动点产生的等腰三角形问题

合集下载

《动点问题--“两定一动”中等腰三角形的存在性问题》课件

《动点问题--“两定一动”中等腰三角形的存在性问题》课件
结果在探究二的基础上多了在x轴负半轴上的
那个点.
如图:
y
B
A
C1
O
C2
C4 x
C3 C5
直角坐标系·动点:
2.如图,点A坐标为(1,1), 点B坐标为(4,3),
在坐标轴上取点C,使得△ABC是等腰三角形.
分析:本题与探究二、变式训练一例相比,扩大了点C的
满足范围,坐标轴上取满足条件的点分两类情况讨论,


②当C在y轴上时,设C(0,n),由A(1,1),B(4,3)
解得n=
,故C(0, )


∴AB2=9+4=13,AC2=n2-2n+2, BC2=n2-6n+25
综上所述,存在8个符合条件的点,即
∵△ABC是等腰三角形,故分三种情况讨论.

C(
±


,
)或(2,0)或(6,0)或(
,0)
③当AC=BC时,m2-4m+4=m2+16,解得,m=-3. ∴C(-3,0).
综上所述,C1(2-
,0),C2(2+
O
,0),C3(-2,0),C4(-3,0)符合条件.
A
x
二次函数·动点:
3.如图,己知二次函数y=-x2+2x+3的图象与x轴的一个交点为A(-1,0),
与y轴交于点B.试问∶在抛物线的对称轴上是否存在点P.使得△PAB是
不变,解答问题.
23
综上所述,(2,0)或(6,0)或 ( 6 ,0)
或(1+ 2 3 ,0)
.
方法总结
几何法:
(1)“两圆-线”作出点;
(2)利用勾股、相似、三角函数等求线段长,由线段长得点

因动点产生的等腰三角形问题

因动点产生的等腰三角形问题

因动点产生的等腰三角形问题1.如图5,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图52.如图6,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图6因动点产生的梯形问题1.如图:二次函数y =﹣x 2 + ax + b 的图象与x 轴交于A (-21,0),B (2,0)两点,且与y 轴交于点C . (1)求该抛物线的解析式,并判断△ABC 的形状;(2)在x 轴上方的抛物线上有一点D ,且A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标;(3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由.2.已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图 2A CB 第1题图。

动点问题(等腰三角形问题)

动点问题(等腰三角形问题)

中考数学专题复习研动点问题探究——等腰三角形分类讨论问题图形中的点、线的运动,构成了数学中的一个新问题——动态问题。

它通常分为三种类型:动点问题、动线问题、动形问题。

题型特点:此类问题常集代数、几何知识于一体,数形结合,有很强的综合性。

是河南中招的必考题,且每年都为压轴题,以函数与三角形和四边形结合的题目为主。

如08年为一次函数与三角形相结合,09年为二次函数与等腰三角形相结合,10年为二次函数与平行四边形相结合。

学情分析:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。

2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。

3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。

教学方法:1、教师在教学时引导学生把动态问题变为静态问题来解,抓住变化中的“不变量” 。

并从特殊位置点着手确定自变量取值范围, 对基本图形进行充分的分析,画出符合条件的各种草图分散难点、降低难度,将复杂问题简单化。

2、专题化,少而精。

如动点问题有等腰三角形、直角三角形、三角形相似、 四边形存在性等问题,这些都需分类讨论,分小专题复习效果更好。

本节课重点来探究动态几何中的第一类型:动点问题——等腰三角形分类讨论问题(一)自主解决(设计意图:为重点研讨作下铺垫)1、在平面直角坐标系中,已知点P (-2,-1).点T (t ,0)是x 轴上的一个动点。

当t 取何值时,△TOP 是等腰三角形?情况一:OP=OT 情况二:PO=PT T3(-4,0)情况三:TO=TP设计意图:引导学生总结以已知线段为边作等腰三角形时,通常要分三种情况讨论:以已知线段为底或为腰。

且以已知线段为腰时,以该腰不同顶点为顶角顶点有两种情况。

2、如图:已知平行四边形ABCD 中,AB=7,BC=4,∠A=30°)0,5();0,5(21T T -)0,45(4-T(1)点P 从点A 沿AB 边向点B 运动,速度为1cm/s.若设运动时间为t(s),连接PC,当t 为何值时,△PBC 为等腰三角形?若△PBC 为等腰三角形则PB=BC∴t=3(二)师生互动,探究新知如图:已知平行四边形ABCD 中,AB=7,BC=4,∠A=30°(2)若点P 从点A 沿 射线AB 运动,速度仍是1cm/s.当t 为何值时,△PBC 为等腰三角形?(小组合作交流讨论,根据分类的标准易得到下面四种情况)三、∴t=3或11或7+34或 334时 △PBC 为等腰三角形 设计意图:总结探究动点关键“化动为静,分类讨论,画出符合条件的各种草图”,注意一定要分开画.(三) 动脑创新,再探新知:(两个动点问题 ) 如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.(小组合作交流讨论)分析:(1)如图① ,求出BC=10A D CB M N(2)由 MNC GDC △∽△求出5017t = 解决动点问题的好助手:数形结合定相似,比例线段构方程(3)当M 、N 运动到t秒时,若⊿MNC 为等腰三角形,须分三种情况讨论:①当NC MC =时,即102t t =-∴103t = ②当MN N C =时,过N 作NE MC ⊥于E 由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC t c NC t-== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ③当MN MC =时,过M 作MF CN ⊥于F 点.1122FC NC t == 132cos 1025t FC C MC t ===-解得6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 总结:直角三角形能用相似解决的问题都能用三角函数法,且用三角函数法针对性更强,更省时间。

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

动点引起的等腰直角三角形存在性问题△ABP 为等腰直角三角形,黑色部分为P 点位置.【一题多解·典例剖析】例题1.(2021·湖南衡阳市中考)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)、(-2,-2);(2)①0<c<4;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或312⎛⎫⎪⎪⎝⎭或31,2⎛⎫⎪⎝⎭.【解析】解:(1)联立4yxy x⎧=⎪⎨⎪=⎩,解得:22xy=⎧⎨=⎩或22xy=-⎧⎨=-⎩即:函数4yx=上的雁点坐标为(2,2)、(-2,-2).(2)①联立25y xy ax x c=⎧⎨=++⎩得ax2+4x+c=0∵这样的雁点E只有一个,即该一元二次方程有两个相等的实根,∴△=16-4ac=0,即ac=4∵a>1∴a=4c>1,即4c-1>0,4cc->0,解得:0<c<4.②由①知,E点坐标为:x=422a a-=-,即E22,a a⎛⎫--⎪⎝⎭在y=ax2+5x+4a中,当y=0时,得:x=-4a,x=-1a即M点坐标为(-4a,0),N点坐标为(-1a,0)过E点向x轴作垂线,垂足为H点,EH=2a,MH=242()a a a---=∴EH=MH即△EMH为等腰直角三角形,∠EMN=45°.(3)存在,理由如下:①如图所示:过P作直线l垂直于x轴于点k,过C作CH⊥PK于点H方法一设C(m,m),P(x,y)∵△CPB为等腰三角形,∴PC=PB,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x -=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩即P (32,154).方法二设P (m ,-m 2+2m+3),同理,CH =PK ,HP =KB ,则C (m -m 2+2m+3,-m 2+2m+3+3-m )∵C 为雁点∴m -m 2+2m+3=-m 2+2m+3+3-m ,解得:m=32,即P (32,154).②如图所示,同理可得:△KCP ≌△JPB∴KP =JB ,KC =JP方法一设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩则P 23(,)22或23(,)22方法二设P (m ,-m 2+2m+3),则C (m -(-m 2+2m+3),-m 2+2m+3-(3-m ))∴m -(-m 2+2m+3)=-m 2+2m+3-(3-m ),解得:③如图所示,此时P 与第②种情况重合综上所述,符合题意P 的坐标为(32,154)或3()22,或23()22,.【一题多解·对标练习】练习1.(2021·湖南省怀化市中考)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =.(1)求抛物线的解析式;(2)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,13313322Q⎫++⎪⎪⎝⎭或34141322Q⎛⎫⎪⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0),B(4,0),C(0,8),设二次函数的解析式为y=a(x+2)(x-4),将(0,8)代入得:a=-1即抛物线的解析式为:y=-x2+2x+8;(2)存在以点Q为直角顶点的等腰直角△CQR,理由如下:①当点Q在第二象限时,如图所示过点Q作QL⊥x轴于点L,过点C作CK⊥QL,交其延长线于点K,∴∠CKQ=∠QLR=∠COL=90°,∴四边形COLK是矩形,∴CK=OL,∵CQR为等腰直角三角形,∴CQ=QR,∠CQR=90°,∴∠KCQ=∠LQR∴△KCQ ≌△LQR∴RL=QK ,QL=CK ,设R (m ,0),Q (x ,y )则m -x=8-y-x=y即-x=-x 2+2x+8,解得:x=32-或x=32+(舍)则Q (32-,32)②当点Q 在第一象限时,如图所示同理可得:x=-x 2+2x+8,解得:x=12或x=12-(舍),∴Q ⎫⎪⎝⎭.综上所述,满足题意的Q 点坐标为1122⎛⎫ ⎪⎝⎭或3322⎛⎫- ⎪⎝⎭.【多题一解·典例剖析】例题2.(2021·四川省广安市中考)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)【解析】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0),则09301b c b c =-++⎧⎨=--+⎩,解得:23b c =⎧⎨=⎩;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∴当t =2时,四边形BCPQ 的面积最小,最小值为4.(3)如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP ,∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∴4-t =-(3-2t )2+2(3-2t )+3,解得:t,∴M.【多题一解·对标练习】练习2.(2021·山东枣庄中考)如图,在平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线213y x bx c =++经过坐标原点和点A ,顶点为点M .(1)求抛物线的关系式及点M 的坐标;(2)将直线AB 向下平移,得到过点M 的直线y mx n =+,且与x 轴负半轴交于点C ,取点()2,0D ,连接DM ,求证:45ADM ACM ∠-∠=︒.【答案】(1)y=13x2-2x,M(3,-3);(2)见解析.【解析】解:(1)∵直线AB:y=-12x+3交坐标轴与A、B∴A(6,0),B(0,3)将(6,0),(0,0)代入y=13x2+bx+cx得:1260b cc++=⎧⎨=⎩,解得:2bc=-⎧⎨=⎩,∴抛物线的关系式为y=13x2-2x,顶点M的坐标为(3,-3);(2)由题意得:m=1 2-,将点(3,-3)代入y=12-x+n得:n=32-,则直线CM的解析式为y=12-x32-,如图,过点D作DH⊥CM于H,设直线DM的解析式为y=2x+k,将点(2,0)代入得:4+k=0,解得k=-4,则直线DH的解析式为:y=2x-4,联立132224y x y x ⎧=--⎪⎨⎪=-⎩,解得12x y =⎧⎨=-⎩,即H (1,-2),∴=,=即DH=MH ,又DH ⊥CM ,即三角形DHM 是等腰直角三角形,∠DMH=45°,∴∠ADM=∠ACM+45°即∠ADM -∠ACM=45°.练习3.(2021·湖北黄石中考)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF的面积.【答案】(1)y=-x 2+6x -3;(2)4.【解析】解:(1)由抛物线与y 轴相交于点(0,-3),得b=-3,∵抛物线的对称轴为x=3,即232b a--=,解得:a=-1∴抛物线的解析式为y=-x 2+6x -3.(2)过点E 作EM ⊥AB 于点M ,过点F 作FN ⊥AB 于N ,∵△DEF是等腰直角三角形∴DE=DF,∠FED=∠EFD=45°∵EF∥x轴∴∠EDM=45°∴△EMD为等腰直角三角形∴EM=DM设E(m,-m2+6m-3),则M(m,0),DM=3-m,EM=-m2+6m-3,∴3-m=-m2+6m-3解得:m=1或m=6当m=1时,E(1,2),符合题意,DM=EM=2,MN=4,△DEF的面积为4当m=6时,E(6,-3),舍去,综上所述:△DEF的面积为4.。

动点等腰三角形的分类讨论

动点等腰三角形的分类讨论

动点等腰三角形的分类讨论等腰三角形是指两边长度相等的三角形,动点等腰三角形则是指在等腰三角形中,其中一个顶点在动态变化的情况下,讨论不同情况下的动点等腰三角形的特点和分类。

一、动点在底边上的情况:当动点在底边上时,等腰三角形的另外两个顶点分别位于底边的两侧。

此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。

1. 动点在底边的中点上:当动点在底边的中点上时,等腰三角形的另外两个顶点将分别位于底边的两侧,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且底角为直角。

2. 动点在底边的延长线上:当动点在底边的延长线上时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且顶角为直角。

3. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且顶角为锐角。

二、动点在底边外的情况:当动点在底边外时,等腰三角形的另外两个顶点将分别位于底边的两侧。

此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。

1. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。

这种情况下,等腰三角形的两个等边边长不相等,且顶角为锐角。

2. 动点在底边的延长线上且与底边相交:当动点在底边的延长线上且与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。

这种情况下,等腰三角形的两个等边边长不相等,且顶角为钝角。

动点等腰三角形可以根据动点在底边上或底边外以及动点位置的具体情况进行分类。

不同情况下,等腰三角形的两个等边边长和顶角的大小都会有所不同。

通过对动点等腰三角形的分类讨论,可以更加全面地了解等腰三角形的特点和性质。

中考压轴专题,2.因动点产生的等腰三角形问题-教师

中考压轴专题,2.因动点产生的等腰三角形问题-教师

因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3 tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =.例2 如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题是典型的“牛喝水”问题,点P 在线段BC 上时△P AC 的周长最小. 2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO =,BO =CO ,得PH =BH =2. 图2 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的: 设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得6m =±. 此时点M 的坐标为(1,6)或(1,6-).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5例3 如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =. 所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4), 代入点B (2,23)--,232(6)a -=-⨯-.解得36a =-. 所以抛物线的解析式为23323(4)663y x x x x =--=-+.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±. 当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-. 综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)(2)663y x x x =--=--+,得抛物线的顶点为23(2,)3D .因此23tan 3DOA ∠=.所以∠DOA =30°,∠ODA =120°.例4 如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R AS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例5 如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式. 2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例 6 如图1,在等腰梯形ABCD 中,AD //BC ,E 是AB 的中点,过点E 作EF //BC 交CD 于点F ,AB =4,BC =6,∠B =60°.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过点P 作PM ⊥EF 交BC 于M ,过M 作MN //AB 交折线ADC 于N ,连结PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.图1 图2 图3思路点拨1.先解读这个题目的背景图,等腰梯形ABCD 的中位线EF =4,这是x 的变化范围.平行线间的距离处处相等,AD 与EF 、EF 与BC 间的距离相等.2.当点N 在线段AD 上时,△PMN 中PM 和MN 的长保持不变是显然的,求证PN 的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN ,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E 作EG ⊥BC 于G .在Rt △BEG 中,221==AB BE ,∠B =60°, 所以160cos =︒⋅=BE BG ,360sin =︒⋅=BE EG .所以点E 到BC 的距离为3.(2)因为AD //EF //BC ,E 是AB 的中点,所以F 是D C 的中点.因此EF 是梯形ABCD 的中位线,EF =4.①如图4,当点N 在线段AD 上时,△PMN 的形状不是否发生改变.过点N 作NH ⊥EF 于H ,设PH 与NM 交于点Q .在矩形EGMP 中,EP =GM =x ,PM =EG =3.在平行四边形BMQE 中,BM =EQ =1+x .所以BG =PQ =1.因为PM 与NH 平行且相等,所以PH 与NM 互相平分,PH =2PQ =2.在Rt △PNH 中,NH =3,PH =2,所以PN =7.在平行四边形ABMN 中,MN =AB =4.因此△PMN 的周长为3+7+4.图4 图5②当点N 在线段DC 上时,△CMN 恒为等边三角形.如图5,当PM =PN 时,△PMC 与△PNC 关于直线PC 对称,点P 在∠DCB 的平分线上.在Rt △PCM 中,PM =3,∠PCM =30°,所以MC =3.此时M 、P 分别为BC 、EF 的中点,x =2.如图6,当MP =MN 时,MP =MN =MC =3,x =GM =GC -MC =5-3.如图7,当NP =NM 时,∠NMP =∠NPM =30°,所以∠PNM =120°.又因为∠FNM =120°,所以P 与F 重合.此时x =4.综上所述,当x =2或4或5-3时,△PMN 为等腰三角形.图6 图7 图8 考点伸展第(2)②题求等腰三角形PMN 可以这样解:如图8,以B 为原点,直线BC 为x 轴建立坐标系,设点M 的坐标为(m ,0),那么点P 的坐标为(m ,3),MN =MC =6-m ,点N 的坐标为(26+m ,2)6(3m -). 由两点间的距离公式,得21922+-=m m PN .当PM =PN 时,92192=+-m m ,解得3=m 或6=m .此时2=x .当MP =MN 时,36=-m ,解得36-=m ,此时35-=x .当NP =NM 时,22)6(219m m m -=+-,解得5=m ,此时4=x .。

动点问题中的等腰三角形问题

动点问题中的等腰三角形问题

N M QP D C B A F E N M Q P D CB A 4.如图1,梯形ABCD 中,AD ∥BC ,5AB AD DC ===,11BC =.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ BC ⊥,交折线段BA AD -于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(0t >).如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ 沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.5.如图,矩形ABCD 中,AB=6,BC= 23,点O 是AB 的中点,点P 在AB 的延长线上,且BP=3。

一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧。

设运动的时间为t 秒(t ≥0)。

(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由。

动点问题中的等腰三角形问题1.公共汽车每隔x 分钟发车一次,小宏在大街上行走,发现从背后每隔6分钟开过来一辆公共汽车,而第26题图1 第26题图2每隔724分钟迎面开来一辆公共汽车。

如果公共汽车与小宏行进的速度都是均匀的,则x 等于 分钟。

2.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭。

2020年中考数学压轴解答题01 因动点产生的等腰三角形问题(学生版)

2020年中考数学压轴解答题01 因动点产生的等腰三角形问题(学生版)

备战2020中考数学之解密压轴解答题命题规律专题01 因动点产生的等腰三角形问题【类型综述】数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。

在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.【方法揭秘】我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么1cos2AC AB A=∠;③如图3,如果CA=CB,那么1cos2AB AC A=∠.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3【典例分析】【例1】抛物线229y x bx c =-++与x 轴交于1,05,0A B (-),()两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与,C D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x轴于点F .()1求抛物线的解析式;()2当PCF V 的面积为5时,求点P 的坐标;()3当△PCF 为等腰三角形时,请直接写出点P 的坐标.【例2】如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1【例3】如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1【例4】在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在33y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由. (3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【例5】如图1,在矩形ABCD 中,8AB =,10AD =,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G .(1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且DMN DAM ∠=∠,设AM x =,DN y =.①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使DMN V 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由. 【例6】如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒. (1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)图1【变式训练】1.矩形OABC 在平面直角坐标系中的位置如图所示,已知(23,2)B ,点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD PC ⊥,交x 轴于点D .下列结论:①23OA BC ==;②当点D 运动到OA 的中点处时,227PC PD +=;③在运动过程中,CDP ∠是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为23⎫⎪⎪⎝⎭.其中正确结论的个数是( )A .1个B .2个C .3个D .4个2.如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF V 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个 ②当0422x -<<时,P 点最多有9个 ③当P 点有8个时,x =22﹣2④当PEF V 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③3.如图,在矩形ABCD 中,3310AD AB ==,点P 是AD 的中点,点E 在BC 上,2CE BE =,点M 、N 在线段BD 上.若PMN ∆是等腰三角形且底角与DEC ∠相等,则MN =_____.4.如图,平面直角坐标系中,矩形ABOC 的边,BO CO 分别在x 轴,y 轴上,A 点的坐标为(8,6)-,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE ∆∽CBO ∆,当APC ∆是等腰三角形时,P 点坐标为_____.5.在平面直角坐标系xOy 中,已知点A (0,3),点B (5,0),有一动点P 在直线AB 上,△APO 是等腰三角形,则满足条件的点P 共有( )A ﹒2个B ﹒3个C ﹒4个D ﹒5个6.如图,点A 、B 、P 在⊙O 上,且∠APB=50°。

二次函数压轴题第四讲 因动点产生的等腰三角形问题

二次函数压轴题第四讲  因动点产生的等腰三角形问题

第四讲因动点产生的等腰三角形问题【知识要点】求等腰三角形的存在性方法:(1)几何法:两个圆一条线;(2)代数法:盲解【典型例题】例1.如图,y=ax2+bx+c的图像与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点N是抛物线对称轴上一动点,且△NAC是等腰三角形,求点N的坐标.例2.如图,抛物线)0(42≠++=a bx ax y 与x 轴交于点A (-2,0)和B (4,0)、与y 轴交于点C .(1)求抛物线的解析式;(2)T 是抛物线对称轴上的一点,且△ACT 是以AC 为底的等腰三角形,求点T 的坐标;(3)点M 、Q 分别从点A 、B 以每秒1个单位长度的速度沿x 轴同时出发相向而行.当点M 到达原点时,点Q 立刻掉头并以每秒23个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动.过点M 的直线l ⊥x 轴,交AC 或BC 于点P .求点M 的运动时间t (秒)与△APQ 的面积S 的函数关系式例3.在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标:B、C;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.设AE=x,当x为何值时,△OCE∽△OBC;(3)在(2)的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.例4.如图,已知二次函数c x ax y ++=32的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.。

中考数学因动点产生的等腰三角形问题详解

中考数学因动点产生的等腰三角形问题详解

中考数学因动点产生的等腰三角形问题详解近年来,中考数学中因动点产生的图象问题,因其能较好地考查学生的空间想象能力和实际操作能力而备受
命题者的青睐。

思路点拨
1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.
2.第(2)题的本质是先代入,再配方求二次函数的最值.
3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.
满分解答
第 1 页。

中考数学动点之等腰三角形问题

中考数学动点之等腰三角形问题

动点之等腰三角形问题【例3】(2019·湖南中考真题)如图一,在射线DE 的一侧以AD 为一条边作矩形ABCD ,AD =5CD =,点M 是线段AC 上一动点(不与点A 重合),连结BM ,过点M 作BM 的垂线交射线DE 于点N ,连接BN .(1)求CAD ∠的大小;(2)问题探究:动点M 在运动的过程中,①是否能使AMN ∆为等腰三角形,如果能,求出线段MC 的长度;如果不能,请说明理由.②MBN ∠的大小是否改变?若不改变,请求出MBN ∠的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M 运动到AC 的中点时,AM 与BN 的交点为F ,MN 的中点为H ,求线段FH 的长度.【答案】(1)30︒∠=CAD ;(2)①能,CM 的值为5或;②大小不变,30︒∠=MBN ;(3)=FH .【解析】(1)在Rt ADC ∆中,求出DAC ∠的正切值即可解决问题.(2)①分两种情形:当NA NM =时,当AN AM =时,分别求解即可.②30MBN ∠=.利用四点共圆解决问题即可.(3)首先证明ABM ∆是等边三角形,再证明BN 垂直平分线段AM ,解直角三角形即可解决问题.【详解】解:(1)如图一(1)中,∵四边形ABCD 是矩形,∴90ADC ∠=,∵DC tan AD 3∠===CAD , ∴30︒∠=CAD .(2)①如图一(1)中,当AN NM =时,∵90BAN BMN ︒∠=∠=,BN BN =,AN NM =,∴Rt Rt ()BNA BNM HL ∴∆≅∆,∴BA BM =,在Rt ABC ∆中,∵30ACB DAC ︒∠=∠=,5AB CD ==,∴210AC AB ==,∵60BAM ︒∠=,BA BM =, ∴ABM ∆是等边三角形,∴5AM AB ==,∴5CM AC AM =-=.如图一(2)中,当AN AM =时,易证15AMN ANM ︒∠=∠=,∵90BMN ︒∠=,∴75CMB ︒∠=,∵30MCB ︒∠=,∴180753075CBM ︒︒︒︒∠=--=, ∴CMB CBM ∠=∠,∴CM CB ==综上所述,满足条件的CM 的值为5或.②结论:30︒∠=MBN 大小不变.理由:如图一(1)中,∵180BAN BMN ︒∠+∠=,∴,,,A B M N 四点共圆,∴30MBN MAN ︒∠=∠=.如图一(2)中,∵90BMN BAN ∠=∠=,∴,,,A N B M 四点共圆,∴180MBN MAN ︒∠+∠=,∵180DAC MAN ︒∠+∠=,∴30MBN DAC ︒∠=∠=,综上所述,30︒∠=MBN .(3)如图二中,∵AM MC =,∴BM AM CM ==,∴2AC AB =,∴AB BM AM ==,∴ABM ∆是等边三角形,∴60BAM BMA ︒∠=∠=,∵90BAN BMN ︒∠=∠=,∴30NAM NMA ︒∠=∠=,∴NA NM =,∵BA BM =,∴BN 垂直平分线段AM , ∴52FM =,∴cos30FM NM ︒==, ∵90NFM ︒∠=,NH HM =,∴126FH MN ==.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.【变式3-1】如图①,已知正方形ABCD 边长为2,点P 是AD 边上的一个动点,点A 关于直线BP 的对称点是点Q ,连结PQ 、DQ 、CQ 、BQ .设AP=x.(1)当1x =时,求BP 长;(2)如图②,若PQ 的延长线交CD 边于E ,并且90CQD ∠=,求证:CEQ ∆为等腰三角形;(3)若点P 是射线AD 上的一个动点,则当CDQ ∆为等腰三角形时,求x 的值.【答案】(2)证明见解析;(3)△CDQ 为等腰三角形时x 的值为、+4.【解析】(1)利用勾股定理求出BP 的长即可;(2)根据对称性质及正方形的性质可得AB=BQ=BC ,∠A=∠BQP=∠BCE=90°,可得∠BQE=90°,由第一视角相等性质可得∠BCQ=∠BQC ,根据同角或等角的余角相等的性质可得∠EQC=∠ECQ ,可得EC=EQ ,可得结论;(3)若△CDQ 为等腰三角形,则边CD 边为该等腰三角形的一腰或者底边.又Q 点为A 点关于PB 的对称点,则AB=QB ,以点B 为圆心,以AB 的长为半径画弧,则Q 点只能在弧AB 上.若CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDQ 为等腰三角形(CD 为腰)的Q 点.若CD 为底边,则作CD 的垂直平分线,其与弧AC 的交点即为使得△CDQ 为等腰三角形(CD 为底)的Q 点.则如图所示共有三个Q 点,那么也共有3个P 点.作辅助线,利用直角三角形性质求之即可.【详解】(1)∵AP=x=1,AB=2,∴(2)∵四边形ABCD 是正方形,∴AB=BC,∠A=∠BCD=90°.∵Q点为A点关于BP的对称点,∴AB=QB,∠A=∠PQB=90°,∴QB=BC,∠BQE=∠BCE=90°,∴∠BQC=∠BCQ,∴∠EQC+∠BQC=∠ECQ+∠BCQ=90°,∴∠EQC =∠ECQ,∴EQ=EC,即△CEQ为等腰三角形.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于Q1,Q3.此时△CDQ1,△CDQ3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点Q2,此时△CDQ2以CD为底的等腰三角形.①讨论Q1,如图,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD 于E,交BC于F,∵△BCQ1为等边三角形,正方形ABCD边长为2,∴FC=1,在四边形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴∠EPQ1=30°,△PEQ1为含30°的直角三角形,∵EF是BC的垂直平分线,∴AE=12AD=1,∴②讨论Q2,如图,连接BQ2,AQ2,过点Q2作PG⊥BQ2,交AD于P,交CD于G,连接BP,过点Q2作EF⊥CD于E,交AB于F,∵EF垂直平分CD,∴EF垂直平分AB,∴AQ2=BQ2.∵AB=BQ2,∴△ABQ2为等边三角形.∴AF=12AE=1,在四边形ABQ2P中,∵∠BAD=∠BQ2P=90°,∠ABQ2=60°,∴∠APQ2=120°,∴∠EQ2G=∠DPG=180°-120°=60°,∴∴,∴,即PD=2-,∴x=AP=2-PD=.③对Q3,如图作辅助线,连接BQ1,CQ1,BQ3,CQ3,过点Q3作PQ3⊥BQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,记Q3与F 重合.∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=2,∴∴在四边形ABQ3P中∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴,∵AE=1,∴+4.综上所述:△CDQ 为等腰三角形时x 的值为、、【点睛】本题考查四边形的综合、正方形的性质、含30°角的直角三角形的性质,第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点Q 找全.另外求解各个P 点也是勾股定理的综合应用熟练掌握并灵活运所学知识是解题关键.【变式3-2】(2019·河南中考模拟)如图,抛物线y=ax2+bx+3交y 轴于点A ,交x 轴于点B(-3,0)和点C(1,0),顶点为点M .(1)求抛物线的解析式;(2)如图,点E 为x 轴上一动点,若△AME 的周长最小,请求出点E 的坐标;(3)点F 为直线AB 上一个动点,点P 为抛物线上一个动点,若△BFP 为等腰直角三角形,请直接写出点P 的坐标.【答案】(1)223y x x =--+ ;(2)E(-37,0);(3)点P 的坐标为(2,-5)或(1,0). 【解析】(1)设抛物线的解析式为:y=a(x+3)(x-1),然后将点A 的坐标代入函数解析式即可求得此抛物线的解析式;(2)作A关于x轴的对称点A′(0,-3),连接MA′交x轴于E,此时△AME的周长最小,求出直线MA'解析式即可求得E的坐标;(3)如图2,先求直线AB的解析式为:y=x+3,根据解析式表示点F的坐标为(m,m+3),分三种情况进行讨论:①当∠PBF=90°时,由F1P⊥x轴,得P(m,-m-3),把点P的坐标代入抛物线的解析式可得结论;②当∠BF3P=90°时,如图3,点P与C重合,③当∠BPF4=90°时,如图3,点P与C重合,从而得结论.【详解】(1)当x=0时,y=3,即A(0,3),设抛物线的解析式为:y=a(x+3)(x-1),把A(0,3)代入得:3=-3a,a=-1,∴y=-(x+3)(x-1)=-x2-2x+3,即抛物线的解析式为:y=-x2-2x+3;(2)y=-x2-2x+3=-(x+1)2+4,∴M(-1,4),如图1,作点A(0,3)关于x轴的对称点A'(0,-3),连接A'M交x轴于点E,则点E就是使得△AME的周长最小的点,设直线A′M 的解析式为:y=kx+b ,把A'(0,-3)和M(-1,4)代入得:43k b b ==-+⎧⎨-⎩,解得:73k b -⎧⎨-⎩==∴直线A'M 的解析式为:y=-7x-3,当y=0时,-7x-3=0, x=-37,∴点E(-37,0),(3)如图2,易得直线AB 的解析式为:y=x+3,设点F的坐标为(m,m+3),①当∠PBF=90°时,过点B作BP⊥AB,交抛物线于点P,此时以BP为直角边的等腰直角三角形有两个,即△BPF1和△BPF2,∵OA=OB=3,∴△AOB和△A'OB是等腰直角三角形,∴∠F1BC=∠BF1P=45°,∴F1P⊥x轴,∴P(m,-m-3),把点P的坐标代入抛物线的解析式y=-x2-2x+3中得:-m-3=-m2-2m+3,解得:m1=2,m2=-3(舍),∴P(2,-5);②当∠BF3P=90°时,如图3,∵∠F3BP=45°,且∠F3BO=45°,∴点P 与C 重合,故P(1,0),③当∠BPF4=90°时,如图3,∵∠F4BP=45°,且∠F4BO=45°,∴点P 与C 重合,故P(1,0),综上所述,点P 的坐标为(2,-5)或(1,0).【点睛】此题考查了待定系数法求函数的解析式,周长最短问题,等腰直角三角形的性质和判定等知识.此题综合性很强,解题的关键是注意数形结合和分类讨论思想的应用.【变式3-3】(2019·广西中考真题)已知抛物线2y mx =和直线y x b =-+都经过点()2,4M -,点O 为坐标原点,点P 为抛物线上的动点,直线y x b =-+与x 轴、y 轴分别交于AB 、两点. (1)求m b 、的值;(2)当PAM ∆是以AM 为底边的等腰三角形时,求点P 的坐标;(3)满足(2)的条件时,求sin BOP ∠的值.【答案】(1)1m =;2b =;(2)点P 的坐标为()1,1-或()2,4;(3)sin BOP ∠的值为2.【解析】(1)根据点M 的坐标,利用待定系数法可求出,m b 的值;(2)由(1)可得出抛物线及直线AB 的解析式,继而可求出点A 的坐标,设点P 的坐标为2(,)x x ,结合点,A M 的坐标可得出22,PA PM 的值,再利用等腰三角形的性质可得出关于x 的方程,解之即可得出结论;(3)过点P 作PN y ⊥轴,垂足为点N ,由点P 的坐标可得出,PN PO 的长,再利用正弦的定义即可求出sin BOP ∠的值.【详解】(1)将()2,4M -代入2y mx =,得:44m =, ∴1m =;将()2,4M -代入y x b =-+,得:42b =+,∴2b =;(2)由(1)得:抛物线的解析式为2y x ,直线AB 的解析式为2y x =-+, 当0y =时,20x -+= ,解得:2x =,∴点A 的坐标为()2,0,2OA =,设点P 的坐标为2(,)x x ,则()222242204()4PA x x x x x =-+-=+-+, ()222242()247420PM x x x x x =--+-=-++, ∵PAM ∆是以AM 为底边的等腰三角形,∴22PA PM =,即4242447420x x x x x x +-+=-++,整理,得:220x x --=,解得:121,2x x =-=,∴点P 的坐标为()1,1-或()2,4;(3)过点P 作PN y ⊥轴,垂足为点N ,如图所示,当点P 的坐标为()1,1-时,1PN =,PO ==,∴sin 2PN BOP PO ∠==;当点P 的坐标为()2,4时,2PN =,PO ==∴sin PN BOP PO ∠==,∴满足(2)的条件时,sin BOP ∠的值的值为.【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出,m b 的值;(2)利用勾股定理及等腰三角形的性质,找出关于x 的方程;(3)通过解直角三角形,求出sin BOP ∠的值.。

动点产生的等腰三角形问题

动点产生的等腰三角形问题

动点产生的等腰三角形问题类型1:一动点两定点如图,在平面中找点P,使得点P与已知点A.B构成等腰三角形分类讨论:第一种情况:以AB为腰,分别以AB为圆心,AB长为半径画圆,则在圆上的点(除去AB重合或共线的点)都能与AB构成等腰三角形;第二种情况:以AB为底,即为两圆的交点P1P2,P1P2是线段AB的垂直平分线总结:就是“两圆一线”模型解题技巧:步骤1:通过“两圆一线”确定动点位置;步骤2:分类讨论,建立方程模型求动点坐标注意:去除与直线AB共线的点的方法:求直线AB的解析式,再验证P点是否在直线AB 上,在则共线,不在,则不共线或用几何方法证明例题1:在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.5B.6C.7D.8例题2:如图,在平面直角坐标系中,抛物线2y x x =--x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,对称轴与x 轴交于点D,点E(4,n)在抛物线上.(1) 求直线AE 的解析式;(2) 点P 为直线CE 下方抛物线上的一点,连接PC,PE.当△PCE 的面积最大时,求P 点坐标.(3) 点G 是线段CE 下方的中点,将抛物线2y x =x 轴正方向平移得到新抛物线'y ,'y 经过点D, 'y 的顶点为点F.在新抛物线'y 的对称轴上,是否存在点Q,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.练习1:如图1,已知二次函数2y ax bx c =++(a,b,c 为常数,a ≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M 的纵坐标为83-.直线l 的解析式为y=x.(1) 求二次函数的解析式;(2) 直线l 沿x 轴向右平移,得到直线'l ,'l 与线段OA 相交于B,与x 轴下方的抛物线相交于点C,过点C 作CE ⊥x 轴于点E,把△BCE 沿直线'l 折叠,当点E 恰好落在抛物线上'E 点时,(图2),求直线'l 的解析式;(3) 在(2)的条件下, 'l 与y 轴交于点N,把△BON 绕点O 逆时针旋转135°得到△''B ON ,P为'l 上的动点,当△''PB N 为等腰三角形时,求符合条件的点P 的坐标.练习2:如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点A(-5,0)和点B(1,0). (1) 求抛物线的解析式及顶点D 的坐标;(2) 如图2,连接AD,BD,点M 在线段AB 上(不与A,B 重合),∠DMN=∠DBA,MN 交线段AD 于点N,是否存在这样点M,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.类型2:多个动点1.在平面内使构成等腰三角形的三个点中,动点个数≥2个;解决这类问题的方法:让三个点分别做顶角顶点,进行分类讨论;如图,在平面内点A、B、P为动点,使得△PAB是等腰三角形?分类:①以P为顶点,PA=PB;②以A为顶点,AP=AB③以B为顶点,BA=BP2.在具体的题目中有时不仅要找出符合题意的点,还要计算出点的坐标,计算点的坐标的方法可以参考以下几种方法:①全等;②相似;③勾股定理;④锐角三角函数;⑤面积法;⑥方程或者方程组.例题1:如图,△ABC是边长为8的等边三角形,现有两点M,N分别从点A,点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运动速度为每秒2个单位长度,当点M第一次到达B点时,M,N同时停止运动.(1)点M,N运动几秒后,可得到等边三角形AMN?(2)点M,N运动几秒后,M,N两点重合?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰△AMN?若存在,请求出此时M,N运动的时间.例题2:如图1,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++与y 轴交于点A(0,6),与x 轴交于点B(-2,0),C(6,0).(1) 直接写出抛物线的解析式及其对称轴;(2) 如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD ⊥AC 于点E,交x 轴于点D,过点P 作PG ∥AB 交AC 于点F,交x 轴于点G.设线段DG 的长为d,求d 与m 的函数关系式,并注明m 的取值范围;(3) 在(2)的条件下,若△PDG 的面积为4912. ①求点P 的坐标;②设M 为直线AP 上一动点,连接OM 交直线AC 与点S,则点M 在运动过程中,在抛物线上是否存在点R,使得△ARS 为等腰直角三角形?若存在,请直接写出点M 及其对应的点R 的坐标;若不存在,请说明理由.练习1:如图①,在平面直角坐标系中,已知A(-2,2),B(-2,0),C(0,2),D(2,0)四点,动点M 以B →C →D 运动(M 不与点B,点D 重合),设运动时间为t(秒).(1) 求经过A,C,D 三点的抛物线的解析式;(2) 点P 在(1)中的抛物线上,当M 为BC 的中点时,若△PAM ≌PBM,求点P 的坐标;(3) 当点M 在CD 上运动时,如图②,过点M 作MF ⊥x 轴,垂足为F,ME ⊥AB,垂足为E,设矩形MEBF 与△BCD 重叠部分的面积为S,求S 与t 的函数关系,并求出S 的最大值;(4) 点Q 为x 轴上一点,直线AQ 与直线BC 交于点H,与y 轴交于点K,是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.练习2:抛物线229y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,顶点为C,对称轴交x 轴于点D,点P 为抛物线对称轴CD 上的一动点(点P 不与C,D 重合),过点C 作直线PB 的垂线交PB 于点E,交x 轴于点F.(1) 求抛物线的解析式;(2) 当△PCF 的面积为5时,求点P 的坐标;(3) 当△PCF 为等腰三角形时,请直接写出点P 的坐标.课后练习:1.如图所示,二次函数2(1)2y k x =-+的图象与一次函数y=kx-k+2的图象交于A,B 两点,点B 在点A 的右侧,直线AB 分别与x,y 轴交于C,D 两点,其中k <0.(1)求A,B 两点的横坐标;(2)若△OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图象的对称轴与x 轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.2.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点A(-4,0),B(2,0),交y 轴于点C(0,6),在y 轴上有一个点E(0,-2),连接AE.(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求△ADE 面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在,请说明理由.3.抛物线263y x x =-+-与y 轴相交于点C(0,-3),且抛物线的对称轴为x=3,D 为对称轴与x 轴的交点,在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E,F 两点,若△DEF 是等腰三角形,求△DEF 的面积.4.如图,抛物线2y ax bx c =++交x 轴于A,B 两点,交y 轴于点C(0,3),顶点F 的坐标为(1,4),对称轴交x 轴于点H,直线112y x =+交x 轴于点D,交y 轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c 的值;(2)点M 为抛物线对称轴上一个动点,若△DGM 是以DG 为腰的等腰三角形时,请求出点M 的坐标;(3)点P 为抛物线上的一个动点,当点P 关于直线112y x =+的对称轴恰好落在x 轴上时,请直接写出此时点P 的坐标.5.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C(0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D,交直线BC 于点E,抛物线的对称轴是直线x=-1.(1) 求抛物线的函数表达式;(2) 若点P 在第二象限内,且PE=14OD,求△PBE 的面积; (3) 在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.6.如图,一次函数3y x =-图象与坐标轴交于点A(3,0),B (0,,二次函数233y x x =-A,B 两点,点B 关于抛物线对称轴的对称点为点C,点P 是对称轴上一动点,在抛物线上是否存在点Q,使得以B,C,P,Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.7.如图,抛物线213222y x x =-++与x 轴交于A(-1,0),B(4,0),与y 轴交于点C,连接AC,BC,点P 在抛物线上运动,如图,若点P 在第一象限,直线AP 交BC 于点F,过点P 作x 轴的垂线交BC 于点H,当△PFH 为等腰三角形时,求线段PH 的长.8.如图,已知两直线1l ,2l 分别经过点A(1,0),点B(-3,0),且两条直线相交于y 轴的正半轴上的点C,当点C 的坐标为时,恰好有1l ⊥2l ,经过点A,B,C 的抛物线的对称轴与1l ,2l ,x 轴分别交于点G,E,F,D 为抛物线的顶点.(1)抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线2l 绕点C 旋转时,与抛物线的另一个交点为M,当△MCG 为等腰三角形时,请直接写出点M 的坐标.9.如图,已知抛物线2y=ax 9a --与坐标轴交于A,B,C 三点,其中C(0,3),∠BAC 的平分线AE 交y 轴于点D,交BC 于点D,交BC 于点E,过点D 的直线l 与射线AC,AB 分别交于点M,N.(1)直接写出a 的值,点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时, 11AM AN+均为定值,并求出该定值.。

等腰三角形动点问题分类讨论题型

等腰三角形动点问题分类讨论题型

等腰三角形动点问题分类讨论题型
1. 等腰三角形底边动点问题,哎呀,就像一只小老鼠在底边上来回跑。

比如在一个等腰三角形 ABC 中,底边 BC 上有一个动点 P,那这个点 P 移
动时会带来什么变化呢?这可太有趣啦!
2. 等腰三角形腰上的动点,就像是一个顽皮的小精灵在腰上跳来跳去呢。

像在等腰三角形 DEF 中,腰 DE 上有个动点 Q,它的跳动会如何影响三角形
的形状和性质呀?
3. 动点在等腰三角形内部的情况,这岂不是像在一个神秘的城堡里探索。

比如在等腰三角形GHI 内部有个动点R,它的每一步都充满了未知和惊喜呢,不是吗?
4. 等腰三角形外部的动点呢,那是不是像在城堡外面徘徊的勇士。

假设在等腰三角形 JKL 外面有个动点 S,它又会引发什么样的奇妙故事呀?
5. 两个动点同时在等腰三角形上,哇哦,这就像是一场精彩的双人舞。

想象一下在等腰三角形 MNO 上有两个动点 T 和 U,它们的互动可真是太让人
期待啦!
6. 动点影响等腰三角形角度问题,这好比是一个魔法在改变角度呢。

要是在等腰三角形 PQR 中,一个动点改变了某个角的大小,那会带来怎样的连锁
反应呀?
7. 动点与等腰三角形周长的关系,这不就像是在给三角形量体裁衣嘛。

在等腰三角形 STU 中,动点会怎么影响它的周长呢,你不想知道吗?
8. 动点和等腰三角形面积的联系,就如同是在给三角形的领地画地图。

像在等腰三角形 VWX 中,动点对面积有怎样的改变呢,想想都觉得刺激呀!
我觉得研究等腰三角形动点问题分类讨论题型真是充满了挑战和乐趣,能让我们更深入地理解几何的奥秘呢!。

动点之等腰三角形问题

动点之等腰三角形问题
(1)求证:△DHQ∽△ABC;
练习1 如图1,Rt△ABC中,∠C=90°,BC =6,AC=8,点P、Q都是斜边AB上的动点, 点P从B向A运动(不与点B重合),点Q从A向 B运动,BP=AQ.点D、E分别是点A、B以Q、 P为对称中心的对称点,HQ⊥AB于Q,交AC 于点H,当点E到达顶点A时,P、Q同时停止运 动,设BP的长为x,△HDE的面积为y.
(2)求y关于x的函数关系式并求y的最大值;
练习1 如图1,Rt△ABC中,∠C=90°,BC =6,AC=8,点P、Q都是斜边AB上的动点, 点P从B向A运动(不与点B重合),点Q从A向 B运动,BP=AQ.点D、E分别是点A、B以Q、 P为对称中心的对称点,HQ⊥AB于Q,交AC 于点H,当点E到达顶点A时,P、Q同时停止运 动,设BP的长为x,△HDE的面积为y.
3 .如图1,在△ABC中,∠ACB=90°, AC=BC=2,M是边AC的中点,CH⊥BM 于H.
(1)试求sin∠MCH的值;
3 .如图1,在△ABC中,∠ACB=90°, AC=BC=2,M是边AC的中点,CH⊥BM 于H.
(2)求证:∠ABM=∠CAH;
3 .如图1,在△ABC中,∠ACB=90°,AC =BC=2,M是边AC的中点,CH⊥BM于 H.
(2)联结EF,设点B与点E间的距离为x, △DEF的面积为y,求y关于x的函数关系式,并 写出x的取值范围;
练习2 .如图,在Rt△ABC中,∠BAC=90°, AB=3,AC=4,AD是BC边上的高,点E、F分 别是AB边和AC边上的动点,且∠EDF=90°.
(3)设直线DF与直线AB相交于点G,△EFG能 否成为等腰三角形?若能,请直接写出线段BE的 长;若不能,请说明理由.

专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)

专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)

《中考压轴题》专题37:动态几何之动点形成的等腰三角形存在性问一、选择题1.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2B.3C.4D.5二、填空题1.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的△是腰长为5的等腰三角形时,点P的坐标为。

中点,点P在BC上运动,当ODP2.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q点有个.3.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x 轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题1.如图,抛物线21y x mx n 2=-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.2.如图,二次函数24y x bx c 3=++的图象与x 轴交于A (3,0),B (﹣1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.3.已知抛物线经过A (﹣2,0),B (0,2),C (32,0)三点,一动点P 从原点出发以1个单位/秒的速度沿x 轴正方向运动,连接BP ,过点A 作直线BP 的垂线交y 轴于点Q .设点P 的运动时间为t 秒.(1)求抛物线的解析式;(2)当BQ=12AP 时,求t 的值;(3)随着点P 的运动,抛物线上是否存在一点M ,使△MPQ 为等边三角形?若存在,请直接写t 的值及相应点M 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.5.在平面直角坐标系xOy 中,二次函数213y x x 222=-++的图像与x 轴交于点A ,B (点B 在点A 的左侧),与y 轴交于点C ,过动点H (0,m )作平行于x 轴的直线,直线与二次函数213y x x 222=-++的图像相交于点D ,E.(1)写出点A,点B 的坐标;(2)若m >0,以DE 为直径作⊙Q ,当⊙Q 与x 轴相切时,求m 的值;(3)直线上是否存在一点F ,使得△ACF 是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.6.如图1,抛物线y=ax 2+bx ﹣1经过A (﹣1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E .(1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为32时,求证:△OBD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE=2PE 时,求△POD 的面积.(4)当以点O 、C 、D 为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.7.如图,抛物线y=-x 2+bx+c 交x 轴于点A ,交y 轴于点B ,已知经过点A ,B 的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C 的坐标;(2)如图①,点P (m ,0)是线段AO 上的一个动点,其中-3<m <0,作直线DP ⊥x 轴,交直线AB 于D ,交抛物线于E ,作EF ∥x 轴,交直线AB 于点F ,四边形DEFG 为矩形.设矩形DEFG 的周长为L ,写出L 与m 的函数关系式,并求m 为何值时周长L 最大;(3)如图②,在抛物线的对称轴上是否存在点Q ,使点A ,B ,Q 构成的三角形是以AB 为腰的等腰三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.8.如图,抛物线2y ax bx c =++(a≠0)的图象过点M (2,-,顶点坐标为N 1,3⎛⎫- ⎪ ⎪⎝⎭,且与x 轴交于A 、B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。

二次函数的动点问题(等腰、直角三角形的存在性问题)

二次函数的动点问题(等腰、直角三角形的存在性问题)

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进行判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况△ > 0 与x 轴 交点 方程有 的实数根△ < 0 与x 轴 交点 实数根 △ = 0与x 轴 交点方程有 的实数根3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。

4、 常见考察形式1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

2012因动点产生的等腰三角形问题

2012因动点产生的等腰三角形问题

中考压轴——因动点产生的等腰三角形问题1.(2009年黄冈中考20题)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.2(2009年深圳中考23题).如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .(1)连结P A ,若P A =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?3.(2009年重庆中考26题).已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.. (2010上海宝山中考25题)如图9,矩形ABCD中,AB ,点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F . (1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形?26题图x(备用图)DCBA EFD CBA EF(图9)中考压轴——因动点产生的等腰三角形问题答案20(2009年黄冈中考20题) 解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ;………………………1′在21410189y x x =--中,令0x =得10y =即(0,10)B -;………………2′ 由于B C ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x = 即(8,10)C -且易求出顶点坐标为98(4,)9-……………………………………3′于是,(18,0),(0,10),(8,10)A B C --,顶点坐标为98(4,)9-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因动点产生的等腰三角形问题例1 2012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M 有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),代入点C(0 ,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BH PHBO CO,BO=CO,得PH=BH=2.所以点P的坐标为(1, 2).图2(3)点M的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1, 1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m=±.此时点M的坐标为(1,6)或(1,6-).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3 图4 图5例2 2012年临沂市中考第26题如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12临沂26”,拖动点P 在抛物线的对称轴上运动,可以体验到,⊙O 和⊙B 以及OB 的垂直平分线与抛物线的对称轴有一个共同的交点,当点P 运动到⊙O 与对称轴的另一个交点时,B 、O 、P 三点共线.请打开超级画板文件名“12临沂26”,拖动点P ,发现存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4),代入点B (2,23)--,232(6)a -=-⨯-.解得3a =. 所以抛物线的解析式为23323(4)y x x =-=. (3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-.综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)2)y x x =-=-23D . 因此23tan DOA ∠DOA =30°,∠ODA =120°.例3 2011年湖州市中考第24题如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2动感体验请打开几何画板文件名“11湖州24”,拖动点P 在OC 上运动,可以体验到,△APD 的三个顶点有四次机会可以落在对边的垂直平分线上.双击按钮“第(3)题”, 拖动点P 由O 向C 运动,可以体验到,点H 在以OM 为直径的圆上运动.双击按钮“第(2)题”可以切换.思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备.2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .满分解答(1)因为PC //DB ,所以1CP PM MC BD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为5π.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =. ②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例4 2011年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R 由B 向O 运动,从图象中可以看到,△APR 的面积有一个时刻等于8.观察△APQ ,可以体验到,P 在OC 上时,只存在AP =AQ 的情况;P 在CA 上时,有三个时刻,△APQ 是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.例5 2010年上海市闸北区中考模拟第25题如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC 和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1动感体验请打开几何画板文件名“10闸北25”,拖动点M在CA上运动,可以看到△BNP与△MNA 的形状随M的运动而改变.双击按钮“△BNP∽△MNA”,可以体验到,此刻两个三角形都是直角三角形.分别双击按钮“BP=BN,N在AB上”、“NB=NP”和“BP=BN,N 在AB的延长线上”,可以准确显示等腰三角形BNP的三种情况.思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N的位置分类,再按照顶角的顶点分类.注意当N在AB的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP,N在AB上时,∠B是确定的,把夹∠B的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO=3t-6,MQ=5t-10,所以MN∶NP=MQ∶QO=5∶3.(2)因为△BNP与△MNA有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP∽△MNA,在Rt△AMN中,35 ANAM =,所以531025tt=-.解得3031t=.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例6 2010年南通市中考第27题如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E 在BC 上运动,观察y 随x 变化的函数图象,可以体验到,y 是x 的二次函数,抛物线的开口向下.对照图形和图象,可以看到,当E 是BC 的中点时,y 取得最大值.双击按钮“m =8”,拖动E 到BC 的中点,可以体验到,点F 是AB 的四等分点.拖动点A 可以改变m 的值,再拖动图象中标签为“y 随x ” 的点到射线y =x 上,从图形中可以看到,此时△DCE ≌△EBF .思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EBCE BF=,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例7 2009年重庆市中考第26题已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连结DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1动感体验请打开几何画板文件名“09重庆26”,拖动点G 在OC 上运动,可以体验到,△DCG 与△DEF 保持全等,双击按钮“M 的横坐标为1.2”,可以看到,EF =2,GO =1.拖动点P 在AB 上运动的过程中,可以体验到,存在三个时刻,△PCG 可以成为等腰三角形.思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

相关文档
最新文档