正项级数收敛的判别方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正项级数收敛的判别方法

正项级数收敛的判别方法有以下几种:

1. 比较判别法:如果对于正项级数∑a_n和正项级数∑b_n,有

a_n≤b_n对于所有的n成立,则若级数∑b_n收敛,则级数∑a_n也收敛;若级数∑a_n发散,则级数∑b_n也发散。

2. 极限判别法:如果对于正项级数∑a_n,有

lim(n→∞)a_n/a_(n+1)=L,其中L为有限值,则当L<1时,级数∑a_n收敛;当L>1时,级数∑a_n发散;当L=1时,级数∑a_n可能收敛也可能发散。

3. 比值判别法:如果对于正项级数∑a_n,存在正数q<1,使得lim(n→∞)a_(n+1)/a_n=q,则级数∑a_n收敛;如果

lim(n→∞)a_(n+1)/a_n>1,则级数∑a_n发散。

4. 根值判别法:如果对于正项级数∑a_n,存在正数q<1,使得lim(n→∞)√(a_n)=q,则级数∑a_n收敛;如果lim(n→∞)√(a_n)>1,则级数∑a_n发散。

需要注意的是,这些判别法只对正项级数有效,即级数中的每一项都是非负的。对于一般的级数,可以考虑正项级数的收敛性质来推导一般级数的收敛性。

相关文档
最新文档