高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 课时2 导数与函数的极值、最值 理

合集下载

(江苏专用)高三数学一轮总复习 第三章 导数及其应用 第二节 导数的应用 第一课时 导数与函数的单调

(江苏专用)高三数学一轮总复习 第三章 导数及其应用 第二节 导数的应用 第一课时 导数与函数的单调

课时跟踪检测(十四) 导数与函数的单调性一抓基础,多练小题做到眼疾手快1.(2015·某某模拟)函数f (x )=(x -3)e x的单调递增区间是________.解析:函数f (x )=(x -3)e x的导数为f ′(x )=[(x -3)e x]′=e x+(x -3)e x=(x -2)e x.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.答案:(2,+∞)2.设函数f (x )=13x 3+ax 2+5x +6在区间[1,3]上是单调函数,则实数a 的取值X 围是________.解析:依题意,知当x ∈[1,3]时,f ′(x )=x 2+2ax +5的值恒不小于0或恒不大于0. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≥0,即有-2a ≤x +5x在[1,3]上恒成立,而x +5x≥2x ·5x=25(当且仅当x =5时取等号),故-2a ≤25,解得a ≥- 5. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≤0,即有-2a ≥x +5x恒成立,注意到函数g (x )=x +5x 在[1,5]上是减函数,在[5,3]上是增函数,且g (1)=6>g (3)=143,因此-2a ≥6,解得a ≤-3.综上所述,实数a 的取值X 围是(-∞,-3]∪[-5,+∞). 答案:(-∞,-3]∪[-5,+∞)3.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.解析:在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增. 答案:单调递增4.(2016·启东模拟)已知a ≥1,f (x )=x 3+3|x -a |,若函数f (x )在[-1,1]上的最大值和最小值分别记为M ,m ,则M -m 的值为________.解析:当x ∈[-1,1]时,f (x )=x 3+3(a -x )=x 3-3x +3a (a ≥1),∴f ′(x )=3(x -1)(x +1).当-1<x <1时,f ′(x )<0,所以原函数f (x )在区间[-1,1]上单调递减,所以M =f (-1)=3a +2,m =f (1)=3a -2,所以M -m =4.答案:45.(2016·某某测试)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值X 围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83, ∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞ 二保高考,全练题型做到高考达标1.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).答案:(-1,11)2.若幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________.解析:设幂函数f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e xx =e x(x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)3.(2016·某某、某某、某某、某某调研)设f (x )=4x 3+mx 2+(m -3)x +n (m ,n ∈R)是R 上的单调增函数,则实数m 的值为________.解析:因为f ′(x )=12x 2+2mx +m -3,又函数f (x )是R 上的单调增函数,所以12x2+2mx +m -3≥0在R 上恒成立,所以(2m )2-4×12(m -3)≤0,整理得m 2-12m +36≤0,即(m -6)2≤0.又因为(m -6)2≥0,所以(m -6)2=0,所以m =6.答案:64.已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值X 围是________.解析:函数f (x )=x +1ax 的导数为f ′(x )=1-1ax2,由于f (x )在(-∞,-1)上单调递增,则f ′(x )≥0在(-∞,-1)上恒成立,即1a≤x 2在(-∞,-1)上恒成立.由于当x <-1时,x 2>1,则有1a≤1,解得a ≥1或a <0.答案:(-∞,0)∪[1,+∞)5.(2015·某某、某某、某某、某某三调)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+m ,0≤x ≤1,mx +5,x >1.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值X 围为________.解析:由f (x )=2x 3+3x 2+m ,得f ′(x )=6x 2+6x ,所以f (x )在[0,1]上单调递增,即f (x )=2x 3+3x 2+m 与x 轴至多有一个交点,要使函数f (x )的图象与x 轴有且只有两个不同的交点,即⎩⎪⎨⎪⎧m +5>0,m <0,从而可得m ∈(-5,0).答案:(-5,0)6.若函数f (x )=ax 3-3x 在(-1,1)上为单调递减函数,则实数a 的取值X 围是________. 解析:f ′(x )=3ax 2-3,∵f (x )在(-1,1)上为单调递减函数,∴f ′(x )≤0在(-1,1)上恒成立,即3ax 2-3≤0在(-1,1)上恒成立.当x =0时,a ∈R ;当x ≠0时,a ≤1x2,∵x∈(-1,0)∪(0,1),∴a ≤1.综上,实数a 的取值X 围为(-∞,1].答案:(-∞,1]7.(2016·某某中学模拟)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.解析:设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值X 围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值X 围是⎝ ⎛⎭⎪⎫-19,+∞. 答案:⎝ ⎛⎭⎪⎫-19,+∞9.(2016·某某五校联考)已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x, 又f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).10.(2016·某某调研)已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,某某数m 的取值X 围.解:(1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞),∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值X 围是(-∞,2]. 三上台阶,自主选做志在冲刺名校1.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值X 围是________.解析:f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0,g1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.答案:⎣⎢⎡⎭⎪⎫34,+∞ 2.(2016·某某模拟)若函数f (x )=x 2|x -a |在区间[0,2]上单调递增,则实数a 的取值X 围是________.解析:当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3,0≤x ≤a ,x 3-ax 2,x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2, 令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减; ②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值X 围是(-∞,0]∪[3,+∞). 答案:(-∞,0]∪[3,+∞)3.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′x +m 2在区间(t,3)上总不是单调函数,求m 的取值X围.解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a 1-xx.当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′t <0,g ′3>0.当g ′(t )<0,即3t 2+(m +4)t -2<0 对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.即实数m 的取值X 围是⎝ ⎛⎭⎪⎫-373,-9.。

高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章  导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。

高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用(一)课件 文

高考数学一轮复习 第三章  导数及其应用 3.2 导数的应用(一)课件 文
第三章
导数及其应用
• 3.2 导数的应用(一)
1.函数的单调性与导数
在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内 ____________ ; 如 果 f′(x)<0 , 那 么 函 数 y = f(x) 在 这 个 区 间 内
____________;如果在某个区间内恒有 f′(x)=0,那么函数 f(x)在这个区
解:求导得 f′(x)=2ex+2xex=2ex(x+1),令 f′(x) =2ex(x+1)=0,解得 x=-1,易知 x=-1 是函数 f(x)
的极小值点.故选 D.
函数 f(x)=13x3-4x+4 在[0,3]上的最大值为________,
在[0,3]上的最小值为________.
解:f′(x)=x2-4=(x-2)(x+2), 令 f′(x)>0,得 x>2 或 x<-2; 令 f′(x)<0,得-2<x<2. 所以 f(x)在(-∞,-2),(2,+∞)上单调递增;在(-2, 2)上单调递减,而 f(2)=-43,f(0)=4,f(3)=1,故 f(x)在[0, 3]上的最大值是 4,最小值是-43.故填 4;-43.
间上是________. 2.函数的极值与导数
(1)判断 f(x0)是极大值,还是极小值的方法: 一般地,当 f′(x0)=0 时, ①如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是极大值; ②如果在 x0 附近的左侧____________,右侧____________,那么 f(x0)
解:导数为 0 的点不一定是极值点(如 y=x3,在 x=0 处), 而极值点的导数一定为 0.极值是局部概念,因此极小值可能有

高考数学异构异模复习第三章导数及其应用3.2.2函数的极值与最值课件理

高考数学异构异模复习第三章导数及其应用3.2.2函数的极值与最值课件理
e 内是减函数.又 h(1)=0,所以当 x∈34,1时,h(x)>0,从而 f′(x)>0,这时 f(x)单调递增,当 x∈(1,2)时, h(x)<0,从而 f′(x)<0,这时 f(x)单调递减,所以 f(x)在34,2内的极大值是 f(1)=1.
(2)由题可知 g(x)=(x2-a)e1-x, 则 g′(x)=(2x-x2+a)e1-x=(-x2+2x+a)e1-x. 根据题意,方程-x2+2x+a=0 有两个不同的实根 x1,x2(x1<x2), 所以 Δ=4+4a>0,即 a>-1,且 x1+x2=2,
注意点 极值点的含义及极值与最值的关系 (1)“极值点”不是点,若函数 f(x)在 x1 处取得极大值,则 x1 即为极大值点,极大值为 f(x1);在 x2 处取 得极小值,则 x2 为极小值点,极小值为 f(x2). (2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未 必有极值;极值有可能成为最值,最值只要不在端点必定是极值.
第三章 导数及其应用
第2讲 导数的应用
考点二 函数的极值与最值
撬点·基础点 重难点
1 判断函数极值的方法 一般地,当函数 f(x)在点 x0 处连续时, (1)如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是 极大值 ; (2)如果在 x0 附近的左侧 f′(x)<0,右侧 f′(x)>0,那么 f(x0)是 极小值 . 2 求可导函数 f(x)的极值的步骤 (1)求导函数 f′(x); (2)求方程 f′(x)=0 的根; (3)检验 f′(x)在方程 f′(x)=0 的根的左右两侧的函数值的符号,如果 左正右负,那么函数 y=f(x)在这 个根处取得极大值;如果 左负右正 ,那么函数 y=f(x)在这个根处取得极小值,可列表完成. 3 函数的最值 在闭区间[a,b]上的连续函数 y=f(x),在[a,b]上必有最大值与最小值.在区间(a,b)上的连续函数 y =f(x),若有唯一的极值点,则这个极值点就是最值点.

高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 第2课时 导数与函数的极值、最值 理(2

高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 第2课时 导数与函数的极值、最值 理(2

2018版高考数学一轮复习第三章导数及其应用3.2 导数的应用第2课时导数与函数的极值、最值理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用3.2 导数的应用第2课时导数与函数的极值、最值理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用3.2 导数的应用第2课时导数与函数的极值、最值理的全部内容。

第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1 根据函数图象判断极值例1 (1)(2016·青岛模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是( )(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)答案(1)C (2)D解析(1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点,故选C。

(2)由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)〈0;当1〈x<2时,f′(x)<0;当x>2时,f′(x)〉0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.命题点2 求函数的极值例2 (2017·泉州质检)已知函数f(x)=x-1+错误!(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)由f(x)=x-1+错误!,得f′(x)=1-错误!.又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,得f′(1)=0,即1-错误!=0,解得a=e.(2)f′(x)=1-错误!,①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.②当a>0时,令f′(x)=0,得e x=a,即x=ln a,当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)〉0,所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故f(x)在x=ln a处取得极小值且极小值为f(ln a)=ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,f(x)在x=ln a处取得极小值ln a,无极大值.命题点3 已知极值求参数例3 (1)(2016·广州模拟)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b=________。

2019届高考数学一轮复习第三章导数及其应用3-2导数与函数的单调性课件文

2019届高考数学一轮复习第三章导数及其应用3-2导数与函数的单调性课件文

[跟踪演练] 1.(2017·天津卷节选)设 a∈Z,已知定义在 R 上的函数 f(x) =2x4+3x3-3x2-6x+a 在区间(1,2)内有一个零点 x0,g(x)为 f(x) 的导函数.求 g(x)的单调区间.
[解] 由 f(x)=2x4+3x3-3x2-6x+a,可得 g(x)=f′(x)=8x3 +9x2-6x-6,进而可得 g′(x)=24x2+18x-6.令 g′(x)=0,解 得 x=-1,或 x=14.
提示:f′(x)=3x2+a,则 3x2+a≥0 在[1,+∞)上恒成立, 即 a≥-3x2 在[1,+∞)上恒成立,所以 a≥-3,且 a=-3 时, f′(x)不恒为 0.
[小题速练]
1.函数 f(x)=(x-3)ex 的单调递增区间是( )
A.(-∞,2) B.(0,3)
C.(1,4)
D.(2,+∞)
[温馨提示] 由函数 f(x)在区间[a,b]内单调递增(或递减), 可得 f′(x)≥0(或 f′(x)≤0)在该区间恒成立,而不是 f′(x)>0(或 <0)恒成立,“=”不能少.必要时还需对“=”进行检验.如: 函数 f(x)=x3+ax 在[1,+∞)上是增函数,则实数 a 的取值范围 为_[_-__3_,__+__∞__)._


导数及其应用

第二节
导数与函数的单调性
高考概览 1.了解函数单调性和导数的关系;2.能利用导数研究函数的单 调性,会求函数的单调区间(其中多项式函数一般不超过三次).
吃透教材 夯双基
填一填 记一记 厚积薄发
[知识梳理] 1.函数的单调性与导数的关系
在 内f区′间xa,b小大 等于于 于零零 零→→ →fffxxx在在 在aaa,, ,bbb内内 内单单 为调调常递递函减增数 [ 温馨提示] (1) 求函数 f(x) 的单调区间 ,也 是求不等式 f′(x)>0(或 f′(x)<0)的解集,但单调区间不能脱离函数定义域而 单独存在,求单调区间要坚持“定义域优先”的原则.如:函数 f(x)=x2-2lnx 的单调递减区间为___(_0_,1_)_.___

2023版高考数学一轮总复习第三章导数及其应用第二讲导数的简单应用课件理

2023版高考数学一轮总复习第三章导数及其应用第二讲导数的简单应用课件理
(5)函数f(x)=sin x-2x在(0,π)上单调递减.( √ )
(6)函数在某区间上或定义域内的极大值是唯一的.( ✕ )
(7)函数的极大值比极小值大.( ✕ )
(8)f '(x0)=0是x0为可导函数y=f(x)的极值点的充分不必要条件.( ✕ )
(9)函数的最大值不一定是极大值,极大值也不一定是最大值.( √ )
(x>0),
2
2
2
令f'(x)>0,则0<x< ,此时函数f(x)单调递增,
ln2
2
令f'(x)<0,则x> ,此时函数f(x)单调递减,
ln2
2
2
所以函数f(x)的单调递增区间为(0, ),单调递减区间为( ,+∞).
ln 2
ln 2
(2)曲线y=f(x)与直线y=1有且仅有两个交点,

可转化为方程 =1,即xa=ax,即aln
如,f(x)=x3,f'(0)=0,但x=0不是极值点.
2.函数的最值
若在区间[a,b]上函数f(x)的图象是一条连续不断的曲线,则在[a,b]上f(x)
必有最大值与最小值.
考点2
导数与函数的极值、最值
辨析比较
函数极值与最值的区别与联系
极值
最值
(1)极值是个“局部”概念,只能
区 在定义域内部取得;(2)在指定区

同的解.(等价转化思想的应用)
x=xln
ln
a,即
=
ln
(x>0)有两个不来自考向1利用导数研究函数的单调性
ln
1−ln
设g(x)= (x>0),则g'(x)= 2 (x>0),

高中数学 第三章 导数及其应用 3.2 导数的运算 3.2.1

高中数学 第三章 导数及其应用 3.2 导数的运算 3.2.1

3.2.1 常数与幂函数的导数 3.2.2 导数公式表课堂探究探究一 利用导数公式求函数的导数利用导数定义求导是求导数的基本方法,但过于烦琐,通常若所求函数符合求导公式,则利用导数公式求导数可简化求导过程,但需要准确记忆公式,恰当选择公式;对于不能直接用公式的类型,关键是将其进行适当变形,转化为可以直接应用公式的基本初等函数形式,如y =5x 3可以写成y =35x 等,就可以直接使用幂函数的求导公式求导. 【典型例题1】 求下列函数的导数:(1)y =x 7; (2)y =x x ; (3)y =log 3x ; (4)y =2sin x 2·cos x 2;(5)y =1x 2. 思路分析:对于基本初等函数的求导,直接利用导数公式求导,应注意将所给函数关系式转化为能直接应用公式的形式.解:(1)y ′=7x 6;(2)因为y =x x =32x ,所以y ′=3212x =32x ; (3)y ′=1x ln 3; (4)因为y =2sin x 2·cos x 2=sin x ,所以y ′=cos x ; (5)因为y =1x 2=x -2,所以y ′=-2x -3=-2x3. 探究二 导数的应用利用导数来求曲线在某点处的切线斜率是一种非常有效的方法,它适合于任何可导函数,这就为导数和解析几何的沟通搭建了桥梁,利用切线的斜率建立相应的未知参数的方程来解决.【典型例题2】 若曲线y =12x -在点(a ,12a -)处的切线与两坐标轴围成的三角形的面积为18,求a 的值.思路分析:先求出切线方程,再求出切线在x 轴、y 轴上的截距,利用三角形面积公式列方程求a . 解:y ′=-1232x -(x >0),故在点(a ,12a -)处的切线的斜率k =-1232a -, 所以切线方程为y -12a -=-1232a - (x -a ),易得切线在x 轴、y 轴上的截距分别为3a ,3212a -, 所以切线与两坐标轴围成的三角形的面积为S =12×3a ×3212a -=9412a =18. 所以a =64.。

高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用练习 理

高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用练习 理

§3.2导数的应用考纲解读分析解读函数的单调性是函数的一条重要性质,也是高中阶段研究的重点.一是直接用导数研究函数的单调性、求函数的最值与极值,以及实际问题中的优化问题等,这是新课标的一个新要求.二是把导数与函数、方程、不等式、数列等知识相联系,综合考查函数的最值与参数的取值,常以解答题的形式出现.本节内容在高考中分值为17分左右,属难度较大题.1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)上单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.③若a<0,则由f '(x)=0得x=ln.当x∈时, f '(x)<0;当x∈时, f '(x)>0.故f(x)在上单调递减,在上单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln时, f(x)取得最小值,最小值为f=a2.从而当且仅当a2≥0,即a≥-2时, f(x)≥0.综上,a的取值范围是[-2,1]五年高考考点一利用导数研究函数的单调性1.(2017山东,10,5分)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是( )A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cos x答案 A2.(2016课标全国Ⅰ,12,5分)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( )A.[-1,1]B.C.D.答案 C3.(2015课标Ⅱ,12,5分)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是( )A. B.∪(1,+∞)C. D.∪答案 A4.(2014课标Ⅱ,11,5分)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案 D5.(2017江苏,11,5分)已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a 的取值范围是.答案6.(2017课标全国Ⅱ,21,12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时, f(x)≤ax+1,求a的取值范围.解析(1)f '(x)=(1-2x-x2)e x.令f '(x)=0,得x=-1-或x=-1+.当x∈(-∞,-1-)时, f '(x)<0;当x∈(-1-,-1+)时, f '(x)>0;当x∈(-1+,+∞)时, f '(x)<0.所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)f(x)=(1+x)(1-x)e x.当a≥1时,设函数h(x)=(1-x)e x,h'(x)=-xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.当0<a<1时,设函数g(x)=e x-x-1,g'(x)=e x-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1.当0<x<1时, f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=,则x0∈(0,1), f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).7.(2017课标全国Ⅲ,21,12分)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.解析(1)f(x)的定义域为(0,+∞), f '(x)=+2ax+2a+1=.若a≥0,则当x∈(0,+∞)时, f '(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,则当x∈时, f '(x)>0;当x∈时, f '(x)<0,故f(x)在上单调递增,在上单调递减.(2)由(1)知,当a<0时, f(x)在x=-处取得最大值,最大值为f=ln-1-.所以f(x)≤--2等价于ln-1-≤--2,即ln++1≤0.设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x>0时,g(x)≤0.从而当a<0时,ln++1≤0,即f(x)≤--2.8.(2016课标全国Ⅲ,21,12分)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.解析(1)由题设知, f(x)的定义域为(0,+∞), f '(x)=-1,令f '(x)=0,解得x=1.当0<x<1时, f '(x)>0, f(x)单调递增;当x>1时, f '(x)<0, f(x)单调递减.(4分)(2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln<-1,即1<<x.(7分)(3)证明:由题设c>1,设g(x)=1+(c-1)x-c x,则g'(x)=c-1-c x ln c,令g'(x)=0,解得x0=.当x<x0时,g'(x)>0,g(x)单调递增;当x>x0时,g'(x)<0,g(x)单调递减.(9分)由(2)知1<<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.所以当x∈(0,1)时,1+(c-1)x>c x.(12分)教师用书专用(9—24)9.(2013浙江,8,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f '(x)的图象如图所示,则该函数的图象是( )答案 B10.(2015四川,21,14分)已知函数f(x)=-2xln x+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.解析(1)由已知,得函数f(x)的定义域为(0,+∞),g(x)=f '(x)=2(x-1-ln x-a),所以g'(x)=2-=.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明:由f '(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令φ(x)=-2xln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2xln x,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x≥1).由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增.故0=u(1)<a0=u(x0)<u(e)=e-2<1.即a0∈(0,1).当a=a0时,有f '(x0)=0, f(x0)=φ(x0)=0.再由(1)知, f '(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时, f '(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时, f '(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时, f(x)=(x-a0)2-2xln x>0.故x∈(0,+∞)时, f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.11.(2015天津,20,14分)已知函数f(x)=4x-x4,x∈R.(1)求f(x)的单调区间;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);(3)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-+.解析(1)由f(x)=4x-x4,可得f '(x)=4-4x3.当f '(x)>0,即x<1时,函数f(x)单调递增;当f '(x)<0,即x>1时,函数f(x)单调递减.所以, f(x)的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P的坐标为(x0,0),则x0=, f '(x0)=-12.曲线y=f(x)在点P处的切线方程为y=f '(x0)(x-x0),即g(x)=f '(x0)(x-x0).令函数F(x)=f(x)-g(x),即F(x)=f(x)-f '(x0)(x-x0),则F'(x)=f '(x)-f '(x0).由于 f '(x)=-4x3+4在(-∞,+∞)上单调递减,故F'(x)在(-∞,+∞)上单调递减.又因为F'(x0)=0,所以当x∈(-∞,x0)时,F'(x)>0,当x∈(x0,+∞)时,F'(x)<0,所以F(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,所以对于任意的实数x,F(x)≤F(x0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-).设方程g(x)=a的根为x2',可得x2'=-+.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2'),因此x2≤x2'.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1',可得x1'=.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1')=a=f(x1)≤h(x1),因此x1'≤x1.由此可得x2-x1≤x2'-x1'=-+.12.(2015福建,22,14分)已知函数f(x)=ln x-.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时, f(x)<x-1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).解析(1)f '(x)=-x+1=,x∈(0,+∞).由f '(x)>0得解得0<x<.故f(x)的单调递增区间是.(2)证明:令F(x)=f(x)-(x-1),x∈(0,+∞).则有F'(x)=.当x∈(1,+∞)时,F'(x)<0,所以F(x)在[1,+∞)上单调递减,故当x>1时,F(x)<F(1)=0,即当x>1时, f(x)<x-1.(3)由(2)知,当k=1时,不存在x0>1满足题意.当k>1时,对于x>1,有f(x)<x-1<k(x-1),则f(x)<k(x-1),从而不存在x0>1满足题意.当k<1时,令G(x)=f(x)-k(x-1),x∈(0,+∞),则有G'(x)=-x+1-k=.由G'(x)=0得,-x2+(1-k)x+1=0.解得x1=<0,x2=>1.当x∈(1,x2)时,G'(x)>0,故G(x)在[1,x2)内单调递增.从而当x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1),综上,k的取值范围是(-∞,1).13.(2015重庆,19,12分)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.(1)确定a的值;(2)若g(x)=f(x)e x,讨论g(x)的单调性.解析(1)对f(x)求导得f '(x)=3ax2+2x,因为f(x)在x=-处取得极值,所以f '=0,即3a·+2·=-=0,解得a=.(2)由(1)得g(x)=e x,故g'(x)=e x+e x=e x=x(x+1)(x+4)e x.令g'(x)=0,解得x=0,x=-1或x=-4.当x<-4时,g'(x)<0,故g(x)为减函数;当-4<x<-1时,g'(x)>0,故g(x)为增函数;当-1<x<0时,g'(x)<0,故g(x)为减函数;当x>0时,g'(x)>0,故g(x)为增函数.综上,知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.14.(2014安徽,20,13分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=1+a-2x-3x2.令f '(x)=0,得x1=,x2=,x1<x2,所以f '(x)=-3(x-x1)(x-x2).当x<x1或x>x2时, f '(x)<0;当x1<x<x2时, f '(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在[x1,x2]内单调递增.(2)因为a>0,所以x1<0,x2>0.(i)当a≥4时,x2≥1,由(1)知, f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.(ii)当0<a<4时,x2<1.由(1)知, f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值.又f(0)=1, f(1)=a,所以当0<a<1时, f(x)在x=1处取得最小值;当a=1时, f(x)在x=0和x=1处同时取得最小值;当1<a<4时, f(x)在x=0处取得最小值.15.(2014重庆,19,12分)已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1, f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间与极值.解析(1)对f(x)求导得f '(x)=--,由f(x)在点(1, f(1))处的切线垂直于直线y=x知f '(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-ln x-,则f '(x)=,令f '(x)=0,解得x=-1或x=5.因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时, f '(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时, f '(x)>0,故f(x)在(5,+∞)内为增函数.由此知函数f(x)在x=5时取得极小值f(5)=-ln 5.16.(2014湖北,21,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.解析(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.17.(2014湖南,21,13分)已知函数f(x)=xcos x-sin x+1(x>0).(1)求f(x)的单调区间;(2)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.解析(1)f '(x)=cos x-xsin x-cos x=-xsin x.令f '(x)=0,得x=kπ(k∈N*).当x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时f '(x)<0;当x∈((2k+1)π,(2k+2)π)(k∈N)时,sin x<0,此时f '(x)>0,故f(x)的单调递减区间为(2kπ,(2k+1)π)(k∈N),单调递增区间为((2k+1)π,(2k+2)π)(k∈N).(2)由(1)知, f(x)在区间(0,π)上单调递减,又f=0,故x1=,当n∈N*时,因为f(nπ)f((n+1)π)=[(-1)n nπ+1]·[(-1)n+1(n+1)n+1]<0,且函数f(x)的图象是连续不断的,所以f(x)在区间(nπ,(n+1)π)内至少存在一个零点.又f(x)在区间(nπ,(n+1)π)上是单调的,故nπ<x n+1<(n+1)π.因此当n=1时,=<;当n=2时,+<(4+1)<;当n≥3时,++…+<<==<<.综上所述,对一切n∈N*,++…+<.18.(2014江西,18,12分)已知函数f(x)=(4x2+4ax+a2),其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.解析(1)f(x)的定义域为[0,+∞).当a=-4时,由f '(x)==0得x=或x=2,由f '(x)>0得x∈或x∈(2,+∞),故函数f(x)的单调递增区间为和(2,+∞).(2)f '(x)=,a<0,由f '(x)=0得x=-或x=-.当x∈时,f(x)单调递增;当x∈时,f(x)单调递减;当x∈时,f(x)单调递增.易知 f(x)=(2x+a)2≥0,且f=0.①当-≤1,即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±2-2,均不符合题意.②当1<-≤4,即-8≤a<-2时, f(x)在[1,4]上的最小值为f=0,不符合题意.③当->4,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4处取得,而f(1)≠8,由f(4)=2(64+16a+a2)=8得a=-10或a=-6(舍去),当a=-10时,f(x)在(1,4)上单调递减, f(x)在[1,4]上的最小值为f(4)=8,符合题意. 综上,a=-10.19.(2013课标全国Ⅰ,20,12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解析(1)f '(x)=e x(ax+a+b)-2x-4.由已知得f(0)=4, f '(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知f(x)=4e x(x+1)-x2-4x,f '(x)=4e x(x+2)-2x-4=4(x+2).令f '(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时, f '(x)>0;当x∈(-2,-ln 2)时, f '(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).20.(2013大纲全国,21,12分)已知函数f(x)=x3+3ax2+3x+1.(1)当a=-时,讨论f(x)的单调性;(2)若x∈[2,+∞)时, f(x)≥0,求a的取值范围.解析(1)当a=-时, f(x)=x3-3x2+3x+1,f '(x)=3x2-6x+3.令f '(x)=0,得x1=-1,x2=+1.(3分)当x∈(-∞,-1)时, f '(x)>0, f(x)在(-∞,-1)上是增函数;当x∈(-1,+1)时, f '(x)<0, f(x)在(-1,+1)上是减函数;当x∈(+1,+∞)时, f '(x)>0, f(x)在(+1,+∞)上是增函数.(6分)(2)由f(2)≥0得a≥-.(8分)当a≥-,x∈(2,+∞)时,f '(x)=3(x2+2ax+1)≥3=3(x-2)>0,所以f(x)在(2,+∞)上是增函数,于是当x∈[2,+∞)时,f(x)≥f(2)≥0.综上,a的取值范围是.(12分)21.(2013山东,21,12分)已知函数f(x)=ax2+bx-ln x(a,b∈R).(1)设a≥0,求f(x)的单调区间;(2)设a>0,且对任意x>0, f(x)≥f(1).试比较ln a与-2b的大小.解析(1)由f(x)=ax2+bx-ln x,x∈(0,+∞),得f '(x)=.①当a=0时, f '(x)=.(i)若b≤0,当x>0时, f '(x)<0恒成立,所以函数f(x)的单调递减区间是(0,+∞).(ii)若b>0,当0<x<时, f '(x)<0,函数f(x)单调递减,当x>时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是.②当a>0时,令f '(x)=0,得2ax2+bx-1=0.由Δ=b2+8a>0得x1=,x2=.显然,x1<0,x2>0.当0<x<x2时, f '(x)<0,函数f(x)单调递减;当x>x2时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是.综上所述,当a=0,b≤0时,函数f(x)的单调递减区间是(0,+∞);当a=0,b>0时,函数f(x)的单调递减区间是,单调递增区间是;当a>0时,函数f(x)的单调递减区间是,单调递增区间是.(2)由题意,函数f(x)在x=1处取得最小值,由(1)知是f(x)的唯一极小值点,故=1,整理得2a+b=1,即b=1-2a.令g(x)=2-4x+ln x.则g'(x)=.令g'(x)=0,得x=.当0<x<时,g'(x)>0,g(x)单调递增;当x>时,g'(x)<0,g(x)单调递减.因此g(x)≤g=1+ln=1-ln 4<0.故g(a)<0,即2-4a+ln a=2b+ln a<0,即ln a<-2b.22.(2013天津,20,14分)设a∈[-2,0],已知函数f(x)=(1)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;(2)设曲线y=f(x)在点P i(x i, f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0.证明x1+x2+x3>-.证明(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=x3-x2+ax(x≥0),① f '1(x)=3x2-(a+5),由a∈[-2,0],从而当-1<x<0时,f '1(x)=3x2-(a+5)<3-a-5≤0,所以函数f1(x)在区间(-1,0]内单调递减.② f '2(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以当0<x<1时, f '2(x)<0;当x>1时, f '2(x)>0. 即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f '(x)在区间(-∞,0)内单调递减,在区间内单调递减,在区间内单调递增.因为曲线y=f(x)在点P i(x i, f(x i))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f '(x1)=f '(x2)=f '(x3).不妨设x1<0<x2<x3,由3-(a+5)=3-(a+3)x2+a=3-(a+3)x3+a,可得3-3-(a+3)(x2-x3)=0,解得x2+x3=,从而0<x2<<x3.设g(x)=3x2-(a+3)x+a,则g<g(x2)<g(0)=a.由3-(a+5)=g(x2)<a,解得-<x1<0,所以x1+x2+x3>-+,设t=,则a=,因为a∈[-2,0],所以t∈,故x1+x2+x3>-t+=(t-1)2-≥-,即x1+x2+x3>-.23.(2013湖北,21,13分)设a>0,b>0,已知函数f(x)=.(1)当a≠b时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f ,f 是否成等比数列,并证明f ≤f ;(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围. 解析(1)f(x)的定义域为(-∞,-1)∪(-1,+∞),f '(x)==.当a>b时, f '(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增;当a<b时, f '(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减.(2)(i)计算得f(1)=>0, f=>0,f =>0,故f(1)f=·=ab=,即f(1)f=.①所以f(1),f ,f 成等比数列.因为≥,所以f(1)≥f .由①得f ≤f .(ii)由(i)知f =H,f =G.故由H≤f(x)≤G,得f ≤f(x)≤f .②当a=b时,f =f(x)=f =a.这时,x的取值范围为(0,+∞);当a>b时,0<<1,从而<,由f(x)在(0,+∞)上单调递增与②式,得≤x≤,即x的取值范围为;当a<b时,>1,从而>,由f(x)在(0,+∞)上单调递减与②式,得≤x≤,即x的取值范围为.24.(2013江苏,20,16分)设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.解析(1)令f '(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数.同理, f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g'(x)=e x-a=0,得x=ln a.当x<ln a时,g'(x)<0;当x>ln a时,g'(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,有a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g'(x)=e x-a>0,解得a<e x,即x>ln a,因为g(x)在(-1,+∞)上是单调增函数,类似(1)有ln a≤-1,即0<a≤e-1.结合上述两种情况,有a≤e-1.(i)当a=0时,由f(1)=0以及f '(x)=>0,得f(x)存在唯一的零点.(ii)当a<0时,由于f(e a)=a-ae a=a(1-e a)<0, f(1)=-a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时, f '(x)=-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.(iii)当0<a≤e-1时,令f '(x)=-a=0,解得x=a-1.当0<x<a-1时, f '(x)>0,当x>a-1时, f '(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a-1.①当-ln a-1=0,即a=e-1时, f(x)有一个零点x=e.②当-ln a-1>0,即0<a<e-1时, f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-ae-1<0, f(a-1)>0,且函数f(x)在[e-1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.另外,当x∈(0,a-1)时, f '(x)=-a>0,故f(x)在(0,a-1)上是单调增函数,所以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h'(x)=e x-2x,再设l(x)=h'(x)=e x-2x,则l'(x)=e x-2.当x>1时,l'(x)=e x-2>e-2>0,所以l(x)=h'(x)在(1,+∞)上是单调增函数.故当x>2时,h'(x)=e x-2x>h'(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时, f(e a-1)=a-1-ae a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时, f '(x)=-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只有一个零点.综合(i),(ii),(iii),当a≤0或a=e-1时, f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2.考点二利用导数研究函数的极值与最值1.(2016四川,6,5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.2答案 D2.(2014辽宁,12,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B.C.[-6,-2]D.[-4,-3]答案 C3.(2015陕西,15,5分)函数y=xe x在其极值点处的切线方程为.答案y=-4.(2017北京,20,13分)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.解析(1)因为f(x)=e x cos x-x,所以f '(x)=e x(cos x-sin x)-1, f '(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h'(x)=e x(cos x-sin x-sin x-cos x)=-2e x sin x.当x∈时,h'(x)<0,所以h(x)在区间上单调递减.所以对任意x∈,有h(x)<h(0)=0,即f '(x)<0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.5.(2017江苏,20,16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f '(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x), f '(x)这两个函数的所有极值之和不小于-,求a的取值范围.解析(1)由f(x)=x3+ax2+bx+1,得f '(x)=3x2+2ax+b=3+b-.当x=-时, f '(x)有极小值b-.因为f '(x)的极值点是f(x)的零点,所以f =-+-+1=0,又a>0,故b=+.因为f(x)有极值,故f '(x)=0有实根,从而b-=(27-a3)≤0,即a≥3.当a=3时, f '(x)>0(x≠-1),故f(x)在R上是增函数, f(x)没有极值;当a>3时, f '(x)=0有两个相异的实根x1=,x2=.列表如下:故f(x)的极值点是x1,x2.从而a>3.因此b=+,定义域为(3,+∞).(2)证明:由(1)知,=+.设g(t)=+,则g'(t)=-=.当t∈时,g'(t)>0,从而g(t)在上单调递增.因为a>3,所以a>3,故g(a )>g(3)=,即>.因此b2>3a.(3)由(1)知, f(x)的极值点是x1,x2,且x1+x2=-a,+=.从而f(x1)+f(x2)=+a+bx1+1++a+bx2+1=(3+2ax1+b)+(3+2ax2+b)+a(+)+b(x1+x2)+2=-+2=0. 记f(x), f '(x)所有极值之和为h(a),因为f '(x)的极值为b-=-a2+,所以h(a)=-a2+,a>3.因为h'(a)=-a-<0,于是h(a)在(3,+∞)上单调递减.因为h(6)=-,于是h(a)≥h(6),故a≤6.因此a的取值范围为(3,6].6.(2015安徽,21,13分)已知函数f(x)=(a>0,r>0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.解析(1)由题意知x≠-r,所求的定义域为(-∞,-r)∪(-r,+∞).f(x)==,f '(x)==,所以当x<-r或x>r时,f '(x)<0,当-r<x<r时,f '(x)>0,因此,f(x)的单调递减区间为(-∞,-r),(r,+∞);f(x)的单调递增区间为(-r,r).(2)由(1)的解答可知f '(r)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减.因此,x=r是f(x)的极大值点,所以f(x)在(0,+∞)内的极大值为f(r)====100.教师用书专用(7—15)7.(2013福建,12,5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A.∀x∈R, f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点答案 D8.(2016天津,20,14分)设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值.解析(1)由f(x)=x3-ax-b,可得f '(x)=3x2-a.下面分两种情况讨论:①当a≤0时,有f '(x)=3x2-a≥0恒成立,所以f(x)的单调递增区间为(-∞,+∞).②当a>0时,令f '(x)=0,解得x=,或x=-.当x变化时所以f(x)的单调递减区间为,单调递增区间为,.(2)证明:因为f(x)存在极值点,所以由(1)知a>0,且x0≠0.由题意,得 f '(x0)=3-a=0,即=,进而f(x0)=-ax0-b=-x0-b.又f(-2x0)=-8+2ax0-b=-x0+2ax0-b=-x0-b=f(x0),且-2x0≠x0,由题意及(1)知,存在唯一实数x1满足 f(x1)=f(x0),且x1≠x0,因此x1=-2x0.所以x1+2x0=0.(3)证明:设g(x)在区间[-1,1]上的最大值为M,max{x,y}表示x,y两数的最大值.下面分三种情况讨论:①当a≥3时,-≤-1<1≤,由(1)知, f(x)在区间[-1,1]上单调递减,所以f(x)在区间[-1,1]上的取值范围为[f(1), f(-1)],因此M=max{|f(1)|,|f(-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}=所以M=a-1+|b|≥2.②当≤a<3时,-≤-1<-<<1≤,由(1)和(2)知f(-1)≥f =f , f(1)≤f =f ,所以f(x)在区间[-1,1]上的取值范围为 f , f ,因此M=max,=max=max=+|b|≥××=.③当0<a<时,-1<-<<1,由(1)和(2)知f(-1)<f =f , f(1)>f =f ,所以f(x)在区间[-1,1]上的取值范围为[f(-1), f(1)],因此M=max{|f(-1)|,|f(1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>.综上所述,当a>0时,g(x)在区间[-1,1]上的最大值不小于.9.(2014天津,19,14分)已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B 的子集.综上,a的取值范围是.10.(2014浙江,21,15分)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.解析(1)因为a>0,-1≤x≤1,所以(i)当0<a<1时,若x∈[-1,a],则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a, f '(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.(ii)当a≥1时,有x≤a,则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)=(2)令h(x)=f(x)-g(a),(i)当0<a<1时,g(a)=a3,若x∈[a,1],h(x)=x3+3x-3a-a3,得h'(x)=3x2+3,则h(x)在(a,1)上是增函数,所以,h(x)在[a,1]上的最大值是h(1)=4-3a-a3,且0<a<1,所以h(1)≤4.故f(x)≤g(a)+4;若x∈[-1,a],h(x)=x3-3x+3a-a3,得h'(x)=3x2-3,则h(x)在(-1,a)上是减函数,所以,h(x)在[-1,a]上的最大值是h(-1)=2+3a-a3.令t(a)=2+3a-a3,则t'(a)=3-3a2>0,知t(a)在(0,1)上是增函数,所以,t(a)<t(1)=4,即h(-1)<4.故f(x)≤g(a)+4.(ii)当a≥1时,g(a)=-2+3a,故h(x)=x3-3x+2,得h'(x)=3x2-3,此时h(x)在(-1,1)上是减函数,因此h(x)在[-1,1]上的最大值是h(-1)=4.故f(x)≤g(a)+4.综上,当x∈[-1,1]时,恒有f(x)≤g(a)+4.11.(2014四川,21,14分)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.解析(1)由f(x)=e x-ax2-bx-1,有g(x)=f '(x)=e x-2ax-b,所以g'(x)=e x-2a.当x∈[0,1]时,g'(x)∈[1-2a,e-2a],当a≤时,g'(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g'(x)≤0,所以g(x)在[0,1]上单调递减.因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当<a<时,令g'(x)=0,得x=ln(2a)∈(0,1).所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b;当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,所以<a<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.12.(2014陕西,21,14分)设函数f(x)=ln x+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f '(x)-零点的个数;(3)若对任意b>a>0,<1恒成立,求m的取值范围.解析(1)当m=e时, f(x)=ln x+,则 f '(x)=,∴当x∈(0,e)时, f '(x)<0, f(x)在(0,e)上单调递减;当x∈(e,+∞)时, f '(x)>0, f(x)在(e,+∞)上单调递增.∴当x=e时, f(x)取得极小值f(e)=ln e+=2,∴f(x)的极小值为2.(2)由题设知,g(x)=f '(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,∴φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,∴φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,<1恒成立,等价于f(b)-b<f(a)-a恒成立.(*)设h(x)=f(x)-x=ln x+-x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h'(x)=--1≤0在(0,+∞)上恒成立,得m≥-x2+x=-+(x>0)恒成立,∴m≥,∴m的取值范围是.13.(2013广东,21,14分)设函数f(x)=x3-kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.解析 f '(x)=3x2-2kx+1.(1)当k=1时, f '(x)=3x2-2x+1,Δ=4-12=-8<0,∴f '(x)>0, f(x)在R上单调递增.(2)当k<0时, f '(x)=3x2-2kx+1,其图象开口向上,对称轴为直线x=,且过(0,1).(i)当Δ=4k2-12=4(k+)(k-)≤0,即-≤k<0时, f '(x)≥0, f(x)在[k,-k]上单调递增,从而当x=k时, f(x)取得最小值m=f(k)=k,当x=-k时, f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.(ii)当Δ=4k2-12=4(k+)(k-)>0,即k<-时,令f '(x)=3x2-2kx+1=0,解得x1=,x2=,注意到k<x2<x1<0,∴m=min{f(k), f(x1)},M=max{f(-k), f(x2)}.∵f(x1)-f(k)=-k+x1-k=(x1-k)(+1)>0,∴f(x)的最小值m=f(k)=k.∵f(x2)-f(-k)=-k+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,∴f(x)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时, f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k3-k.14.(2013浙江,21,15分)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.(1)若a=1,求曲线y=f(x)在点(2, f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.解析(1)当a=1时, f '(x)=6x2-12x+6,所以f '(2)=6.又因为f(2)=4,所以切线方程为y=6x-8.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值.f '(x)=6x2-6(a+1)x+6a=6(x-1)(x-a).令f '(x)=0,得到x1=1,x2=a.当a>1时,比较f(0)=0和f(a)=a2(3-a)的大小可得g(a)=当a<-1时,得g(a)=3a-1.综上所述, f(x)在闭区间[0,2|a|]上的最小值为g(a)=15.(2013重庆,20,12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.解析(1)因为蓄水池侧面的建造成本为100·2πrh=200πrh元,底面的建造成本为160πr2元,所以蓄水池的总建造成本为(200πrh+160πr2)元.所以200πrh+160πr2=12 000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).因为r>0,h>0,所以0<r<5,故函数V(r)的定义域为(0,5).(2)因为V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(r2=-5不在定义域内,舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.考点三导数的综合应用1.(2015安徽,10,5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<0答案 A2.(2014课标Ⅰ,12,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案 C3.(2017山东,20,13分)已知函数f(x)=x3-ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3, f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.解析(1)由题意得f '(x)=x2-ax,所以当a=2时, f(3)=0, f '(x)=x2-2x,所以f '(3)=3,因此,当a=2时,曲线y=f(x)在点(3, f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g'(x)=f '(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h'(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g'(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=a时g(x)取到极大值,极大值是g(a)=-a3-sin a,当x=0时g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g'(x)=x(x-sin x),当x∈(-∞,+∞)时,g'(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g'(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=0时g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-a3-sin a.4.(2017天津,19,14分)设a,b∈R,|a|≤1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=e x f(x).(1)求f(x)的单调区间;(2)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0-1,x0+1]上恒成立,求b的取值范围.解析(1)由f(x)=x3-6x2-3a(a-4)x+b,可得f '(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)].令f '(x)=0,解得x=a,或x=4-a.由|a|≤1,得a<4-a.当x变化时, f '(x), f(x)所以, f(x)的单调递增区间为(-∞,a),(4-a,+∞),单调递减区间为(a,4-a).(2)(i)证明:因为g'(x)=e x[f(x)+f '(x)],由题意知所以解得所以, f(x)在x=x0处的导数等于0.(ii)因为g(x)≤e x,x∈[x0-1,x0+1],g(x)=e x f(x),所以由e x>0,可得f(x)≤1.又因为f(x0)=1, f '(x0)=0,故x0为f(x)的极大值点,由(1)知x0=a.由于|a|≤1,故a+1<4-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时, f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤e x在[x0-1,x0+1]上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1.令t(x)=2x3-6x2+1,x∈[-1,1],所以t'(x)=6x2-12x,令t'(x)=0,解得x=2(舍去),或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1,因此,t(x)的值域为[-7,1].所以,b的取值范围是[-7,1].5.(2015课标Ⅰ,21,12分)设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f '(x)零点的个数;(2)证明:当a>0时, f(x)≥2a+aln.解析(1)f(x)的定义域为(0,+∞), f '(x)=2e2x-(x>0).当a≤0时, f '(x)>0, f '(x)没有零点;当a>0时,因为y=e2x单调递增,y=-单调递增,所以f '(x)在(0,+∞)上单调递增.又f '(a)>0,当b满足0<b<且b<时, f '(b)<0,。

高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

高考数学一轮总复习第3章导数及其应用第2节导数的应用第5课时利用导数研究函数的零点问题教师用书

第5课时 利用导数研究函数的零点问题考点1 讨论函数的零点个数——综合性(2021·海口模拟)已知函数f(x)=.(1)判断f(x)的单调性,并比较2 0202 021与2 0212 020的大小;(2)若函数g(x)=(x-2)2+x(2f(x)-1),其中≤a≤,判断g(x)的零点的个数,并说明理由.参考数据:ln 2≈0.693.解:(1)函数f(x)=,定义域是(0,+∞),故f′(x)=.令f′(x)>0,解得0<x<e;令f′(x)<0,解得x>e,故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则f(2 020)>f(2 021),即>,故2 021ln 2 020>2 020ln 2 021,故ln 2 0202 021>ln 2 0212 020,故2 0202 021>2 0212 020.(2)因为g(x)=(x2-4x+4)+2ln x-x,所以g′(x)=ax+-2a-1=.令g′(x)=0,解得x=2或x=,①当a=时,则g′(x)=≥0,g(x)在(0,+∞)上单调递增,且g(2)=2ln 2-2<0,g(6)=2ln 6-2>0,故g(2)g(6)<0,故存在x0∈(2,6),使得g(x0)=0,故g(x)在(0,+∞)上只有1个零点;②当<a<时,则<2,则g(x)在上单调递增,在上单调递减,在(2,+∞)上单调递增,故g(x)在(0,+∞)上有极小值g(2),g(2)=2ln 2-2<0,有极大值g=2a--2ln a-2,且g(2)=2ln 2-2<0,g(6)=8a+2ln 6-6>2ln 6-2>0,故g(2)g(6)<0,故存在x1∈(2,6),使得g(x1)=0,故g(x)在(2,+∞)上只有1个零点,另一方面令h(a)=g=2a--2ln a-2,h′(a)=2+-=2>0,所以h(a)在上单调递增,所以h(a)<h=e--2-2ln <0,则g<0,故g(x)在上没有零点.综上:当≤a≤时,g(x)只有1个零点.已知函数f(x)=x-(e为自然常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)设a∈R,讨论函数g(x)=x-ln x-f(x)的零点个数.解:(1)f(x)=x-,则f′(x)=.因为f(x)在(0,+∞)上单调递增,所以f′(x)≥0在(0,+∞)上恒成立.记φ(x)=e x+ax-a,则φ(x)≥0在(0,+∞)上恒成立,φ′(x)=e x+a.当a≥-1时,φ′(x)=e x+a>1+a≥0,即φ(x)在(0,+∞)上单调递增,所以φ(x)>φ(0)=1-a≥0,所以-1≤a≤1;当a<-1时,令φ′(x)=e x+a=0,解得x=ln(-a).当0<x<ln(-a)时,φ′(x)<0,φ(x)在(0,ln(-a))上单调递减;当x>ln(-a)时,φ′(x)>0,φ(x)在(ln(-a),+∞)上单调递增,所以φ(x)≥φ(ln(-a))=-2a+a ln(-a)≥0,解得-e2≤a<-1.综上可得,实数a的取值范围是[-e2,1].(2)g(x)=x-ln x-f(x)=-ln x(x>0),令g(x)=0,得a=(x>0).令h(x)=,则h′(x)=,当x∈(0,1]时,ln x≤0,x-1≤0,所以h′(x)≥0,h(x)单调递增;当x∈(1,+∞)时,h′(x)>0,h(x)单调递增.所以h(x)在(0,+∞)单调递增,又h(x)=∈R,a∈R,所以y=a与h(x)=的图象只有一个交点,所以a∈R,g(x)只有唯一一个零点.考点2 由函数的零点个数求参数的范围——综合性(2022·湖南模拟)已知函数f(x)=x3+3a(x+1)(a∈R).(1)讨论f(x)的单调性;(2)若函数g(x)=f(x)-x ln x-3a在上有两个不同的零点,求a的取值范围.解:(1)f′(x)=3x2+3a.①当a≥0时,f′(x)≥0,f(x)在R上单调递增;②当a<0时,令f′(x)>0,解得x<-或x>,令f′(x)<0,解得-<x<,所以f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.综上,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(-∞,-),(,+∞)上单调递增,在(-,)上单调递减.(2)g(x)=x3+3ax-x ln x,依题意,x3+3ax-x ln x=0在上有两个不同的解,即3a=ln x-x2在上有两个不同的解.设h(x)=ln x-x2,x∈,则h′(x)=-2x=.当x∈时,h′(x)≥0,h(x)单调递增;当x∈时,h′(x)<0,h(x)单调递减,所以h(x)max=h=-ln 2-,且h=-ln 2-,h(2)=ln 2-4,h>h(2),所以-ln 2-≤3a<-ln 2-,所以-ln 2-≤a<-ln 2-,即实数a的取值范围为.已知函数f(x)=x2+ax+1-,a∈R.(1)若f(x)在(0,1)上单调递减,求a的取值范围;(2)设函数g(x)=f(x)-x-a-1,若g(x)在(1,+∞)上无零点,求整数a的最小值.解:(1)由题知f′(x)=2x+a+≤0在(0,1)上恒成立,即a≤-2x恒成立.令h(x)=-2x,则h′(x)=-2=-2>0,所以h(x)在(0,1)上单调递增,所以a≤h(x)min=h(0)=1.故a的取值范围是(-∞,1].(2)由已知x>1,假设g(x)=0⇔-a=x+,记φ(x)=x+,则φ′(x)=1+.令φ′(x)>0,解得x>1+,所以φ(x)在(1,1+)上单调递减,在(1+,+∞)上单调递增,φ(1+)=1++=1+=1+∈(2,3),由题知-a=φ(x)在(1,+∞)内无解,故-a<φ(1+)<3,所以a>-φ(1+),所以整数a的最小值为-2.考点3 函数极值点的偏移问题——综合性(2021·新高考全国Ⅰ卷)已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<+<e.(1)解:函数f(x)的定义域为(0,+∞),又f′(x)=1-ln x-1=-ln x,当x∈(0,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,故f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:因为b ln a-a ln b=a-b,故b(ln a+1)=a(ln b+1),即=,故f =f .设=x1,=x2,由(1)可知不妨设0<x1<1,x2>1.因为x∈(0,1)时,f(x)=x(1-ln x)>0,x∈(e,+∞)时,f(x)=x(1-ln x)<0,故1<x2<e.先证:x1+x2>2,若x2≥2,x1+x2>2必成立.若x2<2,要证x1+x2>2,即证x1>2-x2,而0<2-x2<1,故即证f(x1)>f(2-x2),即证f(x2)>f(2-x2),其中1<x2<2.设g(x)=f(x)-f(2-x),1<x<2,则g′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)].因为1<x<2,故0<x(2-x)<1,故-ln x(2-x)>0,所以g′(x)>0,故g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,故f(x)>f(2-x),即f(x2)>f(2-x2)成立,所以x1+x2>2成立,综上,x1+x2>2成立.设x2=tx1,则t>1,结合=,=x1,=x2,可得x1(1-ln x1)=x2(1-ln x2),即1-ln x1=t(1-ln t-ln x1),故ln x1=,要证x1+x2<e,即证(t+1)x1<e,即证ln (t+1)+ln x1<1,即证ln (t+1)+<1,即证(t-1)ln (t+1)-t ln t<0.令S(t)=(t-1)ln (t+1)-t ln t,t>1,则S′(t)=ln (t+1)+-1-ln t=ln -.先证明一个不等式:ln(x+1)≤x.设u(x)=ln(x+1)-x,则u′(x)=-1=,当-1<x<0时,u′(x)>0;当x>0时,u′(x)<0,故u(x)在(-1,0)上为增函数,在(0,+∞)上为减函数,故u(x)ma x=u(0)=0,故ln(x+1)≤x成立.由上述不等式可得当t>1时,ln ≤<,故S′(t)<0恒成立,故S(t)在(1,+∞)上为减函数,故S(t)<S(1)=0,故(t-1)ln (t+1)-t ln t<0成立,即x1+x2<e成立.综上所述,2<+<e.对称化构造是解决极值点偏移问题的方法,该方法可分为以下三步:已知函数f(x)=ln x-ax有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)求证:x1·x2>e2.(1)解:f′(x)=-a=(x>0),①若a≤0,则f′(x)>0,不符合题意.②若a>0,令f′(x)=0,解得x=.当x∈时,f′(x)>0;当x∈时,f′(x)<0.由题意知f(x)有两个零点的必要条件为f(x)=ln x-ax的极大值f=ln -1>0,解得0<a<.显然e∈,f(e)=1-a e<0,∈,f=2ln-.设t=>e,g(t)=2ln t-t,g′(t)=-1<0,所以g(t)在(e,+∞)上单调递减,g(t)<g(e)=2-e<0,即f <0.所以实数a的取值范围为.(2)证明:因为f(1)=-a<0,所以1<x1<<x2.构造函数H(x)=f-f=ln -ln -2ax,0<x<.H′(x)=+-2a=>0,所以H(x)在上单调递增,故H(x)>H(0)=0,即f >f.由1<x1<<x2,知-x1>,故f(x2)=f(x1)=f <f=f.因为f(x)在上单调递减,所以x2>-x1,即x1+x2>.故ln (x1x2)=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.拓展考点 隐零点求解问题已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.(1)解:f(x)的定义域为(0,+∞),设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-,g′(1)=a-1=0,得a=1.若a=1,则g′(x)=1-.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增,所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x(x>0).设h(x)=2x-2-ln x,h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0,所以h(x)在上单调递减,在上单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在上有唯一零点x0,在上有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)·f′(x)+x+1>0,求k的最大值.解:(1)当a≤0时,f(x)的单调递增区间是(-∞,+∞),无单调递减区间;当a>0时,函数f(x)的单调递减区间是(-∞,ln a),单调递增区间是(ln a,+∞).(解答过程略)(2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+(x>0)恒成立.令g(x)=+x(x>0),得g′(x)=+1=(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点),且eα=α+2.当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=+α.又eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.1.按导函数零点能否精确求解可以把零点分为两类:1.已知函数f(x)=e x-a-eln(e x+a),若关于x的不等式f(x)≥0恒成立,求实数a的取值范围.解:由函数f(x)=e x-a-eln(e x+a),求得定义域为,对函数求导可得:f′(x)=e x-,则存在一个x0,使得f′(x0)=0,且-<x<x0时,f′(x)<0,x>x0时,f′(x)>0,则f(x)≥f(x0)=e x0-a-eln(e x0+a)=-a-e·ln e=e x0+-2e-a=e x0+a+-2e-2a.因为e x0+a+≥2e,所以f(x0)≥2e-2e-2a=-2a≥0,则a≤0,所以实数a的取值范围为(-∞,0].2.已知函数f(x)=.(1)求函数f(x)的零点及单调区间;(2)求证:曲线y=存在斜率为6的切线,且切点的纵坐标y0<-1.(1)解:函数f(x)的零点为e.函数f(x)的单调递增区间为(e,+∞),单调递减区间为(0,e).(解答过程略)(2)证明:要证曲线y=存在斜率为6的切线,即证y′==6有解,等价于1-ln x-6x2=0在x>0时有解.构造辅助函数g(x)=1-ln x-6x2(x>0),g′(x)=--12x<0,函数g(x)在(0,+∞)上单调递减,且g(1)=-5<0,g=1+ln 2->0,所以∃x0∈,使得g(x0)=1-ln x0-6x=0.即证明曲线y=存在斜率为6的切线.设切点坐标为,则y===-6x0,x0∈.令h(x)=-6x,x∈,由h(x)在区间上单调递减,则h(x)<h=-1,.所以y0<-1求证:x1x2>e2(e为自然对数的底数).[四字程序]思路参考:转化为证明ln x1+ln x2>2,根据x1,x2是方程f′(x)=0的根建立等量关系.令t=,将ln x1+ln x2变形为关于t的函数,将ln x1+ln x2>2转化为关于t的不等式进行证明.证明:欲证x1x2>e2,需证ln x1+ln x2>2.若f(x)有两个极值点x1,x2,则函数f′(x)有两个零点.又f′(x)=ln x-mx(x>0),所以x1,x2是方程f′(x)=0的两个不等实根.于是,有解得m=.另一方面,由得ln x2-ln x1=m(x2-x1),从而得=,于是,ln x1+ln x2==.又0<x1<x2,设t=,则t>1.因此,ln x1+ln x2=,t>1.要证ln x1+ln x2>2,即证>2,t>1.即当t>1时,有ln t>.设函数h(t)=ln t-,t>1,则h′(t)=-=≥0,所以,h(t)为(1,+∞)上的增函数.又h(1)=0,因此,h(t)>h(1)=0.于是,当t>1时,有ln t>.所以ln x1+ln x2>2成立,即x1x2>e2.思路参考:将证明x1x2>e2转化为证明x1>.依据x1,x2是方程f′(x)=0的两个不等实根,构造函数g(x)=,结合函数g(x)的单调性,只需证明g(x2)=g(x1)<g.证明:由x1,x2是方程f′(x)=0的两个不等实根,且f′(x)=ln x-mx(x>0),所以mx1=ln x1,mx2=ln x2.令g(x)=,g(x1)=g(x2),由于g′(x)=,因此,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减.又x1<x2,所以0<x1<e<x2.令h(x)=g(x)-g(x∈(0,e)),h′(x)=>0,故h(x)在(0,e)上单调递增,故h(x)<h(e)=0,即g(x)<g.令x=x1,则g(x2)=g(x1)<g.因为x2,∈(e,+∞),g(x)在(e,+∞)上单调递减,所以x2>,即x1x2>e2.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量k=t1-t2<0构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设k=t1-t2<0,则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2.即只需证明t1+t2>2,即>2⇔k(1+e k)<2(e k-1)⇔k(1+e k)-2(e k-1)<0.设g(k)=k(1+e k)-2(e k-1)(k<0),则g′(k)=k e k-e k+1.令m(k)=k e k-e k+1,则m′(k)=k e k<0,故g′(k)在(-∞,0)上单调递减,故g′(k)>g′(0)=0,故g(k)在(-∞,0)上单调递增,因此g(k)<g(0)=0,命题得证.思路参考:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞),推出=e t1-t2.将证明x1x2>e2转化为证明t1+t2>2,引入变量=k∈(0,1)构建函数进行证明.证明:设t1=ln x1∈(0,1),t2=ln x2∈(1,+∞).由得⇒=e t1-t2.设=k∈(0,1),则t1=,t2=.欲证x1x2>e2,需证ln x1+ln x2>2,即只需证明t1+t2>2,即>2⇔ln k<⇔ln k-<0.设g(k)=ln k-(k∈(0,1)),g′(k)=>0,故g(k)在(0,1)上单调递增,因此g(k)<g(1)=0,命题得证.1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要具有良好的转化与化归能力、运算求解能力、逻辑思维能力.本题的解答体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.已知函数f(x)=x ln x-2ax2+x,a∈R.(1)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(2)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.(1)解:f′(x)=ln x+2-4ax.因为f(x)在(0,+∞)内单调递减,所以f′(x)=ln x+2-4ax≤0在(0,+∞)内恒成立,即4a≥+在(0,+∞)内恒成立.令g(x)=+,则g′(x)=.所以,当0<x<时,g′(x)>0,即g(x)在内单调递增;当x>时,g′(x)<0,即g(x)在内单调递减.所以g(x)的最大值为g=e,所以实数a的取值范围是.(2)证明:若函数f(x)有两个极值点分别为x1,x2,则f′(x)=ln x+2-4ax=0在(0,+∞)内有两个不等根x1,x2.由(1),知0<a<.由两式相减,得ln x1-ln x2=4a(x1-x2).不妨设0<x1<x2,则<1,所以要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,亦即证明>ln.令函数h(x)=-ln x,0<x<1,所以h′(x)=<0,即函数h(x)在(0,1)内单调递减.所以当x∈(0,1)时,有h(x)>h(1)=0,所以>ln x,即不等式>ln成立.综上,x1+x2>,命题得证.。

高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

π
π
-π,, 0,
____________.
2
2
由题意可知 f'(x)=sin x+xcos x-sin x=xcos x.
令 f'(x)=xcos x>0,解得其在区间(-π,π)内的解集为
即 f(x)的单调递增区间为
π
-π,- 2
,
π
0, 2
.
π
-π,2

π
0,
2
,
解题心得利用导数讨论函数单调性或求单调区间的方法
等,都需要考虑函数的单调性,所以也是高考必考知识.应用时,要注意函数
的定义域优先,准确求导变形,转化为导函数在某区间上的符号问题.常用
到分类讨论和数形结合的思想,对数学运算核心素养有一定的要求.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
解 (1)若a=1,则f(x)=3x-2x2+ln x的定义域为(0,+∞),
1
-42 +3+1
故 f'(x)= -4x+3=


=
-(4+1)(-1)
(x>0).

当x∈(0,1)时,f'(x)>0,即函数f(x)=3x-2x2+ln x单调递增;



1
2
7
7
即 g(x)在区间[1,4]上单调递增,g(x)max=g(4)= − =- ,即 a≥- .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析 由题意知,当x∈(0,2)时,f(x)的最大值为-1.
令 f′(x)=1x-a=0,得 x=1a, 当 0<x<1a时,f′(x)>0; 当 x>1a时,f′(x)<0. ∴f(x)max=f1a=-ln a-1=-1,解得 a=1.
解析答案
返回
题型三 函数极值和最值的综合问题
题型三 函数极值和最值的综合问题
又当 a=-14时,f′(x)=12x12+-x12x=12x1x+-x1,
当0<x<1时,f′(x)<0;
当x>1时,f′(x)>0, 所以f(1)是函数f(x)的极小值所,以 a=-14.
解析答案
返回
题型二 用导数求函数的最值
题型二 用导数求函数的最值
例 4 已知 a∈R,函数 f(x)=ax+ln x-1.
解析答案
命题点3 已知极值求参数
例3 (1)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b
=-_7___.
解析 由题意得f′(x)=3x2+6ax+b,
则ab2-+63aa+-3b=-01,=0, 解得ab==13, 或ab==29,,
经检验当a=1,b=3时,函数f(x)在x=-1处无法取得极值, 而a=2,b=9满足题意,故a-b=-7.
失误与防范
1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观 且有条理,减少失分的可能. 2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认 真比较才能下结论. 3.函数在给定闭区间上存在极值,一般要将极值与端点值进行比较 才能确定最值.
返回
ቤተ መጻሕፍቲ ባይዱ
练出高分
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
§3.2 导数的应用
课时2 导数与函数的极值、最值
内容
索引
题型一 用导数解决函数极值问题
题型二 用导数求函数的最值
题型三 函数极值和最值的综合问题
答题模板系列
思想方法 感悟提高
练出高分
题型一 用导数解决函数极值问题
题型一 用导数解决函数极值问题
命题点1 根据函数图象判断极值
例1 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1- x)f′(x)的 图 象 如 图 所 示 , 则 函 数 f(x)的 极 大 值 、f极(-小2值)、分f(别2)是
解析答案
返回
答题模板系列
答题模板系列 3.利用导数求函数的最值问题
典例 (14分)已知函数f(x)=ln x-ax (a∈R). (1)求函数f(x)的单调区间; 思维点拨 (1)已知函数解析式求单调区间,实质上是求f′(x)>0, f′(x)<0的解区间,并注意定义域. (2)先研究f(x)在[1,2]上的单调性, 再确定最值是端点值还是极值.(3)两小问中,由于解析式中含有参数a, 要对参数a进行分类讨论.
1.当函数y=x·2x取极小值时,x-=ln_1_2____. 解析 令y′=2x+x·2xln 2=0,
∴x=-ln12.
经验证,-ln12为函数 y=x·2x 的极小值点.
解析答案
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.函数y=ln x-x在x∈(0,e]上的最大值-为1____. 解析 函数y=ln x-x的定义域为(0,+∞).
ax2+bx+c 例 5 已知函数 f(x)= ex (a>0)的导函数 y=f′(x)的两个零点为 -3 和 0.
(1)求f(x)的单调区间;
解析答案
(2)若f(x)的极小值为-e3,求f(x)在区间[-5,+∞)上的最大值.
思维升华
解析答案
跟踪训练3
已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1], 则f(m)+f′(n)的最小值是_____.
思维点拨
解析答案
(2)当a>0时,求函数f(x)在[1,2]上的最小值.
温馨提醒
答题模板
解析答案
返回
思想方法 感悟提高
方法与技巧
1.如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,
那么它必有最大值和最小值. 2.求闭区间上可导函数的最值时,对函数的极值是极大值还是极小 值可不作判断,直接与端点的函数值比较即可. 3.当连续函数的极值点只有一个时,相应的极值必为函数的最值. 4.求极值、最值时,要求步骤规范、表格齐全,含参数时,要讨论 参数的大小.
解析答案
(2)若函数 f(x)=x33-a2x2+x+1 在区间(12,3)上有极值点,则实数 a 的取值 范围是____________.
思维升华
解析答案
(1)函数 y=2x-x12的极大值是-__3__. 解析 y′=2+x23,令 y′=0,得 x=-1.
当x<-1时,y′>0;当x>-1时,y′<0.
___________.
解析 由题图可知,当x<-2时,f′(x)>0; 当-2<x<1时,f′(x)<0; 当1<x<2时,f′(x)<0; 当x>2时,f′(x)>0. 由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.
解析答案
命题点2 求函数的极值
例 2 已知函数 f(x)=ax3-3x2+1-3a(a∈R 且 a≠0),求函数 f(x)的极 大值与极小值.
∴当x=-1时,y取极大值-3.
跟踪训练1
解析答案
(2)设f(x)=ln(1+x)-x-ax2,若f(x)在x=1处取得极值,则a的-值14 为
____.
解且析f′(x由)=题1意+1 知x-,2fa(xx-)的1=定-义2域ax为21-+(-2xa1+,1+x,∞), 由题意得:f′(1)=0,则-2a-2a-1=0,得 a=-14,
又 y′=1x-1=1-x x,令 y′=0 得 x=1,
当x∈(0,1)时,y′>0,函数单调递增; 当x∈(1,e]时,y′<0,函数单调递减. 当x=1时,函数取得最大值-1.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线
方程;
解析答案
(2)求f(x)在区间(0,e]上的最小值.
思维升华
解析答案
跟踪训练2
已知 y=f(x)是奇函数,当 x∈(0,2)时,f(x)=ln x-ax (a>12),当 x∈(-2,0) 时,f(x)的最小值为 1,则 a 的值等于__1_.
相关文档
最新文档