大学物理运动定律与力学中的守恒定律.
大学物理 动量和动量守恒定律
解得
于是滑槽在水平面上移动的距离 S Vdt
0
t
m R M+m
22
大学 物理学
小
微分形式
结
积分形式
t1
•冲量
t2 I = Fdt
•质点的动量定理
dP F dt
I Fdt= P
t1
t2
•质点系的动量定理 F外 d Nhomakorabea dt
I 外= F外dt P
解:取车和人作为系统,该 系统水平方向动量守恒。设 人和车相对于地面的速度分 别为v 和 V,则
0 mv MV
mvdt MVdt mx MX M
0 0
t
t
xX L
L
x
M m
m X L Mm
大学 物理学
例2.13如图所示,在一个水平面上,炮车发射炮弹。 炮身质量为M,仰角为 ,炮弹质量为m。炮弹刚 出口时,相对于炮身的速度为u。不计地面摩擦, 求炮弹刚出口时炮车的速度。 解:取炮车和炮弹为系统。 u 系统所受的外力是重力和 支持力,都沿竖直方向, 所以水平方向动量守恒。 炮弹速度的水平分量为
t1
t2
•动量守恒定律
n 若F外 0, 则P= mi v i 恒 矢 量
i 1
惯性系
若f内 F外 , 则P= mi vi 恒矢量
i 1 n
n
若F外x 0, 则Px= mi vix 恒量
i 1
大学 物理学
§2-3 功 动能 势能 机械能守恒定律
F
大学 物理学
3. 严格不受外力或外力矢量和为零的系统 是很少见的,但 a.当外力<<内力 且作用时间极短时 (如碰撞),
大学物理,力学中的守恒定律3
r m v1
r v2
θ
M
βr
v
粒子和氧原子核系统,碰撞过程中无外力作用, 对α粒子和氧原子核系统,碰撞过程中无外力作用, 系统总动量守恒。 系统总动量守恒。
第16页 共27页 页 页
r 碰前: 氧原子核动量为0 碰前:α粒子动量为 mv1 氧原子核动量为 r r 碰后: 碰后:α粒子动量为 mv2 氧原子核动量为Mv
h
A
r v
第8页 共27页 页 页
大学物理
解:煤粉对A的作用力即单位时间内落下的煤粉给 煤粉对 的作用力即单位时间内落下的煤粉给 冲力大小等于煤粉 A的平均冲力。这个冲力大小等于煤粉单位时间内的 的平均冲力。 的平均冲力 这个冲力大小等于煤粉单位时间内的 动量改变量,方向与煤粉动量改变量的方向相反。 动量改变量,方向与煤粉动量改变量的方向相反。 如何求煤粉动量的改变量? 如何求煤粉动量的改变量? 设 ∆t 时间内落下的煤 粉质量为 ∆m 则有
煤粉给传送带的平均冲力为 F ′ = 149 N
Fy
与x轴的夹角为 β = 180o − 57.4o = 122.6o
第10页 共27页 页 页
火箭的运动: 火箭的运动:火箭依靠排出其内部燃烧室中 产生的气体来获得向前的推力。 产生的气体来获得向前的推力。设火箭发射时 的质量为m 速率为v 的质量为 0,速率为 0,燃料烧尽时的质量为 m′,气体相对于火箭排出的速率为 e。不计空 ′ 气体相对于火箭排出的速率为v 气阻力,求火箭所能达到的最大速率。 气阻力,求火箭所能达到的最大速率。 解:火箭和燃气组成一个质点系。 火箭和燃气组成一个质点系。 t时刻: 系统总质量为 m 时刻: r r 系统总动量为 p 1 = m v 时刻: t + dt 时刻: 火箭质量为 m + dm (dm < 0) 排出的燃气质量为 − dm
大学物理动量守恒定律和能量守恒定律
04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。
大学物理第二章习题质点力学的基本规律 守恒定律
基本要求
掌握经典力学的基本原理及会应用其分析和处理质点动力学问题,理 解力学量的单位和量纲。掌握动量、冲量、动量定理,动量守恒定律。并 能分析和计算二维平面简单力学问题。理解惯性系概念及经典力学的基本 原理的适用范围。掌握功与功率、动能、势能(重力势能、弹性势能、引 力势能)概念,动能定理、功能原理、机械能守恒定律。
教学基本内容、基本公式
1.牛顿定律
解牛顿定律的问题可分为两类: 第一类是已知质点的运动,求作用于质点的力; 第二类是已知作用于质点的力,求质点的运动.
2.基本定理 动量定理
动能定理
I
t2 t1
F (t )dt
mv
mv0
A12
2
F
(r)
dr
1
1 2
mv
2 2
1 2
解:根据牛顿第二定律
f
k x2
m dv dt
m dv d x dx dt
mv
dv dx
k x2
mv
dv dx
v
dv
k
dx mx2
v
v
0
dv
A/4
A
k mx2
d
x
1v2 k (4 1) 3 k 2 m A A mA
另解:根据动能定理
v 6k /(mA)
(2)写出初末态系统的动量
t 时刻水平方向动量
dm m
t+dt时刻水平方向动量
O
x
(3)求出系统水平方向动量的增量
大学物理64个必背定律
大学物理64个必背定律1. 牛顿第一定律:物体要保持静止或匀速直线运动,必须受到合力为零的作用。
2. 牛顿第二定律:物体受到的合力等于其质量乘以加速度。
3. 牛顿第三定律:对于任何两个物体之间的相互作用力,作用力大小相等,方向相反。
4. 引力定律:两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
5. 万有引力定律:两个物体之间的引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。
6. 雪崩原理:当物体上的压力大于它承受的极限时,会发生雪崩。
7. 质量守恒定律:在任何封闭系统中,质量不会凭空增加或减少,只会转化形态。
8. 能量守恒定律:在任何封闭系统中,能量不会凭空增加或减少,只会转化形态。
9. 动量守恒定律:在任何封闭系统中,动量的总和在时间变化过程中保持不变。
10. 波尔定律:原子的电子只能存在于特定的能级上,能级间的距离越大,对应的能量差越大。
11. 热力学第一定律:能量不能凭空产生或消失,只能从一种形式转化为另一种形式。
12. 热力学第二定律:自然界中,熵(系统的无序程度)总是增加的。
13. 斯特藩-玻尔兹曼定律:物体的辐射功率与其绝对温度的四次方成正比。
14. 欧姆定律:电流强度与电压成正比,与电阻成反比。
15. 电场定律:电场强度与电荷量的比例成正比,与距离的平方成反比。
16. 磁场定律:磁场强度与电流的乘积成正比,与距离的立方成反比。
17. 法拉第电磁感应定律:磁场变化会在闭合电路中产生感应电动势。
18. 焦耳定律:电功率等于电流的平方乘以电阻的大小。
19. 伽利略运动定律:物体在没有外力作用下,保持原来的速度和方向做匀速直线运动。
20. 弗莱明左手定则:带电粒子在磁场中受到的力是垂直于电流方向和磁场方向的。
21. 湿度定律:相对湿度与空气中水蒸气的压强之间存在一定的关系。
22. 斯涅耳定律:反射光线与折射光线所在平面的夹角等于入射角。
23. 斯托克斯定律:物体在流体中受到的阻力与速度成正比。
大学物理-第三章三大守恒定律
i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某
b v2
d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a
v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv
大学物理,力学中的守恒定律 1
保守力在 l 方向投影
v F保 = − gradEp = −∇Ep
=−
(
∂Ep ∂x
v ∂Ep v ∂Ep v i + ∂y j + ∂z k
)
第19页 共32页 页 页
大学物理
的质点在外力F的作用下沿 轴运动。 练习3 练习3 质量为 m的质点在外力 的作用下沿 轴运动。 的质点在外力 的作用下沿x轴运动 已知t 时质点位于原点, 已知 = 0时质点位于原点,初速度为零。力F随距离线 时质点位于原点 初速度为零。 随距离线 性减小, 性减小,x = 0处,F=F0; x=L处,F = 0。试求质点在 处 处 。 x=L处的速率。 处的速率。 处的速率
v s
s
b
(1) 变力的功 v v d 元功: 元功: A = F ⋅ d r v = F ⋅ d r ⋅ cos θ 直角坐标系: 直角坐标系:
= F d s cos θ
ds v r θd
b
v v v v v r F = Fx i + Fy j + Fz k r a r r r dr = dxi + dyj + dzk v v dA = F ⋅ dr = Fx dx + Fy dy + Fz dz
P
C
y
R
r F
m
解: v
.
o
v v F = F0 x i + F0 y j
v r
x
0
v v v d r = dx i + dyj
2R
v v v r = xi + yj
v v 2 A= ∫ F ⋅ dr = ∫ F xd x + ∫ F yd y = 2F R 0 0 0
大学物理上册-课后习题答案全解
大学物理上册课后习题答案第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.图取向上为正,人在竖直方向的位移为y = v y0t - gt2/2,移项得时间的一元二次方程,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ = rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ,v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A AB v v + uv - u ABv uuvv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以: ,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.图1h lα图 m(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:12图2 图(2), 因此角度为;而张力为. (5)与上一问相比,加速度的 方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.图图由于,所以,因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,图设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2,v x Δv v y可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .图(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解
大学物理上册课后习题答案第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t -=+.计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =. 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).图1.3人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其它问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变数得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变数得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n -=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+. 即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .v[注意]选择不同的坐标系,如x方向沿着a的方向或者沿着v0的方向,也能求出相同的结果.1.7一个半径为R= 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h = 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.由于212th a t=∆,所以a t = 2h/Δt2 = 0.2(m·s-2).物体下降3s末的速度为v = a t t = 0.6(m·s-1),这也是边缘的线速度,因此法向加速度为2nvaR== 0.36(m·s-2).1.8一升降机以加速度1.22m·s-2上升,当上升速度为2.44m·s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at=+;螺帽做竖直上抛运动,位移为22012h v t gt=-.由题意得h = h1 - h2,所以21()2h a g t=+,解得时间为t=.算得h2 = -0.716m,即螺帽相对于升降机外固定柱子的下降距离为0.716m.[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程h = (a + g)t2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A处向东飞到B处,然后又向西飞回到A处.已知气流相对于地面的速度为u,AB之间的距离为l,飞机相对于空气的速率v保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为2ltv=;(2)如果气流的速度向东,证明来回飞行的总时间为01221/ttu v=-;(3)如果气流的速度向北,证明来回飞行的总时间为2t=.[证明](1)飞机飞行来回的速率为v,路程为2l,所以飞行时间为t0 = 2l/v.(2)飞机向东飞行顺风的速率为v + u,向西飞行逆风的速率为v - u,所以飞行时间为1222l l vltv u v u v u=+=+--022222/1/1/tl vu v u v==--.(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB方向的速度大小为V=,所以飞行时间为图1.7A BA Bvv + uv - uA Bv uuvv22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律 2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、图1.101h lα图2.1与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m ga m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆12图2.32 图2.4线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求:(1)小球通过竖直位置时的速度为多少?此时绳的张力多大?(2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大? [解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此(2)图2.6d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C=+,当h = 0时,v = 0,所以C = 0,因此速率为v =图2.72.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程222d d k xf ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv Cx =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k kmv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C=-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =. (2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101nk C x n -=--, 因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d v f mg kv mt =--=,分离变数得d d()d v m mg kv t m mg kv k mg kv +=-=-++, 积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+,当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得001/k v v v t R μ=+. 由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,mg图2.11积分得冲量为/20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作向量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆=s -1). 棒给球冲量为I = m Δv = 7.3(N·s),对球的作用力为(不计重力):F = I/t = 366.2(N).2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma , 联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;t =.此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45° = 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πv xΔv v y图2.17sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为4520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因子为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理力学定律知识点归纳总结
大学物理力学定律知识点归纳总结力学是物理学中的基础学科之一,研究物体的运动和受力情况。
在力学的研究中,定律是描述物理现象和规律的重要工具。
本文将对大学物理力学中的一些重要定律进行归纳总结,以帮助读者更好地理解和掌握这些知识点。
一、牛顿定律1. 牛顿第一定律(惯性定律):物体在没有外力作用下,保持静止或匀速直线运动的状态。
2. 牛顿第二定律(运动定律):当作用于物体上的力不平衡时,物体将产生加速度,其大小与施加力成正比,与物体的质量成反比。
即F=ma。
3. 牛顿第三定律(作用与反作用定律):任何两个物体之间的作用力和反作用力大小相等、方向相反、作用在同一直线上。
二、运动学定律1. 平抛运动:当物体以一定初速度从一定高度水平抛出时,其运动轨迹为抛物线。
2. 自由落体运动:在无空气阻力的情况下,物体下落的加速度为重力加速度,大小约为9.8m/s²,竖直向下。
3. 匀加速直线运动:当物体受到恒定的加速度作用时,其位移与时间的关系可由一系列公式表示,如位移公式、速度公式和加速度公式等。
三、动量和能量守恒定律1. 动量守恒定律:在一个封闭系统中,当物体间没有外力作用时,系统总动量保持不变。
2. 动能守恒定律:在一个封闭系统中,当物体间没有外力做功时(即没有能量转化为其他形式),系统总动能保持不变。
3. 势能和功:物体在受力作用下发生位移时,力所做的功等于力对物体的位移的积。
而势能是物体由于位置或形状的变化而具有的能量。
四、静力学定律1. 牛顿第一定律的应用:当物体处于平衡状态时,所有受力之和等于零。
2. 牛顿第二定律和牛顿第三定律的应用:用于解决静力学问题,求解物体所受的支持力、摩擦力等。
五、万有引力定律1. 万有引力定律:两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
即 F=G(m1*m2/r²)。
2. 地球上物体的重力:地球对物体施加向地心的引力,被称为物体的重力,大小等于物体的质量乘以重力加速度。
大学物理 动量守恒定律 质心运动定理
mi vi 2 mi vi1
i 1 i 1
质点间的作用力是相互的,满足牛顿第三定律
f ji 0
n n 1 i 1 j 1
第2章 运动定律与力学中的守恒定律
2–3 动量 动量守恒定律 *质心运动定理
8
t2
t1
n n ( Fi外 )dt mi vi 2 mi v i1 n i 1 i 1 i 1
1 n zc m i z i m i 1
对质量连续分布的物体:
xdm xc m
说明
ydm yc m
zdm zc m
对密度均匀、形状对称的物体,其质心在 其几何中心.
第2章 运动定律与力学中的守恒定律
2–3 动量 动量守恒定律 *质心运动定理
1
力的累积效应 一、质点的动量定理 动量
F (t ) 对 t 积累 p , I F 对 r 积累 W , E
p mv
动量为矢量,方向与速度的方向相同。 单位:
kg m / s
第2章 运动定律与力学中的守恒定律
F ma d(mv) dp dv F a dt dt dt Fdt dp d (mv)
n 1 t2 t1 ( Fi外 f ji )dt i 1 j 1 n mi vi 2 mi vi1 n i 1
第2章 运动定律与力学中的守恒定律
2–3 动量 动量守恒定律 *质心运动定理
7
t2
t1
n n 1 t2 ( Fi 外 )dt ( f ji )dt n i 1 t1 i 1 j 1 n n
大学物理2-5 角动量 角动量守恒定律
A1 2 = Ek2 E k1
2–5 角动量 角动量守恒定律 5 一对作用力和反作用力的功
m1,m2组成一个封闭系统 在dt 时间内
m 1
r 1
f1
dr 1
dr2 dr1 m1 f1 r1 o r2 r21 f2 m2
m2 r2
f2 dr2
dA = f1 dr1 + f2 dr2
Z注意:不能先求合力,再求合力的功;只能先求每个力 注意:不能先求合力,再求合力的功; 注意 的功,再对这些功求和. 的功,2章 运动定律与力学中的守恒定律 第 再对这些功求和.
2–5 角动量 角动量守恒定律 5
质点系动能定理 质点系动能定理
A外 + A内非 + A内保 = Ek2 Ek1
质点系总动能的增量等于外力的功与质点系内保 守力的功和质点系内非保守力的功三者之和. 守力的功和质点系内非保守力的功三者之和.
注意
内力可以改变质点系的动能, 内力可以改变质点系的动能,但 内力不能改变质点系的总动量
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量守恒定律 5
功能原理
A内保 = E p = ( E p 2 E p1 )
Ep表示势能总和
A外 + A内非 = ( Ek2 Ek1 ) + ( Ep2 Ep1 )
的方向符合右手法则. L 的方向符合右手法则
第2章 运动定律与力学中的守恒定律
= 90
mv
直角坐标系中角 动量的分量表示
Lx = ypz zpy Ly = zpx xpz
Lz = xpy ypx
2–5 角动量 角动量守恒定律 5
大学物理参考答案(白少民)第2章 力学中的守恒定律
向心力
F心 = m
2 υc = mg sin α(3 + 2 cos θ) l
它由重力分力和绳子的张力共同提供 F心 = −mg sin αcos θ + Tc
∴T
c
= F心 + mg sin αcos θ = 3mg sin α + 2mg sin αcos θ + mg sin αcos θ
(1 + cos θ) =1.47(1 + cos θ)N = 3mg sin α
第二章 力学中的守恒定律 2.1 在下面两种情况中,合外力对物体作的功是否相同 ?(1)使物体匀速铅直地升高 h 。(2) 使 物体匀速地在水平面上移动 h。如果物体是在人的作用下运动的,问在两种情况中对物体作的功 是否相同? 答:合外力对物体做功不同。 2.2 A 和 B 是两个质量相同的小球,以相同的初速度分别沿着摩擦系数不同的平面滚动。 其中 A 球先停止下来,B 球再过了一些时间才停止下来,并且走过的路程也较长,问摩擦力对这两个 球所作的功是否相同? 答:摩檫力对两球做功相同。 2.3 有两个大小形状相同的弹簧:一个是铁做成的,另一个是铜做成的,已知铁制弹簧的倔 强系数比铜大。 (1) 把它们拉长同样的距离,拉哪一个做功较大? (2) 用同样的力来拉,拉哪一个做功较大? 答:(1)拉铁的所做功较大; (2)拉铜的做功较大。 2.4 当你用双手去接住对方猛掷过来的球时,你用什么方法缓和球的冲力。 答:手往回收,延长接球时间。 2.5 要把钉子钉在木板上,用手挥动铁锤对钉打击,钉就容易打进去。如果用铁锤紧压着钉 , 钉就很难被压进去,这现象如何解释? 答:前者动量变化大,从而冲量大,平均冲力也大。 2.6 "有两个球相向运动,碰撞后两球变为静止,在碰撞前两球各以一定的速度运动,即各 具有一定的动量。由此可知,由这两个球组成的系统,在碰撞前的总动量不为零,但在碰撞后, 两球的动量都为零,整个系统的总动量也为零。这样的结果不是和动量守恒相矛盾吗?" 指出上述讨论中的错误。 答:上述说法是错误的,动能守恒是成立的。虽然碰前各自以一定的速度不为零,相应的动 量也不为零,但动量是矢量,系统的总动量在碰前为 0,满足动量守恒定律。 2.7 试问:(1) 一个质点的动量等于零,其角动量是否一定等于零 ?一个质点的角动量等于零, 其动量是否一定等于零? (2) 一个系统对某惯性系来说动量守恒,这是否意味着其角动量也守恒? 答:(1)一个质点的动量等于零,其角动量也一定为零;一个质点的角动量等于零,其动 量不一定为零。 (2)一个系统对某惯性系来说动量守恒,这并不意味其角动量也守恒。 * * * * * * 2 2.8 一蓄水池,面积为 S = 50m ,所蓄的水面比地面低 5.0m,水深 d=1.5m。用抽水机把这 池里的水全部抽到地面上,问至少要作多少功? 解:池中水的重力为 F = mg = ρsdg =1.0 ×10 3 ×50 ×1.5 ×10 = 7.5 ×10 5
大学物理实验中的力学与动量守恒定律
大学物理实验中的力学与动量守恒定律在大学物理学的学习中,力学与动量守恒定律是一个重要的内容。
通过实验的方式来研究这些理论,既可以增加学生对物理概念的理解,又可以培养学生的动手能力和实验思维。
本文将介绍一些常见的大学物理实验,重点关注力学和动量守恒。
一、简谐振动实验简谐振动是物理学中一个基本概念,通过振动实验可以更好地理解这一概念。
实验中使用弹簧振子或单摆进行观察,可以探究质点的周期、频率与振幅之间的关系。
实验过程中,可以测量振子的运动时间,并通过公式计算周期和频率。
同时,可以改变振动幅度或质点的质量,观察对振动特性的影响。
二、牛顿摆实验牛顿摆实验是对力学定律的验证之一。
实验中,通过将一个重物挂在细绳的一端,使其在重力作用下摆动。
通过测量摆动的时间和摆长,可以计算出摆动周期,并与理论值进行比较。
实验还可以改变摆长或质量,观察对摆动的影响。
通过这个实验,可以更加深入地理解牛顿第二定律以及万有引力定律。
三、弹簧振子与动量守恒实验弹簧振子与动量守恒实验是力学与动量守恒定律的实际应用。
实验中,可以使用一段弹簧以及一些质量块,将弹簧压缩或伸长,然后释放质量块,观察其振动过程。
通过测量振动的时间和振幅,可以计算动能和势能的变化,并验证动量守恒定律。
实验还可以改变质量块的质量或弹簧的劲度系数,观察对振动特性和动量变化的影响。
四、碰撞实验碰撞实验是动量守恒定律的典型应用之一。
实验中可以使用弹簧枪和小球,使小球发生不同类型的碰撞,比如完全弹性碰撞或完全非弹性碰撞。
通过测量小球的质量和速度,可以计算碰撞前后的动量变化,并验证动量守恒定律。
实验还可以改变碰撞角度、质量或速度,观察对动量守恒的影响。
五、平衡实验平衡实验是力学中常用的实验方法之一。
通过平衡实验,可以研究各种力的平衡条件和受力分析。
实验中可以使用天平或力杆,通过调节质量或位置,使得物体保持平衡。
通过测量各个力的大小和方向,可以验证平衡条件以及力的合成和分解的原理。
大学物理学-刚体的转动定律
ω
v ri
vi
∆mi
v
Ek =
∑
i =1
n
1 1 n 1 2 2 2 2 ∆ m i ri ω = ( ∑ ∆ m i ri )ω = J ω 2 2 2 i =1 2
刚体绕定轴转动时的转动动能等于刚体的转动惯量 与角速度平方乘积的一半. 与角速度平方乘积的一半.
第2章 运动定律与力学中的守恒定律
支架S 支架S
外环 陀螺G 陀螺G 内环
2–6 刚体的定轴转动 6 直升机螺旋桨的设置
尾桨的设置: 尾桨的设置:直升机发动后机身要在旋翼旋转相反方向旋 产生一个向下的角动量。 转,产生一个向下的角动量。为了不让机身作这样的反向 旋转,在机身尾部安装一个尾桨, 旋转,在机身尾部安装一个尾桨,尾桨的旋转在水平面内 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。 产生了一个推力,以平衡单旋翼所产生的机身扭转作用。 对转螺旋桨的设置:双旋翼直升机则无需尾桨, 对转螺旋桨的设置:双旋翼直升机则无需尾桨,它在直立 轴上安装了一对对转螺旋桨, 轴上安装了一对对转螺旋桨,即在同轴心的内外两轴上安 装了一对转向相反的螺旋桨。工作时它们转向相反, 装了一对转向相反的螺旋桨。工作时它们转向相反,保持 系统的总角动量仍然为零。 系统的总角动量仍然为零。
力矩的功
A=
∫θ
θ2
1
M dθ
力矩的功率 力矩的功率
dA dθ P= =M = Mω dt dt
第2章 运动定律与力学中的守恒定律
2–6 刚体的定轴转动 6
9
3、刚体定轴转动的动能定理 、
大学物理电子教案
第二篇 电磁学
第三篇 热学 第四篇 振动与波 波动光学 第五篇 量子论
第一章 运动的描述
第二章 运动定律与力学中的守恒定律
第三章 相对论
第四章 静电场与稳恒电场
第五章 稳波
第八章 气体动理论基础 第九章 热力学基础
第十章
机械振动
第十一章 机械波 第十二章 光的干涉 第十三章 光的衍射
第十四章 光的偏振
第十五章 现代光学简介
第十六章 量子物理基础
第十七章 原子核物理和粒子物理简介 第十八章 新技术的物理基础
大学物理上册知识点
大学物理上册知识点本文将从以下几个方面介绍大学物理上册的知识点:物理学的基本概念、力学、运动学、牛顿定律、动能定理、势能定理、机械能守恒定律、粘滞阻力、动量、冲量定理等。
一、物理学的基本概念物理学是研究物质的本质、结构、运动规律、相互作用以及与能量、势能等物理量之间的关系的学科。
其研究对象主要为物理现象,其基本概念有物质、空间、时间、力、速度、加速度、力的作用效果等。
二、力学力学是物理学的一个分支,主要研究物体的运动和变形规律。
其中包括:运动学(描述物体的位置、速度和加速度等基本量)、动力学(描述物体的运动规律)和静力学(描述物体的平衡状态)。
三、运动学运动学是力学中的一个重要分支,主要研究物体的位置、速度和加速度等基本量以及它们之间的关系。
其中包括:直线运动和曲线运动,直线运动包括匀速直线运动、变速直线运动和自由落体运动;曲线运动包括圆周运动和抛体运动等。
四、牛顿定律牛顿定律是力学中最重要的定律之一。
它包括三个定律:第一定律(惯性定律,物体的运动状态只有当外力作用于物体时才会产生改变)、第二定律(运动定律,物体的加速度正比于作用于物体上的力,与物体的质量成反比)和第三定律(作用力与反作用力大小相等,方向相反,作用于不同的两个物体上)。
五、动能定理动能定理是指物体的动能变化量等于它所受合外力所做功的大小。
其中,动能是物体运动时的能量,它的大小与物体的质量和速度有关。
动能定理的表达式为:△K=Wext。
六、势能定理势能定理是指物体的势能变化量等于它所受合外力所做的功和其它能量转换的总和。
其中,势能是指物体在某个位置处由于位置对物体具有吸引或推开作用而具备的能量。
势能定理的表达式为:△U=Wext+Qint。
七、机械能守恒定律机械能守恒定律是指在没有外力做功的情况下,系统的总机械能保持不变。
其中,机械能是指系统中物体的动能和势能的综合体现,通过粘滞阻力的作用,机械能会随着时间的推移而逐渐减少。
机械能守恒定律较为严密,而机械能守恒范围的推广可得到以下结论:机械能守恒仅适用于质点或质点系与其它物体间相互作用时。
大学物理 角动量守恒定律
mv
L r p r mv
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量守恒定律
3
L r p r mv
L 的方向符合右手法则.
大小z ຫໍສະໝຸດ L mvL rmv sin
2
r
单位:千克二次方米每秒(Kg ·m2 /s )
第2章 运动定律与力学中的守恒定律
Lx ypz zp y
i i 0 j i k k i j
2–5 角动量 角动量守恒定律
5
i j k j j 0 k j i y
j
i k j j k i k k 0
质点所受外力对某参考点的力矩为零,则质点 对该参考点的角动量守恒。这就是质点的角动 量守恒定律。
M r F
地球
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量守恒定律
9
例2.16 在光滑的水平桌面上,放有质量为M的木块, 木块与一弹簧相连,弹簧的另一端固定在O点,弹簧 的劲度系数为k,设有一质量为m的子弹以初速 v0 垂直于OA射向M并嵌在木块内.弹簧原长 l0 ,子弹击 中木块后,木块M运动到B点时刻,弹簧长度变为l, 此时OB垂直于OA,求在B点时,木块的运动速度 v 2 . 解 击中瞬间,在水平 面内,子弹与木块组成 的系统沿 v0 方向动量守 恒,即有
l0 (m M)v1 l (m M)v2 sin
2 k( l l ) m2 2 0 v2 v 0 (m M)2 mM
arcsin
l0 mv0
2 l m2 v0 k(l l0 )2 (m M)