初三数学几何综合复习(一)

合集下载

初中数学几何图形初步知识点总复习含解析(1)

初中数学几何图形初步知识点总复习含解析(1)

初中数学几何图形初步知识点总复习含解析(1)一、选择题1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.下列立体图形中,侧面展开图是扇形的是()A .B .C .D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C .【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.6.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A .中B .考C .顺D .利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C .考点:正方体展开图.7.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( )A .10cm 2B .10πcm 2C .20cm 2D .20πcm 2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm 2,故选D .【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.8.下列图形中1∠与2∠不相等的是( )A.B.C.D.【答案】B【解析】【分析】根据对顶角,平行线,等角的余角相等等知识一一判断即可.【详解】解:A、根据对顶角相等可知,∠1=∠2,本选项不符合题意.B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.故选:B.【点睛】本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D 是平行四边形,∴EF ′=AD=3.∴EP+FP 的最小值为3.故选C .考点:菱形的性质;轴对称-最短路线问题10.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B .43C .532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.11.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A .左转80°B .右转80°C .左转100°D .右转100°【答案】B【解析】【分析】 如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C22129=15cm,故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB , S △ACD =12CD•AC ,S △ACB =12CB•AC , ∴S △ACD :S △ACB =1:3,∴S △DAC :S △ABD ≠1:3,错误,故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.18.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.。

2020年九年级数学中考复习:北京各校几何综合集训(pdf版,无答案)

2020年九年级数学中考复习:北京各校几何综合集训(pdf版,无答案)

1(人大附)2(清华附中)3(首师大附中)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD 的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图1,点D在BC边上.①依题意补全图1;②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长;(2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).,DE与AF交于点O.已知正方形ABCD,点E、F分别在射线AB、射线BC上,AE BF(1)如图1,当点E、F分别在射向AB、BC上时,则线段DE于AF的数量关系是________________,位置关系是____________.(2)如图2,当点E在线段AB延长线上时,将线段AE沿AF进行平移至FG,连接DG.①依题意将图2补全;②在点E运动的过程中,DG、AD、AE之间始终保持一种等量关系,你能找到这个关系并证明吗?6(海淀外国语)7(十一学校)如图1,在△ABC中,∠ACB=90°,AC=BC,E为∠ACB平分线CD上一动点(不与点C 重合),点E关于直线BC的对称点为F,连接AE并延长交CB延长线于点H,连接FB 并延长交直线AH于点G.(1)求证:AE=BF.(2)用等式表示线段FG,EG与CE的数量关系,并证明.(3)连接GC,用等式表示线段GE,GC与GF的数量关系是.1.如图①,在等腰Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D.点P 为线段CD上一点(不与端点C,D重合),PE⊥PA,PE与BC的延长线交于点E,与AC 交于点F,连接AE,AP,BP.(1)求证:AP=BP;(2)求∠EAP的度数;(3)探究线段EC,PD之间的数量关系,并证明.图①备用图10(北师大附属实验中学)11(陈经纶望京实验中学)12(海淀实验中学)26.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF =90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC .(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC 的值;(2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE =1,AB =2,当E ,F ,D 三点共线时,求DF 的长及tan ∠ABF 的值.19(北京教师进修学校)在ABC ∆中,AB AC AD CE =,,分别平分BAC ∠和ACB ∠,且AD 与CE 交于点M .点N 在射线AD 上,且NA NC =.过点N 作NF CE ⊥于点G ,且与AC 交于点F ,再过点F 作//FH CE ,且与AB 交于点H .(1)如图1,当60BAC ∠= 时,点M N G ,,重合.①请根据题目要求在图1中补全图形;②连结EF HM ,,则EF 与HM 的数量关系是______.(2)如图2,当120BAC ∠= 时,求证:AF EH =;(3)当36BAC ∠= 时,我们称ABC !为“黄金三角形”,此时12BC AC -=.若4EH =,直接写出GM 的长.20(西城实验)如图,正方形ABCD中,P是BA延长线上一点,且∠PDA=α(0° ﰐᢜ .点A,点E 关于DP对称,连接ED,EP,并延长EP交射线CB于点F,连接DF.(1)请按照题目要求补全图形(2)求证:∠EDF=∠CDF(3)∠EDF=______________(含有α的式子表示)(4)过点P做PH⊥DP交DF于点H,连接BH,猜想AP与BH的数量关系并加以证明.21(北外附中)22(北师大朝阳附属中学)已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA´,将射线BO 绕点B逆时针旋转150°与射线CA´交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.图1备用图GF E如图,在△ABC 中,∠ACB =90°,AC=BC ,E 为外角∠BCD 平分线上一动点(不与点C 重合),点E 关于直线BC 的对称点为F ,连接BE ,连接AF 并延长交直线BE 于点G .(1)求证:AF =BE ;(2)用等式表示线段FG ,EG 与CE 的数量关系,并证明.BA C D25(清华附中朝阳分校)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE 于点F,连接FC.(1)求证:∠FBC=∠CDF.(2)作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.26(十三分)在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形;②求证:()BF BC BD +=21;(2)点E 在AB 边上,连接CE .若()BF BC BD +=21,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路图1图2如图,在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.29(广渠门中学)如图,在△ABC中,∠ACB=90°,AC=BC,点D是射线CB上一点,连接AD,过D作DE ⊥AD交射线AB于点E,以A为旋转中心,将线段AD绕点A逆时针旋转90°得线段AF,过点F作FG⊥AF交AC的延长线于点G,连接EG.(1)如图1,点D在CB上.①依题意补全图1;②猜想DE、EG、FG之间的数量关系并证明;(2)如图2,点D在CB的延长线上.请直接写出DE、EG、FG之间的数量关系为.图1图230(北京四中璞瑅学校)在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连结EC.如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图1,请你判断线段CE、BD之间的位置和数量关系(直接写出结论);②当点D在线段BC的延长线上时,请你在图2画出图形,判断①中的结论是否仍然成立,并证明你的判断.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD 于点E.(1)记△ABC得外接圆为⊙O.①请用文字描述圆心O的位置;②求证:点E一定在⊙O上.(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.①依题意补全图形;②用等式表示线段AF,CE,BE的数量关系,并证明.已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求:∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.37(55中)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD =1时,补全图形,直接写出PB的长.38(161中学)39(八一)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.40(朝阳双语学校)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.41(陈经纶中学)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC 的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.42(二中)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B 作BF⊥DE,交射线DE于点F,连接CF.(1)如图1,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=(用含α的式子表示);③判断线段BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF .(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示);(2)求证:BF DF ⊥;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.在Rt△ABC中,∠ACB=90°,AC=BC,CD为AB边上的中线.在Rt△AEF中,∠AEF =90°,AE=EF,AF<AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.(1)如图1,点F在△ABC内,求证:CD=MN;(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.如图,等腰直角三角形ABC中,∠ACB=90°.D为射线BC上一动点.连接AD,将线段AD绕点A逆时针旋转90°至点E,连接AE、DE.点M、N分别是AB、DE的中点,连接MN.(1)如图1,点D在线段BC上.①猜想MN与AB的位置关系,并证明你的猜想;②连接EB,猜想BE与BC的位置关系;(2)在图2中,若点D在线段BC的延长线上,BE与BC的位置关系是否改变?请你补全图形后,证明你的猜想.49(牛栏山中学)50(人大附朝阳分校)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是__________;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.。

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)1.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+72.如图,直线l:与y轴交于点A,将直线l绕点A顺时针旋转75°后,所得直线的解析式为()A.y=x+B.y=x﹣C.y=﹣x+D.y=x+3.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10B.y=﹣2x+14C.y=2x+2D.y=﹣x+5 4.将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+3 6.将直线y=﹣2x+1向下平移2个单位,平移后的直线表达式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x﹣1D.y=﹣2x+3 7.将直线y=x平移,使得它经过点(﹣2,0),则平移后的直线为()A.y=x﹣2B.y=x+1C.y=﹣x﹣2D.y=x+28.将一次函数y=3x向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离()A.4B.6C.6D.129.把直线y=2x﹣1向下平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 11.将直线y=3x沿y轴向下平移1个单位长度后得到的直线解析式为()A.y=3x+1B.y=3x﹣1C.y=x+1D.y=x﹣112.在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2B.y=2x﹣5C.y=2x+1D.y=2x﹣113.将直线y=2x+1向上平移3个单位后得到的解析式为.14.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.16.将直线y=2x﹣5向上平移3个单位长度,所得直线的解析式为.17.把直线y=﹣2x+5向下平移2个单位,得到的直线解析式是.18.在平面直角坐标系xOy中,将函数y=3x+3图象向右平移5个单位长度,则平移后的图象与x轴、y轴分别交于A、B两点,则△AOB的面积为.19.将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.20.将直线y=﹣2x+3向下平移5个单位,得到直线.21.将直线y=2x向上平移2个单位后得到的直线解析式为.22.在平面直角坐标系中,把直线y=x沿y轴向上平移后得到直线AB,如果点P(m,n)是直线AB上的一点,且m﹣n+8=0,那么直线AB的函数表达式为.23.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.24.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x轴交点的坐标;(3)在(2)的条件下,直接写出y>0时,x的取值范围.25.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小红对函数y=的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象:x…﹣10123456…y……(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于y轴对称;②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.(3)若直线y=x+b与函数y=的图象只有一个交点,求b的值.26.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A,B两点.(1)在图中画出该一次函数并求其表达式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.27.有这样一个问题:探究函数y=|x+1|的图象与性质.小明根据学习一次函数的经验,对函数y=|x+1|的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)如表是x与y的几组对应值.x…﹣5﹣4﹣3﹣2﹣10123…y…432m01234…m的值为;(3)在如图网格中,建立平面直角坐标系xOy,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当x>﹣1时,y随x的增大而增大;③图象关于过点(﹣1,0)且垂直于x轴的直线对称.小明得出的结论中正确的是.(只填序号)28.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.29.一次函数y=2x+a的图象与x轴交与点(2,0),(1)求出a的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.30.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.31.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点.(1)求一次函数的解析式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.32.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x、y轴分别相交于点A、B,此直线向下平移后与y轴相交于点C、与x轴相交于点D,四边形ABCD的面积为18.(1)求直线CD的表达式;(2)如果点E在直线CD上,四边形ABED是等腰梯形,求点E的坐标.参考答案1.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.2.解:由直线l:可知,直线与x轴的夹角为60°,∴与y轴的夹角为30°,∴直线l绕点A顺时针旋转75°后的直线与y轴的夹角为45°,∴旋转后的直线的斜率为1,∵直线l:与y轴交于点A,∴A(0,).∴旋转后的直线解析式为:y=x+,故选:D.3.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.4.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.5.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+1+2,即y=﹣2x+3故选:D.6.解:由题意得:平移后的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,即.所得直线的表达式是y=﹣2x﹣1.故选:C.7.解:设平移后直线的解析式为y=x+b.把(﹣2,0)代入直线解析式得0=﹣2+b解得b=2所以平移后直线的解析式为y=x+2.故选:D.8.解:设平移的距离为k(k>0),则将一次函数y=3x向左平移后所得直线解析式为:y =3(x+k)=3x+3k.易求得新直线与坐标轴的交点为(﹣k,0)、(0,3k)所以,新直线与坐标轴所围成的三角形的面积为:•3k=24,解得k=4或﹣4(舍去).故选:A.9.解:根据题意,把直线y=2x﹣1向下平移1个单位后得到的直线解析式为:y=2x﹣1﹣1,即y=2x﹣2,故选:A.10.解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.11.解:由“上加下减”的原则可知:将直线y=3x沿y轴向下平移1个单位长度后,其直线解析式为y=3x﹣1.故选:B.12.解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选:D.13.解:由“上加下减”的原则可知,把直线y=2x+1上平移3个单位长度后所得直线的解析式为:y=2x+1+3,即y=2x+4,故答案为:y=2x+4.14.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.15.解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移3个单位所得函数的解析式为y=2x﹣5+3,即y=2x﹣2.故答案为:y=2x﹣2.17.解:由“上加下减”的原则可知,把直线y=﹣2x+5向下平移2个单位后所得直线的解析式为:y=﹣2x+5﹣2,即y=﹣2x+3.故答案为:y=﹣2x+3.18.解:根据题意知,平移后直线方程为y=3(x﹣5)+3=3x﹣12.所以A(4,0),B(0,﹣12).故OA=4,OB=12.所以S△AOB=OA•OB==24.故答案是:24.19.解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.20.解:原直线的k=﹣2,b=3.向下平移5个单位长度得到了新直线,那么新直线的k=﹣2,b=3﹣5=﹣2.∴新直线的解析式为y=﹣2x﹣2.故答案为:y=﹣2x﹣2.21.解:直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.故答案为y=2x+2.22.解:设直线AB的解析式为y=x+b.将(m,n)代入y=x+b,得m+b=n,则m﹣n+8=0,∴b=8,∴直线AB的解析式为y=x+8.故答案为y=x+8.23.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;24.解:(1)当x=2时,y=﹣3,∴﹣3=2k﹣4,则,∴,(2)图象向上平移6个单位长度,∴,当y=0时,x=﹣4,∴平移后的图象与x轴交点的坐标为(﹣4,0),(3)y>0时,x的取值范围为x>﹣4.25.解:(1)补充表格:x…﹣10123456…y…﹣2﹣1012222…画出函数图象如图所示:(2)由图象可知,正确的性质为②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.故答案为②③;(3)直线y=x+b与函数y=的图象只有一个交点,根据图象直线y=+b经过点(3,2),∴2=+b,∴b=.26.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,5),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=3x+2;(2)点(a﹣3,﹣a)在该一次函数y=3x+2的图象上,∴﹣a=3(a﹣3)+2,解得,a=,即a的值是;(3)把y=3x+2向下平移3个单位后可得:y=3x+2﹣3=3x﹣1,图象如图:27.解:(1)在函数y=|x+1|中,自变量x的取值范围是x为任意实数,故答案为:x为任意实数;(2)当x=﹣2时,m=|﹣2+1|=1,故答案为1;(3)画出函数的图象如图:;(4)由函数图象可知,①函数有最小值为0,正确;②当x>﹣1时,y随x的增大而增大,正确;③图象关于过点(﹣1,0)且垂直于x轴的直线对称,正确;.故答案为:①②③.28.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;29.解:(1)∵一次函数y=2x+a的图象与x轴交与点(2,0),∴4+a=0,解得a=﹣4;(2)将一次函数y=2x﹣4的图象向上平移5个单位长度,得到y=2x﹣4+5,即y=2x+1,故平移后的函数解析式为y=2x+1.30.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或.31.解:(1)∵一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点,∴,解得,即该一次函数的表达式是y=2x﹣1;(2)点(a﹣3,﹣a)在该一次函数y=2x﹣1的图象上,∴﹣a=2(a﹣3)﹣1,解得,a=,即a的值是;(3)把y=2x﹣1向下平移3个单位后可得:y=2x﹣1﹣3=2x﹣4,图象如图:32.解:(1)∵直线y=﹣x+8与x、y轴分别相交于点A、B,∴A(6,0)B(0,8),∴OA=6,OB=8,∴AB===10,∴S△AOB==24,四边形ABCD的面积为18.∴S△COD=24﹣18=6,∵AB∥CD,∴△COD∽△BOA,∴=()2,即=,∴OC=4,∴C(0,4),∴直线CD的解析式为:y=﹣x+4;(2)作DM⊥AB于M,EN⊥AB于N,∵四边形ABED是等腰梯形,∴AD=BE,∠DAB=∠EBA,∵∠DMA=∠ENB=90°,∴△ADM≌△BEN(AAS),∴AM=BN,∵直线CD的解析式为:y=﹣x+4,∴D(3,0),∴OD=3,∴AD=6﹣3=3,∵∠AMD=∠AOB,∠DAM=∠BAO,∴△ADM∽△ABO,∴=,即,∴AM=,∴BN=AM=,∴MN=10﹣2×=,∴ED=MN=,∵OD=3,OC=4,∴CD==5,∴CE=DE﹣CD=﹣5=,作EH⊥x轴于H,则EH∥OC,∴,即=,∴OH=,∴E的横坐标为﹣,把x=﹣代入直线CD:y=﹣x+4得y=,∴点E的坐标为(﹣,).。

决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)

决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)

决战2021年九年级中考复习数学考点满分专练——几何专题:《圆的综合》(一)1.如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,与⊙M相切于点H的直线EF交x轴于点E(﹣5,0),交y轴于点F(0,).(1)求⊙M的半径r;(2)如图2所示,连接CH,弦HQ交x轴于点P,若cos∠QHC=,求的值;(3)如图3所示,点P为⊙M上的一个动点,连接PE,PF,求PF+PE的最小值.2.如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.(1)求证:△AED是等腰直角三角形;(2)如图1,已知⊙O的半径为.①求的长;②若D为EB中点,求BC的长.(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.3.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH,若∠OHC=∠HCA=90°时,求证:CH=DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.4.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.5.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan∠AFC的值;(3)若△DEF与△AEB相似,求EF的值.6.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=12,AM=MC,求PB和DM的值.7.如图1,AB是⊙O的直径,C是⊙O上一点,CD⊥AB于D,E是BA延长线上一点,连接CE,∠ACE=∠ACD,K是线段AO上一点,连接CK并延长交⊙O于点F.(1)求证:CE是⊙O的切线;(2)若AD=DK,求证:AK•AO=KB•AE;(3)如图2,若AE=AK,=,点G是BC的中点,AG与CF交于点P,连接BP.请猜想P A,PB,PF的数量关系,并证明.8.对于平面内的点P和图形M,给出如下定义:以点P为圆心,以r为半径作⊙P,使得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1r2;(2)连接OB,点F是线段OB上的点,直线l:y=x+b;若存在正方形OABC的F点控制圆与直线l有两个交点,求b的取值范围.9.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sin A=,求BH的长.10.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.参考答案1.解:(1)如图1,连接MH,∵E(﹣5,0),F(0,﹣),M(﹣1,0),∴OE=5,OF=,EM=4,∴在Rt△OEF中,tan∠OEF==,∴∠OEF=30°,∵EF是⊙M的切线,∴∠EHM=90°,∴sin∠MEH=sin30°=,∴MH=ME=2,即r=2;(2)如图2,连接DQ、CQ,MH.∵∠QHC=∠QDC,∠CPH=∠QPD,∴△PCH∽△PQD,∴,由(1)可知,∠HEM=30°,∴∠EMH=60°,∵MC=MH=2,∴△CMH为等边三角形,∴CH=2,∵CD是⊙M的直径,∴∠CQD=90°,CD=4,∴在Rt△CDQ中,cos∠QHC=cos∠QDC=,∴QD=CD=3,∴;(3)连MP,取CM的点G,连接PG,则MP=2,G(﹣2,0),∴MG=CM=1,∴,又∵∠PMG=∠EMP,∴△MPG∽△MEP,∴,∴PG=PE,∴PF+PE=PF+PG,当F,P,G三点共线时,PF+PG最小,连接FG,即PF+PE有最小值=FG,在Rt△OGF中,OG=2,OF=,∴FG===.∴PF+PE的最小值为.2.解:(1)∵BC=CD,AB是直径,∴△BCD是等腰直角三角形,∴∠DBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD=45°,∴∠EOC=90°,∴△EOC是等腰直角三角形,∵⊙O的半径为,∴CE的弧长=×2×π×=;②∵D为EB中点,∴ED=BD,∵AE=ED,在Rt△ABE中,(2)2=AE2+(2AE)2,∴AE=2,∴AD=2,∵ED=AE,CD=BC,∠AED=∠BCD=90°,∴△AED∽△BCD,∴BC=;(3)∵AF:FD=7:3,∴AF=AD,过点E作EG⊥AD,∴EG=AD,∴GF=AD,∴tan∠EFG=,∴==,∴FO=r,在Rt△COF中,FC=r,∴EF=r,在Rr△EFG中,(r)2=(AD)2+(AD)2,∴AD=r,∴AF=r,∴AC=AF+FC=r,∵CD=BC=4,∴AC=4+AD=4+r,∴r=4+r,∴r=.3.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∴∠D+∠ABD=90°,∵FB是⊙O的切线,∴∠FBD=90°,∴∠FBA+∠ABD=90°,∴∠FBA=∠D,∵AB=AC,∴∠C=∠ABC,∵∠C=∠D,∴∠ABF=∠ABC;(2)如图2,连接OC,∵∠OHC=∠HCA=90°,∴AC∥OH,∴∠ACO=∠COH,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC+∠CBO=∠ACB+∠OCB,即∠ABD=∠ACO,∴∠ABD=∠COH,∵∠H=∠BAD=90°,∴△ABD∽△HOC,∴==2,∴CH=DA;(3)由(2)知,△ABD∽△HOC,∴=2,∵OH=6,⊙O的半径为10,∴AB=2OH=12,BD=20,∴AD==16,在△ABF与△ABE中,,∴△ABF≌△ABE,∴BF=BE,AF=AE,∵∠FBD=∠BAD=90°,∴AB2=AF•AD,∴AF==9,∴AE=AF=9,∴DE=7,BE==15,∵AD,BC交于E,∴AE•DE=BE•CE,∴CE===.4.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.5.解:(1)∵点A(0,4),∴AO=4,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得:42+x2=(x+2)2,解得:x=3,∴OB=BE=3,AB=5,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC∴==,设EF=x,则AF=4+x,BF=(4+x),∵在Rt△BEF中,BE2+EF2=BF2,∴32+x2=[(4+x)]2,解得:x=,即EF=,∴tan∠AFC===;(3)①当△DEF∽△AEB时,∠BAE=∠FDE,∴∠ADE=∠FDE,∴BD垂直平分AF,∴EF=AE=4;②当△DEF∽△BEA时,∠ABE=∠FDE,∴AB∥DF,∴∠ADF=∠CAB=90°,∴DF相切⊙Q,∴∠DAE=∠FDE,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,如图所示:则∠FDH=∠DAG,四边形OGHF是矩形,∴OG=FH,∵△ABE≌△ABO,∴∠OAB=∠EAB,∵AB⊥AD,∴∠DAE=∠CAO,∵∠CAO=∠DAE,∴∠DAE=∠DAE,∴∠DAE=∠DAG=∠FDE=∠FDH,∴AG=AE=4,∴EF=FH=OG=AO+AG=4+4=8,综上所述,若△DEF与△AEB相似,EF的值为4或8.6.(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴,∠A=∠A,∴△ADM∽△APO.(2)证明:∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠DOP=∠MDO,∠POC=∠DMO,∵OD=OM,∴∠DMO=∠MDO,∴∠DOP=∠POC,∵OP=OP,OD=OC,∴△ODP≌△OCP(SAS),∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(3)解:连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6,∵,∴,∴AP=18,∴DP=AP﹣AD=18﹣12=6,∵O是MC的中点,∴,∴点P是BC的中点,∴PB=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM===6,∵△BCM∽△CDM,∴,即,∴DM=2.7.解:(1)证明:连接OC,如图所示:∵CD⊥AB,∴∠CAD+∠ACD=90°,∵OA=OC,∴∠CAD=∠ACO,又∵∠ACE=∠ACD,∴∠ACE+∠ACO=90°,即∠ECO=90°,∴CE是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠B=90°,又∵∠CAD+∠ACD=90°,∠ACD=∠B,∴∠ACE=∠B,∵AD=DK,CD⊥AB,∴CA=CK,∠CAD=∠CKD,∴∠CAE=∠BKC,∴△CAE∽△BKC,∴=,∴AC•KC=AE•KB,又∵∠CAD=∠CKD,∠CAD=∠OCA,∴△OCA∽△CAK,∴=,∴AC•KC=AK•AO,∴AK•AO=KB•AE;(3)P A2+PF2=PB2.理由如下:如图,连接AF、BF,∵=,∴∠ACF=∠BCF=∠ACB=45°,AF=BF,∴∠ECK=∠ACK+∠ACE=45°+∠ACE,∠EKC=∠BCK+∠KBC=45°+∠ABC,∴∠ECK=∠EKC,∴EC=EK=AE+EK=2AE,∵∠ACE=∠CBE,∠E=∠E,∴△EAC∽△ECB,∴==,∴BC=2AC,∵点G是BC的中点,∴BC=2CG=2GB,∴AC=CG,∠ACF=∠BCF,∴CP⊥AG,AP=PG,设AC=CG=GB=x,则AG==x,∴==,又∠PGB=∠BGA,∴△PGB∽△BGA,∴∠GBP=∠GAB,∴∠GBP+∠BCF=∠GAB+∠GAC,即∠BPF=∠BAC=∠BFP,∴BP=BF=AF,∵在Rt△APF中,P A2+PF2=AF2,∴P A2+PF2=PB2.8.解:(1)由题意得:r1=BD=CD==,r2=AC==2,∴r1<r2,故答案为:<.(2)如图所示:⊙O和⊙B的半径均等于OB,当直线l:y=x+b与⊙O相切于点M时,连接OM,则OM⊥l,则直线OM的解析式为:y=﹣x,设M(x,﹣x),∵OM=OB,∴OM==,∴x2+=8,解得:x=﹣或x=(舍),∴﹣x=,∴M(﹣,),将M(﹣,)代入y=x+b得:=×(﹣)+b,解得:b=4.当直线l:y=x+b与⊙B相切于点N时,连接BN,则BN⊥l,同理,设直线BN的解析式为:y=﹣x+n,将B(2,2)代入得:2=﹣×2+n,∴n=2+,∴直线BN的解析式为:y=﹣x+2+,设N(m,﹣m+2+),∵BN=OB,∴=,∴4﹣4m+m2+﹣+=8∴m2﹣4m+2=0,∴m=2﹣(舍)或m=2+,∴﹣m+2+=﹣(2+)+2+=2﹣,∴N(2+,2﹣),∴将N(2+,2﹣)代入y=x+b得:2﹣=(2+)+b,解得:b=,∴存在正方形OABC的F点控制圆与直线l有两个交点,此时b的取值范围为:<b<.9.(1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.10.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,则GE=CE﹣CG=﹣=﹣()=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.。

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)

备考2021年中考一轮复习数学几何压轴专题:圆的综合(一)1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是cm,⊙M与直线CD的位置关系是;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.2.已知:如图,△ABC中,AB=AC=5,BC=6,点O在AB上,以O为圆心,OB为半径画⊙O,分别与边AB、BC相交于点D、E,EF⊥AC,AH⊥BC,垂足分别为F、H.(1)求证:EF是⊙O的切线;(2)①设OB=2,求EC的长;②设OB=t,求FC的长(用含t的代数式表示).3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.(1)求证:OD⊥BE;(2)连结AD,交BE于点G,若△AGE≌△DGF,且AB=2,求AE的长.4.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=m,BD=n,求的值(用含m,n的式子表示).5.定义:如图①,⊙O的半径为r,若点P'在射线OP上,且OP•OP'=r2.则称点P'是点P关于⊙O的“反演点”.(1)如图①,设射线OP与⊙O交于点A,若点P'是点P关于⊙O的“反演点”,且OP'=PA,求证:点P'为线段OP的一个黄金分割点;(2)如图②,若点P'是点P关于⊙O的“反演点”,过点P'作P'B⊥OP,交⊙O于点B,连接PB,求证:PB为⊙O的切线;(3)如图③,在Rt△CDE中,∠E=90°,CE=6,DE=8,以CE为直径作⊙O,若点P为CD边上一动点,点P'是点P关于⊙O的“反演点”,则在点P运动的过程中,线段OP'长度的取值范围是.6.如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是,的中点,连结DE分别交AC,BC于点F,G.(1)求证:△DFC∽△CGE;(2)若DF=3,tan∠GCE=,求FG的长;(3)如图2,连结AD,BE,若=x,=y,求y关于x的函数表达式.7.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”,例如,在△ABC中,∠A=100°,∠B=60°,∠C=20°,满足∠A﹣∠B=2∠C,所以△ABC是关于∠C的“差倍角三角形”;(1)若等腰△ABC是“差倍角三角形”,求等腰三角形的顶角∠A的度数;(2)如图1,△ABC中,AB=3,AC=8,BC=9.小明发现这个△ABC是关于∠C的“差倍角三角形”.他的证明方法如下:证明:在BC上取点D,使得BD=1,连结AD.(请你完成接下去的证明)(3)如图2,五边形ABCDE内接于圆,连结AC,AD与BE相交于点F,G,==,△ABE是关于∠AEB的“差倍角三角形”.①求证:四边形CDEF是平行四边形;②若BF=1,设AB=x,y=,求y关于x的函数关系式.8.如图,在Rt△ABC中,∠C=90°,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AO=,求的长;(3)若AC=2,BD=3,求AE的长.9.如图1,CD是⊙O的直径,弦AB⊥CD,垂足为点E,连结CA.(1)若∠ACD=30°,求劣弧AB的度数;(2)如图2,连结BO并延长交⊙O于点G,BG交AC于点F,连结AG.①若tan∠CAE=2,AE=1,求AG的长;②设tan∠CAE=x,=y,求y关于x的函数关系式.10.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)如图1.①求证:点P为的中点;②求sin∠BAC的值;(2)如图2,若点A为的中点,求CE的长;(3)若△ABC为非锐角三角形,求PA•AE的最大值.参考答案1.解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,AQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPQ(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.2.证明:(1)如图1,连结OE,∵OE=OB,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∴∠OEF=∠EFC,∵EF⊥AC,∴∠EFC=90°,∴∠OEF=90°,∴EF⊥OE,∵点E在⊙O上,∴EF是⊙O的切线;(2)①如图2,连结OE,∵OE∥AC,∴△BOE∽△BAC.∴=,∴=,∴BE=,∴EC=6﹣=;②∵AB=AC,∴BH=BC,∵BC=6,∴BH=3,由①知:=,即=,∴BE=,∴EC=6﹣,∵AH⊥BC,EF⊥AC,∴∠AHB=∠EFC=90°,∵∠OBE=∠C,∴△ABH~△EFC,∴=,∴=,∴FC=﹣.3.(1)证明:如图,∵AB为⊙O的直径,∴∠ADB=90°,∠AEB=90°,∴AD⊥BC,AE⊥BE,∵AB=AC,∴BD=DC,∵BO=OA,∴OD为△BAC的中位线,∴OD∥AC,∴OD⊥BE.(2)∵△AGE≌△DGF,∴AE=DF,∵AO=OB,FO∥AE,∴EF=FB,∴OF=AE=DF,∵AB=2,∴OD=AB=1,∴DF=OD=,∴AE=DF=.4.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠ABE=∠DBC=60°,∴∠DBE=∠ABC,又∵AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=AD,即AB+BM=AD,∴AB+AC=AD;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=m,BD=n,∴=.5.(1)证明:由已知得OP•OP'=r2,∵OP'=PA,∴PP'=PA+AP'=OP'+P'A=r,∴,∴点P'为线段OP的一个黄金分割点;(2)证明:∵P'B⊥OP,∴∠OP'B=90°,∵OP•OP'=r2,∴,∴△P'OB∽△BOP,∴∠OBP=∠OP'B=90°,∴PB⊥OB,∴PB为⊙O的切线;(3)解:如图③,过点O作OH⊥CD于H,连接OD,∵CE=6,∴⊙O的半径为3,即r=3,∵点P'是点P关于⊙O的“反演点”,∴OP•OP'=32=9,∴OP'=,∵OH≤OP≤OD,∵∠CEB=90°,CE=6,DE=8,∴CD=10,∵sin∠C===,∴OH=OC=,由勾股定理得:OD===,∵OP=,OH≤OP≤OD,则≤OP'≤.故答案为:≤OP'≤.6.解:(1)∵点D是的中点,∴,∵点E是的中点,∴,∴∠CDE=∠BCG,∴△DFC∽△CGE;(2)由(1)知,∠ACD=∠CED,∠CDE=∠BCG,∴∠ACD+∠CDE=∠CED+∠BCG,∴∠CFG=∠CGF,∵CF=CG,∵∠ACB=60°,∴△CFG是等边三角形,如图1,过点C作CH⊥FG于H,∴∠DHC=90°,设FH=a,∴∠FCH=30°,∴FG=CF=2a,CH=a,∵DF=3,∴DH=DF+FH=3+a,∵∠GCE=∠CDE,tan∠GCE=,∴tan∠CDE=,在Rt△CHD中,tan∠CDE==,∴=,∴a=1,∴FG=2a=2;(3)如图2,连接AE,则∠AEB=∠ACB=60°,∠DAE=∠CAD+∠CAE=∠ACD+∠CDF=∠CFG=60°,∴∠AEB=∠DAE,∴BE∥AD,设BE与AD的距离为h,∴=,∴S△ABE=•S△ADE,∵D,E分别是,的中点,∴CD=AD,BE=CE,∴S△ABE=•S△ADE,过点D作DM⊥AC于M,∵,∴AD=CD,∴AC=2CM,由(2)知,△CFG是等边三角形,∴∠CFG=60°,∴∠DFM=60°,∴∠MDF=30°,设MF=m,则DM=m,DF=2m,∵=x,∴CF=x•DF=2mx,∴CG=CF=2mx,由(1)知,△DFC∽△CGE,∴,∴=,∴S△ABE=•S△ADE=S△ADE,∴S四边形ABED=S△ADE+S△ABE=S△ADE,∵MF=m,CF=x•DF=2mx,∴CM=MF+CF=m+2mx=(2x+1)m,∴AC=2CM=2(2x+1)m,∴AF=AC﹣CF=2(2x+1)m﹣2mx=2(x+1)m,过点A作AN⊥DF于N,∴S△ADF=AF•DM=DF•AN,∴AN===(x+1)m,过点C作CP⊥FG,由(2)知,PF=CF=mx,CP=mx,∴y===•=•=•=•=.7.解:(1)设等腰三角形的顶角∠A为2x,则等腰三角形的底角为90°﹣x,∵等腰△ABC是“差倍角三角形”,∴90°﹣x﹣2x=2•2x或2x﹣(90°﹣x)=2(90°﹣x),∴x=或x=54°,∴∠A=2x=或∠A=2x=108°,∴顶角∠A的度数为或108°;(2)如图1,在BC上取点D,使得BD=1,连结AD,∴CD=BC﹣BD=8,∵AC=8,∴CD=AC,∴∠CAD=∠ADC,∵AB=3,AC=8,BC=9,∴==,=,∴,∵∠ABD∽△CBA,∴∠BAD=∠C,∴∠ADC=∠CAD,∴∠BAC﹣∠BAD=∠CAD=∠ADC,∴∠BAC﹣∠C=∠ADC,∵∠ADC=∠B+∠BAD=∠B+∠C,∴∠BAC﹣∠C=B+∠C,∴∠BAC﹣∠B=2∠C,∴△ABC是关于∠C的“差倍角三角形”;(3)①∵==,∴∠BAC=∠AEB=∠ACB=∠DAE,设∠BAC=∠AEB=∠ACB=∠DAE=α,∵△ABE是关于∠AEB的“差倍角三角形”,∴∠BAE﹣∠ABE=2∠AEB,∴α+∠CAD+α﹣∠ABE=2α,∴∠CAD=∠ABE,∴,∴DE∥AC,∵,∴CD∥BE,∴四边形CDEF是平行四边形;②∵∠BAF=∠AEB,∠ABF=∠EBA,∴△ABF∽△EBA,∴==,∴BE===x2,∴EF=BE﹣BF=x2﹣1,∵四边形CDEF是平行四边形,∴CD=EF=x2﹣1,∵,∴AE=CD=x2﹣1,∴AF===,过点B作BM⊥AC于M,EN⊥AC于N,∴BM∥EN,∴△BFM∽△EFN,∴=,∴BM=EN,过点G作GH⊥AE于H,∵∠BAC=ACB=∠AEG=∠EAG,∴△ABC∽△AGE,∴,∴==,∴=,∴y===•=•=.8.解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴∠DAB=30°,∴OD=AO,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==π;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴△ACD∽△BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB===2,∵DE∥AC,∴,∴AE=×2=.9.解:(1)如图1,连接OA,OB,∵CD是⊙O的直径,弦AB⊥CD,∴=,∴∠AOD=∠BOD,∵∠ACD=30°,∴∠AOD=60°,∴∠AOB=120°,∴劣弧AB的度数是120°;(2)①∵CD⊥AB,∴AE=BE=1,∠AEC=90°,在Rt△AEC中,tan∠CAE==2,∴CE=2,设OE=x,则OC=2﹣x=OB,在Rt△OEB中,由勾股定理得:OB2=OE2+BE2,即(2﹣x)2=x2+1,解得:x=,∴OE=,∵OG=OB,AE=BE,∴OE是△AGB的中位线,∴AG=2OE=;②∵BG是⊙O的直径,∴∠BAG=90°,∵∠BAG=∠BEO=90°,∴OC∥AG,∴∠C=∠GAC,∵∠GFA=∠OFC,∴△GAF∽△OCF,∴,∵,且GF+BF=2OG,∴OG=•GF,∵OF=OG﹣GF,∴OF=,∴=,如图3,连接OA,∵OA=OC,AG=2OE,∴==,∵tan∠CAE==x,∴CE=x•AE=OA+OE,∴AE=,Rt△AOE中,OA2=OE2+AE2,∴OA2=OE2+()2,即OA2=OE2+(OA2+2OA•OE+OE2),两边同时除以OA2,得:1=()2+(+1)2,设=a,则原方程变形为:a2+(a2+2a+1)﹣1=0,(1+)a2++﹣1=0,(a+1)[(1+)a+(﹣1)]=0,∴a1=﹣1(舍),a2=,∴=,∴=,∴y=﹣.10.(1)①证明:如图1,连接PC,∵A、P、B、C四点内接于⊙O,∴∠PAF=∠PBC,∵AP平分∠BAF,∴∠PAF=∠BAP,∵∠BAP=∠PCB,∴∠PCB=∠PBC,∴PB=PC,∴=,∴点P为的中点;②解:如图2,过P作PG⊥BC于G,交BC于G,交⊙O于H,连接OB,∴,∴PH是直径,∵∠BPC=∠BAC,∠BOG=∠BPG=∠BPC,∵OG⊥BC,∴BG=BC=3,Rt△BOG中,∵OB=5,∴sin∠BAC=sin∠BOG==;(2)解:如图3,过P作PG⊥BC于G,连接OC,由(1)知:PG过圆心O,且CG=3,OC=OP=5,∴OG=4,∴PG=4+5=9,∴PC===3,设∠APC=x,∵A是的中点,∴=,∴∠ABC=∠ABP=x,∵PB=PC,∴∠PCB=∠PBC=2x,△PCE中,∠PCB=∠CPE+∠E,∴∠E=2x﹣x=x=∠CPE,∴CE=PC=3;(3)解:如图4,过点C作CQ⊥AB于Q,∵∠ACE=∠P,∠CAE=∠PAF=∠PAB,∴△ACE∽△APB,∴,∴PA•AE=AC•AB,∵sin∠BAC=,∴CQ=AC•sin∠BAC=AC,∴S△ABC=AB•CQ=,∴PA•AE=S△ABC,∵△ABC为非锐角三角形,∴点A运动到使△ABC为直角三角形时,如图5,△ABC的面积最大,Rt△ABC中,AB=10,BC=6,∴AC=8,此时PA•AE=×=80.。

中考数学专题复习:一次函数与几何变换综合

中考数学专题复习:一次函数与几何变换综合

中考数学专题复习:一次函数与几何变换综合1.如图,已知点A(﹣1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个2.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是()A.(﹣,﹣)B.(,)C.(﹣,)D.(,﹣)3.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD 是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.4.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.5.如图,一次函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.则过B、C两点直线的解析式为()A.y=x+3B.y=x+3C.y=x+3D.y=x+36.已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|P A﹣PB|最大时,点P的坐标为()A.B.C.D.(1,0)7.如图,若直线P A的解析式为y=x+b,且点P(4,2),P A=PB,则点B的坐标是()A.(5,0)B.(6,0)C.(7,0)D.(8,0)8.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为__________.9.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.(1)求出点C的坐标__________;(2)若△OQC是等腰直角三角形,则t的值为__________;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式__________.10.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E 是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为__________.11.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=__________.12.若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为__________.13.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是__________.14.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为__________.15.如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是9,则k的值为__________.16.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为__________.17.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为__________.18.如图,在直角坐标系中有一个缺失了右上格的九宫格,每个小正方形的边长为1,点A 的坐标为(2,3).要过点A画一条直线AB,将此封闭图形分割成面积相等的两部分,则直线AB解析式是__________.19.如图,在直角坐标系中,矩形ABCD的边OA在x轴上,边OC在y轴上,点B的坐标为(3,4),直线CD分别交OB、AB于点D、E,若BD=BE,则点D的坐标为__________.20.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为__________,点D的坐标为__________.21.如图,在平面直角坐标系中,函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,与函数y=x+b的图象交于点C(﹣2,m).(1)求m和b的值;(2)函数y=x+b的图象与x轴交于点D,点E从点D出发沿DA方向,以每秒2个单位长度匀速运动到点A(到A停止运动).设点E的运动时间为t秒.①当△ACE的面积为12时,求t的值;②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.22.如图,在平面直角坐标系中,直线AB:y=﹣x+4交x轴于点A,交y轴于点B,OC ⊥AB于点C,点P从B点出发,以每秒4个单位的速度沿BA运动,点Q从O点出发,以每秒3个单位的速度沿OC向终点C运动,当Q点到达点C时,点P也随之停止运动,连接OP,连接AQ并延长交OP于点H,设运动时间为t秒.(1)BP=__________,OQ=__________;(用含t的代数式表示)(2)求证:AH⊥OP.(3)当△APH为等腰直角三角形时,求t的值.23.如图,长方形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=10,OC=6.在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.(1)B'点的坐标是__________.(2)求折痕CM所在直线的解析式.(3)在x轴上是否能找到一点P,使△B'CP的面积为12?若存在,直接写出点P的坐标?若不存在,请说明理由.24.如图,已知直线l1经过点B(0,3)、点C(2,﹣3),交x轴于点D,点P是x轴上一个动点,过点C、P作直线l2.(1)求直线l1的表达式;(2)已知点A(7,0),当S△DPC=S△ACD时,求点P的坐标;(3)设点P的横坐标为m,点M(x1,y1),N(x2,y2)是直线l2上任意两个点,若x1>x2时,有y1<y2,请直接写出m的取值范围.25.已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.26.在如图的平面直角坐标系中,直线n过点A(0,﹣2),且与直线l交于点B(3,2),直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若△ABC的面积为9,求点C的坐标;(3)若△ABC是等腰三角形,求直线l的函数表达式.27.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC的面积是△OAC 的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.28.如图1,在平面直角坐标系xOy中,直线l1:y=x+1与x轴交于点A,直线l2:y=3x ﹣3与x轴交于点B,与l1相交于点C.(1)请直接写出点A、点B、点C的坐标:A__________,B__________,C__________.(2)如图2,动直线x=t分别与直线l1,l2交于P,Q两点.①若PQ=2,求t的值.②若存在S△AQC=2S△ABC,求出此时点Q的坐标;若不存在,请说明理由.参考答案1.解:①以A为直角顶点,可过A作直线垂直于AB,与y轴交于一点,这一点符合点P 的要求;②以B为直角顶点,可过B作直线垂直于AB,与y轴交于一点,这一点也符合P点的要求;③以P为直角顶点,与y轴共有2个交点.所以满足条件的点P共有4个.故选:B.2.解:过A作AB⊥直线y=2x﹣4,垂足为B,过B作BD⊥x轴,令y=0,得到x=2,即C(2,0),设B(a,2a﹣4)(a>0),即BD=|2a﹣4|,|OD|=a,∵∠ABD+∠BAD=90°,∠ABD+∠DBC=90°,∴∠BAD=∠DBC,∵∠BDC=∠ADB=90°,∴a=或a=2(不合题意,舍去),则B(,﹣).故选:D.3.解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选:B.4.解:对于直线y=﹣x+8,令x=0,求出y=8;令y=0求出x=6,∴A(6,0),B(0,8),即OA=6,OB=8,根据勾股定理得:AB=10,在x轴上取一点B′,使AB=AB′,连接MB′,∵AM为∠BAO的平分线,∴∠BAM=∠B′AM,∵在△ABM和△AB′M中,,∴△ABM≌△AB′M(SAS),∴BM=B′M,设BM=B′M=x,则OM=OB﹣BM=8﹣x,在Rt△B′OM中,B′O=AB′﹣OA=10﹣6=4,根据勾股定理得:x2=42+(8﹣x)2,解得:x=5,∴OM=3,即M(0,3),设直线AM解析式为y=kx+b,将A与M坐标代入得:,解得:,则直线AM解析式为y=﹣x+3.故选:B.5.解:∵一次函数y=﹣x+3中,令x=0得:y=3;令y=0,解得x=4,∴B的坐标是(0,3),A的坐标是(4,0).如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(7,4).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+3.故选:A.6.解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,1),∴C的坐标为(1,﹣1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=﹣2x+1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|P A﹣PB|=|PC﹣PB|<BC,∴此时|P A﹣PB|=|PC﹣PB|=BC取得最大值.故选:A.7.解:过点P作PC⊥AB,∵解析式y=x+b过点P(4,2),∴2=×4+b,∴b=﹣,∴A(1,0),又∵P(4,2),∴AC=3,∵P A=PB,∴BC=3,∴点B的坐标是(7,0).故选:C.8.解:当点E在y轴右侧时,如图1,连接AE,∵∠EAB=∠ABO,∴AE∥OB,∵A(0,8),∴E点纵坐标为8,又E点在直线y=x+4上,把y=8代入可求得x=4,∴E点坐标为(4,8);当点E在y轴左侧时,过A、E作直线交x轴于点C,如图2,设E点坐标为(a,a+4),设直线AE的解析式为y=kx+b,把A、E坐标代入可得,解得,∴直线AE的解析式为y=x+8,令y=0可得x+8=0,解得x=,∴C点坐标为(,0),∴AC2=OC2+OA2,即AC2=()2+82,∵B(4,0),∴BC2=(4﹣)2=()2﹣+16,∵∠EAB=∠ABO,∴AC=BC,∴AC2=BC2,即()2+82=()2﹣+16,解得a=﹣12,则a+4=﹣8,∴E点坐标为(﹣12,﹣8).方法二:设C(m,0),∵∠ACB=∠CBA,∴AC=BC,∴(4﹣m)2=m2+82,解得m=﹣6,∴直线AE的解析式为y=x+8,由,解得.∴E(﹣12,﹣8).综上可知,E点坐标为(4,8)或(﹣12,﹣8).故答案为:(4,8)或(﹣12,﹣8).9.解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令﹣x+3=0,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.故答案为:(1)(2,2);(3)y=﹣2x+6.10.解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DA=AG=2,在RT△ADF和RT△AGF中,,∴RT△ADF≌RT△AGF(HL),∴DF=FG,∵点E是BC边的中点,∴BE=CE=1,∴AE==,∴GE==1,∴在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2﹣DF)2+1,解得DF=,∴点F(,2),把点F的坐标代入y=kx得:2=k,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.11.解:∵将矩形OABC分成面积相等的两部分,∴直线经过矩形的中心,∵B点坐标为B(12,5),∴矩形中心的坐标为(6,),∴×6+b=,解得b=1.故答案为:1.12.解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1;故答案为:﹣2或1.13.解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).∴B5的坐标是(25﹣1,24).即:B5的坐标是(31,16).故答案为:(31,16).14.解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).故答案为:(﹣,﹣).15.解:当x=0时,y=k;当y=0时,x=.∴直线y=﹣2x+k与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB==9,∴k=±6.故填空答案:±6.16.解:如图,连接AB、AB′∵A(0,2),B(3,4)∴AB==∵点B与B′关于直线AP对称∴AB′=AB=,在Rt△AOB′中,B′O==3∴B′点坐标为(﹣3,0)或(3,0),∵A(0,2),点B(3,4)关于直线AP的对称点B′恰好落在x轴上,∴点B(3,4)关于直线y=2的对称点B′(3,0),∴B′点坐标为(3,0)不合题意舍去,设直线BB′方程为y=kx+b将B(3,4),B′(﹣3,0)代入得:,解得k=,b=2∴直线BB′的解析式为:y=x+2,∴直线AP的解析式为:y=﹣x+2,当y AP=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().17.解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).18.解:设直线AB与x轴交于B(x,0),依题意,得×(x+2)×3=4,解得x=,∴B(,0),设直线AB:y=kx+b,则,解得,∴直线AB:y=x﹣.故答案为:y=x﹣.19.解:∵四边形ABCD是矩形,点B的坐标为(3,4),∴BC=OA=3,OC=AB=4,∴C(0,4),∵BD=BE,∴∠BDE=∠BED,∵∠OCE=∠BED,∠CDO=∠BDE,∴∠OCD=∠ODC,∴OD=OC=4,∵OB==5,∴BD=BE=1,∴E(3,3),∴直线CE的解析式:y=﹣,直线OB的解析式:y=x,解得,∴D(,),故答案为:(,).20.解:由折叠的性质得:△ADB≌△ADC,∴AB=AC,BD=CD,对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴OA=4,OB=3,在Rt△AOB中,根据勾股定理得:AB=5,∴OC=AC﹣OA=AB﹣OA=5﹣4=1,即C(﹣1,0);在Rt△COD中,设CD=BD=x,则OD=3﹣x,根据勾股定理得:x2=(3﹣x)2+1,解得:x=,∴OD=,即D(0,).故答案为:(﹣1,0);(0,)21.解:(1)∵点C(﹣2,m)在直线y=﹣x+2上,∴m=﹣(﹣2)+2=2+2=4,∴点C(﹣2,4),∵函数y=x+b的图象过点C(﹣2,4),∴4=×(﹣2)+b,得b=,即m的值是4,b的值是;(2)①∵函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,∴点A(2,0),点B(0,2),∵函数y=x+的图象与x轴交于点D,∴点D的坐标为(﹣14,0),∴AD=16,由题意可得,DE=2t,则AE=16﹣2t,由,得,则点C的坐标为(﹣2,4),∵△ACE的面积为12,∴=12,解得,t=5.即当△ACE的面积为12时,t的值是5;②当t=4或t=6时,△ACE是直角三角形,理由:当∠ACE=90°时,AC⊥CE,∵点A(2,0),点B(0,2),点C(﹣2,4),点D(﹣14,0),∴OA=OB,AC=4,∴∠BAO=45°,∴∠CAE=45°,∴∠CEA=45°,∴CA=CE=4,∴AE=8,∵AE=16﹣2t,∴8=16﹣2t,解得,t=4;当∠CEA=90°时,∵AC=4,∠CAE=45°,∴AE=4,∵AE=16﹣2t,∴4=16﹣2t,解得,t=6;由上可得,当t=4或t=6时,△ACE是直角三角形.22.解:(1)BP=4t,OQ=3t.(2)∵OC⊥AB,∴∠CAO+∠COA=90°.又∵∠CAO+∠B=90°,∴∠COA=∠B.∵直线AB:y=﹣x+4,∴直线与x轴交点A(3,0),B(0,4).Rt△ABO中,OA=3,OB=4,AB=5.∴∠BOP=∠QAO.∴∠AHO=∠POA+∠QAO=∠POA+∠BOP=90°.∴AH⊥OP.(3)当△APH为等腰直角三角形时,∠CAQ=45°,△QCA也为等腰直角三角形.Rt△ABO中,OA=3,OB=4,AB=5.∵.∴OC=.∴OQ=3t=.即t=.23.解:(1)∵长方形OABC,∴BC=OA,∵OA=10,∴BC=10,∵△CBM沿CM翻折,∴B′C=BC=10,在Rt△B′OC中,B′C=10,OC=6,∴B′O==8,∴B′(8,0),故答案为:(8,0);(2)设AM=x,则BM=AB﹣AM=6﹣x,∵OA=10,B′O=8,∴B′A=2,∵△CBM沿CM翻折,∴B′M=BM=6﹣x,在Rt△AB′M中,B′A2+AM2=B′M2,∴22+x2=(6﹣x)2,解得x=,∴M(10,),设CM所在直线的解析式为y=kx+b,将C(0,6)、M(10,)代入得:,解得k=﹣,b=6,∴CM所在直线的解析式为y=﹣x+6;(3)∵△B'CP的面积为12,∴B′P•OC=12,∴B′P×6=12,∴B′P=4,∵B′(8,0),∴P(12,0)或P(4,0).24.解:(1)设直线l1的解析式为y=kx+b(k≠0),∵B(0,3)、点C(2,﹣3)在直线l1上,∴,解之得,,∴直线l1的表达式为y=﹣3x+3;(2)∵直线y=﹣3x+3交x轴于D,∴D(1,0),∵A(7,0),∴AD=6,过点C作CE⊥x轴于E,∵C(2,﹣3),∴CE=3,∴,∴,∴S△DPC=3,设点P(x,0),∴,∴x=3或x=﹣1,∴P的坐标(3,0)或(﹣1,0);(3)如图,过点C作CE⊥AO于E,∵x1>x2时,有y1<y2,∴直线l1的图象从左向右成下降趋势,∴m<2.25.解:根据题意可画出图形,如图所示,∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴.(1)当线段PC与线段AB平行时,可画出图形,设PC所在直线为:y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,,∴.故答案为:P(0,1);△POC的面积与△AOB的面积的比值为.(2)由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴,解得,,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)根据题意,需要分类讨论:①当点P在线段AB上时,如图所示,此时,过点P作PD⊥x轴于点D,∴S△APC==,解得PD=,∴AD=PD=,∴OD=OA﹣AD=2﹣=,∴P(,),设线段PC所在直线的解析式:y=k1x+b1,∴,解得,,∴线段PC所在直线的解析式:y=2x﹣2;②当点P在线段OB上时,如图所示,此时,∴=,解得,OP=,∴P(0,),设线段PC所在直线的解析式:y=k2x+b2,∴,解得,,∴线段PC所在直线的解析式:y=﹣x+;综上可知,线段PC所在直线的解析式为:y=2x﹣2或y=﹣x+.26.解:(1)设直线n的解析式为:y=kx+b,∵直线n:y=kx+b过点A(0,﹣2)、点B(3,2),∴,解得:,∴直线n的函数表达式为:y=x﹣2;(2)∵△ABC的面积为9,∴9=•AC•3,∴AC=6,∵OA=2,∴OC=6﹣2=4或OC=6+2=8,∴C(0,4)或(0,﹣8);(3)分四种情况:①如图1,当AB=AC时,∵A(0,﹣2),B(3,2),∴AB==5,∴AC=5,∵OA=2,∴OC=3,∴C(0,3),设直线l的解析式为:y=mx+n,把B(3,2)和C(0,3)代入得:,解得:,∴直线l的函数表达式为:y=﹣x+3;②如图2,AB=AC=5,∴C(0,﹣7),同理可得直线l的解析式为:y=3x﹣7;③如图3,AB=BC,过点B作BD⊥y轴于点D,∴CD=AD=4,∴C(0,6),同理可得直线l的解析式为:y=﹣x+6;④如图4,AC=BC,过点B作BD⊥y轴于D,设AC=a,则BC=a,CD=4﹣a,根据勾股定理得:BD2+CD2=BC2,∴32+(4﹣a)2=a2,解得:a=,∴OC=﹣2=,∴C(0,),同理可得直线l的解析式为:y=x+;综上,直线l的解析式为:y=﹣x+3或y=3x﹣7或y=﹣x+6或y=x+.27.解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线AC的解析式是:y=﹣x+6;(2)∵C(0,6),A(4,2),∴OC=6,∴S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=2,∴点M的横坐标为2或﹣2;当M的横坐标是2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,x=2则y=4,则M的坐标是(2,4).则M的坐标是:M1(2,1)或M2(2,4).当M的横坐标是﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:M的坐标是:M1(2,1)或M2(2,4)或M3(﹣2,8).28.解:(1)对于直线l2:y=3x﹣3①,令y=3x﹣3=0,解得x=1,故点B(1,0),对于l1:y=x+1,同理可得:点A(﹣1,0),则,解得,故点C的坐标为(2,3),故答案为:(﹣1,0)、(1,0)、(2,3);(2)①点P在直线l1上,则设点P(t,t+1),同理点Q(t,3t﹣3),则PQ=|t+1﹣3t+3|=2,解得t=1或3;②当点Q在x轴下方时,如下图,设直线l1交y轴于点K,过点B作直线n∥AC交y轴于点N,在y轴负半轴取点M使NM=2NK,过点M作直线m∥AC交l2于点Q,则点Q为所求点,理由:∵M、Q在直线m上,且m∥AC,则S△MAC=S△QAC,同理S△NAC=S△BAC,而MN=2KN,则m、l1之间的距离等于2倍n、l1之间的距离,故S△AQC=2S△ABC,由直线l1的表达式知点K(0,1),设直线n的表达式为y=x+b,将点B的坐标代入上式并解得b=﹣1,故点N(0,﹣1),则NK=1﹣(﹣1)=2,则MN=2NK=4,故点M(0,﹣3),在直线m的表达式为y=x﹣3②,联立①②并解得,故点Q(0,﹣3);②当点M在x轴上方时,同理可得点M(0,5),同理可得,过点M且平行于AC的直线表达式为y=x+5③,联立①③并解得,故点Q的坐标为(4,9);综上,点Q的坐标为(0,﹣3)或(4,9)。

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。

2019中考数学专题复习 几何变换几何综合题 解析版

2019中考数学专题复习  几何变换几何综合题  解析版

几何变换几何综合题1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DC所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为;∠DFE度数为;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为;②线段AE,CD之间的数量关系为.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=;16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.17.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.18.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.19.感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).解析一.解答题(共14小题)1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线OE时,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.【解答】解:(1)如图1,∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为:AD=BE.(2)AD=BE成立,∠APE不随着∠ACB的大小发生变化,始终是60°.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴∠CEB=∠CAD;如图2,设BE与AC交于Q,又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.(3)由(2)同理可得∠CPE=∠EAC=60°;如图3,在PE上截取PH=PC,连接HC,则△PCH为等边三角形,∴HC=PC,∠CHP=60°,∴∠CHE=120°;又∵∠APE=∠CPE=60°,∴∠CPA=120°,∴∠CPA=∠CHE;在△CPA和△CHE中,,∴△CPA≌△CHE(AAS),∴AP=EH,∴PB+PC+PA=PB+PH+EH=BE.若∠ABC=60°,AB=6,BC=4,则PA+PB+PC=2.理由:如图,过D作DG⊥AB,交AB的延长线于G,当∠ABC=60°=∠CBD时,将DBG=60°,∴∠BDG=30°,∴BG=BD=2,AG=6+2=8,DG=2,∴Rt△ADG中,AD==2,∴BE=2,即PA+PB+PC的值为2.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为BE=AD;∠DFE 度数为60°;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是45°;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.【解答】解:(1)∵△ABC和△ECD是等边△,∴∠ACB=∠DCE=60°,∴∠BCD=60°,∴△ACD是△BCE顺时针旋转60°来的,∴△ACD≌△BCE,∴BE=AD,∴∠CAD=∠CBE,∴∠DFE=∠CAD+∠CEB=∠CBE+∠CEF=∠ACB=60°;故答案为BE=AD,∠DFE=60°;(2)连接EM,则△CEM是等腰直角三角形,∴CE=CM,∵∠ACB=45°=∠ECM,∴∠BCE=∠ACM,∵BC=AC,∴==,∴△BCE∽△ACM,∴==,∠CBE=∠CAM,∵∠BFM=∠BAF+∠ABF=∠BAC+∠CAM+∠ABF=90°+∠CBE+∠ABF=90°+∠ABC=135°,∴∠MFE=45°;故答案为,45°;(3)取BC中点F,取CD中点M,连接MN,AF,NF,EM,∴NF,NM是△BCD的中位线,∴NF=CD=EM,NM=BC=AF,∵NF∥CD,NM∥BC,∴四边形NFCM是平行四边形,∴∠NFC=∠NMC,∵∠AFC=90°=∠EMC,∴∠AFN=∠EMN,∵在△AFN和△NME中,,∴△AFN≌△NME,(SAS)∴AN=EN,∠NAF=∠ENM,∵MN∥BC,AF⊥BC,∴MN⊥AF,∴∠NAF+∠ANM=90°,∴∠ENM+∠ANM=90°,即∠ANE=90°,∴AN⊥EN.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.【解答】解:(1)AD=BE,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD,∴BE=AD;(2)不变,∠AMB=60°,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BEC≌△ADC,∴∠EBC=∠DAC,∵∠EBC+∠ABM=60°∴∠MAC+∠ABM=60°,∴∠AMB=180°﹣(∠ABM+∠BAM)=60°.(3)如图3,∵当B、C、D三点在同一条直线上,∴∠ACB=∠DCE=60°,∴∠ACE=60°,∴∠BCE=120°,∵△ABC与△CDE是共顶点的等边三角形,且BC=CD,∴BC=CE,∴∠CBE=∠BEC=30°,∵∠BCF=60°,∴∠BFC=90°,∵BC=EC,∴BE=2BF,在Rt△BFC中,∠BCF=30°,∴BF=BC,∴BE=2BF=BC,∵BE=BM+ME,∴BM+ME=BC.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.【解答】解:(1)猜想:AD=BE,证明:∵△ABC和△CDE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD∠BCD,即∠ACD=BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如下图1所示,当△CDE旋转到BC与C到DE到高在同一条直线上时,△BDE面积最大,此时,DE边上的高为∴△BDE面积最大值为.(3)①如图3,∵DE∥AB,∴△CDE∽△CAB,∴∵△CD'E'由△CDE绕C点旋转得到∴CE'=CE,CD'=CD,∠DCE=∠D'CE'=60°∴,则又∵∠DCE+∠BCD'=∠D'CE'+∠BCD',即∠ACD'=∠BCE'∴△ACD'∽△BCE'∴由△ACD'∽△BCE'得∠CBE'=∠CAF∴∠BFA=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠ABC+∠FAC)=180°﹣120°=60°②如图4所示,当D'与点O重合时,△AOC的面积最大过点O作OG⊥AC于G,∴∴△AOC的面积的最大值为.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°;②请直接写出点D到PC的距离为或.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=,即点D到PC的距离为:或.故答案为:或.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为AE=BD,AE、BD所在直线的位置关系为AE⊥BD;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为或7﹣3.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC﹣∠CDE=135°﹣45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.(3)情形1:如图3﹣1中,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△EAC≌△BAD(SAS),∴BD=CE.∵AE=AB=7,∴BE==7,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.情形2:如图3﹣2中,作AE⊥AB交BC的延长线于E,则△ABE是等腰直角三角形,同法可证:△EAC≌△BAD(SAS),∴BD=CE,∵AB=AE=7,∴BE=7,∴EC=BE=CB=7﹣3,综上所述,BD的长为或7﹣3.故答案为或7﹣3.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=120°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.故答案为:120.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=15﹣7=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB===17;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=4,∴∠BED=∠BEC﹣∠PEC=90°,∵∠APD=30°,∴∠DPC=150°﹣30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=8+4=12,在Rt△BDE中,,即BD的长为13.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为60°;②线段AE,CD之间的数量关系为AE=CD.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.【解答】解:(1)①∵△ACB和△DBE均为等边三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=60°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠BEA.∵△DBE为等边三角形,∴∠CDB=∠BED=60°.故答案为:60°.②∵△BCD≌△BAE,∴CD=AE,故答案为:CD=AE,(2))∠CDB=45°,CD=AD+2BF理由:∵△ACB和△DBE均为等腰直角三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=90°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠AEB,CD=AE∵BF是△DBE均为等腰直角三角形,∴∠CDB=∠AEB=45,DE=2BF,∴CD=AE=AD+DE=AD+2BF.∴∠CDB=45°,CD=AD+2BF;(3)①如图,连接EB,ED,作BH⊥CE,BP⊥BE,∵四边形ABCD是正方形,∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,∴CD=2,∴AC=2,∵AE=1,∴CE=,∵A,E,B,C四点共圆,∴∠BCE=∠CAB=45°,∴△PBE是等腰直角三角形,∵△ABC是等腰直角三角形,且C,E,P共线,BH⊥CE,∴由(2)的结论可得,CE=AE+2BH,∴=2BH+1,∴BH=.②同①的方法可得,CE=2BH﹣AE,∴=2BH﹣1,∴BH=,∴点B到CE的距离为或.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE;(2)①∠AEB=90°证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°;②延长BE交AC的延长线于点G,由①可知∠CAD=∠CBE,∠AEB=90°,在△ACF和△BCG中,,∴△ACF≌△BCG,∴AF=BG,∵∠CAF=∠BAF,∠AEB=90°,∴E是BG的中点,∵BE=2,∴BG=4,∴AF=4,∴S==4.△ABF12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=2,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;②由①知,△CDA≌△CEB,∴AD=BE;故答案为:60°,AD=BE(2)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;结论:AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.(3)如图3,∵点P到点B的距离是3,∴点P是以点B为圆心,3为半径的圆,当B、D、A三点在同一条直线上时,BD有最小值,∵∠ACB=90°,∠DCP=90°,∴∠ACD=∠BCP在△ACD与△BCP中,,∴△ACD≌△BCP(SAS),∴∠PBC=∠A=45°,AD=BP=3,在Rt△ABC中,AC=BC=5,∴AB=5∴BD=AB﹣AD=5﹣3此时∠PBC=45°时,BD的最小值为5﹣3,同理可得:如图4,当B、D、A三点在同一条直线上时,BD的最大值为:AB+AD=AB+BP=5+3,14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).【解答】解:(1)如图1中,∵AD′∥CE′,∴∠AD′C=∠E′CD′=90°,∵AC=2CD′,∴∠CAD′=30°,∴∠ACD′=90°﹣∠CAD′=60°,∴α=60°.(2)如图2中,作CK⊥BE′于K.∵AC=BC==2,∴CD′=CE′=,∵△CD′E′是等腰直角三角形,CD′=CE′=,∴D′E′=2,∵CK⊥D′E′,∴KD′=E′K,∴CK=D′E′=1,∴sin∠CBE′===.(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.∵AP=AD′+PD′=+,∵cos∠PAB==,∴AH=2+,∴点P横坐标的最大值为.如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB于H.根据对称性可知OH=,∴点P横坐标的最小值为﹣,∴点P横坐标的取值范围为﹣≤m≤.15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=6;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=4或16;【分析】(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.理由勾股定理可得DE.②如图2中,结论:EC∥PA.只要证明PA⊥BE,EC⊥BE即可解决问题.(3)分两种情形分别求解即可解决问题.【解答】解:(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.在Rt△ADE中,∵∠D=90°,AE=AB=10,AD=8,∴DE===6,故答案为6.②如图2中,结论:EC∥PA.理由:由翻折不变性可知:AE=AB,PE=PB,∴PA垂直平分线段BE,即PA⊥BE,∵PB=PC=PE,∴∠BEC=90°,∴EC⊥BE,∴EC∥PA.(2)①如图3﹣1中,当点Q在线段CD上时,设DQ=QD′=x.在Rt△AD′B中,∵AD′=AD=8,AB=10,∠AD′B=90°,∴BD′==6,在Rt△BQC中,∵CQ2+BC2=BQ2,∴(10﹣x)2+82=(x+6)2,∴x=4,∴DQ=4.②如图3﹣2中,当点Q在线段DC的延长线上时,∵DQ∥AB,∴∠DQA=∠QAB,∵∠DQA=∠AQB,∴∠QAB=∠AQB,∴AB=BQ=10,在Rt△BCQ中,∵CQ==6,∴DQ=DC+CQ=16,综上所述,满足条件的DQ的值为4或16.故答案为4和16.16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长。

中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:⼏何综合题(含答案解析)⼏何综合题1.已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC ∠=?①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=?,45ACB ∠=?;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=?,AD=2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=?,DE=1,可得EC =1. ∴AC 31=.Rt △ACH 中,由30DAC ∠=?,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明:延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正⽅形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN .(1)如图1,当045α?<②⽤等式表⽰NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α?<CDBA图1备⽤图C DBAM答案:(1)①补全的图形如图7所⽰.(2)当45°<α<90°时,=1802NCE BAM ∠?-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵四边形ABCD 为正⽅形,∴∠BAD=∠ADC=∠BCD=90°,直线BD为正⽅形ABCD的对称轴,点A与点C关于直线BD对称.∵射线AM与线段BD交于点M,∴∠BAM=∠BCM=α.-.∴∠1=∠2=90α∵CE⊥AM,∴∠CEH=90°,∠3+∠5=90°.⼜∵∠1+∠4=90°,∠4=∠5,∴∠1=∠3.-.∴∠3=∠2=90α∵点N与点M关于直线CE对称,-∠.∴∠NCE=∠MCE=∠2+∠3=1802BAM(313. 如图,已知60AOB ∠=?,点P 为射线OA 上的⼀个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满⾜DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在⼀个定点M ,证明你的判断.答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o,∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o∴cos30DF PD =??=∴2DE DF ==(2)当M 点在射线OA 上且满⾜OM =DMME的值不变,始终为1.理由如下:当点P 与点M 不重合时,延长EP 到K 使得PK PD =.∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠. ∴KPMDPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵3,60MO MOL =∠=o,∴sin 603ML MO =?=o.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK ,∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MKME =.∴ME MKMD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成⽴.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上⼀动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中⼼,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的⼤⼩(⽤含α的式⼦表⽰);(3)⽤等式表⽰线段AE 、AF 与CG 之间的数量关系,并证明.答案:(1)补全的图形如图所⽰.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠?= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,⽤等式表⽰线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;ABCE(2)45°;(3)结论:AM CN.证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=α.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°-∠ACD)=12(180°-90°-α-α)=45°-α.∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM AG.∴AM CN.6.在正⽅形ABCD中,M是BC边上⼀点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;答案:(1)补全图形略(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ ,∴AQ AP =,90QAP ∠=°.∵四边形ABCD 是正⽅形,∴AD AB =,90DAB ∠=°.∴12∠=∠.∴△ADQ ≌△ABP .∴DQ BP =,3Q ∠=∠.∵在Rt QAP ?中,90Q QPA ∠+∠=°,∴390BPD QPA ∠=∠+∠=°.∵在Rt BPD ?中,222DP BP BD +=,⼜∵DQ BP =,222BD AB =,∴2222DP DQ AB +=.②BP AB =.7.如图,在等腰直⾓△ABC 中,∠CAB=90°,F 是AB 边上⼀点,作射线CF ,过点B 作BG ⊥C F 于点G ,连接AG .(1)求证:∠ABG =∠ACF ;(2)⽤等式表⽰线段C G ,AG ,BG 之间∵∠CAB=90°. ∵ BG ⊥CF 于点G ,∴∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH ,∵△ABC 是等腰直⾓三⾓形,∴∠CAB =90°,AB =AC . ∵∠ABG =∠ACH . ∴△ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正⽅形ABCD 中,E 是BC 边上⼀点,连接AE ,延长CB ⾄点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对⾓线AC 于点P ,连接AF .(1)依题意补全图形;(2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所⽰.(2)证明∵正⽅形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°,∴∠PAH =45°-∠BAE .∵FH ⊥AE .EDCBAM H PDAC∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.(3)判断:FM=PN.证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正⽅形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴FP=MN.∴FM=PN.9.如图所⽰,点P位于等边ABC△的内部,且∠ACP=∠CBP.(1) ∠BPC的度数为________°;(2) 延长BP⾄点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的⾯积.M HPD AC解:(1)120°. ----------------------------2分(2)①∵如图1所⽰.②在等边ABC △中,60ACB ∠=?,∴60.ACP BCP ∠+∠=? ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=?∴()180120.BPC CBP BCP ∠=?-∠+∠=?∴18060.CPD BPC ∠=?-∠=? ∵=PD PC ,∴CDP △为等边三⾓形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=?,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =??∠=∠??=?,,,∴()SAS ACD BCP △≌△. ∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=?,∴=60.ADB CDB ∠∠=?∴=60.ADB CDB ∠∠=?D∴=BM BN BD == ⼜由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =22==-----------------------------------7分10.如图1,在等边三⾓形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (⽤含α的式⼦表⽰);②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①3-. ………………………………………………………………………… 1分② 0≤QL.……………………………………………………………… 2分(2)设直线+33y x =与x 轴,y 轴的交点分别为点A ,点B,可得A ,(0,3)B .∴OA =3OB =,30OAB ∠=?.由0≤Q①如图13,当⊙D 与x 轴相切时,相应的圆⼼1D 满⾜题意,其横坐标取到最⼤值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO=.∵⊙D 的半径为1,∴ 111D E =.∴1AE =11OE OA AE =-=.∴1D x =②如图14,当⊙D与直线y =相切时,相应的圆⼼2D 满⾜题意,其横坐标取到最⼩值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的交点为F .可得60AOF ∠=?,OF ⊥AB .则9cos 2AF OA OAF =?∠==.图13∵⊙D 的半径为1,∴ 21D F =.∴2272AD AF D F =-=.=?∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是;(2)若DBC α∠=,求FEC ∠的⼤⼩; (⽤α的式⼦表⽰)(3)⽤等式表⽰线段,BG GF 和FA 之间的数量关系,并证明.GFEDCBA图15(1)DE DF =;(2)解:连接DE ,DF ,∵△ABC 是等边三⾓形,∴60C ∠=?. ∵DBC α∠=,∴120BDC α∠=?-.∴120BDF BDC α∠=∠=?-,DF DC =. ∴1202FDC α∠=?+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆⼼,DC 为半径的圆上.∴1602FEC FDC ∠=∠=?+α.(3)BG GF FA =+.理由如下:连接BF ,延长AF ,BD 交于点H ,∵△ABC 是等边三⾓形,∴60ABC BAC ∠=∠=?,AB BC CA ==. ∵点C 与点F 关于BD 对称,∴BF BC =,FBD CBD ∠=∠.GFEDCBA∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=,则602ABF α∠=?-. ∴60BAF α∠=?+. ∴FAD α∠=.∴FAD DBC ∠=∠.由(2)知60FEC α∠=?+. ∴60BGE FEC DBC ∠=∠-∠=?. ∴120FGB ∠=?,60FGD ∠=?.四边形AFGB 中,360120AFE FAB ABG FGB ∠=?-∠-∠-∠=?. ∴60HFG ∠=?.∴△FGH 是等边三⾓形. ∴FH FG =,60H ∠=?. ∵CD CE =,∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠??∠=∠??=?∴△△AHD BGE ?. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.HGFEDCBA12.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)⽤等式表⽰线段CD和CE之间的数量关系,并证明.解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90,°,M是BC的中点,AB AC BAC=∠=∴∠BAD=∠CAD=45°.∴△BAD≌△CAD. ………………………………2分∴∠DBA=∠DCA,BD = CD.∵CD=DF,∴B D=DF. ………………………………………3分∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA =180°,∴∠DCA+∠DFA =180°.∴∠BAC+∠CDF =180°.∴∠CDF =90°. ………………………………………4分21CD. ……………………………………5分(3)CE=)证明:∵90∠=°,EAD∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分∴DF =EF .由②可知,CF. …………………………7分∴CE=)1C D .13.如图,正⽅形ABCD 中,点E 是BC 边上的⼀个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对⾓线BD 于点G ,连接AG .(1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .∵四边形ABCD 是正⽅形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°,∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF ,A BC ED∴AE=AF ,∠FAE =90°.∴∠1=∠2.∴△FDA ≌△EBA . …………………3分∴∠FDA =∠EBA =90°,FD=BE .∵∠ADC =90°,∴∠FDA +∠ADC =180°。

(完整)2019年北京市初三一模数学-几何综合专题(教师版)

(完整)2019年北京市初三一模数学-几何综合专题(教师版)

2019一模几何综合专题一、旋转变换1.(等边三角形+对称+旋转)(2019通州一模27)如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF、EF 之间的数量关系,并证明. 解:(1)连接AE . ∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形, ∴AB AC =,60BAC ACB ∠=∠=︒. ∴602EAC α∠=︒-,AE AC =. 1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形,∴BC AC =,60ACB ∠=︒. ∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E , ∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .2.(等边三角形+旋转)(2019平谷一模27)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.解:(1)∠BCD=120°-α. ······························································(2)解:方法一:延长BA使AE=BC,连接DE. (2)由(1)知△ADC是等边三角形,∴AD=CD.∵∠DAB+∠DCB=∠DAB+∠DAE=180°,∴∠DAB=∠DAE.∴△ADE≌△CDB. (3)∴BD=BE.∴BD=AB+BC. (4)方法二:延长AB使AF=BC,连接CF. (2)∠BDC=∠ADE.∵∠ABC=120°,∴∠CBF=60°.∴△BCF是等边三角形.∴BC=CF.∵∠DCA=∠BCF=60°,∴∠DCA+∠ACB=∠BCF+∠ACB.即∠DCB=∠ACF.∵CA=CD,∴△ACF≌△DCB. (3)∴BD=AF.∴BD=AB+BC. (4)(3)AC,BD的数量关系是:AC ; (5)位置关系是:AC⊥BD于点P. (6)H O DBA3.(等边三角形+旋转)(2019延庆一模27).已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.解:(1)证明:∵∠ADC =60°,DA=DC∴△ADC 是等边三角形. ……1分 ∴∠DAC =60°,AD=AC . ∵∠ABC=120°,BD 平分∠ABC ∴∠ABD=∠DBC =60°.∴∠DAC =∠DBC =60° ∵∠AOD =∠BOC∠ADB=180°- ∠DAC -∠AOD∠ACB=180°- ∠DBC -∠BOC∴∠ADB=∠ACB ……3分(2)结论:DH=BH+BC ……4分 证明:在HD 上截取HE=HB ……5分∵AH ⊥BD∴∠AHB=∠AHE =90° ∵AH =AH∴△ABH ≌△AEH ∴AB=AE, ∠AEH=∠ABH =60° ……6分 ∴∠AED=180°-∠AEH=120° ∴∠ABC=∠AED=120° ∵AD=AC, ∠ADB=∠ACB ∴△ABC ≌△AED∴DE=BC ……7分 ∵DH=HE+ED∴DH=BH+BC ……8分4.(等边三角形+旋转)(2019密云一模27)已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE. (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB ⊥交EB 延长线于点F.用等式表示线段EB 、DB 与AF 之间的数量关系并证明.27.(1)补全图形AD 与BE 的数量关系为AD=BE .................................2分(2)∵∠ACB=∠DCE= 60°, ∴∠ACD=∠BCE 又∵AC=BC,CD=CE ∴△ACD ≌△BCE∴AD=BE, ∠CBE=∠CAD=60°∴∠ABF=180°-∠ABC-∠CBE=60° 在Rt AFB ∆中,3AF AB = ∴BE+BD=3AB.................................7分图2D CBA图1A B CD DEBA5.(正方形+旋转+最值)(2019东城一模27)如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C 关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF .(1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接ACACC ′的面积最大值.解:(1)由对称可知 CD =C ′D ,∠CDE =∠C ′DE . 在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C ′D .又∵F 为AC ′中点,∴DF ⊥AC ′,∠ADF =∠C ′DF .……………………………………………………1分∴∠FDP =∠FDC ′+∠EDC ′=12∠ADC =45°.…………………2分(2)结论:BP +DPAP .……………………………………………………3分 如图,作AP ′⊥AP 交PD 延长线于P ′, ∴∠P AP ′=90°.在正方形ABCD 中,DA =BA ,∠BAD =90°, ∴∠DAP ′=∠BAP .由(1)可知∠APD =45°, ∴∠P ′=45°.∴AP =AP ′……………………………………………………4分在△BAP 和△DAP ′中,BA DA BAP DAP AP AP =⎧⎪'∠=∠⎨⎪'=⎩,∴△BAP ≌△DAP ′(SAS )……………………………………………………5分 ∴BP =DP ′.P BAP BA∴DP+BP=PP′=.(3-1……………………………………………………7分P'B A6.(等腰直角三角形+旋转)(2019房山一模27).已知:Rt△ABC中,∠ACB=90°,AC=BC.(1) 如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示) ;(2) 如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.图1 图2解:(1)解: 依题意,∠CAB=45°,∵∠BAD=α,∴∠CAD=45α︒-.∵∠ACB=90°,BE⊥AD,∠ADC=∠BDE,∴∠DBE=∠CAD=45α︒-. …………………………………2分(2)解:①补全图形如图…………………………………4分②猜想:当D在BC边的延长线上时,EB - EAEC.…………………………………5分证明:过点C作CF⊥CE,交AD的延长线于点F.∵∠ACB=90°,∴∠ACF=∠BCE.∵CA=CB,∠CAF =∠CBE,∴△ACF≌△BCE.…………………………………6分∴AF=BE,CF=CE.∵∠ECF=90°,∴EFEC.即AF-EAEC.AB A∴7分7.(等腰直角三角形+旋转)(2019门头沟一模27). 如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F .(1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.图1 图227.(本小题满分7分)解:(1)补全图形(如图1); ……………………………… 1分证明:略. ……………………………………… 3分(2)线段OE ,OP 和OF 之间的数量关系是OF +OE =2OP . ……………………………… 4分证明:如图2,作PQ ⊥PO 交OB 于Q .∴ ∠2+∠3 = 90°,∠1+∠2 = 90°. ∴ ∠1=∠3.又∵ OC 平分∠AOB ,∠AOB =90°, ∴∠4 =∠5 = 45°. 又∵ ∠5 +∠6 = 90°, ∴∠6 = 45°,∴∠4 = ∠6 . ∴ PO = PQ .∴ △EPO ≌ △FPQ . ……………………… 5分 ∴ PE =PF ,OE = FQ .又∵OQ = OF +FQ = OF + OE .又∵ OQ =2OP ,∴OF + OE =2OP . ……………………… 6分(3)线段OE ,OP 和OF 之间的数量关系是OF - OE =2OP . ………………………… 7分PPEECCBBOOAA图2图18.(等腰直角三角形+旋转)(2019燕山一模27)如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .(1) ① 依题意补全图1;② 求证:∠EDC =∠BAD ; (2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ; ② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)27.(1)①补全的图形如图的所示;………………………………1分②证明:∵∠ADE =∠B =90°,∴∠EDC +∠ADB =∠BAD +∠ADB =90°,∴∠EDC =∠BAD . ………………………………3分(2) ①CE =2BD . ………………………………4分②想法1:证明:如图,过点E 作EF ⊥BC ,交BC 延长线于点F ,∴∠F =90°.在△ADB 和△DEF 中,∠B =∠F =90°,∠EDC =∠BAD ,AD =DE , ∴△ADB ≌△DEF , ∴AB =DF ,BD =EF .图1 D C B A 备用图 A B CD AB ECD EA∵AB=BC,∴DF=BC,即DC+CF=BD+DC,∴CF=BD=EF,∴△CEF是等腰直角三角形,∴CECFBD.………………………………7分想法2:证明:在线段AB上取一点F,使得BF=BD,连接DF,∵∠B=90°,AB=BC,∴DFBD,∵AB=BC,BF=BD,∴AB-BF=BC-BD,即AF=DC.在△ADF和△DEC中,AF=DC,∠BAD=∠EDC,AD=DE,∴△ADF≌△DEC,∴CE=DFBD.………………………………7分∴AD=CF,∠BAD=∠BCF.∵AD=DE,∴DE=CF.∵∠EDC=∠BAD,∴∠EDC=∠BCF,∴DE∥CF,∴四边形DFCE为平行四边形,9.(等腰直角三角形+旋转)(2019丰台一模27)在△ABC 中,∠ACB =90°,AC =BC , D 为AB 的中点,点E 为AC 延长线上一点,连接DE ,过点D 作DF ⊥DE 交CB 的延长线于点F . (1)求证:BF= CE ;(2)若CE =AC ,用等式表示线段DF 与AB 的数量关系,并证明.解:(1)连接CD.在△ABC 中,∠ACB=90°,AC=BC ,D 为AB 中点,∴CD ⊥BD , CD=BD=DA. ...............1分∵DF ⊥DE , ∴∠BDF =∠CDE . ∵∠F =∠E ,∴△DBF ≌△DCE .∴BF=CE. ..................3分 (2)52DF AB =. ..................4分 理由如下:由(1)知△DBF ≌△DCE ,∴DF=DE. ..................5分 连接BE.∵CE=CA , ∴BA=BE.∴∠A=∠BEA=45°. ∴∠ABE=90°. 设AD=BD=a , ∴AB=BE=2a. ∴5DF DE a ==.∴52DF AB =. .........................7分FA EC DB10.(等腰直角三角形+旋转+解直角三角形)(2019朝阳一模27)如图,在Rt △ABC 中,∠A =90°,AB =AC ,将线段BC 绕点B 逆时针旋转α°(0<α<180),得到线段BD ,且AD ∥BC . (1)依题意补全图形;(2)求满足条件的α的值; (3)若AB =2,求AD 的长. 解:(1)满足条件的点D 有两个,补全图形如图1所示.………………………………………2分 (2)如图2,过点B 作BE ⊥D 1D 2于点E .由题意可知,BD 1=BD 2 =BC ,AE ∥BC . ∴∠AEB =90°.∵在Rt △ABC 中,∠BAC =90°,AB =AC , ∴∠EAB =∠ABC =45°.∴在Rt △ABE 中,22BE AB =,在Rt △ABC 中,22AB BC =. ∴11122BE BC BD ==.……………………………………………………………………4分∴∠D 1=∠D 2=30°. ∵D 1D 2∥BC ,∴30α=或150.……………………………………………………………………………5分(3)∵AB =2,∴2BE AE ==.∴D 1E = D 2E =6.∴AD 的长为62-或62+.………………………………………………………7分图1图2CFE CAB11.(等边三角形+旋转)(2019怀柔一模27)如图,等边△ABC 中,P 是AB 上一点,过点P 作PD ⊥AC 于点D ,作PE ⊥BC 于点E ,M 是AB 的中点,连接ME ,MD . (1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明; (3)求证:MD=ME .(1)补全图形如图:(2)线段BE ,AD 与AB 的数量关系是:AD+ BE=12AB . ∵△ABC 是等边三角形,∴∠A=∠B=60°. ∵PD ⊥AC ,PE ⊥BC ,∴∠APD=∠BPE=30°, ∴AD=AP ,AD=AP . ∴AD+ BE=(AP+ BP )=AB .………………………………3分(3)取BC 中点F ,连接MF .∴MF=AC .MF ∥AC . ∴∠MFB=∠ACB=60°.∴∠A=∠MFE=60°. ∵AM=AB ,AB=AC ,∴MF=MA . ∵EF+ BE=BC , ∴AD + BE=AB .∴EF=AD. ∴△MAD ≌△MFE (SAS ).∴MD=ME .…………………………………7分212121212121212121二、轴对称变换12.(正方形+对称)(2019西城一模27)如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.解:(1)证明:∵∠ABC=90°,BA=BC,∴∠BAC=∠ACB=45°.∵AB绕点A逆时针旋转90°得到AD,∴∠BAD=90°,AB=AD.∴∠DAF=∠BAD-∠BAC=45°.∴∠BAF=∠DAF.…………………………………………………………1分∵AF=AF,∴△BAF≌△DAF.∴FB=FD.…………………………………………………………………2分(2)①AH与BF的位置关系:AH⊥BF.……………………………………………3分证明:连接DC,如图.∵∠ABC+∠BAD=180°,∴AD∥BC.∵AB=BC=AD,∴四边形ABCD是平行四边形.∵∠ABC=90°,∴四边形ABCD是矩形.∴AB=DC,∠ADC=∠DCB=90°.∴∠ABH=∠DCE.∵BH=CE,∴△ABH≌△DCE.∴∠BAH=∠CDE.∵△BAF≌△DAF,∴∠ABF=∠ADF.∴∠BAH+∠ABF=∠CDE+∠ADF=∠ADC=90°.∴∠ANB=180°-(∠BAH+∠ABF)=90°.∴AH⊥BF.……………………………………………………………5分1.…………………………………………………………………………7分13.(等腰三角形+对称)(2019顺义一模27)已知:如图,在△ABC中,AB>AC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.(1)若∠CAD=α,求∠BCF的大小(用含α的式子表示);(2)求证:AC=FC;(3)用等式直接表示线段BF与DC的数量关系.解:(1)过点A作AG⊥BC于点G,…………………1分∴∠2+∠4=90°,∵AD=AC,∴∠1=∠2=12∠CAD=12α,…………………………2分∵CF⊥AD于点E,∴∠3+∠4=90°,∴∠3=∠2=12∠CAD=12α,…………………………3分即∠BCF=12α.(2)证明:∵∠B=45°,∴∠BAG=45°,………………………………………4分∵∠BAC=45°+∠1,∠AFC=45°+∠3,∴∠BAC=∠AFC,∴AC=FC.………………………………………………5分(3)DC.…………………………………7分AB CDFE4231GEFD CBA三、平移变换14.(等边三角形+平移)(2019石景山一模27). 如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.27.(1)补全的图形如图1所示. …………… 1分 (2)证明:Q △ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分 60ADE ACB ∴∠=∠=︒. 90GMD ∠=︒Q ,2DG DM DE ∴==. …………… 3分 DE BC AC ==Q , DG AC ∴=.AG CD ∴=. …………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =Q ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED Q 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠.Q ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =Q ,BEF BHF ∴△≌△. …………… 6分 BE BH CD AG ∴===. AB AC =Q ,AH CG ∴=.…………… 7分B图1图2四、其它15.(等腰直角三角形+全等)(2019海淀一模27)如图,在等腰直角△ABC 中,90ABC ?°,D 是线段AC 上一点(2CA CD > ),连接BD ,过点C 作BD 的垂线,交BD 的延长线于点E ,交BA 的延长线于点F .(1)依题意补全图形;(2)若ACE α?,求ABD Ð的大小(用含α的式子表示); (3)若点G 在线段CF 上,CG BD =,连接DG .①判断DG 与BC 的位置关系并证明;②用等式表示DG ,CG ,AB 之间的数量关系为 .(1)补全图形,如图.(2) 解:∵ AB =BC ,∠ABC =90°,∴ ∠BAC =∠BCA =45°.∵ ∠ACE =α, ∴ 45ECB α??.∵ CF ⊥BD 交BD 的延长线于点E , ∴ ∠BEF =90°. ∴ ∠F +∠ABD =90°. ∵ ∠F +∠ECB =90°, ∴45ABD ECB α???.(3)① DG 与BC 的位置关系:DG ⊥BC .证明:连接BG 交AC 于点M ,延长GD 交BC 于点H ,如图.∵ AB =BC ,∠ABD =∠ECB ,BD =CG , ∴ △ABD ≌△BCG . ∴ ∠CBG =∠BAD =45°. ∴ ∠ABG =∠CBG =∠BAC =45°. ∴ AM =BM ,∠AMB =90°. ∵ AD =BG , ∴ DM =GM .∴ ∠MGD =∠GDM =45°. ∴ ∠BHG =90° ∴ DG ⊥BC .H。

中考数学专题复习:几何综合题

中考数学专题复习:几何综合题

【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段

2020-2021初中数学几何图形初步经典测试题附答案解析(1)

2020-2021初中数学几何图形初步经典测试题附答案解析(1)

2020-2021初中数学几何图形初步经典测试题附答案解析(1)一、选择题1.下列说法,正确的是() A.经过一点有且只有一条直线 B.两条射线组成的图形叫做角 C.两条直线相交至少有两个交点 D.两点确定一条直线【答案】D 【解析】 【分析】根据直线的性质、角的定义、相交线的概念一一判断即可. 【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D. 【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键2 . / 1 与/ 2 互余,/ 1 与/3 互补,若/ 3=125°,则/ 2=()解:根据题意得:/ 1 + 7 3=180°, / 3=125°,则/ 1=55°, 1 + 7 2=90°,则/ 2=35°故选:A.【点睛】 本题考查余角、补角的计算.3 .如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出 5cm,宽留出1cm,则该六棱柱的侧面积是()A. 35°【答案】A 【解析】 【分析】【详解】B. 45C. 55D. 65°A. (108 24察)cm2B. 108 1273 cm2C. 54 2443 cm2D. 54 1273 cm2【答案】A【解析】【分析】设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a= 2, h =9-2J3,再根据六棱柱的侧面积是6ah求解.【详解】解:设正六棱柱的底面边长为acm,高为hcm ,如图,正六边形边长AB= acm时,由正六边形的性质可知/ BAD= 30°,BD= —a cm, AD= ^3 a cm , 2 2,AC=2AD=邪a cm,A ------ i—- - - -D「•挪动前所在矩形的长为(2h+2£a) cm,宽为(4a + - a ) cm ,2挪动后所在矩形的长为(h+2a+J3a) cm,宽为4acm,由题意得:(2h+2万a) -(h + 2a+V3a) =5, (4a+1a)-4a=1,2・•.a=2, h=9- 2技「•该六棱柱的侧面积是6ah = 6X2X(9- 2^/3) = (108 2473) cm2;故选:A.【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A落在DE上,若BC P DE ,则AFC的度数为 ()A. 90°B. 75°C. 105°D. 120°【答案】B 【解析】 【分析】根据平行线的性质可得 /E /BCE 30 ,再根据三角形外角的性质即可求解 的度数. 【详解】••• BC//DE Z E / BCE 30••• / AFC / B / BCE 45 3075故答案为:B. 【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.【分析】根据三棱柱的展开图的特点作答. 【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是 .故选C. 【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的 特征.6 .如图,直线a//b,点B 在直线b 上,且AB± BC, Z 1=55 °,那么/ 2的度数是AFC5.下面四个图形中,是三棱柱的平面展开图的是 ( )由垂线的性质可得/ ABC=90 ,所以/ 3=180° -90°-/1=35°,再由平行线的性质可得到/ 2的度数.【详解】又「 a// b, 所以/ 2=7 3=35° . 故选C. 【点睛】本题主要考查了平行线的性质7 .如右图,在 ABC 中, ACB 90 , CD AD ,垂足为点D ,有下列说法:①点 A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段 AD 的长;③线段 CD 是 ABC 边AB 上的高;④线段CD 是 BCD边BD 上的高.上述说法中,正确的个数为()【答案】D 【解析】 【分析】根据两点间的距离定义即可判断 ①,根据点到直线距离的概念即可判断 ②,根据三角形的高的定义即可判断③④. 【详解】B. 30°C. 35°D. 50°B. 2个C. 3个D. 4个BA. 20°【答案】C解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段 AB 的长,・•.①正确;②、点A 到直线CD 的距离是线段 AD 的长,••・②正确; ③、根据三角形的高的定义, 那BC 边AB 上的高是线段 CD, ••.③正确;④、根据三角形的高的定义,ADBC 边BD 上的高是线段 CD,④ 正确.综上所述,正确的是①②③④ 共4个. 故选:D. 【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能 熟练地运用概念进行判断是解此题的关键.8 .如图,B 是线段AD 的中点,C 是线段BD 上一点,则下列结论中错误..的是(*・ ・.AB C D A. BC=AB-CDB. BC=-(AD-CD)【答案】B 【解析】试题解析:: B 是线段AD 的中点,.•.AB=BD=-AD2 ,A 、BC=BD-CD=AB-CD 故本选项正确;-1B 、BC=BD-CD] AD-CD,故本选项错误;-- - 1......G BC=BD-CDh AD-CD,故本选项正确; 2D 、BC=AC-AB=AC-BD 故本选项正确.故选B.9.如图,直线 AB, CD 交于点 O,射线 OM 平分/ AOC,若/ AOC= 76°,则/ BOM 等于8CA. 38°B, 104°C, 142°D, 144【答案】C 【解析】・. / AOC= 76°,射线 OM 平分/ AOC,1 1/ AOM= — / AOC=— x 76=38C. BC=- AD-CDD. BC=AC-BD()2 2 'BOM=180° 上 AOM=180° 38 =142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键10.已知:在RtAABC 中,/ C=90 °, BC=1, AC= J3 ,点D 是斜边AB 的中点,点E 是边C. D.【答案】C 【解析】 【分析】作B 关于AC 的对称点B',连接B'。

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.2.在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)3.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形4.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4C.3D.25.已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC 与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:96.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.7.如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,P A﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.8.如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.9.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.10.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).11.如图,在四边形ABCD中,点E,F,G,H分别是AB,CD,AC,BD的中点,若AD =BC=2,则四边形EGFH的周长是.12.如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是.13.在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG 交AD于点P,若AP=3,则点P到BD的距离为.15.如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)16.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.17.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.18.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD ⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.19.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE =DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图1,2分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,即DE=BC=AB,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).22.如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).24.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP 的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=1,请直接写出PC2的值.25.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).参考答案1.解:主视图有3列,每列小正方形数目分别为2,1,1.故选:B.2.解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.3.解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.4.解:∵四边形ABCD是矩形,∴∠B=∠D=90°,CD=AB=4,AD∥BC,∴∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∴∠AFE=∠AEF,∴AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5,在Rt△AFD'中,由勾股定理得:D'F===3;故选:C.5.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.故选:C.6.解:∵AB是直径,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B===,∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选:D.7.设:圆的半径为R,连接PB,则sin∠ABP=,∵CA⊥AB,即AC是圆的切线,则∠P AD=∠PBA=α,则PD=AP sinα=x×=x2,则y=P A﹣PD=﹣x2+x,图象为开口向下的抛物线,故选:C.8.解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.9.解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.10.解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10(m),在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3(m),∴AB=AC﹣BC=3.3≈3(m),故答案为:3.11.证明:∵E、G是AB和AC的中点,∴EG=BC=×=,同理HF=BC=,EH=GF=AD==.∴四边形EGFH的周长是:4×=4.故答案为:4.12.解:如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=5,∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF=,∵CE=4AE,∴EC=4,AE=,∴EH=5,在Rt△EFH中,EF2=EH2+FH2=(5)2+()2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG=∠ECG=45°,∴∠ECF=∠EFP=135°,∵∠CEF=∠FEP,∴△CEF∽△FEP,∴=,∴EF2=EC•EP,∴EP==.故答案为.13.解:以点O为位似中心,相似比为,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.15.解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x 轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×+()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=()n﹣1.故答案为:()n﹣1.16.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.17.(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.18.(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:连接AC,在Rt△BCD中,BC=4,CD=4,∴BD==8,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,即=,∴AB=10,∴⊙O的半径是5,故答案为5.19.(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.20.证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621.解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15(cm),∵∠FCH=45°,∴CH=FH=15(cm),∴(cm),∵CE:CD=1:3,∴DE=CD=(20+20)(cm),∵AB=BC=DE,∴AC=(40+40)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=(20+20)(cm),答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.24.(1)解:∵CD∥AB,∴∠C=∠B,在△ABP和△DCP中,,∴△ABP≌△DCP(AAS),∴DC=AB.∵AB=200米.∴CD=200米,故答案为:200.(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图1,延长EP交BC于F,同(1)理,可知∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,又∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵EP=FP,∴PC=PE,PC⊥PE.②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,同①理,可知△FBP≌△EDP(AAS),∴BF=DE,PE=PF=,∵DE=AE,∴BF=AE,∵当α=90°时,∠EAC=90°,∴ED∥AC,EA∥BC∵FB∥AC,∠FBC=90,∴∠CBF=∠CAE,在△FBC和△EAC中,,∴△FBC≌△EAC(SAS),∴CF=CE,∠FCB=∠ECA,∵∠ACB=90°,∴∠FCE=90°,∴△FCE是等腰直角三角形,∵EP=FP,∴CP⊥EP,CP=EP=.③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA 延长线于H点,当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,∴∠FBC=∠EAC=α=150°同②可得△FBP≌△EDP(AAS),同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=,在Rt△AHE中,∠EAH=30°,AE=DE=1,∴HE=,AH=,又∵AC=BC=3,∴CH=3+,∴EC2=CH2+HE2=∴PC2==.25.证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE,∴∠BAE=∠DAC,(2)设∠DAC=α=∠BAE,∠C=β,∴∠ABC=∠ADB=α+β,∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC,∴∠EAC=2β,∵AF平分∠EAC,∴∠F AC=∠EAF=β,∴∠F AC=∠C,∠ABE=∠BAF=α+β,∴AF=FC,AF=BF,∴AF=BC=BF,∵∠ABE=∠BAF,∠BGA=∠BAC=90°,∴△ABG∽△BCA,∴∵∠ABE=∠BAF,∠ABE=∠AFB,∴△ABF∽△DBA,∴,且AB=kBD,AF=BC=BF,∴k=,即,∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°,∴∠ABH=∠C,且∠BAC=∠BAC,∴△ABH∽△ACB,∴,∴AB2=AC×AH设BD=m,AB=km,∵,∴BC=2k2m,∴AC==km,∴AB2=AC×AH,(km)2=km×AH,∴AH=,∴HC=AC﹣AH=km﹣=,∴。

2023年九年级数学中考压轴复习专题几何综合——添加辅助线

2023年九年级数学中考压轴复习专题几何综合——添加辅助线

1
(2)若弦MN垂直于AB,垂足为G, = ,MN= 3,求⊙O的半径;

4
(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长
【详解】
(3) 作∠ABC的平分线BF交AC于F,连接AD
∵∠BNC=36°,AB=AC
∴∠ABC=∠ACB=72°
∵BF平分∠ABC
∴∠ABF=∠CBP=36°
∴∠BFC=72°即∠BAF=∠ABF、
∠BFC=∠ACB
∴BC=BF=AF
∵∠CBF=∠BAC,∠C=∠C
∴△CBF∽△CAB
∴BC²=CF·AC
设BC=x则AF=x
∴CF=2-x
∴x²=2(2-x)解得:x=± 5 − 1
∴BC= 5 − 1
∴AB是⊙O的直径
∴∠ADB=90°
∵AB=AC
1
∴CD=BD= BC
【分析】①由旋转性质证明△ABD∽△ACE即可判断;
②由①的结论可得,∠ABD=∠ACE,进而得到∠BOC=∠CAB=45°,即可判断∠COD;
③证明△ABD为等腰三角形即可判断;
④由题意直线BD、CE相交于点O,当AD⊥AC时,△AOC的面积最大,通过勾股定理计
算求出最大值,进而进行判断
试炼场:
从而得出∠ODE=90°,即可得证DE是CO的切线;
3
1
(2)连接OM,先求出MG= ,得出OG= OM,最后用勾股定理求解,即可得
2
2
出结论;
(3)作∠ABC的平分线交AC于F,判断出△BCF∽△ACB,得出比例式求成
BC= 5 − 1,连接AD,再求出CD=
例式求解,即可得出结论
5−1
,再判断出△DEC∽△ADC,得出比

专题05 圆周角定理综合 2021年九年级中考数学复习专题突破(几何)(全国通用)(选择专项一)

专题05 圆周角定理综合 2021年九年级中考数学复习专题突破(几何)(全国通用)(选择专项一)

2021年中考数学复习专题突破(几何)(全国通用)(选择专项一)专题05 圆周角定理综合1.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°2.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°3.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°4.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O 相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°5.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.56.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°7.如图,AB是⊙O的直径,C,D是⊙O上AB两侧的点,若∠D=30°,则tan∠ABC 的值为()A.B.C.D.8.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°9.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.510.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°11.已知弦AB把圆周分成1:3的两部分,则弦AB所对的圆周角的度数为()A.45°B.90°C.90°或27°D.45°或135°12.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,下列说法正确的是()①若∠AOB=∠COD,则CD=AB;②若CD=AB,则CD,AB所对的弧相等;③若CD=AB,则点O到CD,AB的距离相等;④若∠AOB+∠COD=180°,且CD=6,则AB=8.A.①②③④B.①③④C.①②④D.③④13.如图,AB是半圆的直径,点D是弧AC的中点,∠B=60°,则∠C等于()A.100°B.115°C.120°D.135°14.如图,在⊙O中,AB为⊙O的弦,连接OA、OB,点C在⊙O上,连接AC、CB,OA∥BC,∠ACB=28°,则∠CAB的度数为()A.28°B.35°C.56°D.34°15.如图,在△ABC中,以BC为直径的⊙O,交AB的延长线于点D,交AC于点E,连结OD,OE,若∠DOE=α,则∠A的度数为()A.αB.90°﹣αC.D.90°﹣16.如图,AB,CE均⊙O为直径,点C,D是圆上两点,且∠CDB=28°,则∠E的度数是()A.62°B.56°C.66°D.76°17.如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°18.如图,在⊙O中AB为直径,点C为AB弧的中点,点D在BC弧上,为AB=2,sin,则AD的长是()A.3B.2C.6 D.419.如图,AB是⊙O的直径,且经过弦CD的中点H,已知tan∠CDB=,BD=10,则OH的长度为()A.B.1 C.D.20.如图,半径为5的⊙A经过点C和点O,点B是y轴右侧⊙A的优弧上一点,∠OBC =30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)参考答案1.解,∵∠AOD=130°,∴∠BOD=50°,∴∠C=25°,故选:C.2.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=65°,∴∠CAB=25°,∵OA=OC,∴∠OCA=∠CAB=25°,故选:A.3.解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.4.解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.5.解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.6.解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.7.解:∵∠D=30°,∵AB是⊙O的直径,∴∠ABC+∠BAC=90°,∴∠ABC=60°,∴tan∠ABC=,故选:C.8.解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.9.解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.10.解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选:B.11.解:解:∵弦AB把⊙O分成1:3两部分,∴∠AOB=×360°=90°,∴∠ACB=∠AOB=45°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB=180°﹣∠ACB=135°.∴这条弦所对的圆周角的度数是:45°或135°,故选:D.12.解:因为在同圆中,若圆心角相等,则圆心角对的弦也相等;若弦相等,那么该弦上的弦心距也相等.所以①③正确;因为在同圆中,若弦相等,则弦所对的劣弧和优弧也分别相等;②中没有明确对应,所以不正确;过O作OE⊥CD,OF⊥AB,垂足分别是点E、F.∵OE⊥CD,CD=6,∴∠1=∠COD,CE=3.又∵OC=OB=5,∴OE=4.∵OF⊥AB,∴∠2=∠AOB.∵∠AOB+∠COD=180°,∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.在△OEC与△OFB中,∴△OEC≌△OFB(AAS).∴BF=OE=4.∴AB=8.故④正确.故选:B.13.解:如图,设圆心为O,连接OC,OD.∵OB=OC,∠B=60°,∴△BOC是等边三角形,∴∠BCO=∠BOC=60°,∴∠AOC=120°,∵=,∴∠COD=∠DOA=60°,∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠BCD=120°,故选:C.14.解:∵∠ACB=28°,∴∠AOB=2∠ACB=56°,∴∠OBA=∠OAB=(180°﹣∠AOB)=62°,∵OA∥BC,∴∠CBO=∠AOB=56°,∴∠ABC=∠OBA+∠CBO=118°,∴∠CAB=180°﹣∠ACB﹣∠ABC=180°﹣28°﹣118°=34°,故选:D.15.解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,∴∠A+∠ACD=90°,∵∠DOE=α,∴∠DCE=α,∴∠A=90°﹣α.故选:D.16.解:∵AB,CE是直径,∴OA=OE,∵∠BOC=2∠CDB=56°,∴∠AOE=∠BOC=56°,∴∠E=(180°﹣56°)=62°,故选:A.17.解:∵AB是直径,∴∠ACB=90°,∵∠ABC=∠ADC=50°,∴∠BAC=90°﹣50°=40°,故选:B.18.解:如图,连接CD,CB,过点C作CH⊥AD于H.∵AB是直径,∴∠ACB=90°,∵=,∴AC=BC,∴∠ABC=∠CAB=∠D=45°,∵AB=2,∴AC=BC=2,∵sin∠CAH==,∴CH=2,AH=4,∵∠CHD=90°,∠D=45°,∴CH=DH=2,∴AD=AH+DH=4+2=6,故选:C.19.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵tan∠CDB==,BD=10,∴DH=8,BH=6,设OH=x,则OD=OB=x+6,在Rt△ODH中,由勾股定理得:x2+82=(x+6)2,解得:x=,∴OH=;故选:D.20.解:连接CA,OA,∵∠OBC=30°,∴∠CAO=60°,又∵CA=AO,∴△CAO是等边三角形,∴CO=AO=5,∴点C的坐标为:(0,5).故选:A.。

2022年中考一轮复习数学几何专题:三角形 解答题训练(一)

2022年中考一轮复习数学几何专题:三角形 解答题训练(一)

2022年中考一轮复习数学几何专题:三角形解答题训练(一)1.如图,在平面直角坐标系中,已知点A(﹣1,m),点B(2,n),且|m﹣1|+=0.(1)求A,B两点的坐标;(2)在(1)的条件下,若直线AB交x轴于点C点,试求出C点坐标;不超过9,请求出a (3)在(2)的结论下,已知P(a,0)为x轴上一动点,若S△ABP的取值范围.2.如图,在△ABC中,AB=7,BC=14,M为AC的中点,OM⊥AC交∠ABC的平分线于O,OE ⊥AB交BA的延长线于E,OF⊥BC.垂足为F.(1)求证:AE=CF.(2)求线段BE的长.3.已知在△ACD中,P是CD的中点,B是AD延长线上的一点,连结BC,AP.(1)如图1,若∠ACB=90°,∠CAD=60°,BD=AC,AP=,求BC的长.(2)过点D作DE∥AC,交AP延长线于点E,如图2所示,若∠CAD=60°,BD=AC,求证:BC=2AP.(3)如图3,若∠CAD=45°,是否存在实数m,当BD=mAC时,BC=2AP?若存在,请直接写出m的值;若不存在,请说明理由.4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC中点,点E是AC边上一动点,连接DE,在DE左侧作Rt△DEF,满足∠DFE=90°,DF=EF,连接AF并延长,交BC于点G.(1)如图1,若AB=4,AE=1,求DE的长;(2)如图2,在点E的运动过程中,猜想AF与FG存在的数量关系,并证明你的结论;(3)如图3,在点E的运动过程中,将AF绕点F逆时针旋转90°,得到A′F,连接A'B,A'D,若AB=4,请直接写出当A'B+A′D取得最小值时,△A′DF的面积.5.如图,直线MN与直线PQ相交于O,∠POM=30°,点A在射线OP上运动,点B在射线OM上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)若∠BAO=50°,试求出∠ACB的度数.(2)点A、B在运动的过程中,∠ACB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的度数.(3)在(2)的条件下,在△ABC中,如果有一个角是另一个角的2倍,请直接写出∠BAC 的度数.6.如图,在平面直角坐标系中,已知点A的坐标是(a,0),点B的坐标是(b,0),其中a,b满足+(b﹣3)2=0.(1)填空:a=,b=;(2)在y轴有一点M(0,m),△ABM的面积为4.求m的值;(3)如图,若M在y轴负半轴,将线段AM沿x轴正方向平移,使得A的对应点为B,M 的对应点为N.若点P为线段AB上的任意一点(不与A,B重合),试写出∠MPN,∠PMA,∠PNB之间的数量关系,并说明理由.7.已知:DF∥BC,∠FDC=∠AEC.(1)如图1,已知CD⊥AB,CB平分∠NCE.求∠ABC的度数;(2)如图2,若∠ABC=∠ACF,AC=FC,DM=BE.求证:BC=MC.8.如图,在四边形ABCD中,∠DAB=∠DCB=90°,对角线AC与BD相交于点O,M、N分别是边BD、AC的中点.(1)求证:MN⊥AC;(2)当AC=30cm,BD=34cm时,求MN的长.9.如图,在等边△ABC中,点D是射线BC上一动点(点D在点C的右侧),CD=DE,∠BDE =120°.点F是线段BE的中点,连接DF、CF.(1)请你判断线段DF与AD的数量关系,并给出证明;(2)若AB=4,求线段CF长度的最小值.10.如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.③当点A、D、E不在同一直线上,∠AEB的度数会发生变化吗?(填写“变化”或“不变”).11.在△ABC中,∠CAB=90°,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF是菱形.(2)连接CE,若CE=EF,直接写出长度等于的线段.12.如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB=CF,BE=AC.(1)求证:AE=AF;(2)求∠EAF的度数.13.如图,已知△ABC为等腰直角三角形,AB=AC且∠CAB=90°,E为BC上一点,且BE =AC,过E作EF⊥BC且EF=EC,连接CF.(1)如图1,已知AB=2,连接AE、AF,求△AEF的面积;(2)如图2所示,D为AB上一点,连接DB,作∠DBH=45°交EF于H点,求证:CD=HF+CE;(3)已知△ABC面积为8+4,D为射线AC上一点,作∠DBH=45°,交射线EF于H,连接DH,点M为DH的中点,当CM有最小值时,请直接写出△CMD的面积.14.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD ≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M 从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.15.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.16.阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线∴BD=CD在△BDE和△CDA中∴△BDE≌△CDA(依据一)∴BE=CA在△ABE中,AB+BE>AE(依据二)∴AB+AC>2AD.任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务二:如图3,AD是BC边上的中线,AB=3,AC=4,则AD的取值范围是;任务三:如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE 中,∠BAE=90°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.17.(1)①如图1,△ABC、△ECF都是等腰直角三角形,点E在线段AB上,∠ACB=∠ECF =90°.求证:△ACF≌△BCE;②如图2,当AE=,BE=3AE时,求线段CG的长;(2)如图3,∠BDC=∠CAD=30°,∠BCD=90°,AB=2,AD=4,求AC的长.18.(1)如图①,△ABC和△CDE都是等边三角形,且点B,C,E在一条直线上,连接BD 和AE,直线BD,AE相交于点P.则线段BD与AE的数量关系为;BD与AE相交构成的锐角的度数为.(2)如图②,点B,C,E不在同一条直线上,其它条件不变,上述的结论是否还成立?请说明理由.(3)应用:如图③,点B,C,E不在同一条线上,其它条件依然不变,此时恰好有∠AEC =30°.设直线AE交CD于点Q,请把图形补全.若PQ=2,则DP=.19.如图,平面直角坐标系中,A(a,0),B(0,b),C(0,c),+|2﹣b|=0,c=(a﹣b).(1)求△ABC的面积;(2)如图2,点A以每秒m个单位的速度向下运动至A′,与此同时,点Q从原点出发,以每秒2个单位的速度沿x轴向右运动至Q′,3秒后,A′、C、Q′在同一直线上,求m 的值;(3)如图3,点D在线段AB上,将点D向右平移4个单位长度至E点,若△ACE的面积等于14,求点D坐标.20.在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于点E,BD⊥AE交AE延长线于点D,连接CD,过点C作CF⊥CD交AD于F.(Ⅰ)如图①,(1)求∠EBD的度数;(2)求证AF=BD;(Ⅱ)如图②,DM⊥AC交AC的延长线于点M,探究AB、AC、AM之间的数量关系,并给出证明.参考答案1.解:(1)∵|m﹣1|+=0,又∵|m﹣1|≥0,≥0,∴m=1,n=4,∴A(﹣1,1),B(2,4).(2)如图1中,过点B作BH⊥x轴于H,连接AH,设C(m,0).∵B(2,4),A(﹣1,1),∴H(2,0),BH=4,∵S△ABH =S△CBH﹣S△ACH,∴×4×3=×(2﹣m)×4﹣×(2﹣m)×1,∴m=﹣2,∴C(﹣2,0).(3)如图2中,当S△PAB=9时,•|a+2|•4﹣•|a+2|•1=9, 解得a=4或﹣8,∴满足条件的a的值为:﹣8≤a<﹣2或﹣2<a≤4.2.(1)证明:连接OA,∵OB平分∠ABC,又∵OE⊥AB,OF⊥BC,∴OE=OF.∵OM⊥AC,M为AC中点,∴OM垂直平分AC,∴OA=OC,在Rt△AEO与Rt△CFO中,,∴Rt△AEO≌Rt△CFO(HL),∴AE=CF;(2)解:在Rt△BEO与Rt△BFO中,,∴△BEO≌△BFO(HL),∴BE=BF,∵AB=7,BC=14,设AE=CF=x,∴x+7=14﹣x,∴,∴.3.解:(1)∵∠ACB=90°,∠CAD=60°,∴AB=,∵BD=AC,∴AD=AC,∴△ADC是等边三角形,∴∠ACD=60°,∵P是CD的中点,∴AP⊥CD,在Rt△APC中,AP=,∴,∴,(2)证明:连接BE,∵DE∥AC,∴∠CAP=∠DEP,在△CPA和△DPE中,∴△CPA≌△DPE(AAS),∴AP=EP=,DE=AC,∵BD=AC,∴BD=DE,又∵DE∥AC,∴∠BDE=∠CAD=60°,∴△BDE是等边三角形,∴BD=BE,∠EBD=60°,∵BD=AC,∴AC=BE,在△CAB和△EBA中,∴△CAB≌△EBA(SAS),∴AE=BC,∴BC=2AP,(3)存在这样的m,m=.理由如下:作DE∥AC交AP延长线于E,连接BE,由(2)同理可得DE=AC,∠EDB=∠CAD=45°,AE=2AP,当BD=时,∴BD=,作BF⊥DE于F,∵∠EDB=45°,∴BD=,∴DE=DF,∴点E,F重合,∴∠BED=90°,∴∠EBD=∠EDB=45°,∴BE=DE=AC,同(2)可证:△CAB≌△EBA(SAS),∴BC=AE=2AP,∴存在m=,使得BC=2AP4.(1)解:过点E作EH⊥DC,垂足为H,∵∠BAC=90°,AB=AC,AB=4,∴BC=4,∠C=45°,∵点D是BC中点,∴DB=DC=2,∵AE=1,∴CE=3,∵∠C=45°,∴HE=HC=,HD=CD﹣HC=,DE=,∴DE=.(2)AF=FG,证明如下:取AE的中点I,连接FI,DI,∵点D是BC中点,∴DI∥AB,∴△DIC是等腰直角三角形,∴,即,∠FDE=∠IDC=45°,∴∠FDI=∠BDC,∴△FDI∽△EDC,∴∠FID=∠C=45°,∴∠AIF=∠C=45°,∴FI∥CB,∴AF=FG.(3)延长DA′交AB于点M,取AM的中点N,连接DN,AD,AA′,∵△ADB和△AFA′是等腰直角三角形,∴=,∠BAD=∠A′AD=45°,∴∠BAA′=∠DAF,∴△BAA′∽△DBF,∴,由(2)可知,AF=FG,∠ADC=90°,∴AF=FD,∴BA′=AA′,∵BD=DA,∴DM垂直平分AB,BM=AM=DM=2,NM=1,∴DN=,sin,tam,过点A′作A′P⊥DN,垂足为P,∴sin,,当B、A′、P在同一条直线上时,A′B+A′D最小,∵∠BA′M=∠DA′P,∴∠MBP=∠MDN,∴,A′M=1,A′D=1,∵,A,∴,A,∵,∴,DP=,∴=.5.解:(1)如图1中,∵BC平分∠ABO,AC平分∠BAO,∴∠ABC=∠ABO,∠BAC=∠BAO,∵∠POM=30°,∴∠ABO+∠BAO=180°﹣30°=150°,∴∠CBA+∠CAB=(∠ABO+∠BAO)=×150°=75°,∴∠ACB=180°﹣(∠CBA+∠CAB)=180°﹣75°=105°;(2)∠ACB的大小不变,理由如下:由(1)知:点A、B在运动的过程中,∠ACB=105°;(3)由(2)可知,∠ACB=105°,∠BAC+∠ABC=75°,∵△ABC中有一个角是另一个角的2倍,∴∠ACB=2∠BAC或∠ACB=2∠ABC或∠ABC=2∠BAC或∠BAC=2∠ABC,∴∠BAC=52.5°或22.5°或25°或50°.6.解:(1)∵+(b﹣3)2=0,≥0,(b﹣3)2≥0,∴a+1=0,b﹣3=0,解得,a=﹣1,b=3,故答案为:﹣1;3;(2)由(1)可知A(﹣1,0),B(3,0),∴OA=1,OB=3,∴AB=OA+OB=4,由题意得,△ABM的面积=AB•OM=×4×OM=4,即×4×|m|=4,解得,m=±2;(3)∠MPN=∠PMA+∠PNB,理由如下:过点P作PE∥AM,则∠MPE=∠PMA,∵AM平移后得到BN,∴AM∥BN,∴PE∥BN,∴∠NPE=∠PNB,∴∠MPN=∠MPE+∠NPE=∠PMA+∠PNB.7.解:(1)∵DF∥BC,∴∠FDC=∠NCB,∵CB平分∠NCE,∴∠NCB=∠BCE,∵∠FDC=∠AEC,∴∠FDC=∠NCB=∠BCE=∠AEC,∵CD⊥AB,∴∠ENC=90°,∴∠AEC+∠NCE=∠AEC+∠BCE+∠NCB=3∠NCB=90°,∴∠NCB=30°,∴∠ABC=90°﹣∠NCB=60°;(2)∵DF∥BC,∴∠FMC=∠ACB,∵∠ABC=∠ACF,∴180°﹣∠FMC﹣∠ACF=180°﹣∠ACB﹣∠ABC,即∠F=∠BAC,在△DFC和△EAC中,,∴△DFC≌△EAC(AAS),∴CD=CE,在△MDC和△BEC中,,∴△MDC≌△BEC(SAS),∴MC=BC.8.解:(1)如图,连接AM,CM,∵∠DAB=∠DCB=90°,点M是BD的中点,∴AM=BD,CM=BD,∴AM=CM,∵点N是AC的中点,∴MN⊥AC;(2)∵BD=34cm,∴AM=CM=BD=17cm,∵AC=30cm,∴AN=AC=15cm,由(1)知,MN⊥AC,∴MN===8.9.解:(1)线段DF与AD的数量关系为:AD=2DF,理由如下:延长DF至点M,使DF=FM,连接BM、AM,如图1所示:∵点F为BE的中点,∴BF=EF,在△BFM和△EFD中,,∴△BFM≌△EFD(SAS),∴BM=DE,∠MBF=∠DEF,∴BM∥DE,∵线段CD绕点D逆时针旋转120°得到线段DE,∴CD=DE=BM,∠BDE=120°,∴∠MBD=180°﹣120°=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∴∠ABM=∠ABC+∠MBD=60°+60°=120°,∵∠ACD=180°﹣∠ACB=180°﹣60°=120°,∴∠ABM=∠ACD,在△ABM和△ACD中,,∴△ABM≌△ACD(SAS),∴AM=AD,∠BAM=∠CAD,∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=∠BAC=60°,∴△AMD是等边三角形,∴AD=DM=2DF;(2)连接CE,取BC的中点N,连接作射线NF,如图2所示:∵△CDE为等腰三角形,∠CDE=120°,∴∠DCE=30°,∵点N为BC的中点,点F为BE的中点,∴NF是△BCE的中位线,∴NF∥CE,∴∠CNF=∠DCE=30°,∴点F的轨迹为射线NF,且∠CNF=30°,当CF⊥NF时,CF最短,∵AB=BC=4,∴CN=2,在Rt△CNF中,∠CNF=30°,∴CF=CN=1,∴线段CF长度的最小值为1.10.解:①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.③如图2,点A、D、E不在同一直线上,∠AEB的度数会发生变化;故答案为:变化.11.证明:(1)∵AF∥BC,∴∠FAE=∠BDE,∵E为AD中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵AD为Rt△ABC的斜边中线,∴AD=BD=CD,∴AF=AD=CD,又∵AF∥CD,∴四边形ADCF是菱形.(2)由(1)得E为BF中点,∵CE=EF,∴CE=BE,∴AD垂直平分BC,∴△ABC为等腰直角三角形,四边形CFAD为正方形,∴BD=AD=CD=CF=FA=AB.故答案为:BD,AD,CD,CF,FA.12.(1)证明:∵CD⊥AB,BE⊥AC,∴∠CAD+∠ACD=∠CAD+∠EBA=90°,∴∠ACD=∠EBA,在△AEB和△FAC中,,∴△AEB≌△FAC(SAS),∴AE=FA;(2)解:∵△AEB≌△FAC,∴∠E=∠CAF,∵∠E+∠EAG=90°,∴∠CAF+∠EAG=90°,即∠EAF=90°.13.解:(1)∵AB=AC=2,∠CAB=90°,∴BC===2,∠ACB=45°,如图1,过点A作AT⊥BC于点T,则BT=CT,AT=BC=,∵BE=AC=2,∴CE=BC﹣BE=2﹣2,∵EF⊥BC且EF=EC,∴∠ECF=45°,CF=CE=×(2﹣2)=4﹣2,∴∠ACF=∠ACB+∠ECF=45°+45°=90°,∴S△AEF =S△ACF﹣S△ACE﹣S△CEF=•AC•CF﹣•CE•AT﹣•CE•EF=×2×(4﹣2)﹣12×(2﹣2)×﹣×(2﹣2)×(2﹣2)=3﹣4;(2)如图2,∵∠DBH=45°=∠ABC,∴∠ABD+∠CBD=∠EBH+∠CBD,∴∠ABD=∠EBH,在△ABD和△EBH中,,∴△ABD≌△EBH(ASA),∴AD=EH,过点B作BR⊥AB交CF的延长线于点R,在RC上截取RK=AD,连接BK,BF,∴∠ABR=90°=∠A=∠ACF,∴四边形ABRC是矩形,∵AB=AC,∴四边形ABRC是正方形,∴BR=AB,∠R=90°=∠A,在△BRK和△BAD中,,∴△BRK≌△BAD(SAS),∴BK=BD,RK=AD,∠ABD=∠RBK,∵∠ABC=∠RBC=45°,∴∠ABC﹣∠ABD=∠RBC﹣∠RBK,即∠CBD=∠CBK,在△CBD和△CBK中,,∴△CBD≌△CBK(SAS),∴CD=CK=CF+FK,∵CF=CE,∴CD=FK+CE,在Rt△BRF和Rt△BEF中,,∴Rt△BRF≌Rt△BEF(HL),∴FR=FE,∵RK=AD=EH,∴FR﹣RK=FE﹣EH,即FK=FH,∴CD=FH+CE;(3)由(2)知,△ABD≌△EBH,∴AD=EH,根据瓜豆原理,点H的运动轨迹为射线EF,∵点M为DH的中点,点M的运动轨迹为射线AE,当CM有最小值时,CM⊥AE,∴∠AMC=90°,设AB=a,则BC=a,CE=()a,过点M作MK⊥AB于K,过点E作ET⊥AB于点T,∴∠BTE=∠BKM=∠AKM=∠ALM=∠BAC=90°,∵∠ABC=45°,∴ET=BT=BE•cos∠ABC=a•sin45°=a,∴AT=AB﹣BT=a﹣a=a,∴AE===a,∵ET∥AC,∴∠CAM=∠AET,∵∠AMC=∠ETA=90°,∴△AMC∽△ETA,∴==,即==,∴CM=a,AM=a,∵ET∥MK,∴△AET∽△AMK,∴=,即=,∴MK=a,∴S△ABM=AB•MK=•a•a=a2,∵∠AMD=∠BMD=90°,∴∠CMD+∠AMD=∠AMB+∠AMD,∴∠CMD=∠AMB,∵∠CAM+∠DCM=90°,∠CAM+∠BAM=90°,∴∠DCM=∠BAM,∴△CMD∽△AMB,∴===3﹣2,∴S△CMD =(3﹣2)•S△AMB=(3﹣2)•a2,∵S△ABC=a2=8+4,∴a2=16+8,∴S△CDM=(3﹣2)•a2=(3﹣2)××(16+8)=2.14.解:(1)△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t.故答案为:8﹣t;6﹣3t.②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点N沿F→C路径运动时,8﹣t=6﹣3t,解得,t=﹣1(不合题意),当点N沿C→B路径运动时,8﹣t═3t﹣6,解得,t=3.5,当点N沿B→C路径运动时,由题意得,8﹣t=18﹣3t,解得,t=5,当点N沿C→F路径运动时,由题意得,8﹣t=3t﹣18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.15.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.16.任务一:证明:延长AD至E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=CA,在△ABE中,AB+BE>AE(三角形任意两边之和大于第三边),∴AB+AC>2AD.故答案为:SAS,三角形任意两边之和大于第三边.任务二:解:如图1,延长AD至点E,使DE=AD,连接CE,∵AD是中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△CDE(SAS),∴AB=EC=4,在△ACE中,AC﹣CE<AE<AC+CE,∴4﹣3<2AD<4+3,∴1<2AD<7,∴.故答案为:<AD<.任务三:EF与AD的数量关系为EF=2AD.理由如下:如图2,延长AD至点M,使DM=AD,连接CM,∵AD是中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△CDM(SAS),∴AB=MC,∠ABD=∠DCM,∴AE=CM,AB∥CM,∴∠BAC+∠ACM=180°,∵∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴∠EAF=∠ACM,又∵AF=AC,∴△EAF≌△MCA(SAS),∴AM=EF,∵AM=2AD,∴EF=2AD.17.解:(1)①证明:∵△ABC、△ECF都是等腰直角三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=90°,∴∠BCE=∠ACF,在△ACF和△BCE中,,∴△ACF≌△BCE(SAS);②由①知△ACF≌△BCE,∴AF=BE,∠CBE=∠CAF,∵AC=BC,∠ACB=90°,∴∠B=∠BAC=45°,∴∠CAF=45°,∴∠EAF=90°,∵AE=,BE=3AE,∴AF=3,AB=BE+AE=4,∴AC=AB=4,EF==2,又∵△ECF为等腰直角三角形,∴∠CEF=45°,CE=EF=,∴∠CEG=∠EAC,又∵∠ECG=∠ACE,∴△ECG∽△ACE,∴,∴CE2=CG•AC,∴CG=;(2)过点A作AD的垂线,过点C作AC的垂线,两垂线交于点M,连接DM,∵∠CAD=30°,∴∠CAM=60°,∴∠AMC=30°,∴∠AMC=∠BDC,又∵∠ACM=∠BCD=90°,∴△BCD∽△ACM,∴,又∠BCD=∠ACM,∴∠BCD+∠BCM=∠ACM+∠BCM,即∠DCM=∠ACB,∴△DCM∽△BCA,∴,∵AB=2,∴DM=2=6,∴AM===2,∴AC=AM=.18.解:(1)∵△ABC和△CDE都是等边三角形,∴AB=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴BD=AE,∠AEC=∠BDC,由三角形的外角性质,∠DPE=∠AEC+∠BDC,∠DCE=∠BDC+∠DBC,∴∠DPE=∠DCE=60°;故答案为:相等,60°;(2)成立.证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴BD=AE,∠AEC=∠BDC,又∵∠DNA=∠ENC,∴∠DPE=∠DCE=60°.(3)补全图形如图③,由(1)(2)可知△AEC≌△BDC,∴∠AEC=∠BDC=30°,∵△DEC为等边三角形,∴∠DEC=∠EDC=60°,∴∠DEP=∠DEC﹣∠CEP=60°﹣30°=30°,∠PDE=∠BDC+∠EDC=60°+30°=90°,∴∠DPQ=60°,∴∠DQP=90°,∵PQ=2,∴DP=2PQ=2×2=4.故答案为:4.19.解:(1)∵+|2﹣b|=0,≥0,|2﹣b|≥0,∴=0.,|2﹣b|=0,∴a=﹣4,b=2,∴c=(a﹣b)=﹣3,∴A(﹣4,0),B(0,2),C(﹣3,0),∴BC=5,OA=4,∴S△ABC=×BC×OA=×5×4=10;(2)由题意知:OQ'=2×3=6,AA'=3m,∵S△A'Q'A =S△CQ'O+S梯形AA'CO,∴×6×3+×(3+3m)×4,∴m=.(3)连接OD,OE,设D(m,n),∵S△AOB =S△AOD+S△DOB,∴×2×(﹣m),∴m=2n﹣4,∵点D向右平移4个单位长度得到E点,∴E(2n,n),∵S△AOC +S△AOE+S△COE=S△ACE,∴×3×2n=14,∴n=,∴m=2n﹣4=﹣,∴D(﹣,).20.解:(Ⅰ)①∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∵AE平分∠BAC,∴∠CAE==,∵BD⊥AD,∴∠ADB=90°,∵∠AEC=∠BED,∴∠EBD=∠CAE=22.5°.②∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠ACF+∠FCE=∠BCD+∠FCE,即∠ACF=∠BCD,由①得∠EBD=∠CAE=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD;(Ⅱ)AB、AC、AM之间的数量关系为AB+AC=2AM.证明:如图所示,过点D作DH⊥AB于点H,∵AD平分∠BAC,DM⊥AC,DH⊥AB,∴DM=DH,∵△ACF≌△BCD,∴CF=CD,又∵CF⊥CD,∴∠CFD=45°,∵∠CAE=22.5°,∴∠FCA=22.5°,∴AF=CF,由②得AF=BD,∴DC=DB,在Rt△CDM和Rt△BDH中,,∴Rt△CDM≌Rt△BDH(HL),∴CM=BH,在Rt△ADM和Rt△ADH中,,∴Rt△ADM≌Rt△ADH(HL),∴AM=AH,∴AB+AC=AH+BH+AC=AM+CM+AC=AM+AM=2AM.∴AB、AC、AM之间的数量关系为AB+AC=2AM.。

2022年中考数学专题复习:反比例函数与几何综合

2022年中考数学专题复习:反比例函数与几何综合

2022年中考数学专题复习:反比例函数与几何综合1.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.2.如图1,点A 、B 是双曲线y =kx (k >0)上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段AC 、AD 、BE 、BF ,AC 和BF 交于点G ,得到正方形OCGF (阴影部分),且S 阴影=1,△AGB 的面积为2.(1)求双曲线的解析式;(2)在双曲线上移动点A 和点B ,上述作图不变,得到矩形OCGF (阴影部分),点A 、B在运动过程中始终保持S 阴影=1不变(如图2),则△AGB 的面积是否会改变?说明理由.3.已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.4.如图,直线1:l y k x b =+与双曲线()20k y x x=>相交于A ,B 两点,与x 轴交于点C ,若点A ,B 的横坐标分别是1和2,(1)请直接写出21k k x b x+>的解集; (2)当AOB 的面积为3时,求2k 的值.5.如图,在平面直角坐标系中,A(8,0)、B(0,6)是矩形OACB的两个顶点,双曲线y=kx(k≠0,x>0)经过AC的中点D,点E是矩形OACB与双曲线y=kx的另一个交点.(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足S△PBO=56S△ODE.①若点P在这个反比例函数的图象上,求点P的坐标;①若点Q是平面内一点,使得以A、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.6.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数ykx=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.(1)若点D的坐标为(4,n).①求反比例函数ykx=的表达式;①求经过C,D两点的直线所对应的函数解析式;(2)在(1)的条件下,设点E是x轴上的点,使△CDE为以CD为直角边的直角三角形,求E点的坐标.7.如图1,点(08)(2)A B a ,、,在直线2y x b =-+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ①x 轴于点F ,交反比例函数图象于点E ,求E 点坐标;①在线段AB 运动过程中,连接BC ,若①BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.8.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为(8,4),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将①OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到①ODE ,OD 与CB 相交于点F ,反比例函数()0ky x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,求四边形OAGF 的面积.(3)图中是否存在与①BFG相似的三角形?若存在,请找一个,并进行证明;若不存在,请说明理由.9.如图,在平面直角坐标系中,四边形ABCD为矩形,若点AD①AB=3①4,A(-6,0)、D(-9,4),点B、C在第二象限内.(1)请直接写出:点B的坐标________;(2)将矩形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、C两点的对应点B′、C′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式:(3)在(2)的情况下,是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、C′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q 的坐标;若不存在,请说明理由.10.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin①AOB=45,反比例函数y=kx(x>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.11.如图,在正方形OABC 中,点O 为坐标原点,点()3,0C -,点A 在y 轴正半轴上,点E ,F 分别在BC ,CO 上,2CE CF ==,一次函数()0y kx b k =+≠的图象过点E 和F ,交y 轴于点G ,过点E 的反比例函数()0my m x=≠的图象交AB 于点D .(1)求反比例函数和一次函数的解析式;(2)在线段EF 上是否存在点P ,使ADP APG S S =△△,若存在,求出点P 的坐标;若不存在,请说明理由.12.如图是反比例函数y 2x=与反比例函数y 4x =在第一象限中的图象,点P 是y 4x =图象上一动点,P A ①x 轴于点A ,交函数y 2x =图象于点C ,PB ①y 轴于点B ,交函数y 2x=图象于点D ,点D 的横坐标为a .(1)求四边形ODPC 的面积;(2)连接DC 并延长交x 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形.13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,OA=3,AB=4,反比例函数kyx(k>0)的图象与矩形两边AB,BC分别交于点D,点E,且BD=2AD.(1)求点D的坐标和k的值;(2)连接OD,OE,DE,求①DOE的面积;(3)若点P是线段OC上的一个动点,是否存在点P,使①APE=90°?若存在,求出此时点P的坐标;若不存在,请说明理由.14.如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A①y轴于点A,PB①x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P(6,3),求①PCD的面积;(2)在(1)的条件下,当PG平分①CPD时,求点G的坐标;(3)如图2,若点G是OP与CD的交点,点M是线段OP上的点,连接MC、MD.当①CMD=90°时,求证:MG=12CD.15.在矩形AOBC 中,分别以,OB OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数(0)ky x x=>的图象与AC 边交于点E ,连接,OE OF ,作直线EF .(1)若2CF =,求反比例函数解新式; (2)在(1)的条件下求出EOF △的面积; (3)在点F 的运动过程中,试说明ECFC是定值.16.如图1,一次函数y =kx ﹣3(k ≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x>0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O 'CD ',若点O 的对应点O '恰好落在该反比例函数图象上(如图2),求出点O ',D '的坐标.17.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()4,2,OA ,OC 分别落在x 轴和y 轴上,OB 是矩形的对角线,将OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求出k 的值.(2)在x 轴上是否存在一点M ,使MF MG -的值最大?若存在,求出点M ;若不存在,说明理由.(3)在线段OA 上存在这样的点P ,使得PFG △是等腰三角形,请直接写出OP 的长.18.如图,菱形OABC 的点B 在y 轴上,点C 坐标为(4,3),双曲线ky x=的图象经过点A .(1)菱形OABC 的边长为 ; (2)求双曲线的函数关系式;(3)①点B 关于点O 的对称点为D 点,过D 作直线l 垂直于x 轴,点P 是直线l 上一个动点,点E 在双曲线上,当P 、E 、A 、B 四点构成平行四边形时,求点E 的坐标; ①将点P 绕点A 逆时针旋转90°得点Q ,当点Q 落在双曲线上时,求点Q 的坐标.19.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),ky x 0k 0x=>>的图象上,点(),P m n 是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.20.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数2(0)ky x x=>的图象经过点D ,且与边BC 交于点E ,连接OE ,已知AB =3. (1)点D 的坐标是 ; (2)求tan ①EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围; (4)连接DE ,在x 轴上取一点P ,使98DPES =,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请直接写出线段PQ 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形四边形相似形
1、如图,D为BC延长线上一点,△ 的
位置关系,并证明你的猜想。

2、梯形上、下底分别为1和4,两条对角线的长分别为3和4,则梯形面积为______________
3、矩形一边为6 cm,两条对角线交角为60°,则对角线长为_______________ 。

4、在长为1.6m,宽为1.2m的矩形铝板上,剪切如图所示的直角梯形零件(尺寸单位
为mm)。

这块铝板最多能剪出________ 个这样的零件。

5、如图:若四边形CDEF旋转后能与正方形ABCD重合,那么图形所在平面上可以作为旋转
中心的点有()
6、如果一个梯形的上底长是4,下底长是6,那么这个梯形被中位线分成的两部分面积
之比为()
7、已知四边形ABCD的对角线AC与BD相交于O,若S A AOB=4, S A COD=9。

则四边形ABCD 的面积的最小值是()
A、21
B、25
C、26
D、36
&△ ABC 中,E 在AB 上, D 在AC 上,且AD=DC , AE : EB=1 : 2,则厶AED 的面积与四边形BCDE的面积的比值等于()(A)、1: 4 (B)、1: 5 (C)、1: 6 (D)、1: 7
几何综合复习
(一)
03.5.3
ABC、△ ADE均为等边三角形,猜想EC与AB
A、2个
B、3个
C、4个
D、5个
A、4 : 6
B、5 : 6
C、9 : 10
D、9 : 11
D E
9、如图,AE:EC=1: 2, BF=FE , AF 交 BC 于 D ,贝U BD: DC= _______
13、如图,点M 是矩形ABCD 的边AD 的中点,点 P 是BC 边上一动点,PE 丄MC , PF 丄BM ,垂足为 E 、 F 。

(1)
当矩形ABCD 的长与宽满足什么条件时, 四 边
形PEMF 为矩形?猜想并证明你的结论。

(2) 在(1)中,当点P 运动到什么位置时,矩 形PEMF 变为正方形,为什么?
10、如图,从矩形 ABCD 的顶点A 向对角线 BD 引垂线AE ,垂足E 把BD 分成两段, 12、如图,四边形 ABCD 、DEBF 都是矩形,AB =BF , AD 、BE 相交于 M , BC 、DF 相交于 N 。

求证:四边形BMDN 是菱形。

D
C
A
B
DE:EB=1 : 3,且 AD=4,贝U AC= ________
11、 BC
于Q 交DE 于P ,若BC=120, AQ=8,则正方 形边长为 ___________ 。

AQ 丄 B
P
C
解直角三角形
6、如图,△ ABC 中,AB=AC ,高 AD 、BE 相交于点 H , AH=8 , DH=1,求 tanC
2
7、如图,抛物线y X 4x 5与x 轴交点为A 、B ( A 在B 左侧),与y 轴交点为 C ,顶点为P ,连结PC 并延长交X 轴于点N 。

1、在 ABC 中, C
=90 , AC=3BC ,那么 cosB= ,tanA= 。

2、在 ABC 中, C =90 , BC= a , B ,则高
A D 等于( )
A .
2
asi n
B 2 .a cos
C . asin cos
2
D . atan
3、当 A 为锐
角,
且si nA 的值大于—
2
时,A 的度数
( )
A . 小于30 B. 大于30 C. 小于60 D
大于60 4、在 ABC 中, C =90 , 且 A B 则下列关系式中, 不正确的式子是
(
A . sin A=cos
B B.
C a
C.tan A B = 1 sin A 2
D. c otA=cotB
5、在△ ABC 中, A
(1) 求经过P 、C 两点的直线解式。

(2) 求厶NPB 的面积。

(3) 求 Sin / BPN 的值。

(A) si nA
(B ) cosA
(C ) tgA
(D ) ctgA
的平分线交 BC 于D,则
(C) 2°^2 cm (D) 10 .'3 cm
直线和圆相交,圆的半径为 R ,直线到圆心的距离为 5,则( )
F 列判断正确的是(
)
(A) 经过圆心且垂直于切线的直线必经过切点 (B) 过半径外端的直线和圆相切
(C) 和圆只有一个公共点的线段叫圆的切线 (D) 垂直于圆的半径的直线和圆相切
若四边形ABCD 是圆的外切四边形,则下列各式中正确的是 (
)


圆(直线和圆)
选择题
1
、 2

3、 4
、 5、 6、 7、 8、
(B) AB+CD=BC+DA (D) / A+ / C=180
CD 丄AB 于点D ,若AD=4
(A) AB+BC=AD+DC (C) / A+ / B=180
如图(1):弧ACB 是一个半圆,
BD= 2,贝U CD 的长是( ) (A) 2、'6 (B) 2 ;:2
(C) .'6
(D)<2 如图(2): PA 、PB 、DE 分别切O O 于 A 、B 、C , 如果O O 的半径是6cm , 那么△ PDE 的周长是
(A) 16cm
(C) 12cm PO 长为 10cm , ( )cm (B) 14cm (D)10cm 如图(3):四边形ABCD 为圆内接四边形,AB 为直径,MN 切O O 于 C 点,/ BCM= 38。

则/ ABC=( ) (A) 38° (B) 52° (C) 68°
(D) 42° 如图(4):过等腰厶ABC 的顶点A 作这个三角形外接圆的 切线AE ,则/ DAE 与/ ABC 的大小关系为 ( )
(A) / DAE >/ ACB (B) / DAE= / ACB (C) / DAE V/ ACB
(D)无法确定 若PT 是O O 的切线,T 是切点,PAB 是割线,交O O 于A 、B , 且
过 0 点,若/ OPT=30, PT= 10cm ,贝U PB 长为( )
20「3 10「2
(A) 3 cm (B) 3 cm

4

(A) R > 5
(B) R V 5 (C) R=5 (D) R > 5
9、 如图(14), MP 和NQ 是半径为r 的圆的两条平行切线, M 、N 是切点,PTQ 是第三条切线,T 是切点,若MP=4,NQ=9,则r=(
)
(A) 12 (B) 6 25 (C) 4
(D)无法确定
10、 如图 ⑸,O O 的半径为6cm ,弦心距 OP 为4cm , AB 分弦
CD 为2 : 3,则弦CD 的长为( (A) 8 (B)4 30 (C)
3 ,30
(D) 3 30
解答题
1、如图,已知:DP 为O O 的直径,以
P 切于点C
求证:PA PB=PC PD
2、已知:C 是O O 的直径 AB 上一点,PC 丄AB 与O O 相交 于E , PD 是O O 的切线,D 是
切点
求证:PC 2=PD 2+AC CB
I
M
3、如图,CD 是O O 的直径,E 为O O 中半圆一动点,过 E 点的O O 的切线交 CD 的延长 线于点A ,过C 点的O 0的切线交 AB 于点B,直线 OB 交O O 于点F 、G 。

①求证:DE// BG ②若 AE = 4, AD= 2,求 tg / AED 的值;
4、已知,AB 是O 0的直径,BC 是O 0的弦,O 0的割线PDE 垂直于AB 于点F ,交 BC 于点 G ,Z A= / BCP. (1) 求证:PC 是O 0的切线;
(2)
若点C 在劣弧 AD 上运动,其条件不变,问应再具备什么条件可使结论
BG 2=BF -B0成立,(要求画出示意图并说明理由)

B
C
E
F B
D
P。

相关文档
最新文档