正项级数收敛的判别方法

合集下载

正项级数收敛的判别法 正项级数收敛性判别法的比较及其应用

正项级数收敛的判别法 正项级数收敛性判别法的比较及其应用

正项级数收敛的判别法正项级数收敛性判别法的比较及其应用正项级数收敛性判别法的比较及其应用摘要:文章主要介绍了正项级数收敛的几种主要的求解方法,通过这九种方法相互进行比较,运用典型的正项级数的例题,从而增加解决正项级数的证明方法。

关键词:正项级数;收敛;典型;方法;比较Abstract: This paper mainly introduces the positive series convergence of several main methods of solving these nine methods, through comparing each other, using typical positive series, thereby increasing positive series methods of proof.Key words: positive series ; convergence; typical ; methods; compare一、引言数学分析作为数学专业的重要基础课程。

级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。

而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。

正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。

二、预备知识1、正项级数收敛的充要条件部分和数列{S n }有界,即存在某正数M ,对∀n ∈N ,有S n 2、几种不同的判别法(1)比较判别法设∑u n 和∑v n 是两个正项级数,如果存在某正数N ,对一切n>N都有u n ≤v nn =1n =1∞∞那么(i )若级数∑v n 收敛,则级数∑u n 也收敛;(ii )若级数∑u n 发散,则级数∑v n 也发散;n =1n =1n =1∞n =1∞∞∞比较判别法的极限形式:∞∞设∑u n 和∑v n 是两个正项级数。

总结正项级数判别法的原理

总结正项级数判别法的原理

总结正项级数判别法的原理介绍正项级数是指项数都是非负数的级数。

而正项级数判别法是一种用于判断正项级数敛散性的方法。

通过对级数的项进行分析,可以得出级数的敛散性结论。

正项级数判别法是级数敛散性判别法中最常用的一种方法之一。

一级标题1. 收敛和发散在正项级数判别法中,首先需要明确什么是收敛和发散。

一个级数如果存在一个有限的和,我们称其为收敛;如果级数的和是无穷大或者不存在,我们称其为发散。

2. 正项级数判别法的基本思路正项级数判别法的基本思路是通过比较级数的项与已知的敛散性已知的级数的项之间的关系,来判断待判别级数的敛散性。

具体来说,正项级数判别法可以分为以下几种情况:二级标题1. 比较判别法比较判别法是正项级数判别法中最常用的一种方法。

其基本思想是将待判别级数的项与一个已知的敛散性已知的级数的项进行比较。

根据比较的结果,可以得出待判别级数的敛散性。

2. 比较判别法的条件比较判别法需要满足以下两个条件: - 已知级数的项都是非负数 - 待判别级数的项与已知级数的项之间存在一定的关系3. 比较判别法的两种形式比较判别法可以分为两种形式:比较判别法的第一种形式是大于判别法,比较判别法的第二种形式是小于判别法。

4. 比较判别法的具体步骤比较判别法的具体步骤如下: 1. 选择一个已知的敛散性已知的级数 2. 比较待判别级数的项与已知级数的项之间的关系 3. 根据比较的结果,得出待判别级数的敛散性结论三级标题1. 比较判别法的大于判别法比较判别法的大于判别法是指如果待判别级数的项大于一个已知的敛散性已知的级数的项,那么待判别级数也是发散的。

2. 比较判别法的小于判别法比较判别法的小于判别法是指如果待判别级数的项小于一个已知的敛散性已知的级数的项,并且已知级数是收敛的,那么待判别级数也是收敛的。

3. 比较判别法的例子比较判别法的一个例子是比较级数和调和级数。

调和级数是一个已知的敛散性已知的级数,其项为1/n。

如果待判别级数的项大于调和级数的项,那么待判别级数也是发散的。

正项级数an收敛a2n收敛证明

正项级数an收敛a2n收敛证明

正项级数an收敛a2n收敛证明全文共四篇示例,供读者参考第一篇示例:定义正项级数是指所有的项都为正数的数列的和,即a1 + a2 + a3 + ... + an + ...。

而当正项级数中的项满足an ≤ a2n的关系时,我们称其为a2n 收敛。

这篇文章将会详细介绍正项级数an 收敛到a2n 的证明过程。

证明正项级数an 收敛到a2n 的方法有很多种,其中一种较为常用且比较简单的方法是利用Cauchy 判别法。

根据Cauchy 判别法,对于正数序列{an} 来说,若存在正整数N,使得对一切n > N 都有a2n ≤ 2an,则级数{an} 是收敛的。

首先我们假设级数{an} 收敛到A,即a1 + a2 + a3 + ... + an + ... = A。

因为级数{an} 收敛到A,所以对于任意ε > 0,存在正整数N1,使得当n > N1 时,有我们将n 替换为2n,得到即根据初等数学知识,并根据级数的性质,我们可以得出a1 + a2 + ... + a2n ≤ a1 + a2 + ... + an + a2n + 1 + a2n + 2 + ...,结合以上不等式,我们可以得出a2n ≤ 2an。

我们可以证明正项级数{an} 收敛到a2n,证毕。

总结一下,我们通过使用Cauchy 判别法,证明了正项级数an 收敛到a2n 的结论。

在证明过程中,我们充分利用了正项级数的性质以及数学分析的基本知识。

这也再次验证了数学的严谨性和逻辑性,同时也加深了我们对正项级数及其性质的理解。

希望通过这篇文章的介绍,读者能够对正项级数an 收敛到a2n 的证明方法有更加深入的理解和掌握。

同时也希望能够引起读者对数学推理和证明方法的兴趣,从而不断提升自己的数学能力和思维能力。

第二篇示例:正项级数是指所有项都是正数的级数,即an > 0。

正项级数在数学中是一个重要的概念,研究其性质可以帮助我们了解级数的收敛性质。

正项级数敛散性的判别方法

正项级数敛散性的判别方法

正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。

判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。

一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。

2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。

二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。

三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。

四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。

五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。

这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。

同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。

正项级数判别 法

正项级数判别 法

正项级数判别法
正项级数是指数列 $a_n$ 项全是正数的级数,即
$\sum\limits_{n=1}^{\infty}a_n$,其中 $a_n>0$。

对于这种级数,我们有一个非常有用的判别法,叫做正项级数判别法。

正项级数判别法的主要思想是通过比较级数的通项 $a_n$ 与一个已知的收敛级数的通项之间的大小关系,来判断所给级数是否收敛。

根据比较级数的大小关系,我们可以将正项级数分为以下三类。

一、大于等于已知收敛级数的通项
如果级数 $\sum\limits_{n=1}^{\infty}a_n$ 的通项 $a_n$ 大于等于已知收敛级数$\sum\limits_{n=1}^{\infty}b_n$ 的通项 $b_n$,即 $a_n\geq b_n$,那么我们可以得到如下的结论:
右边这个级数显然也发散。

因此,如果 $a_n\leq b_n$,则
$\sum\limits_{n=1}^{\infty}a_n$ 必发散。

三、属于柯西型级数
这个结论比较抽象,需要用到柯西收敛准则。

具体地说,如果对于任意一个正实数$\epsilon>0$,存在正整数 $N$,使得当 $n\geq N$ 时,有:
$$|a_n-b_n|<\epsilon$$
正项级数判别法的应用非常广泛,尤其对于那些可以化为 $a_n=\dfrac{1}{n^p}$ 的级数,直接运用大小关系即可得出结论。

同时,正项级数判别法也可以用来求极限,提高我们解决问题的效率。

第十章 无穷级数2正项级数的收敛判别法

第十章 无穷级数2正项级数的收敛判别法

(1) 当 0 h 时,若 vn收敛,则 un收敛;
n1
n1
(2) 当 0 h 时,若 vn发散,则 un发散.
n1
n1
例3
讨论下列级数的收敛性:
(1)
2n 1
;
n1 (n 1)(n 2)(n 3)
(2) sin 1 ;
n1
n
(3) (1 cos ), (0 ).
在a, A 上可积,若极限 lim A f ( x)dx 存在,则称函数 A a
f
(x)
在a,
上的无穷积分 a
f
( x)dx 收敛.并将上
述极限值定义为无穷积分的值,即
A
f ( x)dx lim f ( x)dx
a
A a
若无极限,则称无穷积分发散.
定理 6 (积分判别法)
设 un为正项级数.若存在一个单调下降的非负 n1
数学分析II
第十章 无穷级数
§2 正项级数的收敛判别法
生物数学教研室
定义: 当 un 0 (n 1,2,) 时, un称正项级数. n1
<注>: 正项级数的部分和序列Sn是单调递增的.
命题: 正项级数 un收敛 其部分和序列有上界. n1
1. 比较判别法
定理 1 ( 比较判别法 )
设两正项级数 un与 vn的一般项满足
n2
1 n(ln n)
p
发散.

p 1 时,由比较判别法
1 n(ln n) p
1 (n nln n
3),
级数
n2
1 n(ln n)
p
发散.
当 p 1 时,
A 2
1 x(ln x) p

总结正项级数判别法的原理

总结正项级数判别法的原理

总结正项级数判别法的原理1.引言在学习数学中,我们经常会遇到各种各样的级数。

其中正项级数是一种比较特殊的级数,它是由一串正数相加而成的级数。

正项级数判别法是判断正项级数是否收敛的一种方法。

本篇文章将详细介绍正项级数判别法的原理及其应用。

2.原理正项级数判别法是在判断正项级数收敛的时候使用的一种方法。

正项级数指的是级数的各个项都是正数。

在判断正项级数是否收敛的时候,我们需要用到一个非常重要的原理:比较原理。

比较原理是正项级数判别法的核心原理。

以下是比较原理的两种形式:-若级数$\sum_{n=1}^{\infty}a_n$收敛,且对于所有$n\in N^+$,都满足$0\le b_n\le a_n$,则级数$\sum_{n=1}^{\infty} b_n$也收敛;-若级数$\sum_{n=1}^{\infty}b_n$发散,且对于所有$n\in N^+$,都满足$0\le b_n\le a_n$,则级数$\sum_{n=1}^{\infty} a_n$也发散。

比较原理的第一个形式说明了一个结论:“如果一个级数收敛,那么它的任何小于等于它的级数也收敛”。

这个结论非常重要,因为它让我们可以用更容易处理的级数来代替意义相同但更复杂的级数。

比较原理的第二个形式则说明了另一个结论:“如果一个级数发散,那么所有大于等于它的级数都发散”。

这个结论同样非常重要,因为它让我们可以用更容易处理的级数来判断一个级数是否发散。

在使用比较原理判断正项级数的收敛性时,我们需要找到一个小于等于该级数的级数,并且我们知道这个小于等于级数的级数是收敛的或者发散的。

如果这个小于等于级数的级数是收敛的,那么原级数也一定收敛;如果这个小于等于级数的级数是发散的,那么原级数也一定发散。

以上就是正项级数判别法的核心原理:比较原理。

接下来,我们将探讨在实际运用中如何找到一个小于等于该级数的级数,并且如何判断这个小于等于级数的级数是收敛的还是发散的。

13-2_数项级数的收敛判别法

13-2_数项级数的收敛判别法

练习1 判别级数
1 的敛散性 (a>0为常数)
n1 n2 a 2
1
解:因为 lim n
n2 a2 1
1
(即=1为常数)
n
1

是调和级数,它是发散的
n1 n
1
故原级数 n1 n2 a 2
发散.
E-mail: xuxin@
练习2 判别级数 ( 1 cos x )
n1
n
1
n 3n
n1
31n收敛,
故原级数收敛.
E-mail: xuxin@
例6
判定级数
ln(1
1 )的敛散性.
n1
n2
解:Q
lim
n
ln(1 1
1 n2
)
1,级数
n1
1 n2
收敛,
n2
由定理(2)知级数
n1
ln(1
1 n2
)收敛.
E-mail: xuxin@
n1
E-mail: xuxin@
推论2 设un为正项级数,如果存在p 1, n1
使得un
1 np
(n
1, 2,),则级数
n1
un收敛;
如果un
1 n
(n
1, 2,),
则级数发散.
例4 判断下列级数的敛散性
1
(1)
n1 (2n 1) 2n
n 1
(2) n1 n2 1
n1
E-mail: xuxin@
例 1 考察级数
1
n1 1 2n
1
1
2
1
1 22
L
1
1 2
n
L
的收敛性.

级数判别法

级数判别法

级数判别法基本定理:正项级数收敛的充要条件是:∑∞=1n n a的部分和数列}{n S 有界。

1、 比较判别法:设∑∞=1n n a 和∑∞=1n n b是两个正项级数,且存在0>N ,使当N n >时,有不等式n n b a ≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。

○2:∑∑∞=∞=⇒101n n n n ba 发散发散。

2、 比较判别法极限形式:设∑∞=1n na 和∑∞=1n nb 是两个正项级数,且λ=+∞→n nn b a lim,则:○1:当+∞<<λ0时,∑∞=1n na 和∑∞=1n n b具有相同的敛散性。

○2:当0=λ时,∑∞=1n n b 收敛∑∞=⇒1n na 收敛。

○3:当+∞=λ时,∑∞=1n n b 发散∑∞=⇒1n na 发散。

3、 比较判别法II :设有两正项级数∑∑∞=∞=101n nn n b a 和,)0,0(≠≠n n b a 满足:nn n n b b a a 11++≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。

○2:∑∞=1n na发散∑∞=⇒1n n b发散。

4、 比值判别法(达朗贝尔):设∑∞=1n n a为正项级数,则:1°若当n 充分大时有:11<≤+q a a n n ,则级数∑∞=1n n a 必收敛。

2°若当n 充分大时有:11≥+n n a a ,则级数∑∞=1n n a 必发散。

5、 达朗贝尔判别法的极限形式:设∑∞=1n n a为正项级数,且2111lim limλλ==+∞→+∞→n n n n n n a a,a a ,+∞≤2,1λ,则:1°:当11<λ时,级数∑∞=1n n a 收敛。

2°:当12>λ时,级数∑∞=1n n a 发散。

6、 根值判别法(Cauchy ):设∑∞=1n n a为正项级数,则:1°:若当n 充分大时,有1<≤q a nn ,则级数∑∞=1n na 必收敛。

关于正项级数收敛性的判别法

关于正项级数收敛性的判别法

关于正项级数收敛性的判别法On convergence of series with positive terms摘要正项级数作为级数理论中最基本的一类级数,它的敛散性的判定是级数理论的核心问题。

正项级数的敛散性判别方法有很多,本文对正项级数敛散性的各种判别法的特点与联系作了简单、系统的归纳与剖析。

正项级数不仅有一般级数收敛性的判别法,也有许多常用的和一些新的收敛性的判定方法,如比较判别法、柯西判别法、达朗贝尔判别法、拉贝判别法和对数判别法等,但运用起来有一定的技巧,需要根据对不同级数通项的特点进行分析,选择适宜的方法进行判定,这样才能够最大限度的节约时间,提高效率,特别是对于一些典型问题,运用典型方法,更能事半功倍。

关键词:级数;正项级数;收敛;发散。

AbstractDetermining whether or not a series is convergent in the series theory is the core issue. There are many ways to determine if a positive series is convergent. This thesis makes full analysis for the convergence determination methods for positive series. There are many common and some new convergence determination methods, such as comparison criterion, Cauchy criterion, d'Alembert criterion, Log Criterion and Rabe Criterion and other methods. But using which of these methods needs certain skills, needs to analyze the general items of the series. A lot of time can be saved if an appropriate method is used. Key words: Series;positive series; convergence; divergence.目录摘要................................................................................................................................................................. I I ABSTRACT.. (III)目录 (IV)引言 (1)1 基础知识 (2)1.1无穷级数的定义 (2)1.2无穷级数的部分和 (2)1.3无穷级数收敛的定义 (2)2 正项级数敛散性的常用判别法 (3)2.1柯西收敛原理[1] (3)2.2基本定理 (3)2.3比较判别法 (3)2.4达朗贝尔判别法 (4)2.5柯西判别法 (4)2.6积分判别法 (5)2.7阿贝尔判别法 (5)2.8狄利克雷判别法 (5)3 正项级数敛散性的一些新的判别法 (6)3.1定理1(比较判别法的推广) (6)3.2定理2(等价判别法) (6)3.3定理3(拉贝判别法)[3] (7)3.4定理4(高斯判别法)[5] (8)3.5定理5(库默尔判别法)[3] (8)3.6定理6(对数判别法)[4] (9)3.7定理7(隔项比值判别法)[3] (10)3.8定理8(厄尔马可夫判别法)[4] (10)3.9定理9(推广厄尔马可夫判别法)[4] (10)4 正项级数敛散性判别法的比较 (12)5 应用举例 (16)6 总结与展望 (20)参考文献 (21)致谢 (22)引言在数学分析中,数项级数是全部级数理论的基础,主要包括正项级数和交错级数,而正项级数在各种数项级数中是最基本的,同时也是十分重要的一类级数。

正项级数an收敛a2n收敛证明

正项级数an收敛a2n收敛证明

正项级数an收敛a2n收敛证明全文共四篇示例,供读者参考第一篇示例:正项级数是数学中很重要的一个概念,在数学分析领域占有重要的地位。

在正项级数中,我们可以通过探讨级数的各种性质,来研究级数的收敛性质。

关于正项级数an收敛a2n收敛的问题是数学分析中的一个研究热点。

我们来看正项级数的定义。

正项级数是指级数中每一项都是非负数的情况。

一个正项级数可以表示为:\[\sum_{n=1}^{\infty}a_n = a_1 + a_2 + a_3 + \cdots\]每一项an都大于等于0。

当我们说一个正项级数收敛时,指的是级数的部分和数列{sn}收敛,即存在一个常数L,使得:sn表示级数的前n项和。

如果L存在,我们称级数收敛,反之称级数发散。

接下来,我们来讨论正项级数an收敛a2n收敛的情况。

这里我们首先假设an是一个正项级数,且收敛。

即:那么我们来考虑正项级数a2n的情况。

我们知道,a2n实际上是原级数每隔一项相加得到的一个新级数。

我们可以将a2n写成下面的形式:我们可以将a2n看作是一个新的数列bn的部分和。

即:接下来,我们来证明a2n也是一个收敛的级数。

我们考察b1,b2,b3...这些部分和的序列。

我们可以看到,bn与原级数的部分和sn是有一个特定的关系的。

结合an的有界性,我们可以得到b1,b2,b3...这些部分和序列{bn}也是一个有界的序列。

现在,我们来看b_n+1 - b_n的情况。

我们有:\[b_{n+1} - b_n = (a_2 + a_4 + a_6 + \cdots + a_{2n} +a_{2n+2}) - (a_2 + a_4 + a_6 + \cdots + a_{2n}) = a_{2n+2} \]即b_n+1 - b_n = a_{2n+2}。

由于an是一个正项级数,因此a_{2n+2}也是一个正数。

b_n+1 - b_n也是一个正数。

这意味着{bn}是一个递增的序列。

12.2正项级数的判别法

12.2正项级数的判别法

的收敛性.(
p
0)
解 1.当0p1时 , 1 np
1, n
则P级数发. 散
y
2.当p1时,由图可知
1 n dx
np x n1 p
sn12 1p3 1p n 1p
y
1 xp
(p1)
112d xpx nn1d xpx
o 1 234
x
2021/6/4
8
1
n dx 1 xp
1p11(1n1p1)
2021/6/4
6
其收敛性, 则首先要通过观察, 找到另一个已知级 数与其进行比较, 并应用定理2进行判断, 只有知道 一些重要级数的收敛性, 并加以灵活应用, 才能熟 练掌握比较判别法.
比较判别法的不便: 须有参考级数.
2021/6/4
7
例 1 讨论 P-级数
1
1 2p
1 3p
1 4p
1 np
两点注意:
1 . 当 1 时 比 值 审 敛 法 失 效 ;
例如,级数
1发散,
n1 n


n1
1 n2

敛,
(
1)
2021/6/4
26
2 . 条 件 是 充 分 的 , 而 非 必 要 .
例 如un22 ( n1)n23nvn,
级n 数 1unn 122 ( n1)n收,敛
但 uu nn 122(2 ( ( 1)1n)n 1)an,
1 1 p1
即sn有界, 则P级数收. 敛
故有:P级数 当 当pp 11时 时,,
收敛 发散
重要参考级数: 几何级数, P-级数, 调和级数.
2021/6/4
9
例 2 证明:级数

第二讲正项级数收敛判别法(一)解剖

第二讲正项级数收敛判别法(一)解剖

nn1
n1
n1 (n2 1) 2
(A)收敛
(B)发散
#2014021901
例4 判别敛散性
1
x
(2)
n1
n 0
1
x2
dx
(A)收敛
(B)发散
#2014021902
例4 判别敛散性
nn1
x 1
(1)
n1
n1 (n2 1) 2
(2)
n
0 1 n1
x2
dx
证:(1)0
u n
nn1
n1
(n2 1) 2
也发散 .
说明:
1. 比较判别法仅适用于正项级数 ;
2. 不等式条件可以从某一个N后都满足就行;
3.常用的参考级数




aq
n
n0
常用的不等式
a2 b2 2ab, a,b R
sin x x, x 0 ex 1 x, x 0
x ln(1 x) x, x 0 1 x
例2.
讨论
p
收敛。 发散。
例6.
判别级数 sin
n1
1 n
的敛散性
.
#2014021903
(A)收敛
(B)发散
例6.
判别级数 sin
n1
1 n
的敛散性
.
解: lim n sin 1 lim n 1 1
sin
1 n

1 n
n
n n n
根据比较审敛法的极限形式知
sin
n1
1 n
发散
.
例7.
判别级数 ln1
(n N)
(1) 当0 < l <∞时, 同时收敛或同时发散 ;

正项级数比较判别法

正项级数比较判别法

正项级数比较判别法
正项级数比较判别法是一种用来判断正项级数的收敛性或发散性的方法。

它基于一个重要的原理,即如果一个正项级数的每一项都小于或等于另一个正项级数的对应项,那么两个级数的收敛性或发散性是一致的。

具体地说,假设有两个正项级数∑an和∑bn,其中an≤bn,对于n=1,2,3,...。

如果∑bn收敛,那么∑an也收敛;如果∑an发散,那么∑bn也发散。

根据正项级数比较判别法,我们可以将一个给定的正项级数与已知的收敛或发散的级数进行比较,从而判断它的收敛性或发散性。

为了使用这个方法,我们需要找到一个已知的级数,使得它的收敛性或发散性易于判断,并且能够与所给级数进行比较。

举个例子,假设我们要判断级数∑an的收敛性,我们找到一个已知的级数∑bn,使得bn比an大,并且∑bn是一个收敛的级数。

根据正项级数比较判别法,如果∑bn收敛,那么∑an也收敛。

反之,如果∑bn发散,那么∑an也发散。

需要注意的是,正项级数比较判别法只能给出收敛或发散的结论,不能确定级数的精确值。

此外,判别条件中的等号是允许的,即an≤bn也可以是an<bn。

这是因为当an<bn时,我们可以通过在bn的每一项上减去一个小的正数来得到一个新的级数bn',使得bn'≥an且∑bn'与∑bn具有相同的收敛性或发散性。

在实际问题中,正项级数比较判别法经常用于判断级数的收敛
性。

它是一种简单而有效的方法,可以帮助我们快速判断一个级数的性质,并在数学和物理等领域中得到广泛应用。

关于正项级数敛散性的柯西(cauchy)积分判别法及其证明的几点注记

关于正项级数敛散性的柯西(cauchy)积分判别法及其证明的几点注记

关于正项级数敛散性的柯西(cauchy)积分判别法及其证明的几点注记1.柯西(Cauchy)积分判别法认为:如果正项级数以n→∞收敛,则其和sum(sn)=lim(n→∞)得到的结果为它的积分sum(Sn).2.证明柯西(Cauchy)积分判别法:首先,用反证法:假设正项级数Sn不收敛,那么lim(n→∞)Sn != sum(Sn).其次,我们假设正项级数Sn一定会收敛,此时我们可以证明lim(n→∞)Sn=sum(Sn)。

首先,我们用数学归纳法证明:令n=1,令M是该正项级数的极限,如果S1<M,则总和sum(Sn)<M;如果S1=M,则总和sum(Sn)=M。

其次,我们用数学归纳法证明:令N>1,令S1,S2,...,Sn-1<M,则Sn<M,因此sum(Sn)<M;如果S1,S2,...,Sn-1=M,则Sn<M,因此sum(Sn)<M。

最后,综上所述,无论Sn怎么变化,sum(Sn)的最终结果都小于极限M,因而满足总和sum(Sn) = lim(n→∞)Sn。

由此可知,如果正项级数Sn收敛,那么总和sum(Sn) = lim(n→∞)Sn,从而证明了柯西(Cauchy)积分判别法。

综上所述,柯西(Cauchy)积分判别法是完备的,即如果正项级数Sn收敛,则sum(Sn) = lim(n→∞)Sn; 如果正项级数Sn不收敛,则sum(Sn) !=lim(n→∞)Sn。

因此,柯西(Cauchy)积分判别法可以有效地确定积分是否收敛。

如果有多个级数收敛,那么我们可以将多个级数收敛表示成一个函数f(x),将f(x)在正项级数收敛的区间[a,b]上进行积分,即sum(Sn)=∫f(x)dx;由柯西(Cauchy)积分判别法可知,积分的值sum(Sn)等于极限lim(n→∞)Sn;因此,我们可以用柯西(Cauchy)积分判别法来确定多个级数收敛的总和。

02第二节正项级数的判别法

02第二节正项级数的判别法

第二节 正项级数的判别法‎ 一般情况下,利用定义和准则来‎判断级数的收敛性是很困难的,能否‎找到更简单有效的判别方法呢?我们‎先从最简单的一类级数找到突破口,‎那就是正项级数.分布图示★‎ 正项级数★ 比较‎判别法 ★ 例1★ 例2‎★ 例3★ 例4 ★ 例5‎★ 比较判别法的极限形式★ ‎例6 ★ 例7★ 例8‎★ 例9 ★ 例10 ★ 比值‎判别法 ★ 例11 ★ 例12‎ ★ 例13 ★ 根值判别法‎★ 例14★ 例15‎★ 例16 ★ 积分判别法 ★‎ 例17 ★ 内容小结 ★ ‎课堂练习 ★ 习题12-2‎★ 返回内容要点一‎、正项级数收敛的充要条件是:它的‎部分和数列}{n s 有界. 以此为基础推‎出一系列级数收敛性的判别法:‎ 比较判别法;比较判别法的‎极限形式;推论(常用结论)比较‎判别法是判断正项级数收敛性的一个‎重要方法. 对一给定的正项级数,‎如果要用比较判别法来判别其收敛性‎,则首先要通过观察,找到另一个已‎知级数与其进行比较,并应用定理2‎进行判断. 只有知道一些重要级数‎的收敛性,并加以灵活应用,才能熟‎练掌握比较判别法. 至今为止,我‎们熟悉的重要的已知级数包括等比级‎数、调和级数以及-p 级数等. 要应‎用比较判别法来判别给定级数的收敛‎性,就必须给定级数的一般项与某一‎已知级数的一般项之间的不等式. ‎但有时直接建立这样的不等式相当困‎难,为应用方便,我们给出比较判别‎法的极限形式.使用比较判别法或‎其极限形式,需要找到一个已知级数‎作比较,这多少有些困难. 下面介‎绍的几个判别法,可以利用级数自身‎的特点,来判断级数的收敛性. ‎ 比值判别法(达朗贝尔判别法‎):适合1+n u 与n u 有公因式且nn n u u 1lim +∞→ 存在‎或等于无穷大的情形.根‎值判别法(柯西判别法):适合n u 中‎含有表达式的n 次幂,且ρ=∞→n n n u lim 或等于‎∞+的情形.积分判别法:对于正项‎级数,1∑∞=n na ,如果}{na 可看作由一个在),1[+∞上‎单调减少函数)(x f 所产生, 即有).(n f a n = ‎则可用积分判别法来判定正项级数∑∞=1n n a ‎的敛散性. 例题选讲比较判别‎法的应用例1(E01)讨论p —‎级数)0(131211>+++++p np p p 的收敛性. 解 1p ≤时,,11n np≥‎-∴p 级数发散. 1>p 时,由图可见‎,11⎰-<n n p p x dx n p p p n ns 131211++++=,111111111111121-+<⎪⎭⎫ ⎝⎛--+=+=+++<--⎰⎰⎰p n p x dx x dx x dx p n n n pp p即n s ‎有界,-∴p 级数收敛. ‎ 当1>p 时收敛 故-p 级‎数 ‎ . ‎ 当1≤p 时发散例2(E ‎02)证明级数∑∞=+1)1(1n n n 是发散的.证 ‎)1(1+n n ,11+>n 而级数∑∞-+111n n 发散, ∴∑∞-+1)1(1n n n 发‎散.例3(E03)判别级数∑∞=+++122)2()1(12n n n n ‎的收敛性.解 运用比较判别法‎.因22)2()1(12+++n n n 22)2()1(22+++<n n n 3)1(2+<n ,23n <而∑∞=131n n是收敛的,所‎以原级数收敛.例4(E04)‎设n n n b c a ≤≤),,2,1( =n 且∑∞=1n na及∑∞=1n nb均收敛, 证明级数‎∑∞=1n nc收敛.证 由,n n n b c a ≤≤得 ,),2,1(0 =-≤-≤n a b a c n n n n 由‎于∑∞=1n na与∑∞=1n nb都收敛,故)(1nn na b ∑∞=-是收敛的,‎从而由比较判别法知,正项级数)(1n n n a c ∑∞=-也‎收敛.再由∑∞=1n na与)(1n n na c-∑∞=的收敛性可推知‎: 级数∑∞=1n n c )]([1n n n na c a∑∞=-+=也收敛.例5 设‎⎰=40tan πxdx a nn ,证明级数∑∞=1n nna λ)0(>λ收敛. 证 由‎⎰=4tan πxdx a n n ⎰<42sec tan πxdx x n⎰=40tan tan πx xd n⎪⎪⎭⎫⎝⎛+=+41tan 11πx n n 11+=n n 1< 得.λλ+<<110n n a n 因为,11>+λ所以∑∞=+111n n λ‎收敛, 由比较判别法知∑∞=1n nn a λ收敛.‎比较判别法及其推论的应用例6‎(E05)判定下列级数的敛散性:‎(1) ;11ln 12∑∞=⎪⎭⎫ ⎝⎛+n n (2)‎.cos 111∑∞=⎪⎭⎫ ⎝⎛-+n n n π解 )1(因⎪⎭⎫ ⎝⎛+211ln n ),(1~2∞→n n 故 n n u n 2lim ∞→⎪⎭⎫ ⎝⎛+=∞→2211ln lim n n n 221lim nn n ⋅=∞→1=‎根据极限判别法,知所给级数收敛‎. )2(因为n n u n2/3lim ∞→⎪⎭⎫ ⎝⎛-+=∞→n n u n n n πcos 11lim 2/322211lim ⎪⎭⎫ ⎝⎛⋅+=∞→n n n nn π,212π= 根据极限判‎别法, 知所给级数收敛.比值‎判别法的应用例7 判别级数∑∞=++1)(n an nn a n 的‎敛散性. 解 记an nn na n u ++=)(a n n n n n n a n ⎪⎭⎫ ⎝⎛+=1,1a nn n a ⎪⎭⎫ ⎝⎛+= 采用‎比较法的极限形式,取,1an n v =因 nn n v u ∞→lim nn n a ⎪⎭⎫⎝⎛+=∞→1lim a e =‎,0≠ 所以原级数与级数∑∞=11n an具有相同的‎敛散性,从而知当1>a 时,级数∑∞=++1)(n an nn a n 收‎敛; 当1≤a 时,级数∑∞=++1)(n an nna n 发散.例‎8 判别级数∑∞=⎪⎭⎫ ⎝⎛-1sin n n n ππ的敛散性. 解 ‎选取级数∑∞=⎪⎭⎫⎝⎛13n n π作比较.由,613cos 1lim sin lim203=-=-→→x x x n x x x π可得3sinlim ⎪⎭⎫⎝⎛-∞→n n n n πππ.61=‎因级数∑∞=⎪⎭⎫⎝⎛13n n π收敛,所以原级数也收敛‎.注:从以上解答过程中可以看到‎极限中的某些等价无穷小在级数审敛‎讨论时十分有用的,事实上级数的收‎敛性取决于通项n u 趋向于零的“快慢‎”程度.例9(E06)判别级‎数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n的敛散性. 解 令)1ln()(x x x u +-=),0(0>>x .)(2x x v =由‎于2)1ln(limx x x x +-+∞→x x x 2111lim +-=+∞→)1(21lim x x +=+∞→,21=从而2111ln 1limn n n n ⎪⎭⎫ ⎝⎛+-∞→211ln1lim nn n n n +-=∞→.21= 由级数‎∑∞=121n n 的收敛推知本题所给级数也收敛.‎例10 级数,11∑∞=n p n 当1>p 时收敛,‎ 有人说, 因为,111>+n 故级数∑∞=+1111n nn 收敛‎. 你认为他的说法对吗?解 ‎ 不对.前者-p 级数的p 是一常数与‎n 无关,而后者n11+与n 有关,事实上‎ n nnn /11lim11+∞→1)(lim -∞→=n n n 1=由级数∑∞=11n n 的发散性,可知‎级数∑∞=+1111n nn 也发散.例11(E07‎)判别下列级数的收敛性:(1)‎ ∑∞=1!1n n ; (2)∑∞=110!n nn . ‎ (3) ().21211∑∞=⋅-n n n解 )1(‎n n u u 1+!/1)!1/(1n n +=11+=n ,0−−→−∞→n 故级数∑∞=1!1n n 收敛.)2(n n u u 1+!1010)!1(1n n n n ⋅+=+,∞−−→−∞→n ‎故级数∑∞=110!n n n 发散. )3(nn n u u 1lim+∞→)22()12(2)12(lim +⋅+⋅-=∞→n n nn n ,1=比值判别‎法失效,改用比较判别法,因为n n 2)12(1⋅-‎,21n <而级数∑∞=121n n 收敛,所以∑∞=⋅-12)12(1n n n 收敛.‎例12(E08)判别级数∑∞=⎪⎭⎫ ⎝⎛+1212n nn n 的散敛‎性.解 因为n nn )12(2+,22nn <而对于级数,212∑∞=n n n ‎由比值判别法,因 nn n u u 1lim +∞→21222)1(lim n n n n n ⋅+=+∞→2)11(21lim n n +=∞→21=,1< 所‎以级数∑∞=122n nn 收敛,从而原级数亦收敛.‎例13 判别级数)0(!1>∑∞=a n a n n n n的收敛性.‎解 采用比较判别法,由于nn n u u 1lim +∞→‎!)1()!1(lim 11n a n n n a n n n n n ⋅⋅++=++∞→n n n a )/11(lim +=∞→,e a= 所以当e a <<0时,原级数收敛;‎当e a >时,原级数发散;当e a =时,比值‎法失效,但此时注意到:数列nn n x ⎪⎭⎫ ⎝⎛+=11严‎格单调增加,且,e n n<⎪⎭⎫⎝⎛+11于是,11>=+nn n x e u u 即,n n u u >+1故,e u u n =>1‎由 此得到,0lim ≠∞→n n u 所以当时原级数发散.‎例14 判别级数2111n n n ∑∞=⎪⎭⎫⎝⎛-的散敛性.‎解 一般项含有n 次方, 故可‎采用根值判别法.因为n nn u ∞→lim n n n n 211lim ⎪⎭⎫⎝⎛-=∞→nn n ⎪⎭⎫ ⎝⎛-=∞→11lim e1=1<‎故所求级数收敛.例15(E ‎09)判别级数∑∞=---1)1(2n n n的收敛性:解 ‎ 因为n n n u ∞→lim nn n n n)(2lim ---∞→=nn n)1(12lim ---∞→=21=1< 由根值判别法‎知题设级数收敛.例16(E1‎0) 判别级数∑∞=-+12)1(2n nn的收敛性. 解 ‎ 因为n 21n n 2)1(2-+≤n23≤ 而,2121lim =∞→n n n ,2123lim =∞→n n nn n nn 2)1(2l i m -+∞→21=1< 故原级数收敛.‎例17(E11)试确定级数∑∞=1ln n n n的敛‎散性. 解 若设,xxx f ln )(=则显然)(x f 在‎1>x 时非负且连续. 因,2ln 1)(x xx f -='所以在e x >时‎有,0)(<'x f 函数)(x f 单调减少, 于是,可以‎对级数∑∞=1ln n n n应用积分判别法.注意到 ‎dx xxe⎰∞ln ⎰∞→=beb dx x xln limbeb x ⎥⎦⎤⎢⎣⎡=+∞→2ln lim 22ln ln lim 22e b b -=+∞→,+∞= 即广义积分以散,所以‎级数∑∞=1ln n n n发散.课堂练习1.设‎正项级数∑∞=1n n u 收敛, 能否推得∑∞=12n n u 收敛‎? 反之是否成立?2.判别下列‎级数的收敛性.1)3(;22)2(;cos 1)1(111∑∑∑∞=∞=∞=-+⎪⎭⎫ ⎝⎛-n nn n n e n n n π达朗贝尔(D ‎’Alember Jean Le ‎ Rond ,1717~1783)‎达朗贝尔是法国物理学家、数学家‎。

正项级数判别法

正项级数判别法

例 4 证明级数

n 1
1 是发散的. n( n 1)
证明
1 1 , 而级数 1 发散, n( n 1) n 1 n 1 n 1

级数
n 1
1 发散. n( n 1)
nn n!发散; n 1
2n 1 n!收敛; 而级数 n n n收敛吗? n 1 n 1
n1 级数 2 , n 1 n 1


2 ( 1)n 级数 , n 2 n 1
4. 定理3 比较判别法的极限形式 P175
un l, 设 un 与 v n 都是正项级数, 如果 lim n v n n 1 n 1
则(1) 当 0 l 时, 两级数有相同的敛散性; (2) 当 l 0时,若
un 设un 0, v n 0, lim 1, n vn
un
~
vn
e x 1 ~ x,
arctan x ~ x,
sin x ~ x,
ln(1 x ) ~ x ,
例 5 判定下列级数的敛散性:
1 (2) n ; n 1 3 n 1 sin n 解 (1) lim 1, 原级数发散. n 1 n 1 n 3 n lim 1 1, ( 2) lim n 1 n n 1 n n 3 3 1 n收敛, 故原级数收敛. n1 3
§11.2 正项级数的收敛判别法
1.定义P173: 如果级数 un中各项均有un 0,
n1
这种级数称为正项级数.
2.正项级数
s1 s2 sn
部分和数列 { sn } 为单调增加数列.
定理1
正项级数收敛 部分和所成的数列 sn有上界.

数学分析中的级数收敛的判定方法

数学分析中的级数收敛的判定方法

级数是数学分析中一个重要的概念,它由无穷多个数的和组成。

在研究级数时,我们常常希望知道该级数是否收敛。

本文将介绍数学分析中的一些级数收敛的判定方法。

首先我们来介绍级数的收敛和发散的定义。

对于给定的级数∑an,它的部分和序列是指Sn=∑an的前n项和。

如果该序列有极限L,即limn→∞Sn=L,那么我们称级数∑an收敛,并且极限L是该级数的和。

如果该序列没有极限,或者极限为无穷大,那么我们称级数∑an发散。

接下来我们将介绍一些级数收敛的判定方法。

1.比较判别法比较判别法是级数判定方法中最基本的方法之一。

其思想是将待判定的级数与一个已知的级数进行比较。

设∑an和∑bn是两个级数,如果对于所有的n,我们有0≤an≤bn,那么有以下结论:•如果∑bn收敛,那么∑an也收敛;•如果∑bn发散,那么∑an也发散。

通过比较判别法,我们可以快速判断某些级数的收敛性。

2.比值判别法比值判别法是另一种常用的级数收敛判定方法。

它通过计算级数的相邻两项的比值来判断级数的收敛性。

设∑an是一个级数,定义rn=|an+1/an|,如果以下条件满足:•如果rn<1,则级数∑an收敛;•如果rn>1,则级数∑an发散;•如果rn=1,则比较判别法不起作用,我们需要采用其他方法进行判定。

比值判别法在实际运用中非常有用,特别是对于一些指数函数形式的级数。

3.根值判别法根值判别法是一种级数收敛的判定方法,它利用级数的项求极限的方法进行判定。

设∑an是一个级数,定义rn=|an|^(1/n),如果以下条件满足:•如果rn<1,则级数∑an收敛;•如果rn>1,则级数∑an发散;•如果rn=1,则比较判别法不起作用,我们需要采用其他方法进行判定。

根值判别法是一种常用的方法,特别适用于指数函数形式的级数。

4.正项级数判别法正项级数判别法是一种判定正项级数(即级数的每一项都是非负数)收敛性的方法。

它通过判断级数的部分和序列是否有上界来进行判定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正项级数收敛的判别方法
正项级数收敛的判别方法有以下几种:
1. 比较判别法:如果对于正项级数∑a_n和正项级数∑b_n,有
a_n≤b_n对于所有的n成立,则若级数∑b_n收敛,则级数∑a_n也收敛;若级数∑a_n发散,则级数∑b_n也发散。

2. 极限判别法:如果对于正项级数∑a_n,有
lim(n→∞)a_n/a_(n+1)=L,其中L为有限值,则当L<1时,级数∑a_n收敛;当L>1时,级数∑a_n发散;当L=1时,级数∑a_n可能收敛也可能发散。

3. 比值判别法:如果对于正项级数∑a_n,存在正数q<1,使得lim(n→∞)a_(n+1)/a_n=q,则级数∑a_n收敛;如果
lim(n→∞)a_(n+1)/a_n>1,则级数∑a_n发散。

4. 根值判别法:如果对于正项级数∑a_n,存在正数q<1,使得lim(n→∞)√(a_n)=q,则级数∑a_n收敛;如果lim(n→∞)√(a_n)>1,则级数∑a_n发散。

需要注意的是,这些判别法只对正项级数有效,即级数中的每一项都是非负的。

对于一般的级数,可以考虑正项级数的收敛性质来推导一般级数的收敛性。

相关文档
最新文档