第2章 运动定律与力学中的守恒定律
2-5-角动量-角动量守恒定律

力矩,等于力的作用点
对该点的位矢与力的矢
积,即
M
r
F
M 的方向垂直于r和F所决定的
平面,指向用右手法则确定。
M x yFz zFy
在直角坐标系中,表示式为 M y zFx xFz
3
第2章 运动定律与力学中的守恒定律
M z xFy yFx
2–5 角动量 角动量守恒定律
2 质点的角动量定理
例2.16 在光滑的水平桌面上,放有质量为M的木块, 木块与一弹簧相连,弹簧的另一端固定在O点,弹簧
的劲度系数为k,设有一质量为m的子弹以初速 v0
垂直于OA射向M并嵌在木块内.弹簧原长 l0 ,子弹击
中木块后,木块M运动到B点时刻,弹簧长度变为l,
此时OB垂直于OA,求在B点时,木块的运动速v2度 .
解 击中瞬间,在水平 面内,子弹与木块组成 的系统沿 v0方向动量守 恒,即有
mv0 (m M )v1 6 第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量守恒定律
2-5-角动量-角动量守恒定律
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量守恒定律
v L
rv
pv
rr
r xi
r yj
r zk
pr
r pxi
r py j
r pzk
rr
pr
(
ypz
zpy
r )i
( zpx
xpz
)
r j
( xp y
ypx
r )k
Z
rr
rr rr
tr
Mdt 叫冲量矩 t0
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量守恒定律
力守恒定律

上一页
下一页
返回
2. 1牛顿运动定律
4.万有引力 这是存在于任何两个物体之间的吸引力。它的规律是胡克、牛顿 等人发现的。按牛顿万有引力定律,质量分别为m1和m2的两个质点, 相距为r时,它们之间的引力大小为
式中的G0叫做万有引力恒量,在国际单位制中,它的大小经测定为
上一页
下一页
返回
2. 1牛顿运动定律
上一页 下一页 返回
2. 1牛顿运动定律
(4)牛顿第二定律只适用于研究宏观物体、低速运动问题,同时所用参 照系应该是相对于地面静止或匀速直线运动的物体,a是相对地面的 加速度。 (5)牛顿第二定律是动力学的核心规律,是本章重点和中心内容,在力 学中占有重要的地位。 3.牛顿第三定律 力是物体对物体的作用,当甲物对乙物施加力的作用的同时,也 受到乙物对它施加的方向相反的作用,因此,物体间的作用总是相互 的,成对出现的。我们把两个物体间相互作用的这对相反的力叫做作 用力和反作用力。它们遵从的规律就是牛顿第三定律,又叫作用力和 反作用力定律
上一页
下一页
返回
2. 2动量守恒
如在完全弹性碰撞过程中v2 - v1 =v10 - v20 ,可得碰撞后两球的速 度为
在碰撞前后系统动能的增量为
此式说明,在完全弹性碰撞前后,系统的动能守恒。
上一页 返回
2. 3 能量守恒
2. 3. 1功动能定理
1.功 如有一质点在力F的作用下,沿图2一14所示的路径AB运动。设 在时刻t、质点位于A,经过时间间隔dt,质点的位移为,dt。力F与 质点位移之间的夹角为θ 在物理学中,功的定义是:力对质点所做的功为力在质点位移方 向的分矢量与位移大小的乘积。按此定义,该力所作的元功为
第2章力守恒定律
2-5角动量 角动量守恒定律

例:一个人站在转台(质量为M,半径为R)的边
缘,质量为m ,当人沿转台边缘行走一周时,人和转台
相对地面各转过了多少角度?
解:取人和转台为一系统,对整个系统而言,M 0
系统的角动量守恒。
取地面为参照系,人相对地面转动的角速度为 1,
转台相对地面转动的角速度为 2 ,人相对转台转动的
角速度为 。
(mR2 )1
12 v0
7l
由角动量定理
M dL d(I) dI
dt dt
dt
即
mgr cos d ( 1 ml2 mr2 ) 2mr dr
dt 12
dt
考虑到 t
dr g cost 7lg cos(12v0 t)
dt 2
24 v0
7l
§2.5角动量 角动量守恒定律 第2章 运动定律与力学中的守恒定律
§2.5角动量 角动量守恒定律 第2章 运动定律与力学中的守恒定律
2.5.L2 质r点的p角动量定dp理
F,
dL ?
dL
d
(r
dt
p)
r dp
dt
dr
p
dt
dr v,
dt
v p 0
dt dL
dt r dp
r
F
dt
dt
dt
M
dL
作用于质点的合力对参考点 O 的力矩 ,等于质点对该点 O 的角
得 LdL m2 gR3 cosd
L LdL m2gR3
cosd
0
0
L mR 3 2 (2g sin )1 2
L mR 2
( 2g sin )1 2
R
§2.5角动量 角动量守恒定律 第2章 运动定律与力学中的守恒定律
运动学中的牛顿第二定律和动量守恒

运动学中的牛顿第二定律和动量守恒运动学是物理学中的重要分支,其研究对象是物体的运动规律。
在物体运动中,往往受到各种力的作用,而力的作用会导致物体的加速度发生改变,牛顿第二定律正是描述了这一过程。
另外,为了更好地解释物体在运动过程中的变化,动量守恒原理也是必备的知识。
一、牛顿第二定律牛顿第二定律,也称为力学基本定律,是经典力学中最基本的定律之一。
其表述为:任何物体的加速度,都与作用在该物体上的总力成正比,与物体的质量成反比。
其数学表达式为F=ma,其中,F代表物体所受的总力,m代表物体的质量,a代表物体的加速度。
牛顿第二定律的意义在于揭示了力与加速度之间的本质联系,即力是决定物体运动状态的关键因素之一。
通过对物体所受力的分析,可以推断出物体受力后的加速度变化情况,从而预测物体在未来的运动状态。
二、动量守恒动量守恒原理是指在一个孤立系统中,系统的总动量守恒不变。
其中所谓的孤立系统,是指除系统内部的物体之外,不受外界其他物体的干扰和影响。
这意味着,系统内部各个物体的动量之和,在任何时刻都不会改变。
动量守恒原理的实质是基于动量的守恒性质进行推导的。
动量,是一个物体的运动量,它的大小与物体的质量和速度有关。
例如,一个质量为m,速度为v的物体,其动量为p=mv。
在一个系统中存在多个物体时,系统的总动量就是各个物体动量的代数和,即P=Σp。
动量守恒原理的应用范围非常广泛。
例如在弹球撞击、爆炸等过程中,可以通过动量守恒原理推导出撞击后物体的速度和方向变化;在行星运动等天文学问题中,也能够应用到动量守恒原理,推导出天体的轨道变化等。
三、牛顿第二定律和动量守恒的联系牛顿第二定律和动量守恒原理,是经典力学中的两个基本定律,它们之间存在着紧密的联系。
一方面,牛顿第二定律揭示了力与加速度之间的关系,而力又与动量变化有密切的联系。
这意味着,如果我们知道物体所受的力,就可以通过牛顿第二定律推导出物体的加速度变化,从而确定物体动量的变化情况。
理论力学中的动量守恒定律

理论力学中的动量守恒定律动量守恒定律是理论力学中的基本定律之一。
它揭示了物体在运动过程中动量的守恒特性,对于解释和预测物体的运动状态具有重要意义。
本文将从动量守恒定律的原理、运用和实际意义等方面进行论述。
一、动量守恒定律的原理动量,简单而言,是物体运动状态的量度。
它是速度和质量的乘积,用数学表示为p=mv。
根据牛顿第二定律F=ma,可以通过引入力的概念,将动量的变化量表示为FΔt=Δmv,进一步化简为FΔt=Δp。
由此可见,力对物体的作用产生了动量的变化。
然而,实验表明,在某些情况下,物体在没有外力作用的情况下,其动量仍然保持不变。
这就是动量守恒定律的核心内容。
动量守恒定律的表达方式可以简述为:在一个孤立系统内,当外力对系统的合外力为零时,系统内各个物体的动量之和保持不变。
数学表达为ΣFext=0,则Σp=常数。
二、动量守恒定律的应用动量守恒定律在实际问题中有着广泛的应用。
下面以两个典型例子来说明:1. 弹性碰撞在理论力学中,弹性碰撞是指两个物体之间没有能量的损失,即动能在碰撞前后保持不变的碰撞过程。
在弹性碰撞中,根据动量守恒定律,可以得到碰撞前后物体动量的数学关系。
例如,两个质量分别为m1和m2的物体,在弹性碰撞过程中,碰撞前后动量守恒的数学表达式为m1v1i + m2v2i = m1v1f + m2v2f,其中vi和vf分别表示碰撞前后的速度。
2. 火箭推进原理火箭推进原理是利用动量守恒定律的一个重要应用。
当火箭喷射出高速气体时,由于喷射产生的反作用力可以看作是外力,火箭与喷射出的气体满足动量守恒定律。
根据动量守恒定律,可以推导出火箭的质量变化与速度变化之间的关系,即火箭质量减小,速度增加。
三、动量守恒定律的实际意义动量守恒定律的实际意义非常重大。
首先,它为解释和预测物体的运动行为提供了基本原理和依据。
通过动量守恒原理可以解释一些复杂的运动现象,如碰撞、爆炸、运动轨迹等。
其次,动量守恒定律在工程设计和科学研究中具有广泛应用。
大学物理第二章习题质点力学的基本规律 守恒定律

基本要求
掌握经典力学的基本原理及会应用其分析和处理质点动力学问题,理 解力学量的单位和量纲。掌握动量、冲量、动量定理,动量守恒定律。并 能分析和计算二维平面简单力学问题。理解惯性系概念及经典力学的基本 原理的适用范围。掌握功与功率、动能、势能(重力势能、弹性势能、引 力势能)概念,动能定理、功能原理、机械能守恒定律。
教学基本内容、基本公式
1.牛顿定律
解牛顿定律的问题可分为两类: 第一类是已知质点的运动,求作用于质点的力; 第二类是已知作用于质点的力,求质点的运动.
2.基本定理 动量定理
动能定理
I
t2 t1
F (t )dt
mv
mv0
A12
2
F
(r)
dr
1
1 2
mv
2 2
1 2
解:根据牛顿第二定律
f
k x2
m dv dt
m dv d x dx dt
mv
dv dx
k x2
mv
dv dx
v
dv
k
dx mx2
v
v
0
dv
A/4
A
k mx2
d
x
1v2 k (4 1) 3 k 2 m A A mA
另解:根据动能定理
v 6k /(mA)
(2)写出初末态系统的动量
t 时刻水平方向动量
dm m
t+dt时刻水平方向动量
O
x
(3)求出系统水平方向动量的增量
大学物理第2章-质点动力学基本定律

势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
2020年高中物理竞赛(力学篇)02运动、力学定律:对称性和守恒定律(共20张PPT)

r
U
f AB
(r)
r
B B B
U U
fBA f AB
A r A A
三、时间平移对称性与机械能守恒律
时间平移的对称性意味着时间的均匀性,表示系统 的势函数与时间无关,这将导致能量守恒。
讨论一维情况: EP x, t t E p( x, t)
对两个粒子的保守系统有:
EP x1, x2, t t Ep(x1, x2, t)
用泰勒级数展开
EP x1,
x2, t
t
E p ( x1 ,
x2, t)
EP t
t
高次项
EP x1,
x2, t
t
E p ( x1 ,
x2, t)
E P t
t
高次项
上式中必有:EP 0 t
考虑动能和势能可推导出
dEP 0 dt
E 常数
如果系统对于时间平移是对称的,那么系统
的能量一定守恒。——能量守恒定律
x r sin cos y r sin sin z r cos
o
r
P
x
m
2x t 2
E p x
m
2 y t 2
E p y
y
EP
t
Lz
m
2z t 2
E p z
Ep具有旋转不变性,即与φ无关
EP 0
t Lz 0
Lz 常量
空间旋转对称性意味着空间旋转一个角度,系
统势函数保持不变,必然导致角动量守恒。
系统
外界
孤立系统 封闭系统 开放系统
n
外力 F Fi
i1
· ·i · ·
内力 fij f ji
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r2
r1
F保 dr ( E p 2 E p1 ) E P
24
或
F保 dr dE p
2
保守力的功等于系统势能增量的负值。 r E p1 F保 dr E p 2
r1
若选定势能零点为 Ep2=0
Ep
零点 p
F保 dr
第2章 运动定律与力学中的守恒定律
§2.1 §2.2 §2.3 §2.4 §2.5 牛顿运动定律 动量 动量守恒定律 功 动能 势能 机械能守恒定律 角动量 角动量守恒定律 刚体的定轴转动
1
物体间的相互作用称为力,研究
物体在力的作用下运动的规律称为
动力学.
2
§2-1 牛顿运动定律 一、惯性定律 惯性参考系
S/系
光滑
S/:牛顿定律不成立 a/ 0
/ / F 0 ma
S系
a/
as
S:牛顿定律成立 a=0
F 0
4
① 确定惯性系──只有通过力学实验 根据天文观察,以太阳系作为参照系研究行星 运动时发现行星运动遵守牛顿定律,所以太阳系是 一个惯性系。 ② 相对于已知惯性系作匀速直线运动的参照系也 是惯性系
13
三、动量守恒定律
一个孤立的力学系统或合外力为零的系统,系统 内各质点间动量可以交换,但系统的总动量保持不变。 这就是动量守恒定律。 n 即: Fi 0, mi i =常矢量
i 1
iቤተ መጻሕፍቲ ባይዱ
说明: 1. 守恒条件是
i 1
n
Fi 0 而不是
t2
t1
( Fi )dt 0
(1)由点(0,0)沿x轴到(2,0).此时y=0,dy=0
W1 x 2dx = - 8/3 J
0
2
由点(2,0)平行y轴到点(2,4).此时x=2,dx=0
W2 6 ydy =48 J 0
4
20
W=W1+W2=
1 45 J 3
(2)因为由原点到点(2,4)的直线方程为y=2x,则 2 43 2 W 3 x dx y2dy =40 J 0 0 2 (3)因为y=x2,所以
1.牛顿第一定律 一孤立质点将永远保持其原来静止或匀速直线运 动状态. 牛顿第一定律又称为惯性定律. 意义: (1) 定性给出了两个重要概念,力与惯性 力是物体与物体间的相互作用. 惯性是物体的固有属性. (2) 定义了惯性参考系 惯性定律成立的参照系为惯性系。
3
2.惯性系与非惯性系 相对于孤立质点静止或作匀速直线运动的参考 系称为惯性参考系,简称惯性系. 牛顿定律只适用于惯性系。
一.质点的动量定理
定义: 质点的动量— △ 状态矢量 △ 相对量 定义:
p m
t 力的冲量 — I F dt
t0
9
若一个质点,所受合外力为 F d ( m ) dp F dt dt
质点动量定理:
微分形式
积分形式
dI Fdt dp t I Fdt p p0
15
功值的图示法
Fcosθ
dW 0
说明:
a
b
s
(1)功是标量,有正、负之分。
(2)功是过程量,与初末位置及运动路径有关。 2.功率 单位时间内所作的功称为功率
dr dW P F F dt dt
功率的单位:在SI制中为瓦特(w)
16
3.保守力的功 (1) 重力的功 物体m在重力作用下由a运动到b,取地面为坐 标原点. z
t0
作用于物体上的合外力的冲量等于物体动量 的增量这就是质点的动量定理。
I x Fx dt m x m x0
t0 t t
直角坐标系中:
I y Fy dt m y m y0
t0 t
I z Fz dt m z m z0
t0
10
冲量:
t I dI Fdt
第i个质点受的合外力
Fi fij
j i
Fi
则
( d i质点的动量定理: Fi fij) t d pi
d ( mi i ) dpi Fi fij dt dt ji
ji
pi
i
fij
f ji
j
对质点系:
d ( Fi f ij) t d pi
t0
dI Fdt
冲量的方向不能由某瞬时力的方向来决定 平均冲力
F 1 t2 t1
f
t2
t1
m 2 m 1 Fdt t2 t1
f t
说明: △ F应为合外力; △ 也只对惯性系成立。 △ p是状态量; I是过程量。
0
t t+△t
11
二、质点系的动量定理
力的叠加原理 F F1 F2 FN
F
N 1
i
i
6
分解: 直角坐标系中:
d x Fx ma x m dt d y Fy ma y m dt
d z Fz maz m dt
2 Fn m
自然坐标系中:
d F m dt
定量的量度了惯性:
m A aB mB a A
① 质量是物体惯性大小的量度; ② 引力质量:
GMm F r0 2 r
7
三、牛顿第三定律
当物体A以力F1作用在物体B上时,物体B也必定 同时以力F2作用在物体A上.F1和F2大小相等,方向 相反,且力的作用线在同一直线上.
F1 F2
22
合力对质点作的功等于质点动能的增量
例: 一质量为10 kg的物体沿x轴无摩擦地滑动,t=0时 物体静止于原点.(1)若物体在力F=3+4t N的作用下运 动了3 s,它的速度增为多大?(2)物体在力F=3+4x N 的作用下移动了3 m,它的速度增为多大?
解
(1)由动量定理
得
t
t
0
F d t m
作用力与反作用力: ①总是成对出现,一一对应的. ②不是一对平衡力. ③是属于同一性质的力. 说明: 若相对论效应不能忽略时,牛顿第三定律的这种 表达就失效了,这时取而代之的是动量守恒定律.
8
§2.2 动量 动量守恒定律
整个物理学大厦的基石,三大守恒定律: 动量守恒定律 能量转换与守恒 角动量守恒
26
四、质点系的动能定理与功能原理
1.质点系的动能定理
i质点
Fi外
1
i fij
2
1
2 Fi 外 dri
j
2 1 f ji dri d ( mi i2 ) 1 2
Wi外 Wi内 Eik 2 Eik1
对 i 求和
i 1
n
(Wi外 Wi内 ) Eik 2 Eik 1
• 重力势能: 选地球表面为势能零点
Ep 重 mgz
•万有引力势能: 通常选两质点相距无限远时的势能为零.
Ep 万
r
GmM GmM dr r r2
25
• 对弹性势能: 通常选弹簧自然长度时的 势能为零, 则 1 2 Ep 弹 kx 2 讨论: 1.势能是相对量,其值与零势能参考点的选择有关. 2.势能函数的形式与保守力的性质密切相关. 3.势能是以保守力形式相互作用的物体系统所共有. 4.势能物理意义可解释为: 一对保守力的功等于相关势能增量的负值.
19
例: 质点所受外力F=(y2-x2)i+3xyj,求质点由点(0,0) 运动到点(2,4)的过程中力F所做的功: (1)先沿x轴由点(0,0)运动到点(2,0),再平行y轴由点 (2,0)运动到点(2,4); (2)沿连接(0,0),(2,4)两点的直线; (3)沿抛物线y=x2由点(0,0)到点(2,4)(SI单位制). 解: W F dr ( y2 x 2 )dx 3 xydy
Mm F G 3 r r
dr
Mm dW G 3 r dr r 1 r dr d ( r r ) rdr 2
m
F r1
r21
F/
/ r21
r2
M
dW G
W
r2
Mm dr 2 r
r1
GMm GMm Mm )( ) G 2 dr ( r2 r1 r
W mgz2 mgz1
GMm GMm W [( )( )] r2 r1
1 2 1 2 弹性力的功 W ( kx2 kx1 ) 2 2 保守力的功只与初、终态的相对位置有关,说 明系统存在一种只与相对位置有关的能量。 可引入一个 由物体相对位置所决定而又具有能量性质的函 数,称之为势能函数。用Ep表示.
i
由牛顿第三定律有: 所以有:
fij 0
i ji
i i
ji
i
( Fi ) d t d pi
12
令 则有:
Fi F外 , pi p
i
F外 d t d p
i
t2
t1
F外 d t p2 p1
质点系总动量的增量等于作用于该系统上合外 力的冲量.
d F dr m dr m d dt
2
1
1 •Ek是状态量,相对量, Ek m 2 令 2 与参照系的选择有关 。 2 1 F dr d ( m 2 ) 1 2 2 1 1 2 2 F dr m 2 m1 1 2 2