470勾股定理PPT课件
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
《勾股定理》PPT教学课件
O 解:如图1,设OA为静止时秋千绳索的长,则
AC=1,CF=5, BF=CD=10. AF=CF-AC=5-1=4.
设绳索长为OA=OB=x尺。
则 OF=OA-AF=(x-4)尺
在Rt△OBF中,由勾股定理,得:
B
F
OB2=BF2+OF2,即x2=102+(x-4)2
解得:x=14.5尺
E
A
∴绳索长为14.5尺。
荧屏对角线大约为74厘米 ∴售货员没搞错
课堂小结
说说这节课你有什么收获?
探索直角三角形两直角边的平方和等于斜边的平方; 利用勾股定理解决实际问题。
祝同学们学习进步!
解 如图,在Rt△ACB中,∠C=90°,
A
AC=8m ,BC=6m, 由勾股定理,得
AB2=AC2+BC2
=82+62=100
于是 AB= 100 =10
所以,钢丝绳的长度为10m. B
C
例2 明朝程大位的著作《算法統宗》有一道 “蕩秋千”的趣題,是用詩歌的形式的:
平地秋千未起,踏板一尺離地; 送行二步與人齊,五尺人高曾記。 仕女佳人爭蹴,終朝笑語歡嬉; 良工高士好奇,算出索長有幾?
因为大正方形的面积相等,而SⅠ+ SⅡ和SⅢ的面积都
等于大正方形面积减去四个直角三角形的面积
。
归纳总结
勾股定理
直角三角形两直角边的平方和等于斜边的 平方。
如果直角三角形两直角边分别为a、b,斜边
为c,那么 a2 + b2 = c2
B
c
a
在西方又称毕达哥
拉斯定理!
A
b
C
❖ 精y=讲0点拨
《勾股定理》数学教学PPT课件(10篇)
= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
勾股定理--PPT课件
(3)美国总统证法:
D
C
bc
c
a
Aa
bD
∵S梯形ABCD=1/2(a+b)(a+b)
=1/2ab×2+1/2 c²
∴a²+b²=c²
(4)我来试一试
b
a
ab
a c
a
cb
ca
bc c
bc
a
a
b
a
b b
S=1/2ab×4+ c²=1/2ab ×4+ a²+b² a²+b²=c²
例1:已知:在Rt△ABC中, ∠C=90°,AB=c,AC=b,BC=a.
作业:
1、已知三角形三边为5、6、7,求 △ABC面积
A A
a
c
a
45°
Cb
BC
c
30°
b
B
a : b : c =1:1: 2
a :b:c =1: 3 :2
实践与探索
1、判断题:
1)、直角三角形三边a,b,c一定满足下面的式子:
a²+b²=c²
(X )
2)、直角三角形的两边长分别是3和4,则另一边是5
(X )
பைடு நூலகம்
3)、若△ABC的三边长是a=7,b=24,c=25,则△ABC
是直角三角形
(√ )
4)、 △ABC是三边之比为1:1:√2 ,则△ABC是直角
三角形
(√ )
5)、等边三角形高为2 √3cm,则它的边长是3cm (X )
2、探究下面三个圆面积之间的关系
S1 S2
cb a
S3
∵ a²+b²=c² ∴ S1=S2+S3
勾股定理课件ppt
THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
勾股定理--PPT课件模版
课程讲授
2 勾股定理与网格
练一练: 如图,在2×2的方格中,小正方形的边长是1,点A,B,C都在格点上, 求AB边上的高. 解:如图,过点C作CD⊥AB于点D.
1 AB CD 3 ,
2
2
D
CD 3 3 5 . 55
课程讲授 2 勾股定理与网格
归纳:1.勾股定理与网格的综合求线段长时,通常是把线段放 在与网格构成的直角三角形中,利用勾股定理求其长度. 2.网格中求格点三角形的高的题,常用的方法是利用网格 求面积,再用面积法求高.
A.1
B. 2 C.1.5
D. 3
随堂练 习
2.如图,每个小正方形的边长均为1,则△ABC中, 长为无理 数的边有( C )
A.0条 B.1条 C.2条 D.3条
随堂练 习
3.如图是一张直角三角形的纸片,两直角边AC= 6 cm,BC=8 cm, 现将△ABC折叠,使点B与点 A重合,折痕为DE,则BE的长为( B )
•
0 12 34
新知导入
想一想:
类知似识地,利用勾股定理,可以作出长为 2,3, 5 …的线段(图1).
1 1 234 5
课程讲授
1 勾股定理与数轴、坐标系
例 在数轴上做出表示 17 的点.
解:如图所示.作法: (1)在数轴上找出表示4的点A,则OA=4; (2)过A作直线l垂直于OA; (3)在直线l上取点B,使AB=1; (4)以原点O为圆心,以OB为半径作弧,弧与 数轴的交点C即为表示 17 的点.
练一练: 如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆 心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐 标介于( A ) A.-4和-3之间 B.3和4之间 C.-5和-4之间 D.4和5之间
《勾股定理》PPT课件
AC 2 6
1.在△ABC中,∠C=90°.
练 习
(1)若a=6,c=10,则b=
;
(2)若a=12,b=9,则c= (3)若c=25,b=15,则a=
; ;
2.等边三角形边长为10,求它的高及面积。 C 3.如图,在△ABC中,C=90°,
CD为斜边AB上的高,你可以得 b 出哪些与边有关的结论? A m h
c2
;
a c
c a
b a
∵ c2= 4•ab/2 +(b-a)2 =2ab+b2-2ab+a2 =a2+b2 ∴a2+b2=c2
a
b
b c
b c
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2
a b
a
b
c
c
a
b
c
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2
a
B D n
如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD
证明:过A作AE⊥BC于E ∵AB=AC,∴BE=CE D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) B E C
a b
c
勾股定理的证明
证明方法3:赵爽弦图,动手拼图
勾股定理的证明
证明方法4:美国总统加菲尔德的证明方法
a b
《勾股定理》PPT
综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用勾股定理
a
c
确定斜边 c2= a2+b2
?
b
a
b
确定斜边 b2= a2+c2
?
c
b
a
确定斜边 a2= b2+c2
?
c
结束语
当你尽了自己的最大努 力时,失败也是伟大的 ,所以不要放弃,坚持
就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
(3)勾股定理有什么用途?
方法总结:
用直角三角形三边表示三个正方形面积——观察归 纳发现勾股定理——任意画一个直角三角形,再验 证自己的发现。
家庭作业:
补充: 1、求下列直角三角形中未知边的长:
A
B
2、如图所示,一棵大树在一次强烈台风中于离地面10米处折断倒下, 树顶落在离树根24米处.大树在折断之前高多少?
世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几 里德(Euclid,是公元前三百年左右的人)在编著《几何原本》 时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个 定理称为“毕达哥拉斯定理”,以后就流传开了。(为了庆祝这一定理
的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百 牛定理”.)
在这数百种证明方法中,有的十分精彩,有的十分简洁,
有的因为证明者身份的特殊而非常著名。
现在在网络上看到较多的是16种,包括前面的6种,还有:
欧几里得证明、
利用相似三角形性质证明、
杨作玫证明、
李锐证明、
利用切割线定理证明、
利用多列米定理证明、
作直角三角形的内切圆证明、利用反证法证明、
辛卜松证明、
陈杰证明。
1.1 (2)
——数形结Leabharlann 之美你想知道吗?国庆节前,为了更好观看阅兵式,
小明妈妈买了一部42英寸(106厘米)
的电视机.小明量了电视机的屏幕后,发
现屏幕只有85厘米长和64厘米宽,他
觉得一定是售货员搞错了。你同意他的 想法吗?你能解释这是为什么吗?~
探索勾股定理
探索勾股定理
相传两千五百年前,一次毕达哥拉斯去 朋友家作客,发现朋友家用砖铺成的地面反 映直角三角形三边的某种数量关系,同学们, 我们也来观察下面的图案,看看你能发现什 么?
数学故事链接
数学家毕达哥拉斯的发现:
探索勾股定理
A
B
C
A、B、C的面积有什么关系?
SA+SB=SC
探索勾股定理
C A
B
C A
B
图1-1 图1-2
A的面积 (单位面积)
9
16
B的面积 (单位面积)
16
36
C的面积 (单位面积)
25 52
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系?
A
B
再见
走进数学史
勾股定理的由来
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉 斯定理”。为什么一个定理有这么多名称呢?商高是公元前十一世 纪的中国人。当时中国的朝代是西周,是奴隶社会时期。
在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录 着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四, 经隅五。“什么是”勾、股“呢?在中国古代,人们把弯曲成直角
的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段话
的意思就是说:当直角三角形的两条直角边分别为3(短边)和4 (长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事
实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的
话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五
证法一 证法二 证法三
走进数学史
勾股定理的证明方法
(邹元治证明) (赵爽证明)
赵爽:我国古代数学家
证法四 证法五 证法六
走进数学史
勾股定理的证明方法
(加菲尔德证明) 加菲尔德:第二十任总统
(梅文鼎证明) 梅文鼎:清代天文、数学家
(项明达证明) 项明达:清代数学家
勾股定理的证明
走进数学史
勾股定理是几何学中的明珠,所以它充满魅力,千百年
来,人们对它的证明趋之若骛,其中有著名的数学家,也有
业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,
甚至有国家总统。也许是因为勾股定理既重要又简单,更容
易吸引人,才使它成百次地反复被人炒作,反复被人论证。
有资料表明,关于勾股定理的证明方法已有500余种,仅我
国清末数学家华蘅芳就提供了二十多种精彩的证法。
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
总统巧证勾股定理
C
D
c
a
cb
Ab
Ea B
美国第二十任 总统伽菲尔德
返回
选一选
应用勾股定理
已知△ABC的三边分别是a,b,c, 若∠B=90度,则有关系式( )
A.a2+b2=c2
A
B.a2+c2=b2
C.a2-b2=c2 D.b2+c2=a2
B
C
讲一讲
应用勾股定理
求图中直角三角形的未知边的长度。
4米
3米
勾股定理,想得再多一点
回头再看看
国庆节前,为了更好观看阅兵式,小明
妈妈买了一部42英寸(106厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有85 厘米长和64厘米宽,他觉得一定是售货员
搞错了。你同意他的想法吗?你能解释这是 为什么吗?~
内容总结:
(1)运用勾股定理的条件是什么?
(2)勾股定理揭示了直角三角形的什么关系?
探索勾股定理
C Aa c
b B
SA+SB=SC
SA=a2 SB=b2 SC=c2
a2+b2=c2
探索勾股定理
如果直角三角形的两条直角边 长分别为a,b,斜边长为c,那么 c2=a2+b2.
勾a
c弦
b股
探索勾股定理
试一试?
请利用此图象,证明勾股定理:
a2+b2=c2
cb s1 s2 a
走进数学史
A
A
8
15
17
B6 C B
C
勾股定理,想得再多一点
做一做
在Rt△ABC中,∠C=900 .
(1)若a=5,b=12, 则c =___________. (2)若c=4,b= 2 ,则a =______.
勾股定理,想得再多一点
如图,受台风莫拉克影响,一棵树在离地面4 米处断裂,树的顶部落在离树跟底部3米处,这棵 树折断前有多高?