第十章土壤元素的生物地球化学循环PPT课件

合集下载

土壤磷循环

土壤磷循环
我国土壤全磷含量一般为 0.02-0.11%,从南向北逐 渐增加。
Available P content (Bray II) Pink <30 mg/kg (moderately deficient)
Red: <20 mg/kg (deficient) Dark red: <10 mg/kg (severely deficient)
(二)陆地生态系统中磷的循环
磷循环主要在土壤、植物和微生物中进行
肥料磷
沉淀
沉淀态磷 溶解
固定
土壤 溶液磷
吸解 附吸
吸附态磷
生物固定 矿化
生物结 合态磷
有效态 有机磷
无效态 有机磷
二、土壤有机磷的矿化和无机磷的生物固定
1.土壤有机磷的矿化
土壤中的有机磷除一部分被作物直接吸收利用外,大
部分需经微生物的作用进行矿化转化为无机磷后才能被作
我国土壤有效磷素含量分布图
(二)土壤磷的形态
土壤磷素可分为两大类:有机态磷和无机态磷。 1.有机磷
土壤有机态磷含量的变幅很大,可占表土全磷的 20~80%左右。
与土壤有机质含量密切相关
主要是植素(肌醇六磷酸)或植酸盐,核蛋白或 核酸以及磷脂类化合物。
(二)土壤磷的形态
土壤磷素可分为两大类:有机态磷和无机态磷。 1.有机磷
土壤磷解吸的机Βιβλιοθήκη 主要有:1)化学平衡反应土壤溶液中磷浓度因植物的吸收而降低,从而失去了原有的 平衡,使反应向解吸方向进行;
2)竞争吸附
所有能进行阴离子吸附的阴离子,在理论上都可与磷酸根有 竞争吸附作用,从而导致吸附态磷的不同程度的解吸。
竞争吸附的强弱主要取决于磷与竞争阴离子的相对浓度。

土壤学第十章土壤元素的生物地球化学循环ppt课件

土壤学第十章土壤元素的生物地球化学循环ppt课件

学习目标
掌握有关“土壤碳的生物地球化学循环”、 “土壤氮的生物地球化学循环”、“土壤磷的 生物地球化学循环”、“土壤硫的生物地球化 学循环”、“土壤钾的生物地球化学循环”、 “土壤微量元素的生物地球化学循环”的重要 概念和基本原理;了解土壤磷的控制机制和影 响土壤钾固定的因素。
3
烧 伤 病 人 的 治疗通 常是取 烧伤病 人的健 康皮肤 进行自 体移植 ,但对 于大面 积烧伤 病人来 讲,健 康皮肤 很有限 ,请同 学们想 一想如 何来治 疗该病 人
§10 土壤元素的生物地球化学循环
§10-1 土壤碳的生物地球化学循环
一、土壤碳循环
基本平衡
*
5
烧 伤 病 人 的 治疗通 常是取 烧伤病 人的健 康皮肤 进行自 体移植 ,但对 于大面 积烧伤 病人来 讲,健 康皮肤 很有限 ,请同 学们想 一想如 何来治 疗该病 人
§10 土壤元素的生物地球化学循环
全国多目标区域地球化学调查结果:我国平均 土壤有机碳储量为每平方公里15339吨,土壤平均 碳密度为48.8吨/公顷,低于美国的50.3吨/公顷 、欧盟的70.8吨/公顷。
国土资源部地质调查局教授级高级工程师奚小 环说,我国承诺到2020年,将在目前基础上碳强 度减排40%—45%。由于森林面积有限,耕地需承 担更大的减排任务。
烧 伤 病 人 的 治疗通 常是取 烧伤病 人的健 康皮肤 进行自 体移植 ,但对 于大面 积烧伤 病人来 讲,健 康皮肤 很有限 ,请同 学们想 一想如 何来治 疗该病 人
§10 土壤元素的生物地球化学循环
土壤元素的生物地球化学循环是 “土壤圈”物质循环的重要组成部分。
土壤中化学元素以能量传递为驱动力, 沿着土壤-生物-大气进行物质循环传递的过 程(主要过程界定为:土壤-植物-大气)称为

土壤磷循环

土壤磷循环

土壤溶液中磷浓度因植物的吸收而降低,从而失去了原有 的平衡,使反应向解吸方向进行;
2)竞争吸附
所有能进行阴离子吸附的阴离子,在理论上都可与磷酸根 有竞争吸附作用,从而导致吸附态磷的不同程度的解吸。
竞争吸附的强弱主要取决于磷与竞争阴离子的相对浓度。
四、土壤磷的沉淀和溶解
• 土壤中磷化合物的沉淀作用也是磷在土壤中被固定
对磷的调控可通过提高土壤磷有效性来实现。
(二)提高土壤磷有效性的途径
1、土壤酸碱度 pH6.5-6.8之间为宜,可 减少磷的固定作用,提高土壤磷的有效性。
2、土壤有机质 ① 有机阴离子与磷酸根竞争固相表面专性吸附点位,从而减 少了土壤对磷的吸附。
② 有机物分解产生的有机酸和其它螯合剂的作用,将部分固 定态磷释放为可溶态。 ③ 腐殖质可在铁、铝氧化物等胶体表面形成保护膜,减少对 磷酸根的吸附。 ④ 有机质分解产生的CO2,溶于水形成H2CO3,增加钙、镁、 磷酸盐的溶解度。
• 土壤中的磷可随地表径流流失,也可被淋 溶流失。 • 磷流失造成水体污染。
对磷的调控可通过提高土壤磷有效性来实现。
1、土壤酸碱度 pH6.5-6.8之间为宜,可减少磷的固定作用,提高土壤磷的 有效性。 2、土壤有机质 ① 有机阴离子与磷酸根竞争固相表面专性吸附点位,从而减 少了土壤对磷的吸附。 ② 有机物分解产生的有机酸和其它螯合剂的作用,将部分固 定态磷释放为可溶态。
合理施用磷肥是减少磷对环境影响的主要措施。科学制定 施肥用量;重点施在旱作上;等。
3、土壤淹水
① 酸生土壤pH上升促使铁、铝形成氢氧化物沉淀,减少了 它们对磷的固定;碱性土壤pH有所下降,能增加磷酸钙的溶解 度;反之,若淹水土壤落干,则导致土壤磷的有效性下降。 ② 土壤氧化还原电位(Eh)下降,高价铁还原成低价铁,磷 酸低铁的溶解度较高,增加了磷的有效度。

土壤养分循环

土壤养分循环

第十章土壤养分循环土壤养分循环:是指在生物参与下,营养元素从土壤到生物,再从生物回到土壤的循环过程,是一个复杂的生物地球化学过程。

土壤元素通常可以反复的再循环和利用,典型的再循环过程包括:(1)生物从土壤中吸收养分(2)生物的残体归还土壤(3)在土壤微生物的作用下,分解生物残体,释放养分(4)养分再次被生物吸收一、土壤氮素循环(一)氮素循环由两个重叠循环构成,一是大气层的气态氮循环,几乎所有的气态氮对大多数植物无效,只有若干种微生物或少数与微生物共生的植物可以固定大气中的有效氮。

另一个是土壤氮的循环,即在土壤植物系统中,氮在动植物体、微生物体、土壤有机质、土壤矿物质各分室中的转化和迁移,包括有机氮的矿化和无机氮的生物固持作用、粘土对氨的固定和释放作用、硝化和反硝化作用、腐殖质形成和腐殖质稳定化作用。

(二)土壤的氮的获得(来源)1土壤氮的获得(来源)(1)土壤母质中的矿质元素(2)大气中分子氮的生物固定大气和土壤空气中的分子态氮不能被植物直接吸收、同化,必须经生物固定为有机氮化合物,直接或间接地进入土壤。

(3)雨水和灌溉水带入的氮灌溉水带入土壤的氮主要是硝态氮形态,其数量因地区、季节和降雨量而异。

大气层发生自然雷电现象,可使氮氧化成NO2及NO等氮氧化物。

(4)施用有机肥和化学肥料2土壤N存在形态土壤无机态氮主要是铵态氮和硝态氮,是植物能直接吸收利用的有效态氮。

有机态氮是土壤氮的主要存在形态,一般占土壤全量氮的95%以上,按其溶解度的大小及水解的难易分为水溶性有机氮、水解性有机氮和非水解性有机氮三类。

土壤溶液中的铵、交换性铵和硝态氮因能直接被植物根系所吸收,常总被称为速效态氮。

3土壤中氮的转化(1)有机态氮的矿化过程含氮的有机化合物,在多种微生物的作用下降解为简单的铵态氮的过程矿化过程:第一阶段:把复杂的含氮化合物的含氮化合物,如蛋白质、核酸、氨基糖及其多聚体等,经过微生物酶的系列作用下,逐级分解而形成简单的氨基化合物,称之为氨基化阶段。

土壤生物化学过程与养分循环课件PPT

土壤生物化学过程与养分循环课件PPT
氨基糖等。 ---增强土壤的保肥性和缓冲性
影响土壤有机质分解和周转的因素 腐殖物质占10-30%。
占土壤有机质的20~30%
土壤生物化学过程和养分循环
土壤有机质组成---非腐殖质
糖类物质 saccharides
➢在一般有机体代谢过程中,糖类物质中所 含的结合能是最好的能量来源,在土壤代 谢过程中,糖类同样可作为能量物质,是土 壤微生物的主要能源物质。
酶氧化 ---提供植物需要的其他养分
多糖、多糖醛酸苷、有机酸等非腐殖物质占3-8%,
2
2
2
一般土壤微生物活动的最适宜温度大约为25-35 ℃,超出这个范围,微生物的活动就会受到明显的抑制。
土络壤合有 多腐机糖质可殖转将化土化和壤碳颗过素粒循结程环合为:稳定h的团u聚m体i。fication
各种有机化合物通过微生物的合成或在原植物组织中的聚合转 进入土壤的有机残体经过一年降解后,三分之二以上的有机物质以二氧化碳的形式损失掉,残留在土壤中的有机质不到三分之一,其
2.5g/ml)溶液中的沉降速度将其分作轻组和 重组土壤,它们中的有机质被分别称作轻 组有机质(Light Fraction Organic Matter, LFOM) 和重组有机质(High Fraction Organic Matter, HFOM)。
土壤生物化学过程和养分循环
SOM分组方法---密度分组法
土壤有碳机素质储土量壤(G,t 含C)有:机陆质地在2生0%物以圈下1的5土50壤G,t C称土为壤矿质圈土12壤0。0Gt C
土➢壤但碳耕密作度土壤中(kg,/表m层2):有单机质位的面含积量土通壤常在碳5素%以含下量。
有机质含量(%)
肥力水平
<0.5

(土壤学教学课件)第十章-土壤元素的生物地球化学循环

(土壤学教学课件)第十章-土壤元素的生物地球化学循环
态氮(-NH2)通过微生物和植物吸收同化, 成为生物有机质的组成部分,称为无机氮的 生物固定。
22
土壤中氮素的损失
1. 硝酸盐的淋失 2. 反硝化脱氮 嫌气条件下,硝酸盐在反硝化微生物作用下被
还原成为氮气和氮氧化物的过程。
NO3-
NO2-
NO
N2O
N2
23
3. 化学脱氮 ➢指土壤中的含氮化合物通过纯化学反应生成
(土壤学教学课件)第十章-土壤元素 的生物地球化学循环
土壤养分的基本概念
土壤养分-由土壤提供的植物生长发育所必须的营养 元素。
植物体中含有90余种元素,生长发育必需元素17种:
植物“必需”营养元素的标准:
如果缺少这种元素,植物就不能生长或不能完 成生命周期。
这种元素不能被其他元素所代替,它具有营养 的作用。
11
土壤氮素含量
• 我国土壤全氮含量差异较大,南北略高,中 部略低。
• 耕地土壤全氮含量一般在1 g kg-1以下。
12
土壤中氮素的形态
(一)无机态氮
✓无机态氮在土壤中含量很少,表土中一般只占全 氮含量的1~2%,表土层以下的土层含量更少。
✓土壤中无机态氮的形态主要为:铵态氮(NH4-N) (ammonium nitrogen)和硝态氮(NO3-N)(nitrate nitrogen)。
气态氮而损失的过程。
➢双分解作用。铵态氮和亚硝态氮生成亚硝酸 铵产生双分解作用脱氮。
➢亚硝酸分解。生成一氧化氮。 ➢氨挥发。与土壤的酸碱性密切相关。土壤碱
性越强,质地越轻,氨的挥发也越严重。
24
25
土壤氮素调节
➢土壤氮素的矿化作用和硝化作用是有机氮的 有效化过程。
➢反硝化作用和化学脱氮是有效氮的损失过程。

第十章土壤元素的生物地球化学循环(2011-4-10)

第十章土壤元素的生物地球化学循环(2011-4-10)

(三)土壤碳循环对环境的影响
泥炭土、沼泽土和水稻土中逸出的CH4是大气中CH4 的主要来源之一。大气中CH4和CO2量的增加会通过 温室效应而使气候变暖。
(四)当前土壤碳循环研究存在的问题
1、对土壤有机碳动态变化的了解较少; 2、区域尺度上的土壤循环研究; 3、土壤碳库估计中不确定问题; 4、控制土壤碳储量的主导因子。
引起CO2浓度升高的主要原因是土地利用的改变 和燃烧化石燃料。
控制气候交换的因素有温度、湿度、Eh和基质的 有效性。
(二)土壤碳循环与大气中CH4浓度
CH4的代谢比CO2复杂,土壤中既产生CH4, 又消耗 CH4。全球每年进入大气的CH4排放量约0.41PgC。湿地土 壤的CH4每年排放量约0.131PgC,占总排放量的32%,其中 自然湿地和水田分别为86TgC和45TgC(1Tg=0.001Pg)。
2NH4+ + 3O2
2NO2- + 2H2O + 4H+ + 660kJ
条件:亚硝化细菌(专性自养型微生物)

通气:良好 O2< 5% pH 5.5 - 10 (7-9), < 4.5 受抑制!
水分:50~60%
温度:35℃ < 2℃ STOP!
养分:Cu,Mo等促进硝化作用的进行。缺钙,不利。
2)硝化作用
1、在充分通气条件下(氨化作用)
RCHNH2COOH+O2
2、在嫌气条件下
RCH2COOH + NH3 + 能量
RCHNH2COOH+2H RCHNH2COOH+2H
RCH2COOH + NH3 + 能量 RCH2 + CO2 + NH3 + 能量

第十章 土壤养分循环详细版.ppt

第十章 土壤养分循环详细版.ppt

2.土壤氮素来源
(1)固氮作用;自生固氮 、共生固氮和联合固氮 固氮作用主要是靠微生物,固氮微生物分共生和自生两类。 (1)与豆科作物共生的固氮菌,其固氮能力很强。10~20斤 /亩 (2)自生固氮菌,有分为好气和嫌气两类。
好气性固氮能力强,在热带林地,可达10~30斤/亩 (2)降水; (3)灌水; (4)施肥;① 有机肥;② 无机化肥;它们是土壤氮肥的 主要来源。
3.粘粒矿物对铵的固定
NH4+离子半径为0.148nm,与2∶1型粘土矿物晶 层表面六角形孔穴半径0.140nm接近,陷入层间的 孔穴后,转化为固定态铵。
4.生物固定
矿化作用生成的铵态氮、硝态氮和某些简单的 氨基态氮,通过微生物和植物的吸收同化,成为生 物有机体组成部分,称为无机氮的生物固定。
5、硝酸盐的淋洗
3. 影响土壤氮素含量的因素
(1).植被与气候
一般: 草本植物 > 木本植物 草本植物:豆科> 非豆科 木本植物:阔叶林>针叶林
一般而言: 温度愈高,有机质分解愈快,OM含量低,N少; 湿度愈高,有机质分解愈慢,OM积累的多,N多。
(2).土壤有机质含量
土壤氮素和土壤有机质二者呈正相关关系。土壤氮素的含 量大致占土壤有 机质含量的5%左右。
化的红壤多得多。 (2)土壤质地的差别 土壤中细粒部分含磷量常比粗粒部分多。 土壤细粒部分所含的磷主要是次生的磷化合物。
(3)P在土壤剖面上的分布 从上到下,磷的含量逐渐降低。原因 ① 磷的迁移率很低; ② 植物根系的富积; ③ 有机胶体或无机胶体对磷酸根的吸附作用,
上 层较强。 (4) 耕作制度和施肥的影响;
四、土壤氮素的调控
(一) C/N比影响
(二)施肥的影响
施肥促使土壤有机质的矿化作用,

土壤元素的生物地球化学循环

土壤元素的生物地球化学循环

土壤元素的生物地球化学循环●土壤碳的生物地球化学循环●土壤碳循环●土壤碳库在生物地球化学循环中的周转●土壤碳循环对土壤氮、硫、磷循环的影响●土壤碳循环对环境的影响●当前土壤碳循环研究存在问题土壤碳循环仍然是陆地碳循环研究中最薄弱环节,尤其是对土壤有机碳动态变化的了解更少,对全球土壤碳库的估计差异也很大。

●主导土壤碳循环的重要作用和过程●土壤光合作用●土壤呼吸作用●土壤碳的固定●土壤碳酸盐转化与平衡过程●土壤碳循环与全球气候变暖●土壤碳循环与大气CO2浓度●土壤碳循环与大气中CH4浓度●CH4和CO2对大气碳库环境的综合影响●土壤氮的生物地球化学循环●氮素的作用及环境效应●土壤氮素的来源●生物固氮●高能固氮●工业固氮●❗❗❗土壤氮素的形态及转化●土壤有机氮的矿化作用●土壤无机氮的生物固定●❗铵态氮的硝化作用●硝态氮的反硝化作用●❗阳离子的固定●化学脱氮指土壤中的含氮化合物通过纯化学反应生成气态物质而损失的过程。

●土壤硫的生物地球化学循环●土壤硫的形态●土壤硫循环●土壤硫的内部循环●土壤硫的外部循环●主导土壤硫循环的主要作用和过程●大气硫沉降●❗❗❗土壤有机硫矿化●新加入土壤中的有机硫的矿化与C/S比值有关,C/S比值小于200时,将发生硫的净矿化●温度低于10℃时,矿化作用受到显著抑制;10~35 ℃时矿化量随温度的升高而增大●土壤水分含量为最大持水量的60%时,矿化作用最强,小于最大持水量的15%或大于最大持水量的80%时均显著减弱,将土壤风干可促进有机硫的矿化●土壤pH7.5左右时矿化量最大,在此pH以下,矿化量随pH的降低而减少,酸性土壤矿化量随石灰施用量的增多而增多●土壤无机硫的生物固定●硫的氧化和还原●同化还原:在酶的作用下,生物体将从土壤中吸收的无机硫同化还原成各种含硫化合物,组成蛋白质或释放出H2S●异化还原:微生物利用硫(作为电子受体)氧化有机质●排水不良的土壤中:硫与铁锰形成固态硫化物●硫的吸附与解析●❗❗❗土壤磷的生物地球化学循环●磷的作用及环境效应●土壤磷的含量及影响因素●土壤磷的种类及形态●有机磷●植素类(P-O-C)●核酸类(C-O-P-O-C)●磷脂类(C-P)●无机磷●水溶态磷●吸附态磷●矿物态磷●土壤磷的循环与转化●土壤有机磷矿化●有效磷的生物固定●❗❗❗土壤磷的吸附和解吸土壤磷的吸附是磷在土壤中被固定的主要机理之一●非专性吸附:在酸性条件下,土壤中的铁、铝氧化物,能从介质中获得质子而使本身带正电荷,并通过静电引力吸附磷酸根阴离子●专性吸附:磷酸根离子置换土壤胶体(粘土矿物或铁、铝氧化物)表面金属原子配位壳中的-OH或-OH2配位基,同时发生电子转移并共享电子对而被吸附在胶体表面上●土壤磷的解吸:则是磷从土壤固相向液相转移的过程,是土壤中磷释放作用的重要机理●❗❗❗土壤磷的沉淀●酸性条件下,磷与铁、铝、锰的共沉淀●碱性条件下,磷与钙的共沉淀●❗❗土壤磷的溶解●Fe-P、O-P的还原作用土壤嫌气条件下,供氧不足,还原过程强烈,高价铁还原为亚铁可减少难溶性磷酸盐的生成,同时也可促进O-P表面铁(铝)胶膜的溶解,使封闭于胶膜中的磷酸盐得以释放,进而增加磷素的有效性●Ca-P 的酸溶作用石灰性土壤中,难溶性的高钙磷如磷灰石与土壤中的各种有机酸、无机酸(如H2CO3、H2SO4、HNO3等)作用,逐渐脱钙转化为易溶性磷酸一钙的过程●土壤磷养分的调控●调节土壤酸碱度●合理使用磷肥(水旱轮作)●增施有机肥●水分管理●土壤钾的生物地球化学循环●土壤钾素的形态和有效性●矿物态钾——无效钾●非交换态钾——缓效钾指存在于层状硅酸盐矿物层间(伊利石、蛭石)和颗粒边缘上的一部分钾●交换性钾——速效钾被带负电荷的土壤胶体表面所吸附的钾离子,一般仅占土壤全钾含量的1-2%●水溶性钾——速效钾是以钾离子形态存在于土壤溶液中的钾,是土壤中活性最高的钾,也是植物钾素养分的直接来源●土壤钾的循环与转化●土壤中钾素的固定●黏粒矿物类型:2∶1型黏土矿物中,凡四面体电荷越多,固钾能力越强●土壤水分条件:土壤干湿交替可导致固定态钾增多●土壤酸碱度:酸性土壤的固钾能力小于碱性土壤●NH4+的影响:施用铵态氮肥可使固钾量显著减少(补偿效应)●土壤中钾素的释放●受矿物本身抗风化能力强弱的影响●主要是非交换性钾转变为交换性钾的过程●干燥、灼烧和冰冻对土壤中钾的释放有显著影响。

生物地球化学循环

生物地球化学循环

生物地球化学循环: 非生物界的各种化学元素在不同层次,不同大小的生态系统内,乃至整个生物圈内,沿着特定的途径从环境到生物体,从生物体再到环境,不断地进行着流动和循环,构成生物地球化学循环。

气相型循环:贮存库为大气圈和水圈,循环速度快,抗干扰性强,是完全循环沉积型循环:贮存库为岩石圈和土壤圈,循环速度慢,看干扰性弱,是不完全循环。

氮循环养分循环的特点:1养分循环有较高的养分输出率与输入率2养分循环的养分库存量较低,但流量大,周转快3养分循环的养分库养分保持能力较弱,流失率较高4养分供求同步机制较弱保持农田生态系统养分循环平衡的途径:1.种植制度中合理安排归还率较高的作物及其类型2.建立合理的轮作制度3.农、林、牧结合,发展沼气,解决农村生活能源问题,促使秸秆还田4.农产品就地加工,提高物质的归还率5.充分利用区域性富集养分生物放大作用:各种有毒物质一旦进入生态系统后,便立即参与物质循环,那些性质稳定、易被生物体吸收的有毒物质在沿着食物链各营养级传递时,在生物体内的残留浓度不断升高,愈是上面的营养级,生物体内有毒物质的残留浓度愈高的现象,称为生物放大作用,也叫做有毒物质在食物链上的浓集作用。

生态学中的景观:指一定空间范围内,由不同生态系统所组成的,具有重复性格局的异质性地域单元。

广义的景观是指出现在从微观到宏观不同尺度上的,具有异质性或缀块性的空间单元。

它强调空间异质性和尺度,并突出了生态学系统中多尺度和等级结构的特征。

景观功能:即景观结构于生态学过程的相互作用,或景观结构单元之间的相互作用景观要素:组成景观的单元斑块:与周围环境在外貌或性质上不同,但又具有一定内部均质性的非线性的空间区域斑块类型:干扰斑块,残余斑块,环境资源斑块,引入斑块廊道:景观中与相邻两边的环境不同的线状或带状结构。

基底:范围最广、连接度最高并且在景观功能上起着优势作用的景观要素。

物种数量与生境面积之间的关系可用下式表示:S=cAz岛屿生物地理学理论:dS/dt=I-E一般来说,灭绝率随面积的增加而减小,迁入率随隔离程度的增加而减小,岛屿面积越大,物种数越多,称为岛屿效应。

生物地球化学循环

生物地球化学循环

生物地球化学循环在地球上,生物、化学和地质过程紧密相连,构成了生物地球化学循环,其作用是将生物体内、社会经验和地球学过程互相联系起来。

生物地球化学循环指的是生物体与地球化学元素之间不断进行的物质循环和能量转换,包括碳循环、氮循环、水循环、磷循环等。

碳循环碳循环是生态系统和大气之间的碳交换,主要通过生物过程、生物地质过程和化学天体过程来实现。

在生物过程中,光合作用是最主要的碳循环过程。

光合作用将二氧化碳转化为有机质,同时释放氧气。

另一种生物过程是呼吸作用,将有机质氧化成二氧化碳和水,释放出能量。

在生物地质过程中,矿物化作用释放出的二氧化碳反应与碳酸盐形成石灰岩,将碳永久保存在地球的岩石层中。

化石燃料的燃烧是碳循环中最主要的人类活动,释放出大量二氧化碳进入大气,导致全球气候变暖。

氮循环氮循环是生物体内氮的循环和地球氮的循环,涉及生态系统、生物地质过程和大气化学过程。

在生物系统中,大部分生物细胞构成氨基酸,而氨基酸又是蛋白质的主要组成部分。

氨基酸通过蛋白质合成,向上一级转化为动植物的组织中的有机物。

细菌是氮循环过程中最重要的生物种类,不同类型的细菌可将氮逐渐转化为亚硝酸盐、硝酸盐等化合物。

氮通过细菌的氮化和反硝化作用在生物地质过程中循环。

氮的大气化学过程是氮气通过自然地闪电形成氮氧化物从而被固定在土壤中。

水循环水循环描述了水在地球上从一种状态到另一种状态的移动。

水循环是地球生物体对水的重要控制机制,包括蒸发、降雨、沉降和地下水循环等过程。

在水循环的过程中,水从海洋、湖泊、河流和植物等地方蒸发,成为大气中的水蒸气。

当温度变低时,这些水蒸气形成云,进一步导致降水。

雨水收集在地表水体(如河流、湖泊和海洋)或渗入地下水层。

在此期间,水还会吸收溶解在其中的营养物和污染物。

河流或地下水层将被污染的水排放到海洋中。

磷循环磷循环是生物体内磷的循环和地球磷的循环,这是一种非常慢的周期过程。

植物和动物消耗食物并利用其中的磷,将它们转化为能量和生物体组织。

土壤养分循环精ppt课件

土壤养分循环精ppt课件
指来自土壤的元素通常可以反复的再循环和利用,典型的再 循环过程。包括
①生物从土壤中吸收养分; ②生物的残体归还土壤; ③在土壤微生物的作用下,分解生物残体,释放养分; ④养分再次被生物吸收。
土壤系统中的养分循环过程
第二节 土壤氮素循环
1、氮素在自然界的分布
–岩石圈 1.636*1011Tg(1012g) –陆地土壤:有机质2.2*105 粘土矿物2*104 –大气圈 3.86*109 –水圈 2.3*107 –生物圈 2.8*105
反硝化作用的条件是
1)具反硝化能力的细菌,反硝化细菌现已知有33个属,多数 是异养型,也有几种是化学自养型,但在多数农田都不重要; 2)合适的电子供体,如有机C化合物、还原性硫化合物或分子 态氢;有效态碳的影响最大;
3)厌氧条件,与田间持水量大小密切相关;
嫌气状态 O2 < 5%或土壤溶液中 [O2] < 4 10-6M Eh < 344mv (pH = 5时)
③ 阳离子吸附机制(中性土壤)
(3)闭蓄机制
当磷在土壤中固定为粉红磷铁矿后,若土壤局 部的pH升高,可粉红磷铁矿的表面形成一层无定形的氧化 铁薄膜,把原有的磷包被起来,这种机制叫闭蓄机制。
Fe(OH)3 PKs = 37~38 粉红磷铁矿:PKs = 33~35
胶膜有铁铝质的、钙质的。
(4)生物固定
固氮作用主要是靠微生物,固氮微生物分共生和自生两类。 (1)与豆科作物共生的固氮菌,其固氮能力很强。10~20斤/亩 (2)自生固氮菌,有分为好气和嫌气两类。
好气性固氮能力强,在热带林地,可达10~30斤/亩
对于农地来说,土壤氮素的来源不止以上两 种途径,包括:
(1)固氮作用;自生固氮 、共生固氮和联合固氮

第10讲地球化学PPT课件

第10讲地球化学PPT课件

第五节:碳酸盐研究与全球变化
C3植物主要分布于干旱和半干旱地区,它在 植被群落中的比例是随夏季平均蒸发量增加而 增加,随湿度降低而减少,和随干季土壤湿度 的增加而减少。在干热的气候条件下,C4植物 在植物中比例较高,因此,第四纪时期黄土高 原古植被群落中C4植物的比例变化是不显著的, 黄土-古土壤碳酸盐中δ13C值的变化可能主要 是古植被密度变化所造成的。
变化,广州:广东科技出版社,1998 7.田均良、彭祥林等著,黄土高原土壤地球化学,北京:科学出
版社,1994 8.文启忠等著,中国黄土地球化学,北京:科学出版社,1989 9. 其它刊物文献请在我系网站查阅。
第六节:湖泊沉积研究与气候、环境演化
微量元素Mg和Sr的研究对确定湖泊的物理化学条件 更加有效,这两种元素可取代非海洋沉积环境中形成的 介形虫壳体方解石晶格中的钙原子,它们同Ca含量的 比值是确定温度、离子组成及盐度的上好指标。
在一个流域面积可以完全确定的湖泊,盐度的增加 与蒸发量增加有联系,盐度的改变往往会造成Sr/Ca 的改变,主要是由于湖水碳酸根离子达到了过饱和所致。
早更新世(午城黄土)
马兰黄土(L1)可

与氧同位素曲线中


2、3、4期相对应,


古土壤层S1可与氧

同位素第5期相对

比,成因复杂的古


土壤层S5则可与13、
期 14、15相联系。
第五节:碳酸盐研究与全球变化
洛川剖面上部的各种 黄土、古土壤类型及
其古环境参数
(古环境参数主要根据与现 代土壤对比得出)
思考简答题
1. 冰期效应造成的海水氧同位素组分(δ18O)变化的原因; 2. 谈谈利用地质历史时期有孔虫的δ18O建立大洋温度梯度剖
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光合作用是土壤碳循环中重要的碳同化途径。光 合作用产生的有机物质主要是碳水化合物,它是土壤 有机碳的最初来源。
光合作用强度直接受植物生物学特性和气候条件 的影响。
三、土壤呼吸作用
土壤呼吸作用是指土壤产生并向大气释 放二氧化碳的过程,主要由土壤微生物(异养 呼吸)和根系(自养呼吸)产生。除植被冠层光 合作用,土壤呼吸作用是陆地生态系统碳收 支中最大的通量。
研究土壤呼吸作用引起的土壤CO2通量变化必须特别注意 土壤表层附近的不稳定碳库的变化。人为扰动或全球变暖引起 的土壤CO2通量释放的增加主要源于具有最短更新时间的不稳 定碳库。如温带森林土壤的CO2年生产量中有83%是仅为15cm 的表层土壤提供的。
四、土壤碳的固定
土壤碳的固定:光合作用固定的碳大于呼吸 作用消耗的碳。
➢土壤碳库估计中不确定性还与土壤实测调查数据 不充分有关。
➢控制土壤碳储量的主导因子多,包括气候(温度 和水汽)、植物类型、母岩(黏土含量和土壤排水 层)等,而温度、水汽和颗粒大小在土壤剖面的不 同深度变化极大。
图 中国土壤有机碳密度(0-100cm)分布
二、土壤光合作用
光合作用(Photosynthesis)是绿色植物吸收 光能 ,在可见光的照射下,将二氧化碳和水转化为 有机物,并释放出氧气的过程。
木质素、树脂和某些芳香族化合 几个月到几年 物
纤维、脂肪
几天到几个月
氨基酸、简单糖类和低分子脂肪 几小时到几天 酸等
➢不同土壤层中有机碳的的平均停留期受土壤有机质的 性质和数量、腐殖质的特性以及环境条件等影响,一 般为100~3000年。
➢地质大循环的土壤碳周转时间可达几百万年甚至几亿 年,远远长于大气碳库和陆地植被碳库,可见土壤碳 库在生物地球化学循环中周转速度最慢。
第十章 土壤元素的生物 地球化学循环
土壤中化学元素以能 量为驱动力,沿土壤生物-大气进行物质循 环传递的过程称为土 壤元素的生物地球化 学循环。
第一节 土壤碳的生物地球化学循环
一个碳原子的旅程
据Garrels等(1975)计算: •在大气圈中停留4年; •在生物圈中停留11年; •在海洋上层水域停留385年; •在深海中停留10万年; •在地壳中停留3.42×108
五、土壤碳酸盐转化与平衡过程
土壤无机碳主要以碳酸盐的形式存在,且 主要分布于半干旱地区的干旱土、始成土、淋 溶土和新成土中。全球土壤碳酸盐碳库含量为 780~930Pg。
关于无机碳在土壤碳循环中转化与平衡过 程的研究较少。已明确的土壤碳酸盐转化和平 衡过程主要涉及成土过程中碳酸盐参与下的淋 溶和淀积过程。
(三)土壤碳循环对环境的影响
➢泥炭土、沼泽土和水稻土中逸出的CH4是大 气中CH4的主要来源之一。 ➢泥炭地、热带雨林的开垦,显著增加土壤 中CO2的净逸出量,增加大气中CO2的浓度。 ➢大气中CH4和CO2量的增加会通过温室效应 使气候变暖。
(四)当前土壤碳循环研究存在的问题
➢土壤碳循环仍然是陆地碳循环研究中最薄弱的环 节,尤其是对土壤有机碳动态变化的了解更少,对 全球土壤碳库的估计差异也很大。
一、土壤碳循环
(一)土壤碳库在生物地球化学循环中的周转
大气 712×1012kg

吸 56×1012
作 用
kg/年
光 合 110×1012 作 kg/年 用
陆地生命体 830×1012kg
55×1012kg/年 矿化作用
4×1012kg/年 矿化作用
55×1012 kg/年
凋落物 60×1012kg
➢土壤在碳循环过程中充当“储存库(汇)”的功能, 土壤有机碳分解和积累速率的变化直接影响到全球的 碳平衡。
➢土壤碳库储存对减缓大气CO2浓度上升具有重要意义。
(二)土壤碳循环对土壤氮、硫、磷循环的影响
➢土壤碳循环是土壤氮、硫、磷循环的驱Байду номын сангаас 因子,只有在适宜于土壤有机碳积累的条件 下,才会有有机氮、硫、磷含量的增多。 ➢土壤有机碳的矿化伴随着有机氮和碳键硫 的矿化。


56×1012

kg/年


土壤 2500×1012kg
图10-1 土壤碳生物地球化学循环概图
土壤碳库在生物地球化学循环中的周转速度与土壤有 机质的平均停留期有着密切的关系。
生物学 稳定性
分解最慢组 分
分解较慢组 分
不溶性物质 组分
易分解组分
数量 最多
最少
组成
停留期
胡敏酸、蜡和某些稳定的环状结 几年到几千年 构化合物
➢土壤呼吸由3个生物学过程(植物根呼吸、 土壤微生物呼吸机土壤动物呼吸)和1个非生 物学过程(含碳物质的化学氧化作用)组成。
➢土壤呼吸作用释放的CO2中30~50%来自根 系的活动或自养呼吸作用,其余部分主要来 源于土壤微生物对有机质和凋落物的分解作 用,即异氧呼吸作用。
土壤呼吸作用通 常通过直接测定 从土壤表面释放 的CO2量来确定。 测定方法有:静 态气室法、密闭 或敞开系统的动 态气室法、CO2 浓度梯度法和微 气象法。
六、土壤碳循环与全球气候变化
(一)土壤碳循环与大气CO2浓度
(二)土壤碳循环与大气CH4浓度
土壤固碳能力与土壤中稳定组分的含量密切相关, 只有那些能够在土壤中保存很长时间的有机质,才具 有固碳意义。
研究土壤有机质的稳定性在土壤固碳的相关研究 中非常重要。土壤有机质稳定性的研究包括:
①土壤有机质周转速率的测定; ②影响土壤有机质稳定性的因素; ③土壤微生物。
提高土壤固碳能力和潜力,要从碳库和碳流 两方面考虑: ➢从碳库方面看,关键在于提高土壤的最大 碳储量和碳累积速率; ➢从碳流方面看,关键在于增加碳库输入速 率,降低输出速率,延长碳在土壤中的保留 时间。
(黄看看等,2008)
影响土壤呼吸作用的直接因素是土壤环境,包括土壤质 地、酸度、有机碳和水热条件等。气候条件决定植被类型的 分布和生长,并影响土壤的水热条件;人类活动影响植物的 生长和土壤环境,进而影响土壤呼吸。
根据土壤呼吸速率的快慢,可将土壤有机碳区分为两个具 有不同更新时间的碳库: 其一,靠近土壤表层由新鲜残留物组成的“小”碳库。更新速 度快,流通量大; 其二,贯穿整个土壤深层剖面的由难分解的腐殖质复合物组成 的“大”碳库。其更新十分缓慢。
相关文档
最新文档