无限循环小数的统称。

有理数可分为正有理数、负有理数、0
·在数轴上表示的两个实数,右边的数总比左边的数大
3、立方根:
·如果一个数的立方等于a,那么这个数叫做a的立方根,或者a的三次方根(立方=三次方)
·正数的立方根:正的立方根
·负数的立方根:负的立方根
·0的立方根是0
·求一个数的立方根的运算叫做开立方,开立方是立方运算的逆运算
4、实数的运算:
实数运算的顺序:先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算。

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案

浙教版七年级上数学第三章实数复习教案一、教学内容二、教学目标1. 理解实数的概念,掌握实数的性质和运算规律。

2. 能够将实数与数轴相结合,进行数轴上的运算和比较大小。

3. 学会运用实数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:实数的概念、性质、运算规律以及实数与数轴的结合。

难点:实数在实际问题中的应用,以及解决实数运算中的混合运算问题。

四、教具与学具准备1. 教具:黑板、粉笔、实数教学挂图、数轴模型。

2. 学具:练习本、铅笔、橡皮、直尺。

五、教学过程1. 导入:通过一个实践情景引入实数复习,例如气温变化、股票涨跌等。

3. 实数运算讲解:通过例题讲解实数的加减乘除运算,强调运算规律,如符号、绝对值等。

4. 数轴与实数的结合:展示数轴模型,让学生在数轴上表示不同的实数,并进行大小比较和运算。

5. 随堂练习:设计具有代表性的练习题,让学生巩固实数的概念、性质和运算。

6. 实数在实际问题中的应用:给出一些实际问题,让学生运用实数知识解决问题,提高应用能力。

六、板书设计1. 实数的概念与性质2. 实数的运算规律3. 实数与数轴的结合4. 例题及解答5. 随堂练习题七、作业设计1. 作业题目:(1)计算题:2.5 + (3.2),4.8 × (5),9 ÷ 1.8 等;(2)应用题:小明从家出发,以每分钟80米的速度跑步,5分钟后到达公园,公园到学校的距离是1200米,小明还需要多少时间才能到达学校?2. 答案:略八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、性质、运算掌握情况,以及对实数在实际问题中的应用能力。

2. 拓展延伸:引入无理数的概念,引导学生了解无理数与有理数的区别,为后续学习打下基础。

同时,可以让学生探讨实数在生活中的应用,激发学习兴趣。

重点和难点解析1. 实数在实际问题中的应用2. 实数的概念与性质的教学3. 实数的运算规律,特别是混合运算问题4. 数轴与实数的结合5. 作业设计中的题目类型和难度一、实数在实际问题中的应用小明购买水果,苹果每千克3.5元,香蕉每千克2.8元,若小明购买苹果2千克,香蕉1千克,请计算小明应支付的总金额。

七年级数学实数

七年级数学实数

七年级数学实数实数是包括有理数和无理数的数的集合。

其中有理数是可以表示为两个整数的比的数,无理数则不能表示为有理数的比。

平方根是一个数的平方等于给定正数的运算,算术平方根是一组数的平均值。

立方根是一个数的立方等于给定正数的运算。

问题1:1) 这个数是 (3x-2)(5x+6)。

2) a=6.3) 不存在算术平方根。

1) a=b=1.2) k的取值范围为{4/3}。

3) 2.实数的定义是包括有理数和无理数的数的集合。

在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方。

有理数范围内的运算律和运算顺序在实数范围内仍然相同。

问题3:1) 无理数是 {3}。

2) b≥0.每一个实数都可以用数轴上的一个点表示,反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系。

问题4:点A和点B在数轴上分别距离原点6个单位和2个单位长度,那么点A和点B之间的距离是多少?已知数a在数轴上的对应点为A,求a-a+1的值。

4.实数的分类实数可以分为正有理数、负有理数、零、正无理数、负无理数。

其中,正有理数可以表示为有限小数或无限循环小数,而正无理数则是无限不循环小数。

负有理数和负无理数的定义与正数相似。

5.实数的大小比较正实数大于负实数,而两个正实数或两个负实数的大小关系取决于它们的绝对值大小。

在数轴上表示的两个实数,右边的数总大于左边的数。

比较大小:1) 325 < 3262) -7.-53) 17+1的值在3和4之间。

6.实数的运算计算:1) 42-22/73) (2-3)/(/911)4) 1-5-2-3+3-1×0.36+900-(1+(-2.25))例1:若a为实数,则-a^2和-(a+1)^2一定是负数。

例2:设C点所表示的数为x,则x=3.练1:正确答案为A。

练2:1) C所表示的实数为2-5-2=-5.2) a的相反数是5-2=-3,a的倒数是1/a=-3/1.在数轴上表示a,它在原点的左侧,且到原点的距离是2+5=7.3) 点C所表示的实数是1.4) ab的值为-1.例3:正确说法的个数为3个。

七年级上册数学实数的知识点

七年级上册数学实数的知识点

七年级上册数学实数的知识点在七年级上学期的数学课程中,实数是一个重要的知识点。

实数包括有理数和无理数,它们合在一起构成了实数集,是数学中的基本概念之一。

下面我们来详细了解实数的概念、性质以及应用。

一、实数的概念与分类实数包括有理数和无理数两种数,其中有理数可以用分数或整数来表示,而无理数则不能用有限的小数或分数表示。

有理数包括正有理数、负有理数和零。

其中正有理数是指可以用正整数除以正整数得到的数,符号为“+”;负有理数是指可以用负整数除以正整数得到的数,符号为“-”;零是任何数除以自己得到的结果,符号为“0”。

无理数指不能写成有理数(分数)形式的实数。

例如,√2 、π、e 等均为无理数,它们不能表示为有限小数或分数。

二、实数的性质1. 实数集是一个完全有序的集合,即不论任何两个实数大小的关系如何,都必然可以判断出它们的大小关系。

2. 实数集满足加法和乘法的结合律、交换律和分配律。

3. 实数集中存在一个数 0 ,使 0 + a = a + 0 = a ,其中 a 为任意实数。

4. 实数集中每个数都有一个相反数,即对于任意实数 a ,都存在一个数 -a ,使得 a + ( -a ) = 0 。

5. 实数集中每个非零数都有一个倒数,即对于任意非零实数a ,都存在一个数 1/a 使得 a × (1/a) = 1 。

三、实数的应用实数的应用极为广泛,下面仅选取了数学中常见的一些应用进行介绍。

1. 直线和曲线的方程在解直线和曲线的方程时,实数是解题的基础。

例如,在求一条直线的斜率时,需要用到两个实数之间的除法运算,而这个运算必须用到实数,因为它是不满足分式的整数和真分数的性质的。

2. 负数的应用在实际生活中,经常会遇到一些与负数相关的问题,例如负债、温度计的读数等。

在这些情况下,需要用到负数的概念。

通过掌握实数的概念,可以更好地理解这些问题,并解决它们。

3. 高中数学的基础实数是高中数学的基础,如学习三角函数、导数、积分等内容都需要掌握实数的相关知识。

初中数学七年级数学第六章实数(全章节图文详解)

初中数学七年级数学第六章实数(全章节图文详解)
实数七年级数学第六章实数实数实数有理数无理数分数整数正整数0负整数正分数负分数自然数正无理数负无理数无限不循环小数有限小数及无限循环小数一般有三种情况1含的数??2开方开不尽的数3有规律但不循环的无限小数实数的分类
七年级数学第六章实数
实数
七年级数学第六章实数
目录:
1.算术平方根 2.平方根 3.立方根 4.有理数 5.无理数 6.实数定义 7.实数的运算 8.实数的大小比较
七年级数学第六章实数
1.算术平方根的定义: 一般地,如果一个正数x的平方等于 2 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平方根是 0 。
记作:0 0
七年级数学第六章实数
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方 根).
注意:计算过程中要多保留一位!
七年级数学第六章实数
3.实数运算
当数从有理数扩充到实数以后,实数之
间不仅可以进行加 减 乘 除 乘方运算,
又增加了非负数的开平方运算,任意实数
可以进行开立方运算。进行实数运算时, 有理数的运算法则及性质等同样适用。
七年级数学第六章实数
练习:
2 3 3 2 5 3 3 2
不 要 遗 漏
解: (3 y ) 4 9 4 3 y 9
2
解:
2 3 27 ( x ) 125 3
2 3 125 (x ) 3 27 2 5 x 3 3
2 3 125 x 3 27
1 2 y 2 或y 3 3 3
2 y 3 3
x 1

浙教版-数学-七年级上册-中考链接:实数

浙教版-数学-七年级上册-中考链接:实数

中考链接:实数考点扫描1.了解无理数和实数的意义.2.了解有理数的运算律在实数范围内仍适用.知识要点1.整数和分数统称有理数,任何一个有理数都可写成有限小数或者无限循环小数的形式.反之,任何有限小数或无限循环小数都是有理数.2.无限不循环小数叫做无理数.初中遇到的无理数有三类:①开不尽方,如:2、5等;②特定结构的数,如:1.010010001…;③特定意义的数,如:π、sin45°(以后要学)等,它们的本质特征是无限不循环小数.判断一个实数是有理数或无理数,不能只看表面,往往要经过整理化简后才能下结论.0)12(+=1是有理数,∴0)1(+不是无(+是无理数吗?因为0)122理数.3.有理数和无理数统称实数.实数有以下两种分类方法:①按属性分类:②按符号分类4.关于有理数的运算法则,运算规律和运算性质,在进行实数运算时仍成立.在实数范围内,不仅可以进行加、减、乘、除、乘方运算,而且正数和零总可以进行开方运算,负数只能开奇次方.应当注意,负数不能开偶次方.5.实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.反过来,数轴上的每一个点都可以表示一个实数.我们可以用几何作图方法,在数轴上表示某些无理数,如2、3等.6.考查本节内容的题型较多,多以填空和选择题的形式出现,还有判断、比较大小、求绝对值等题型也比较常见.近年来,试题中出现了阅读理解、探索猜想等新题型,考察学生的创新能力及应用知识解决问题的能力.重点考查: ①相反数、倒数、绝对值、平方根、算术平方根、有理数、无理数等概念的掌握情况.②实数大小的比较、简单的实数运算等内容.③把一个数科学记数,正确把握近似数的精确度和有效数字之间的关系. ④利用数轴,靠直观判断给出实数的特点,进行根式的化简与计算. 中考典例1.(广东省) 计算:2200101(1)|2|2-⎛⎫-+⨯-- ⎪⎝⎭ 考点:实数的混合运算评析:该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂,正整数指数幂.只要准确把握各自的意义,就能正确的进行运算,其结果为1.易错点:忘记负整数指数(0指数)幂的意义,而使21124-⎛⎫=- ⎪⎝⎭,0)3(0=. 2.(北京西城区) 在3,2.3,5,π四个数中,无理数的个数是( )A .1B .2C .3D .4考点:无理数的意义评析:只要弄明白无理数的意义及类型就能准确选出答案B ,即5,π是无理数.3.(云南昆明)下列计算正确的是( )A .(–2)3×(–3)2=65B .x 6÷x 2=x 3C .232)3(10=+--πD .32321-=+考点:实数的混合运算评析:该题是运算法则的考查,可用排除法.A :因为底数不同,指数不能相加;B :指数不应相除而是应该相减,C :(3–π)0=1,2121=- ,所以23211=+ 是正确的;D :左边是一正数,而右边是负数,所以不相等;故选C .说明:此类问题有一定的普遍性,在解答时,必须准确把握各种运算法则. 专题训练1.a ,b 是有理数,它们在数轴上的对应点的位置如下图所示:a 0 b把a ,-a ,b ,-b 按照从小到大的顺序排列 ( )A -b <-a <a <bB -a <-b <a <bC -b <a <-a <bD -b <b <-a <a2.若a +b <0,ab <0,则 ( )A a >0,b >0B a <0,b <0C a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D a ,b 两数一正一负,且负数的绝对值大于正数的绝对值3.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg4.规定a ﹡b =5a +2b -1,则(-4)﹡6的值为 .5.如果有理数a ,b 满足∣ab -2∣+∣1-b ∣=0, 试求)2)(2(1)1)(1(11++++++b a b a ab +…+)2004)(2004(1++b a 的值. 6.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答.7:在抗击“非典”时期,某中学老师为减轻学生们的负担,让同学们做了一个游戏,他说:“如果张华和李明分别代表不大于5的正整数m ,n ,且m n 是最简真分数,那么形如mn -的数一共有多少个不同的有理数?”附答案:1:C . 2:D . 3:B . 4:-9. 5:20062005. 6: 1,(-1-51)+(-3-48)+…+(-23-28)+(2+49)+(4+47)+…+(24+27)+(-25+26).7:9个不同的有理数.21-、31-、32-、41-、43-、51-、52-、53-、54-.。

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。

本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。

本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。

但实数概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。

三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。

2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和分类。

2.实数的运算规则。

3.实数与数轴的关系。

五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。

2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。

3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作数轴教具,用于教学演示。

3.准备实数运算的练习题,用于巩固练习。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。

为学生引入实数的概念做铺垫。

2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。

通过讲解和示例,让学生理解实数与数轴的关系。

3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。

教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。

4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。

教师可适时给予指导,帮助学生巩固实数的运算规则。

5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。

初中数学七年级上册浙教版第三章实数复习课件

初中数学七年级上册浙教版第三章实数复习课件

初中数学七年级上册浙教版第三章实数复习课件算术平方根开平方乘开平方根互为逆运算方方开立方负的平方根立方根一般地 , 如果一个数的平方等于a , 这个数叫做a 的平方根。

( 也叫二次方根 )2若x = a a ≥0 则 x? a?一个正数有两个平方根,它们互为相反数,零的平方根还是零。

负数没有平方根。

求一个数的平方根的运算,叫做开平方。

正数a 的正的平方根和零的平方根, 统称算术平方根。

非负数a 的算术平方根是非负数, 。

即 a ≥03a一般地,如果,那么叫的立方根xa x3数a的立方根用符号表示。

a一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。

求一个数的立方根(三次方根)的运算,叫做开立方 ,开立方与立方互为逆运算。

你知道算术平方根、平方根、立方根联区别系和区别吗? 平方根立方根算术平方根3表示方法a aa≠a a0 0的取值≥≥a 是任何数a正数正数(一个) 互为相反数(两个) 正数(一个) 性0 0 0 0质负数没有没有负数(一个)开求一个数的平方根求一个数的立方根的运算叫开平方的运算叫开立方方0,1 0 0,1,-1是本身14 的算术平方根是±2.24 的平方根是2.38 的立方是2.4 无理数就是带根号的数.5 不带根号的数都是有理数.6 -1 的立方根是 -17 -1 的平方根是±1 8 16 的平方根是496 表示6 的算术平方根的相反数10 任何数都有平方根211a 一定没有平方根64?8 是的平方根±864 的平方根是不要864 的值是搞错864 的平方根是了64 的立方根是4?正整数?正有理数正分数?有理数零有限小数或无限循环小数负整数负有理数负分数正整数有限小数及无限循环小数自然数0整数负整数有理数正分数实分数数负分数正无理数按性质分类无理数负无理数无限不循环小数1 、3一般有三种情况?2、“” , “”开不尽的数3 、类似于0.001 ?正有理数正实数负无理数实数负有理数负实数负无理数按大小分类把数从有理数扩充到实数以后,有理数中的相反数和绝对值的概念同样适用于实数 31 ) 的相反数是, 的相反数是36652 )5实数和数轴上的点一一对应在数轴上表示的两个实数,右边的数总比左边的数大将下列各数分别填入下列的集合括号中153, 3,16 ,7 , ,9 , 2 ,5 ,8 ,47425,, 0,0 .373773777393,无理数集合: 0.37377377735 , 7 , 2 ,9 ,5 413,16 ,,有理数集合:,8 , …0,25,94230,整数集合:8 , 25, …16 ,自然数集合:…0,25,判断正误:①-a 一定是负数( )②在有理数中,如果一个数不是正数,则一定是负数( )③开方开不尽的实数叫无理数( )④无理数都是无限小数()⑤带根号的数是无理数()⑥没有最小的实数()⑦最小的整数是零()⑧任何实数的平方都是非负数()填空31/3 (1 ) 的倒数是 ;2 -3 (2 ) -2 的绝对值是 ___ ;33 或 - 3x ?1, y2 (3 )若,且xy0 ,x+y。

数学七年级上册第四章第6节《实数》专题训练及答案解析

数学七年级上册第四章第6节《实数》专题训练及答案解析

第六节 《实数》专题训练第1题. 把下列各数分别填写在相应的括号内.03220.5550 3.1515515559(27π---π,,,,,,无理数集合{};有理数集合{ };正实数集合{ };分数集合{ };负无理数集合{}.第2题. 化简:0)m m <.第3题. 计算:200420032)2).第4题. 已知x y ==22353x xy y -+的值.第5题. 座钟的摆动一个来回所需的时间称为一个周期,其中计算公式为2T =T 表示周期(单位:s ),l 表示摆长(单位:m ),g 为重力加速度且9.8g =m/s 2.假如一台座钟的摆长为0.5m ,它每摆动一个来回发出一次滴答声,那么在1min 内,该座钟发出多少次滴答声?第6题. 计算:22--×;第7题. 和数轴上的点一一对应的数是( ) A.整数 B.有理数 C.无理数D.实数第8题. x y ,38y =-,则xy =( ) A.3-B.3C.43-D.不能确定第9题. 22)0x -=中,x = . 第10题. 计算或化简:2(7+;第11题. 若实数a b c ,,2(5)0b +=,求代数式ab c+的值. 第12题. 化简求值.22-,其中34a b ==,.第13题. 设a b c ,,都是实数,且满足条件2(2)80a c -+=,20ax bx c ++=.求代数式221x x +-的值.第14题.已知22 x y==求11x yy x⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭的值.第15题. 细心观察图,认真分析各式,然后解答各个问题.21222312213214SSS+==+==+==,,,(1)请用含n的(n为正整数)的等式表示上述变化规律.(2)推算出10OA的长度.(3)求出222212310S S S S++++的值.第16题.已知a b c===,则a b c,,的大小关系为()A.a b c>>B.a c b>>C.b a c>>D.c b a>>第17题.x.第18题.计算或化简:5.第19题.计算或化简:.第20题.,其中23x y==,.第21题. a b,为实数,在数轴上的位置如图所示,则a b-+)A.a-B.aC.2a b-D.2b a-第22题. 老师在黑板上画了一个图,如图,图中A点表示,它与1.5第23题. 21a=-,则a的值为.第24题. 我们在学习“实数”时,以数轴上的单位长度1为线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A,如图,请根据图形回答问题:(1)OA长度是多少?(要求写出求解过程)(2)这种研究和解决问题的方式,体现了的数学思想方法.A.数形结合B.代入C.换元D.归纳5A4A3A2A1A1S2S3S4SO1111第25题.下列各数:50-π0.30.1010010001,,中无理数的个数是()A.1 B.2 C.3 D.4 第26题. 下列说法正确的是()A.无理数之和仍为无理数B.有理数之和仍为有理数C.无理数之积仍为无理数D.有理数与无理数之积仍为无理数第27题. 实数a的平方的算术平方根是()A.aC.a-D.a第28题. 下列四个例题中,正确的是()A.数轴上任意一点都表示一个有理数B.数轴上任意一点都表示一个无理数C.数轴上的点与实数一一对应D.数轴上的点与有理数一一对应第29题. 下列计算正确的是()=B.2=236==第30题. 下列关于实数的说法中,正确的是()A.没有最大的实数,但有最小的实数B.没有最小的实数,但有最大的实数C.没有绝对值最大的数,但有绝对值最小的数D.没有绝对值最小的数,但有绝对值最大的数第31题.21(2)2--⎛⎫-⎪⎪⎝⎭,与02的大小关系是()A.2012(2)2--⎛>>-⎝⎭B.210(2)22--⎛>->⎝⎭C.2012(2)-->->⎝⎭D.2012(2)-->>-⎝⎭第32题. 若x为任意实数,则下列各式中能成立的是()2 =x =22x=-第33题. 若实数a=.第34题. 如图,以1为直角边长作直角三角形,以它的斜边长和1为直角边作第二个直角三角形,再以它的斜边和1为直角边作第三个直角三角形,以此类推,所得第n个直角三角形的斜边长为.第35题. 计算:(122713(23)383+- (2)2(32(402+(501)1+第36题. 若x 是无理数,但(2)(6)x x -+是有理数,则下列结论正确的是( ) A.2x 是有理数B.2(6)x +是无理数 C.(2)(6)x x +-是无理数D.2(2)x +是无理数第37题. 若1x <,则x =( ) A.0B.44x -C.44x -D.4x第38题. 若a <a 的范围是( )A.0a <B.0a >C.1a >D.01a <<第39题. 若m 2m m += .第40题. 200320042)(32)+= .第41题. 当0x y >, 时,第42题. a 和b 的值.第43题.第44题. 若2y =,则xy = .第45题. 2== .第46题.第47题. 化简求值(122433x xy y x y-+-(其中x y ==(22.25a =) 第48题.第49题. 下列关于实数的说法中,不正确的是( )A.既没有最大的实数,也没有最小的实数 B.两个实数中,平方较大者的绝对值也较大C.没有绝对值最大的实数,但有绝对值最小的实数D.有理数都可以用数轴上的点来表示,反过来,数轴上的某点也一定可以找到一个有理数与之相对. 第50题. 写出一个3到4之间的无理数 .第51题. 设a =2b =2c =,则a ,b ,c 的大小关系是( ) A.a>b>c B.a>c>b C. c>b>a D. b>c>a第52题.已知2a <=第53题.2)得 ( )A.-22 C.2D.2第54题. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是 ( )A.0 B .1D.3第55题. 函数y =自变量的取值范围是( ) A.0x >B.0x <C.0x ≥D.0x ≤第56题. 第57题. 实数a = .a 0第58题.计算:222223-⎛⎛⎛⎫-+--⎪ ⎝⎭⎝⎭⎝⎭ 第59题. 若x ≤0,则化简1x -A.12x -B.21x -C.1-D.1B C第60题.已知a b ==A.5B.6C.3D.4第61题. 实数a在数轴上的位置如图所示,则化简2a -+结果为 .第62题. 下列运算正确的是A .a 2+a 3=a 5B .(-2x )3=-2x 3C .(a -b )(-a +b )=-a 2-2ab -b 2D =第63题. ( )A.在4和5之间 B.在5和6之间 C.在6和7之间 D.在7和8之间 第64题. 写出两个和为1的无理数 (只写一组即可).(第18题)(第17题)第六节 《实数》专题训练参考答案1.答案:解:无理数集合{373.151********π-2,,,,};有理数集合{0220.555( 3.14159267--π,,,,};正实数集合{0ππ2,};分数集合{220.555 3.14159267--,,,};负无理数集合{53.1515515555--,,}.2. 答案:解:0m <,m m ==-.故()22m m m m m m m =-=--==-.3. 答案:解:原式200320032)(52)=+200320032220032)2)2)22)1 2.⎡⎤=⎣⎦⎡⎤=-⎣⎦==×4. 答案:解:22223533()5x xy y x y xy -+=+-2223()253()653()11x y xy xyx y xy xyx y xy ⎡⎤=+--⎣⎦=+--=+-,又由已知可得x y +=+=321xy ==-=,故原式231113361197=-=-=×××.5. 答案:解:依题意知,0.5l =m ,9.8g =m/s 2,则该座钟的周期为22T ==又222T 11==π=π77××××2177=π=π×=s .3.16≈.故17T ≈× 3.16 3.14 1.42=×s . 又一个周期发出一次滴答声则计算6042.25442T≈≈. 故1min 该座钟发出约42次滴答声. 6.答案:解:原式431)=--=-×12111=-;7. 答案:D 8. 答案:A 9.10.答案:解:原式(73)=+-22(7749481.=+-=-=-=11. 答案:解:由题意得30a -=且50b +=且70c +=,得3a =,且5b =-且7c =-.则31574a b c ==-+--. 12.答案:解:由平方差公式得22-⎡⎤⎡⎤=+-⎣⎦⎣⎦==×当34a b ==,时,原式==13. 答案:解:由已知得220080a a b c c -=⎧⎪++=⎨⎪+=⎩,,,,解得248.a b c =⎧⎪=⎨⎪=-⎩,,222480ax bx c x x ∴++=+-=,即224x x +=,那么221413x x +-=-=.14. 答案:解:化简1112x y xy y x xy⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭,又22x y ==则(2431xy ==-=,故原式121124xy xy=++=++=.15. 答案:解:(1)这一规律如下:2112n n S +=+=,; (2)10OA 应是1011OA A Rt △的一直角边,且有101110101110122OA A S S A A OA ===Rt △××,即10122OA =×.即10OA ; (3)2222222212310123102222S S S S ⎛⎫⎛⎫⎛⎫⎛⎫++++=++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1155(123410)55444=+++++==×. 16. 答案:D17. 答案:3x >-18. 答案:解:原式23522=--=-. 19. 答案:解:原式(1812)6=-=. 20. 答案:解:原式x yx y+=-.当23x y ==,时,原式5=-. 21. 答案:C22.1.5<23. 答案:10±,24. 答案:解:(1)OA1OB OA OB ===,OA ∴=;(2)A.25. 答案:B 26. 答案:B 27. 答案:D 28. 答案:C 29. 答案:C 30. 答案:C 31. 答案:A 32. 答案:C33. 134.35. 答案:(1) 4.5-(2)14-(3)9(4)4(536. 答案:C37. 答案:C38. 答案:D39. 答案:240. 答案:241. 答案:0≤42. 答案:584a b==,43. 答案:44. 答案:345. 答案:46. 答案:<47. 答案:(1)(2)17 8148. 答案:049. 答案:D50. 答案:π51. 答案:A52. 答案:2a-53. 答案:A54. 答案:C55. 答案:B56. 答案:解:原式==1=-.57. 答案:a-58. 答案:解:原式19124=+-34=-.59. 答案:D60. 答案:A61. 答案:162. 答案:D63. 答案:D64. 1。

(易错题精选)初中数学实数知识点总复习含答案解析(1)

(易错题精选)初中数学实数知识点总复习含答案解析(1)

(易错题精选)初中数学实数知识点总复习含答案解析(1)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 即2的整数部分.3.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( )A .②④B .②③C .①④D .①③【答案】D【解析】【分析】 先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.6.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE =5 ∵A 点表示的数是1- ∴E 点表示的数是51-【点睛】掌握勾股定理;熟悉圆弧中半径不变性.7.4的算术平方根为( )A .2±B .2C .2±D .2【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.16的算术平方根是( )A .±4B .-4C .4D .±8【答案】C【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】 24=16Q ,16∴的算术平方根是4.所以C 选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.10.如图所示,数轴上表示3、13的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A .13B .13C .13D 13 【答案】C【解析】点C 是AB 的中点,设A 表示的数是c 1333c =-,解得:13C . 点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.14.1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是164±=±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.下列说法:①36的平方根是6; ②±9的平方根是3; 164±; ④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9.其中正确的说法是( )A .0B .1C .3D .5 【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;16=4164±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .2或12B .1或﹣1C .12或1D .2或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.实数)A3<<B.3<C3<<<<D3【答案】D【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.在实数范围内,下列判断正确的是()A.若2t ,则m=n B.若22a b>,则a>bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.。

初中数学实数知识点总复习含答案解析(1)

初中数学实数知识点总复习含答案解析(1)

初中数学实数知识点总复习含答案解析(1) 一、选择题1.1?0,?-,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】4==,013是有理数.∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.2.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.3.若a 、b 分别是6-13的整数部分和小数部分,那么2a-b 的值是( ) A .3-3 B .4-13 C .13 D .4+13【答案】C【解析】根据无理数的估算,可知3<13<4,因此可知-4<-13<-3,即2<6-13<3,所以可得a 为2,b 为6-13-2=4-13,因此可得2a-b=4-(4-13)=13.故选C.4.已知,x y 为实数且110x y ++-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b >0>a ,且 |a|>|b|, ∴()2a a b a a b b -+=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.6.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.7.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .8.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】== ∵3.52=12.25,42=16,12.25<13.5<16,∴3.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.13.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.14.计算|1+3|+|3﹣2|=()A.23﹣1 B.1﹣23C.﹣1 D.3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.15.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.8<2.9,③段上.故选C考点:实数与数轴的关系16.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.17.)A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C【解析】【详解】解:由36<38<49,即可得67,故选C.18.估计值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:=<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.。

七年级初一数学第六章 实数知识点总结及解析

七年级初一数学第六章 实数知识点总结及解析

七年级初一数学第六章 实数知识点总结及解析一、选择题1.表面积为12dm 2的正方体的棱长为( )A dmB .dmC .1dmD .2dm2.下列说法中正确的是( )A .若a a =,则0a >B .若22a b =,则a b =C .若a b >,则11a b> D .若01a <<,则32a a a << 3.下列计算正确的是( )A 2=±B .13=C .2(5=D 2=±4.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()aa =④ C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.5.2,估计它的值( )A .小于1B .大于1C .等于1D .小于06.给出下列各数①0.32,②227,③π0.2060060006(每两个6之间依次多个0 ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤7.估算1的值是在哪两个整数之间( ) A .0和1 B .1和2 C .2和3D .3和48.1的值( )A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间9.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;3的立方根;④无理数是带根号的数;⑤2.A .2个B .3个C .4个D .5个10.在实数13-,0.7,34,π,16中,无理数有( )个.A .1B .2C .3D .4 二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.若()2320m n ++-=,则m n 的值为 ____.13.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 15.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.16.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.17.下列说法: ① ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________18.若x 、y 分别是811-的整数部分与小数部分,则2x -y 的值为________.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.22.(1)观察下列式子:①100222112-=-==;②211224222-=-==;③322228442-=-==;……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.23.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.24.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a ﹣3的整数部分,b ﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.25.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法: 设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==-请仿照小明的方法解决以下问题:(1)291222++++=________;(2)220333+++=_________; (3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方体的表面积公式:S =6a 2,解答即可.【详解】解:根据正方体的表面积公式:S =6a 2,可得:6a 2=12,解得:a .dm .故选:A .【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.2.D解析:D【分析】根据绝对值的性质、平方根的性质、倒数的性质、平方和立方的性质对各项进行判断即可.【详解】 若a a =则0a ≥,故A 错误;若22a b =则a b =或=-a b ,故B 错误;当0a b >>时11b a <,故C 错误;若01a <<,则32a a a <<,正确,故答案为:D .【点睛】本题考查了有理数的运算,掌握有理数性质的运算是解题的关键.3.C解析:C【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定.【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误.故选:C .【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.4.C解析:C【解析】【分析】根据定义依次计算判定即可.【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确;B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.5.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.6.D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.7.C解析:C【分析】利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】原式∵1.5<2∴3<4∴2<<3故选:C.【点睛】此题考查估算无理数的大小,熟练掌握运算法则是解题的关键.8.B解析:B【分析】利用36<38<49得到671进行估算.【详解】解:∵36<38<49,∴67,∴51<6.故选:B.【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【详解】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故①错误;②实数包括无理数和有理数,故②正确;3的立方根,故③正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故④错误;⑤2,故⑤正确.故选:B .【点睛】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.10.B解析:B【分析】根据无理数的定义判断即可.【详解】13-,0.716π是无理数, 故选:B .【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.二、填空题11.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.12.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.16.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.17.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.18.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x ,y 的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x =4,小数部分y =448=∴2x -y =8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x ,y 的值.19.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.20.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+,得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =, ∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5.【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.24.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a =1,b 4;(2)(﹣a )3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a )3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.25.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:20a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.26.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②,②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。

完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题

完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题

完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题实数是数学中一个重要的概念,它包括有理数和无理数两种。

其中,一个数的平方等于a时,这个数就叫做a的平方根。

一个正数有正、负两个平方根,它们互为相反数。

需要注意的是,零的平方根是零,而负数没有平方根。

另外,一个正数a的平方根表示成±a(读做“正、负根号a”),其中a叫做被开方数。

例如,3的平方根是±3,4的平方根是±2.类似地,一个数a的立方等于a时,这个数就叫做a的立方根。

一个正数有一个正的立方根,一个负数有一个负的立方根,它们互为相反数。

需要注意的是,立方根等于它本身的数是1和-1.一个数a的立方根表示成3a,其中a叫做被开方数。

例如,3的立方根是33,-8的立方根是-2.实数可以分为有理数和无理数两种。

有理数包括正有理数、负有理数和零,它们可以用分数表示,而无理数则不能用分数表示。

有限小数或无限循环小数都是有理数,而无限不循环小数是无理数。

实数的相反数、绝对值、倒数的意义与有理数一样,有理数的运算法则、运算律在实数范围内仍然适用。

最后需要注意的是,在求一个数的平方根时,我们可以使用开平方运算,它可以用平方运算来计算。

例如,一个数的正平方根称为算术平方根,它可以表示为M/N的形式(M、N 均为整数,且N≠0)。

81的平方根是±9.1的立方根是±1.1=±1.-5是5的平方根的相反数。

一个自然数的算术平方根为a,则与之相邻的前一个自然数是a-1.考点三、计算类型题1、设26=a,则下列结论正确的是()A.4.5<a<5.0B.5.0<a<5.5C.5.5<a<6.0D.6.0<a<6.5答案:B4、对于有理数x,2013-x+(3π-9)^2/4=(3π-10)/2,求x的值。

答案:x=2014-3π考点四、数形结合1.点A在数轴上表示的数为35,点B在数轴上表示的数为-5,则A,B两点的距离为40.2、如图,数轴上表示1,2的对应点分别为A,B,点B 关于点A的对称点为C,则点C表示的数是()A.2-1 B.1-2C.2-2D.2-2答案:B考点五、实数绝对值的应用1、|3-22|+|3+2|-|2-3|=2考点六、实数非负性的应用1.已知:x²-2x-3≥0,求x的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学七年级上总复习之实数一、知识结构知识结构中,平方根与立方根两部分内容是平行的,可对比着进行记忆.二、知识要点要点1 平方根、立方根的定义与性质1、要判断一个对象有无平方根,首先要对这个对象进行转化,直到能看出它的符号,然后依据平方根的性质进行判断。

2、因为正数、0、负数均有立方根,所以所给各数都有立方根。

要点2 实数的分类与性质要正确判断一个数属于哪一类,理解各数的意义是关键。

要点3 二次根式的性质及有关概念二次根式要紧扣两个要素,即:根指数为2;被开方数大于或等于0。

要点4 实数的混合运算在实数范围内进行加、减、乘、除、乘方和开方运算,运算顺序依然是从高级到低级。

值得注意的是,在进行开方运算时,正实数和零可以开任何次方,负实数能开奇次方,但不能开偶次方。

要点5 非负数非负数,即不是负数,也即正数和零,常见的非负数主要有三种:实数的绝对值、实数的算术平方根、实数的偶次方。

它有一个非常重要的性质:若干个非负数的和为0,这几个非负数均为零。

要点6 数形结合题数形结合是解决数学问题常用的思想方法,解题时必须通过所给图形抓住相关数的信息。

要点7 与二次根式有关的探究题这类题目需要我们细心观察及思考,探究其中的规律,寻找解决问题的途径。

三、考查要点1、利用平方根、算术平方根、立方根的定义与性质解题(1)如果某数的一个平方根是-6,那么这个数为________.2、考查实数的有关概念及实数大小的比较(2)比较大小:7 50.(填“>”、“=”或“<”)3、考查二次根式的概念(3)根号x-1 在实数范围内有意义,则x的取值范围是( )(A)x>1 (B)x≥l (C)x<1 (D)x≤14、考查同类二次根式分析:掌握同类二次根式的概念是解决此类问题的关键。

首先要把能化简的二次根式化成最简二次根式,再分别看被开方数是否相同即可。

5、考查二次根式的化简与运算(4)化简400的结果是()A.10 B.2 C.4 D.201、对平方根、算术平方根、立方根的概念与性质理解不透理解不透平方根、算术平方根、立方根的概念与性质,往往出现以下错误:求一个正数的平方根时,漏掉其中一个,而求立方根时,又多写一个;求算术平方根时前面加上正负号,成了平方根等等。

2、忽略平方根成立的条件只有非负数才能开平方,成立的条件是a≥0,这一条件解题时往往被我们忽略。

3、实数分类时只看表面形式对实数进行分类不能只看表面形式,应先化简,再根据结果去判断。

4、二次根式的运算错误在进行二次根式的运算时要注意运算法则与公式的正确应用,千万不要忽略公式的应用条件。

五、平方根和立方根考点例析在中考试题中,平方根和立方根的考点有以下几个方面:一、平方根的概念如果一个数的平方等于A,那么这个数叫做A的平方根.例1.9的平方根是【】(A) 3 (B) (C) 81 (D)例2.(-5)2的平方根是【】(A)5 (B)-5 (C)±5 (D)±5例3.81的平方根是【】(A)±9 (B) ±3(C)9 (D)3二、算术平方根正数A的正的平方根叫做A的算术平方根.例4.| -4|的算术平方根是【】(A)2 (B)±2(C)4 (D) ±4x是完全平方数,则它前面的一个完全平方数是【】例5.设x为正整数,若1(A)x (B)12+-x x (C)112++-x x (D)212++-x x三、立方根如果一个数的立方等于A ,那么这个数叫做A 的立方根.例6.立方根等于3的数是【 】(A )9 (B )9± (C )27 (D )27±例7.38-等于 【 】(A )2 (B )2- (C )3 (D )-3例8.336.28的值为【 】(A )3.049 (B)3.050 (C)3.051 (D)3.052四、科学计算器的应用例9.用计算器计算2116.0的按键顺序是______,结果等于_____.六、复习时需要强调和注意的问题1.平方根与算术平方根的联系和区别:(1)联系:只有非负数有平方根和算术平方根.0的平方根,算术平方根都为0.(2)区别:正数的平方根有两个,互为相反数,正数的算术平方根只有一个,用a 表示一个正数,其平方根为a ±,其算术平方根为a (a 为正数)(3)当0a ≥时,0a ≥;0a <时,a 无意义2.平方根与立方根的性质:3、无理数是无限不循环小数,一般来说开方开不尽的数,如2,3等都是无理数,但是并不是所有的无理数都可以写成根号的形式,如π就是一个特例.4、在实数范围内,对于非负数是可以开平方的,但负数开平方是没有意义的.5、实数的分类例1判断题:1、 16的平方根是4±2、 25-是425的平方根 3、 25-是425的平方根 4、 425的平方根是25- 5、 425的平方根是25± 6、有算术平方根的数是正数.这六道判断题,主要是考查了学生对平方根和算术平方根这两个概念的掌握.七、例题解析[例1]判断题:(1)绝对值等于它本身的实数只有零. ( )(2)倒数等于它本身的实数只有1. ( )(3)相反数等于它本身的实数只有0. ( )(4)算术平方根等于它本身的实数只有1. ( )(5)有算术平方根的数是有理数. ( )(6)0是最小的实数. ( )(7)无限小数都是无理数. ( )(8)带根号的数都是无理数. ( )(9)不带根号的数都是有理数.( )(10)两个无理数的和为无理数. ( )特别注意1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0a ≥0。

4、公式:⑴)2=a (a ≥0a 取任何数)。

5、区分2=a (a ≥0),与 2a =a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

7.易混淆的三个数:(1)2a (2)2)(a (3)33a补充练习(一)、精心选一选1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是( )A .1B .2C .3D .42.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 13.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数4. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115(5.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.496. 下列说法正确的是( )A . 0.25是0.5 的一个平方根B ..正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D . 负数有一个平方根7.一个数的平方根等于它的立方根,这个数是 ( )A.0B.-1C.1D.不存在8.下列运算中,错误的是 ( ) ①1251144251=,②4)4(2±=-,③3311-=- ④2095141251161=+=+ A . 1个 B. 2个 C. 3个 D. 4个9. 若225a =,3b =,则b a +的值为 ( )A .-8B .±8C .±2D .±8或±2(二)、细心填一填 (每小题 分,共 分)10.在数轴上表示的点离原点的距离是 。

设面积为5的正方形的边长为x ,那么x = 。

11. 9的算术平方根是 ;94的平方根是 ,271的立方根是 , -125的立方根是 .12. 25-的相反数是 ,32-= ; 13. =-2)4( ; =-33)6( ; 2)196(= . 38-= .14. 比较大小;215- 5.0; (填“>”或“<”) 15. 要使62-x 有意义,x 应满足的条件是 。

16.已知051=-+-b a ,则2)(b a -的平方根是________;17.10.1== ;18. 一个正数x 的平方根是2a -3与5-a ,则a=________;19.一个圆它的面积是半径为3cm 的圆的面积的25倍,则这个圆的半径为_______.(三)、用心做一做20.(6分)将下列各数填入相应的集合内。

-7,0.32, 13,0,3125-,π,0.1010010001… ①有理数集合{ … } ②无理数集合{ … } ③负实数集合{ … }21.化简(每小题5分,共20分)① 2+32—52 ② 7(71-7)③ |23- | + |23-|- |12- | ④ 41)2(823--+22.求下列各式中的x (10分,每小题5分)(1)12142=x (2)125)2(3=+x23.比较下列各组数的大少(5分)(1) 4 与 363 (2)24.一个正数a 的平方根是3x ―4与2―x ,则a 是多少?(6分)25.已知a 是根号8的整数部分,b 是根号8的小数部分,求(-a )³+(2+b )²的值26.求值(1)、已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a 。

(2)、已知x 、y 都是实数,且4y ,求x y 的平方根。

27、如果A=323+-+b a b a 为3a b +的算术平方根,B=1221---b a a 为21a -的立方根,求A+B 的平方根。

28、实数a 、b 互为相反数,c 、d 互为倒数,X 的绝对值为7,求代数式2()x a b cd x +++的值。

相关文档
最新文档