322基本初等函数的导数公式及导数的运算法则1

合集下载

基本初等函数的导数公式及导数的运算法则 课件 (1)

基本初等函数的导数公式及导数的运算法则 课件 (1)

原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
导函数 f′(x)=_0__ f′(x)=_α_x_α_-_1_ f′(x)=_c_o_s_x__ f′(x)=__-__s_in__x_ f′(x)= axln a (a>0)
f(x)=ex f(x)=logax f(x)=ln x
∴所求的最短距离
d=1本初等函数的导数公式
知识点一 几个常用函数的导数
原函数 f(x)=c f(x)=x f(x)=x2 f(x)= 1
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
命题角度2 求切点坐标问题 例3 求抛物线y=x2上的点到直线x-y-2=0的最短距离.
解 设切点坐标为(x0,x20),依题意知与直线 x-y-2=0 平行的抛物线 y =x2 的切线的切点到直线 x-y-2=0 的距离最短.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
f′(x)=_e_x_
1 f′(x)= xln a (a>0且a≠1)
1 f′(x)=__x_
类型一 利用导数公式求函数的导数
例1 求下列函数的导数. (1)y=sin π6; 解 y′=0. (2)y=12x; 解 y′=12xln12=-12xln 2.
(3)y=lg x;
解 y′=xln110.
(4)y= x2x;

∵y=
x2x=x
3 2

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。

在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。

下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。

1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。

2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。

例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。

例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。

例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。

(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。

(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。

6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。

(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。

(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。

导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。

例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

3.2.2基本初等函数的导数公式及倒数的运算法则 课件

3.2.2基本初等函数的导数公式及倒数的运算法则 课件
[分析] (1)利用导数的几何意义和导数的运算法则,求 出切线的斜率,由点斜式写出切线的方程.(2)将切线方程与 曲线 C 的方程联立,看是否还有其他解即可.
[解] (1)y′=12x3-6x2-18x,y′|x=1=-12, 所以曲线过点(1,-4)的切线斜率为-12, 所以所求切线方程为 y+4=-12(x-1), 即 y=-12x+8.
=6x3-4x2+9x-6, ∴y′=18x2-8x+9.
(3)解法一:y′=(xx+-11)′ =x-1′x+1x+-1x2-1x+1′ =x+1x+-1x2-1=x+212. 解法二:∵y=xx-+11=x+x+1-1 2=1-x+2 1,
∴y′=(1-x+2 1)′=(-x+2 1)′ =-2′x+1x+-122x+1′=x+212.
(8)若 f(x)=lnx,则 f′(x)=___x_____.
2.导数运算法则
(1)[f(x)±g(x)]′=__f′___x__±_g_′___x___________.
(2)[f(x)·g(x)]′=__f′___x__g__x_+___f_x__g_′___x_ __. f (x)g(x)-f (x)g(x)
[点拨] (2)是存在性问题,先假设存在,通过推理、计 算,看能否得出正确的结果,然后下结论,本题的难点在于 对式子的恒等变形.
练 3 在曲线 y=x3+3x2+6x-10 的切线中,求斜率最 小的切线方程.
[解] y′=3x2+6x+6=3(x+1)2+3,∴当 x=-1 时, 切线的斜率最小,最小斜率为 3,此时,y=(-1)3+3×(- 1)2+6×(-1)-10=-14,切点为(-1,-14).∴切线方程 为 y+14=3(x+1),即 3x-y-11=0.

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
3
y 3x cos x sin x
2
x x 2 (1) (2) y 2 sin cos 2 x 1 2 2
y cos x 4 x
(3) y ( x 1)(x 2)
y 2 x 3
例3:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x;
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。

导数公式及导数的运算法则

导数公式及导数的运算法则

导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。

(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。

(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。

(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。

(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。

2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。

(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。

(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。

(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。

1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。

原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)

原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
掌握基本初等函数的导数公式,会求简单函数的导数.
1.本课重点是掌握基本初等函数的导数公式及应用. 2.本课的难点是利用基本初等函数的导数公式求简单函数的导 数与导数公式的简单应用.
基本初等函数的导数公式
9
27
此时公切线的斜率为k=2x1=64 .
27
综上所述,曲线C1,C2有两条公切线,其斜率分别为0,2674 ③. …………………………………………………………………12分
1.曲线y=xn在x=2处的导数为12,则n=( ) (A)1 (B)3 (C)2 (D)4 【解析】选B.∵y′=nxn-1,∴n×2n-1=12,可得n=3.所以选B.
(1)若f(x)=c,则f′(x)=0;
(2)若f(x)=xn(n∈Q*),则f′(x)=_n_x_n_-1_;
(3)若f(x)=sinx,则f′(x)=__c_o_sx_;
(4)若f(x)=cosx,则f′(x)=__-_si_n_x_;
(5)若f(x)=ax,则f′(x)=_a_x_ln_a_(a>0);
…………………………………………………………………4分
②当x=2 时,2x=3x2=4
3
3
.此时C1的切线方程为y-
4=
9
4(x-
3
),2
3
而C2的切线方程为y- 8 = (4x- ).2显然两者不是同一条
27 3 3
切线,所以x= 2舍去.………………………………………6分
3
(2)当公切线切点不同时①,在曲线C1,C2上分别任取一点A
1 x;-23 1 1

选修2-2——基本初等函数的导数公式及导数的运算法则(一)

选修2-2——基本初等函数的导数公式及导数的运算法则(一)

1.2 导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一), [学生用书P 11])1.问题导航(1)函数y =c ,y =x ,y =x -1,y =x 2,y =x 1的导数分别是什么?能否得出y =x n 的导数公式?(2)正余弦函数的导数公式、指数函数、对数函数的导数公式分别是什么?如何应用这些公式?2.例题导读通过对P 14例1的学习,应注意以下两个问题: (1)用导数公式直接求函数的导数.(2)变化率的实际意义及利用导数知识解决实际问题的优越性.1.几个常用函数的导数(1)若y =f (x )=c ,则f ′(x )=0. (2)若y =f (x )=x ,则f ′(x )=1. (3)若y =f (x )=x 2,则f ′(x )=2x .(4)若y =f (x )=1x ,则f ′(x )=-1x2=-x -2.(5)若y =f (x )=x ,则f ′(x ).2.基本初等函数的导数公式(1)若f (x )=c (c 为常数),则f ′(x )=0.(2)若f (x )=x α(α∈Q *),则f ′(x )=αx α-1. (3)若f (x )=sin x ,则f ′(x )=cos_x . (4)若f (x )=cos x ,则f ′(x )=-sin_x . (5)若f (x )=a x ,则f ′(x )=a x ln_a . (6)若f (x )=e x ,则f ′(x )=e x .(7)若f (x )=log a x ,则f ′(x )=1x ln a .(8)若f (x )=ln x ,则f ′(x )=1.1.判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( )(2)若y =1x ,则y ′=1x2.( )(3)若y =2x,则y ′=x ·2x -1.( ) 答案:(1)× (2)× (3)×2.余弦曲线y =cos x 在(0,1)处的切线的斜率为( ) A .1 B .0 C.π2D .-1 答案:B3.若y =25,则y ′=________. 答案:04.已知f (x )=x α,若f ′(-1)=-4,则α=________. 答案:41.对常数函数导数的几何意义与物理意义的两点说明(1)常数函数的导数为0,其几何意义为f (x )=c 在任意点处的切线平行于x 轴或与x 轴重合,其斜率为0.(2)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.2.函数y =kx (k 为常数)的导数值k 与该函数增减快慢之间的关系(1)函数y =kx (k >0)增加的快慢与k 有关系,即与函数的导数有关系,k 越大,函数增加得越快,k 越小,函数增加得越慢.(2)函数y =kx (k <0)减少的快慢与|k |有关系,即与函数导数的绝对值有关系,|k |越大,函数减少得越快,|k |越小,函数减少得越慢.利用导数公式求函数的导数[学生用书P 12]求下列函数的导数: (1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =⎝⎛⎭⎫12x ;(5)y =2cos 2x 2-1.[解] (1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=()x 35′=35x -25=355x2.(4)y ′=⎝⎛⎭⎫12x ln 2-1=-⎝⎛⎭⎫12x ln 2. (5)y =2cos 2x2-1=cos x ,∴y ′=-sin x .用公式求函数导数的方法:(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是合理转化函数的关系式为可以直接应用公式的基本函数的模式,如y =1x4可以写成y =x -4,y =5x 3可以写成y =x 35等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.(1)已知函数f (x )=1x3,则f ′(-3)=( )A .81B .243C .-243D .-127解析:选D.∵f (x )=x -3,∴f ′(x )=-3x -4=-3x 4,∴f ′(-3)=-3(-3)4=-127. (2)已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0=________.解析:∵f (x )=ln x (x >0),∴f ′(x )=1x,∴f ′(x 0)=1x 0=1x 20,∴x 0=1. 答案:1导数的几何意义(1)求曲线y =e x 在x =0处的切线方程. [解] ∵y ′=(e x )′=e x ,∴曲线y =e x 在x =0处的切线斜率为e 0=1, 又∵切线过点(0,1),∴切线方程为y -1=x -0, 即x -y +1=0.(2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解] 由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), 所以两条曲线在P (x 0,y 0)处的切线斜率分别为k 1=y ′|x =x 0=cos x 0, k 2=y ′|x =x 0=-sin x 0.若使两条切线互相垂直, 必有cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.利用导数的几何意义解决曲线切线问题的方法:2.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于________.解析:∵y ′=-12x -32,∴切线的斜率k =-12a -32,∴切线方程是y -a -12=-12a -32(x -a ).令x =0,得y =32a -12,令y =0,得x =3a ,∴三角形的面积S =12·3a ·32a -12=18,解得a =64.答案:64导数几何意义的综合应用[学生用书P 12](1)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A.1nB.1n +1C.n n +1D .1 [解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n . 令x =1,得在点(1,1)处的切线的斜率k =n +1, ∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1),令y =0,则x n =nn +1,∴x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.[答案] B (2)(2015·高考全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.[解析] ∵ f ′(x )=3ax 2+1, ∴ f ′(1)=3a +1. 又f (1)=a +2,∴ 切线方程为y -(a +2)=(3a +1)(x -1).∵ 切线过点(2,7),∴ 7-(a +2)=3a +1,解得a =1. [答案] 1利用导数的几何意义求解曲线的切线与坐标轴所围成的三角形的面积问题,切线与数列的交汇问题,公切线问题等,首先要熟记导数公式,对函数能够正确求导,再注意转化思想,数形结合思想及构造法、配方法的运用.3.已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,试在抛物线弧AOB ︵上求一点P ,使△ABP 的面积最大.解:如图所示,|AB |为定值,要使△P AB 面积最大,只要使P 到AB 的距离最大,所以点P 是抛物线的平行于AB 的切线的切点.设P (x ,y ),由图知,点P 在x 轴下方的图象上,所以y =-2x .由导函数的定义不难求得y ′=-1x. 因为k AB =-12,所以-1x=-12,即x =2,x =4.由y 2=4x (y <0),得y =-4,所以P (4,-4).下列结论:①若y =3x ,则y ′=133x ;②若y =x 3,则y ′=3x 2;③若f (x )=x 2,则f ′(3)=9.其中正确的序号是________.[解析] y =3x ,y ′=(3x )′=()x 13′ =13x -23=133x 2. ∵f (x )=x 2,∴f ′(x )=2x ,则f ′(3)=2×3=6. [答案] ② [错因与防范](1)求导时易出现的错误是解析式化简出错,符号处理不清,理解不到位,从而出错. (2)对用根式形式表示的函数要化商成指数式,能够化商后变为基本初等函数的函数求导问题是易错点.4.求下列函数的导数. (1)y =7x 3; (2)y =lg x ;(3)y =cos t (t 为常数). 解:(1)∵y =7x 3=x 37,∴y ′=(7x 3)′=(x 37)′=37x -47=377x 4.(2)y ′=(lg x )′=1x ln 10.(3)y ′=(cos t )′=0.1.若f (x )=sin x ,f ′(α)=12,则下列α的值中满足条件的是( )A.π3B.π6C.23πD.56π 解析:选A.∵f (x )=sin x ,∴f ′(x )=cos x .又∵f ′(α)=cos α=12,∴α=2k π±π3(k ∈Z ).当k =0时,α=π3,故选A.2.(2015·广州高二检测)已知直线y =kx 是曲线y =3x 的切线,则k 的值为( ) A.13B .eln 3C .log 3 eD .e 解析:选B.设切点为(x 0,y 0), 因为y ′=3x ln 3, 所以k =3x 0ln 3, 所以y =3x 0ln 3·x ,又因为(x 0,y 0)在曲线y =3x 上, 所以3x 0ln 3·x 0=3x 0,所以x 0=1ln 3=log 3 e.所以k =eln 3. 3.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,且a 1=16,则a 1+a 3+a 5=________.解析:在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,∴a k +1=a k2,∵a 1=16,∴a 2=8,a 3=4,a 4=2,a 5=1,∴a 1+a 3+a 5=16+4+1=21.答案:21[A.基础达标]1.下列结论不正确的是( ) A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =x ,则y ′=12xD .若y =x ,则y ′=1解析:选B.A 、D 显然正确;对于B ,y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x 3,不正确;对于C ,y ′=(x )′=12x -12=12x.正确.2.曲线y =12x 2在点⎝⎛⎭⎫1,12处的切线的倾斜角为( ) A .-π4 B .1C.π4D.34π 解析:选C.y ′=x ,∴切线的斜率k =tan α=1,∴α=π4.3.曲线y =x 过点(1,1)的切线方程为( )A .y =x +1B .y =12x +12C .y =-12x +32D .y =x解析:选 B.∵y ′=12x,∴在点(1,1)处的切线的斜率为12,由点斜式得过点(1,1)的切线方程为y =12x +12.4.下列结论中不正确的是( ) A .若f (x )=x 4,则f ′(2)=32B .若f (x )=1x,则f ′(2)=-22C .若f (x )=1x 2·x,则f ′(1)=-52D .若f (x )=x -5,则f ′(-1)=-5解析:选B.对于A ,∵f ′(x )=4x 3,∴f ′(2)=4×23=32,正确;对于B ,∵f ′(x )=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32,∴f ′(2)=-12×2-32=-12×123=-142=-28,不正确;对于C ,∵f ′(x )=⎝ ⎛⎭⎪⎫1x 2·x ′=⎝ ⎛⎭⎪⎫1x 52′=(x -52)′=-52x -72,∴f ′(1)=-52,正确;对于D ,∵f ′(x )=-5x -6,∴f ′(-1)=-5,正确. 5.曲线f (x )=x 3的斜率等于1的切线有( ) A .0条 B .1条 C .2条 D .3条解析:选C.f ′(x )=3x 2,设切点为(x 0,y 0),则f ′(x 0)=3x 20=1.解得切点坐标为⎝⎛⎭⎫33,39或⎝⎛⎭⎫-33,-39.∴切线有2条. 6.(2015·高考全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵ y =x +ln x ,∴ y ′=1+1x,y ′|x =1=2.∴ 曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵ y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴ a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵ y ′=2ax +(a +2),∴ y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:87.质点的运动方程是s =1t4(其中s 的单位是m ,t 的单位是s).则质点在t =3s 时的速度是________.解析:∵s =t -4,∴s ′=-4t -5,∴质点在t =3 s 时的速度是(-4)×135=-4243(m/s).答案:-4243m/s8.已知f (x )=a 2(a 为常数),g (x )=ln x ,若2x [f ′(x )+1]-g ′(x )=1,则x =________. 解析:∵f (x )=a 2(a 为常数), ∴f ′(x )=0.又∵g (x )=ln x (x >0),∴g ′(x )=1x,∴2x [f ′(x )+1]-g ′(x )=1,即2x -1x=1,解之得x =1. 答案:19.(2015·长沙高二检测)求过曲线f (x )=cos x 上一点P ⎝⎛⎭⎫π3,12且与曲线在这点的切线垂直的直线方程.解:因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝⎛⎭⎫π3,12的切线斜率为f ′⎝⎛⎭⎫π3=-sin π3=-32,所以所求直线的斜率为233,所求直线方程为y -12=233⎝⎛⎭⎫x -π3.即y =233x -239π+12.10.(2015·苏州高二检测)设曲线y =e x (x ≥0)在点M (t ,e t )处的切线l 与x 轴、y 轴所围成的三角形的面积为S (t ),求S (t )的解析式.解:对y =e x 求导可得f ′(x )=(e x )′=e x , 故切线l 在点M (t ,e t )处的斜率为f ′(t )=e t , 故切线l 的方程为y -e t =e t (x -t ). 即e t x -y +e t (1-t )=0,令y =0可得x =t -1.令x =0可得y =e t (1-t ),所以S (t )=12|(t -1)·e t (1-t )|=⎪⎪⎪⎪-12(t -1)2e t =12(t -1)2e t .(t ≥0) [B.能力提升]1.曲线y =x n在x =2处的导数为12,则n 等于( ) A .1 B .2 C .3 D .4解析:选C.∵y ′=n ·x n -1,∴y ′|x =2=n ·2n -1=12,∴n =3. 2.(2015·北京高二检测)已知曲线y =x 3在点(2,8)处的切线方程为y =kx +b ,则k -b =( )A .4B .-4C .28D .-28解析:选C.∵y =x 3,∴y ′=3x 2, y ′|x =2=12,∴在点(2,8)处的切线方程为y =12x -16, ∴k =12,b =-16. ∴k -b =28. 3.若质点P 的运动方程是s =3t 2(s 单位为m ,t 单位为s),则质点P 在t =8时的瞬时速度是________.解析:∵s ′=(3t 2)′=(t 23)′=23t -13,∴当t =8时,s ′=23×8-13=23×2-1=13.∴质点P 在t =8时的瞬时速度为13m/s.答案:13m/s4.设直线l 1与曲线y =x 相切于点P ,直线l 2过点P 且垂直于l 1,若l 2交x 轴于点Q ,又作PK 垂直于x 轴于点K ,则KQ 的长为________.解析:如图所示,设P (x 0,y 0),∵y ′=12x ,∴kl 1=12x 0.∵直线l 1与l 2垂直,则kl 2=-2x 0,∴直线l 2的方程为y -y 0=-2x 0(x -x 0). ∵点P (x 0,y 0)在曲线y =x 上,∴y 0=x 0.在直线l 2的方程中令y =0,则-x 0=-2x 0(x -x 0).∴x =12+x 0,即x Q =12+x 0.又x K =x 0,∴|KQ |=x Q -x K =12+x 0-x 0=12.答案:125.(2015·淮南高二检测)已知 P (-1,1),Q (2,4)是曲线y =x 2上的两点,(1)求过点P ,Q 的曲线y =x 2的切线方程; (2)求与直线PQ 平行的曲线y =x 2的切线方程. 解:(1)因为y ′=2x ,P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y ′|x =-1=-2, 过Q 点的切线的斜率k 2=y ′|x =2=4, 过P 点的切线方程:y -1=-2(x +1), 即:2x +y +1=0.过Q 点的切线方程:y -4=4(x -2), 即4x -y -4=0.(2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y ′|x =x 0=2x 0=1,所以x 0=12,所以切点M ⎝⎛⎭⎫12,14, 与PQ 平行的切线方程:y -14=x -12,即:4x -4y -1=0.6.如图,已知曲线f (x )=2x 2+a (x ≥0)与曲线g (x )=x (x ≥0)相切于点P ,且在点P 处有相同的切线l .求点P 的坐标及a 的值.解:设切点P (x 0,y 0),由直线l 与曲线f (x )相切于点P ,得切线l 的斜率为f ′(x 0)=4x 0, 由直线l 与曲线g (x )相切于点P ,得切线l 的斜率为g ′(x 0)=12x 0,由f ′(x 0)=g ′(x 0),得4x 0=12x 0,解得x 0=14.所以y 0=x 0=12,即点P 的坐标为⎝⎛⎭⎫14,12. 由点P ⎝⎛⎭⎫14,12在曲线f (x )上,得2×⎝⎛⎭⎫142+a =12,解得a =38.所以点P 的坐标为⎝⎛⎭⎫14,12,a 的值为38.。

3.2.2基本初等函数的导数公式及导数的运算法则

3.2.2基本初等函数的导数公式及导数的运算法则
高中数学 选修1-1 人教版
3.2.2 基本初等函数的 导数公式及导数的运
算法则
贵南县牧场中学 授课教师:陈玮
复习导入 复习五种常见函数的导数公式并填写下表:
新课讲授 1.(1)分组对比记忆基本初等函数的导数公式表:
(2)根据基本初等函数的导数公式,求下列函数的导数。
பைடு நூலகம்
2.(1)、记忆导数的运算法则,比较积与商的运算法则的相同点与不同点。
(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数。
课堂练习 1.求下列函数的导数。
2.求下列函数的导数。
课堂小结
作业: 85页:第4、5题
谢谢大家!

几种常见函数的导数基本初等函数的导数公式及导数的运算法则

几种常见函数的导数基本初等函数的导数公式及导数的运算法则

几种常见函数的导数基本初等函数的导数公式及导数的运算法则一、常见函数的导数公式:1.常数函数的导数公式:若f(x)=C(C为常数),则f'(x)=0。

2. 幂函数的导数公式:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。

3. 指数函数的导数公式:若f(x) = a^x(a为正常数且a≠1),则f'(x) = ln(a)・a^x。

4. 对数函数的导数公式:若f(x) = log_a(x)(a为正常数且a≠1),则f'(x) = 1 / (x • ln(a))。

5.三角函数的导数公式:a) 正弦函数的导数公式:f(x) = sin(x),则f'(x) = cos(x)。

b) 余弦函数的导数公式:f(x) = cos(x),则f'(x) = -sin(x)。

c) 正切函数的导数公式:f(x) = tan(x),则f'(x) = sec^2(x)。

d) 余切函数的导数公式:f(x) = cot(x),则f'(x) = -csc^2(x)。

二、基本初等函数的导数公式:1.(f+g)'(x)=f'(x)+g'(x)(求和法则)2.(a・f)'(x)=a・f'(x)(常数倍法则)3.(f・g)'(x)=f'(x)・g(x)+f(x)・g'(x)(乘积法则)4.(f/g)'(x)=(f'(x)・g(x)-f(x)・g'(x))/(g(x))^2(商法则)5.(fⁿ)'(x)=n・f'(x)・f^(n-1)(x)(幂法则)其中,f'表示f的导数,fⁿ表示f的n次幂,f^(n-1)表示f的n-1次导数。

三、导数的运算法则:1.和差法则:(f+g)'(x)=f'(x)+g'(x);(f-g)'(x)=f'(x)-g'(x)。

基本初等函数的导数公式及导数的四则运算法则(一)_2022年学习资料

基本初等函数的导数公式及导数的四则运算法则(一)_2022年学习资料

例用导数公式求下列函数的导数-1fx=x-2fx=-3fx=-sin x-4fx=Vx3-5fx=-cos -6fx=3x-7fx=21nx-8fx=1og3x-9fx=2e1-10fx=1gx-2fx=x2-6i到-7fx=l0g1x-朝-4f=2fx=1gx-湖
比比赛赛:-1y=fx=3-求在点M2,3处切线的方程-2y=fx=x,-求在点M2,2处切线的方程-3y fx=x2,-求在点M2,4处切线的方程-4yfx=-X-求在点M1,1/2处切线的方程
2.求函数y=的图象上点2,处的切线方程-X-3曲线y=x2的一条切线方程为6x-y-9=0,-求切点的坐 -4.求曲线y=3上过点1,3的切线方程.-陶
导数的运法则-1、和(差)的导数:[fx±g]=f'x±g'x-2、积的导数:[fx:gx]=f'·8x+ x8'x-推论:[cfx=c·f'-C为常数-f'x8x-fx8'x-8x≠0-[8x]
例题讲解-例题1:求下列函数的导数-1y=2x5-3x2+8-2y=x4+2xx3-2-3y=sinxco x-潮-4y=-2ex+1
练习:求下列函数的导数-1y=3x3-2x2+5-3y=x3x2-4-4y=2x-123x+2e-5y-1 2-2x+1-7y=2*Inx-6y=5*cosx-8y =tanx
作业-1、求下列函数的导数-1y=2x2+1-31nx-2-2y=e*.sinx-3y=-x+210gsx x2+3-x3-coS x-2.课本Ps5A组4,5,6,7
3.2,2基本初等函数的导数公式
基本初等函数的导数公式:-1、若fx=c,则f'x=0-常函数-2、-若∫x=x”,则f'x=nx”-一幂 数-3、若fx=sinx,则f'x=cosx-三角函数-4-若fx=cosx,则f'x=-sinx-5、若 x=a,则f'x=a.lna-指数函数-6、-若fx=e,则f'x=e-7、若fx=log。,则f'x=lna-对数函数-8、若fx=lnx,则f'x=二-X

基本初等函数的导数公式及导数的运算法则1

基本初等函数的导数公式及导数的运算法则1

即(x0-1)2·(2x0+1)=0,∴x0=1 或 x0=-12, 切点坐标为(1,2)或-12,-58, 切点为(1,2)时切线斜率为 k1=3+1=4, 切线方程为:y-2=4(x-1)即 4x-y-2=0, 切点为(-12,-58)时切线斜率为 k2=74, 切线方程为:y-2=74(x-1)即 7x-4y+1=0.
2.含根号的函数求导一般先化为分数指 数幂,再求导.
(1)求下列函数的导数. ①y=x2sinx ②y=x2(x2-1)
(2)求 y=1x+x22+x33的导数.
[解析] (1)①y′=(x2sinx)′=(x2)′sinx+x2(sinx)′ =2xsinx+x2cosx. ②y′=[x2(x2-1)]′=(x2)′(x2-1)+x2(x2-1)′ =2x(x2-1)+x2·2x=4x3-2x. (2)y′=1x+x22+x33′=1x+2x-2+3x-3′ =-x12-4x-3-9x-4=-x12-x43-x94.
基本初等函数的导数公式及 导数的运算法则
我们今后可以直接使用的基本初等函数的导数公式
公式1.若f (x) c,则f '(x) 0;
公式2.若f (x) xn ,则f '(x) nxn1;
公式3.若f (x) sin x, 则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
[例3] 已知抛物线y=ax2+bx+c通过点(1,1), 且在点(2,-1)处与直线y=x-3相切,求a、b、 c的值.
[分析] 题中涉及三个未知量,已知中有三个独 立条件,因此,要通过解方程组来确定a、b、c 的值.
[解析] 因为y=ax2+bx+c过点(1,1),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)y=x5-3x3-5x2+6;
(2)y=(2x2+3)(3x-2);
(3)y=xx- +11;
(4)y=x·tan x.
解:(1)y′=(x5-3x3-5x2+6)′ =(x5)′-(3x3)′-(5x2)′+6′ =5x4-9x2-10x.
解:(2)法一:y′=(2x2+3)′(3x-2)+(2x2+3)(3x-2)′
=x2+3-x2+x+332×2x =-xx2- 2+63x+2 3.
谢谢
解:(4)y′=(x·tan x)′=(xcsoisnxx)′
=xsin
x′cos
x-xsin cos2x
xcos
x′
=sin
x+xcos xcos cos2x
x+xsin2x
=sห้องสมุดไป่ตู้n
xcos x+x cos2x .
练习:求下列函数的导数
(1)y=x(x2+1x+x13);
(2)y=exsin x;
=4x(3x-2)+(2x2+3)·3 =18x2-8x+9. 解:(2)法二:∵y=(2x2+3)·(3x-2)=6x3-4x2+9x-6,
∴y′=18x2-8x+9.
练习: 求下列函数的导数:
(3)y=xx- +11;
(4)y=x·tan x.
解:(3)法一:y′=(xx-+11)′
=x-1′x+1x+-1x2-1x+1′
g f((xx))f(x)g(xg)( x)f2(x)g(x)(g(x)0)
由法则2: C f(x ) C 'f(x ) C f(x ) C f(x )
例:求下列函数的导数:
(1 ) y x 3 2 x 3
答案: (1)y3x22;
(2 )
y
1 x
2 x2
;
(3 )
y
1
x x2
;
(4 ) y ta n x;
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数
的和(差),即: f(x)g(x)f(x)g(x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第 二个函数,加上第一个函数乘第二个函数的导数 ,即:
f(x)•g (x)f(x)g (x)f(x)g (x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第 二个函数,减去第一个函数乘第二个函数的导数 ,再除以 第二个函数的平方.即:
(5 ) y (2 x 2 3) 1 x 2 ;
(6 ) y
1 x4
;
(2)
y
1 x2
4 x3
;
(3) y 1 x2 ; (1 x2 )2
(4) y 1 ; cos2 x
(5) y 6x3 x ; 1 x2
(6)
y
4 x5
;
(7 ) y x x ;
(7) y 3 x; 2
练习: 求下列函数的导数:
=x+1x+-1x2-1 =x+2 12.
解:(3)法二:∵y=xx- +11=x+x+1-1 2 =1-x+2 1, ∴y′= =- (1-2′x+2x1+)′ 1x+=-1(2-2xx++211′)′=x+2 12.
练习: 求下列函数的导数:
(3)y=xx- +11;
(4)y=x·tan x.
(3)y=xx2++33.
解:(1)∵y=x(x2+1x+x13)=x3+1+x12, ∴y′=3x2-x23.
解:(2)y′=(exsin x)′=(ex)′sin x+ex(sin x)′
=exsin x+excos x =ex(sin x+cos x).
解:(3)y′=(xx2++33)′=x+3′x2+3x2- +3x+ 2 3x2+3′
相关文档
最新文档