运筹学复习资料

合集下载

运筹学复习资料

运筹学复习资料

一、单选题1.排队系统的状态转移速度矩阵中()元素之和等于零A、每一列B、每一行C、对角线D、次对角线答案: B2.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,顾客在打字室内平均等待时间为().A、1.5小时B、0.75小时C、2.5小时D、3小时答案: B3.以下哪项是面向决策结果的方法的程序().A、收集信息→确定目标→提出方案→方案优化→决策B、确定目标→收集信息标→决策→提出方案→优化方案C、确定目标→收集信息标→提出方案→方案优化→决策D、确定目标→提出方案→收集信息标→优化方案→决策答案: C4.某人要从上海搭乘汽车去重庆,他希望选择一条线路,经过转乘,使得车费最少。

此问题可以转化为().A、最大流量问题求解B、最短路问题求解C、最小树问题求解D、最小费用最大流问题求解答案: B5.为了使各因素之间进行两两比较得到量化的判断矩阵,引入()的标度.A、1~7B、1~8C、1~9D、随便答案: C6.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,若顾客在打字室内的平均逗留时间超过1.25小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为()时,主人才会考虑这样做?A、小于2B、大于2C、小于1.25D、大于1.25答案: D7.动态规划求解的一般方法是什么A、图解法B、单纯形法C、逆序求解D、标号法答案: C8.整数规划数学模型的组成部分不包括().A、决策变量B、目标函数C、约束条件D、计算方法答案: D二、判断题1.风险情况下采用EMV决策准则的前提是决策应重复相当大的次数.A、正确B、错误答案:正确2.正偏差变量应取正值,负偏差变量应取负值.A、正确B、错误答案:错误3.部分变量要求是整数的规划问题称为纯整数规划.A、正确B、错误答案:错误4.方案层在层次模型的最底层.A、正确B、错误答案:错误5.排队系统中,等待时间=逗留时间+服务时间.A、正确B、错误答案:错误6.银行储蓄所有四个服务窗口,到达顾客自选窗口排队,后该储蓄所改为按顾客到达先后发号排队等待,这种改变将有助于缩短顾客的平均等待时间.A、正确B、错误答案:正确7.判断矩阵的维数n越大,判断的一致性将越差,应放宽对高维判断矩阵一致性要求.A、正确B、错误答案:正确8.用层次分析法解决问题,构造好问题的层次结构图是解决问题的关键.A、正确B、错误答案:正确9.不平衡运输问题不一定有最优解.A、正确B、错误答案:错误10.根据决策者对物体之间两两相比的关系,主观做出比值的判断,这样得到的矩阵称作判断矩阵.A、正确B、错误答案:正确三、名词解释1.人工变量答案:亦称人造变量.求解线性规划问题时人为加入的变量。

运筹学复习考点

运筹学复习考点
状态值,各条弧代表了可行的方案选择。 • 正确。
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60

整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0

运筹学复习

运筹学复习
X=(0,0,8,16,12)T为基解,且为基可行解
3.用单纯形表求解LP问题
例、用单纯形表求解LP问题
max Z 2x1 x2
5x2 15
s.t
6
x1 2x2 x1 x2
24 5
x1, x2 0
解:化标准型
max Z 2x1 x2 0x3 0x4 0x5
5x2 x3
约束系数矩阵A 约束系数矩阵转置A'
6. 弱对偶性 设X 为原问题的可行解,Y '为对偶问题的可行解,则恒有
CX Y 'b
证明: 设X ,Y '分别为原问题和对偶问题的可行解.
AX b AX b Y ' AX Y 'b
A'Y C ' Y ' A C Y 'A C Y 'AX C X
CX Y ' AX Y 'b
CX Y 'b 证毕
推论: (1) max问题(原问题)任一可行解的目标值为min问题(对 偶问题)目标值的一个下界;min问题(对偶问题)任一可行 解的目标值为max问题(原问题)目标值的一个上界。
(2)(无界性)若原问题(对偶问题)为无界解,则对偶问题 (原问题)为无可行解。
15
6
x1 2x2 x1 x2
x4 24 x5 5
x1, , x5 0
单纯形表
单纯形表结构
c j
CX
B
B
b
c1 x1 b '1
cm xm bm'
cj zj
x x x x C c12 c21 0 cm 0 0cn
1
2
m
n min

运筹学 本(复习资料)

运筹学 本(复习资料)

《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。

[ ]3.任何线性规划问题存在并具有惟一的对偶问题。

[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。

[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。

[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。

[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。

[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。

[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。

[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。

[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。

[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。

[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。

[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。

运筹学期末考试复习资料

运筹学期末考试复习资料

《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。

答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。

答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。

答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。

答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。

答案:对7.LP 问题的可行域是凸集。

答案:对8.动态规划实质是阶段上枚举,过程上寻优。

答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。

答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。

答案:错11.LP问题的基可行解对应可行域的顶点。

答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。

答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。

答案:对14.对偶问题的对偶问题一定是原问题。

答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。

确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。

都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。

问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。

问题中用一组决策变量来表示一种方案。

3. 线性规划问题标准型的特征。

4. 化标准型的方法。

123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。

6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。

7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。

8. 最优解:函数达到最优的可行解叫做最优解。

9.图解法适合于变量个数为2个的线性规划问题。

10.单纯形法解线性规划问题如何确定初始基本可行解。

(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。

(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。

(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。

运筹学复习资料资料讲解

运筹学复习资料资料讲解

运筹学复习一、 填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。

4、在运输问题模型中,1m n +-个变量构成基变量的充要条件是不含闭回路。

5、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。

6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。

8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。

9、一个无圈且连通的图称为树。

10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。

13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的. 线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k )变量,正确选择状态(Sk )变量,正确选择_ 决策(UK )变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。

运筹学复习

运筹学复习

2014-2015复习一、名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。

3.可行解:满足约束条件解为可行解。

4.可行域所有可行解的集合为可行域。

5.基:设A为约束条件②的m× n阶系数矩阵(m<n),其秩为m,B是矩阵A中m阶满秩子矩阵(∣ B∣≠0),称B是规划问题的一个基。

6.基本可行解:满足变量非负约束条件的基本解,简称基可行解。

7.影子价格在一对 P 和 D 中,若 P 的某个约束条件的右端项常数bi (第i种资源的拥有量)增加一个单位时,所引起目标函数最优值z* 的改变量称为第 i 种资源的影子价格,其值等于D问题中对偶变量yi*。

8.灵敏度分析:当某一个参数发生变化后,引起最优解如何改变的分析。

可以改变的参数有:bi ——约束右端项的变化,通常称资源的改变;cj ——目标函数系数的变化,通常称市场条件的变化;pj ——约束条件系数的变化,通常称工艺系数的变化;其他的变化有:增加一种新产品、增加一道新的工序等。

9.运输问题10.整数规划要求一部分或全部决策变量取整数值的规划问题称为整数规划。

11.0-1规划决策变量只能取值0或1的整数规划。

12.松弛问题13.目标规划目标规划是在线性规划的基础上,为适应经济管理多目标决策的需要而由线性规划逐步发展起来的一个分支。

14.偏差变量15.链图中某些点和边的交替序列,若其中各边互不相同,且对任意vi,t-1和vit均相邻称为链。

16.路链中所有顶点不相同,这样的链称为路17.最小生成树如果G2是G1的部分图,又是树图,则称G2是G1的部分树(或支撑树)。

树图的各条边称为树枝,一般图G1含有多个部分树,其中树枝总长最小的部分树,称为该图的最小部分树(或最小支撑树)。

18.PERT网络图注重于对各项工作安排的评价和审查。

19.关键路线法各弧权重总和最大的路线,或称主要矛盾路线,它决定网络图上所有作业需要的最短时间。

运筹学复习资料_普通用卷

运筹学复习资料_普通用卷

运筹学课程一单选题 (共170题,总分值170分 )1. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( )(1 分)A. 基B. 最优解C. 基本解D. 基向量2. 线性规划的标准型中P称为( )(1 分)A. 技术向量B. 价值向量C. 资源向量D. 约束矩阵3. 决策问题的构成要素不包含()(1 分)A. 决策者B. 策略C. 收益D. 约束4. 去掉整数约数条件后得到的线性规划称为原整数规划的()(1 分)A. 松弛问题B. 增益问题C. 对偶问题D. 反问题5. X、Y分别是原问题和对偶问题的可行解,且,则X、Y分别是原问题和对偶问题的( ) (1 分)A. 基本可行解B. 最优解C. 基本解D. 不知6. A是m×n矩阵,则共有多少个非基向量( )(1 分)A. m×nB. mC. nD. n-m7. 约束矩阵A中任何一组m个线性无关的列向量构成的子矩阵称为该问题的一个( ) (1 分)A. 基B. 最优解C. 基本解D. 基向量8. 在排队系统的符号表示[A/;/;]:[;/E/F]中,A对应的是()(1 分)A. 顾客到达的时间间隔B. 分布服务时间的分布C. 服务台数D. 顾客源总体数目9. 下面不属于决策类型的是()(1 分)A. 战略决策B. 非常决策C. 静态决策D. 动态决策10. Kruskal算法属于哪种思路的方法()(1 分)A. 破圈B. 避圈C. 智能搜索D. 枚举11. 不属于按问题性质和条件分类的决策类型是()(1 分)A. 确定性决策B. 非确定决策C. 连续性决策D. 风险性决策12. 哪个不是常用的存贮策略有()(1 分)A. T-循环策略B. (s,S)策略C. (s,Q)策略D. (T,s,S)策略13. 线性规划在转化标准型时,转换约束条件时新增非负变量称为( )(1 分)A. 决策变量B. 松弛变量C. 资源变量D. 凸变量14. 线性规划问题的可行域是( ) (1 分)A. 四边形B. 凸集C. 不规则形D. 任意集15. 对于无后效性的多阶段决策过程,系统由阶段k到阶段k+1的状态转移方程是()(1 分)A.B.C.D.16. 1947年谁得到了线性规划的单纯形法( )(1 分)A. ErlangB. HarrisC. ShewhartD. Dantzig17. 图G中既无环又无平行边,则称作()(1 分)A. 有向图B. 简单图C. 初级图: 子图18. 在排队系统的符号表示[A/B/C]:[D/E/F]中,A对应的是()。

运筹学复习资料

运筹学复习资料

试题结构:1、判断题(10×2`)2、单选题(10×2`)3、多选题(5 ×2`)4、计算题(5×10`)(第三、五、七、十一、十三章有计算题)第一张:绪论1.定义:运筹学是应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为管理者提供有依据的最优方案,以实现最有效的管理。

2.研究内容:线性规划、整数线性规划、目标规划、图与网络模型、存储论、排队论、对策论、排序与统筹方法、决策分析、动态规划、预测3.运用运筹学解决问题的一般过程(课件答案)(课本答案)规定目标和明确问题认清问题收集数据和建立模型找出一些可供选择的方案求解模型和优化方案确定目标或评估方案的标准检验模型和评价方案评估各个方案方案实施和不断改进选出一个最优的方案执行此方案进行最后评估:问题是否得到圆满解决第二章:线性规划的图解方法1.怎样辨别一个模型是线性模型?其特征是:(1)问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;(2)问题的约束条件是一组多个决策变量的线性不等式或等式。

2.线性规划三个要素建模步骤决策变量、目标函数、约束条件3.LP 问题的标准型11max .1,2,,0,1,2,,nj jj nij ji j j Z c x a x b s t i m x j n ===⎧=⎪=⎨⎪≥=⎩∑∑ 特点:(1)目标函数求最大值(2)约束条件都为等式方程,且右端常数项b i 都大于或等于零 (3)决策变量x j 为非负。

一般形式目标函数: max (min ) z = c 1 x 1 + c 2 x 2 + … + c n x n约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n ≤ ( =, ≥ )b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n ≤ ( =, ≥ )b 2…… …… a m1 x 1 + a m2 x 2 + … + a mn x n ≤ ( =, ≥ )b mx 1 ,x 2 ,… ,x n ≥ 0 标准形式目标函数: max z = c 1 x 1 + c 2 x 2 + … + c n x n 约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n = b 2 …… …… a m1 x 1 + a m2 x 2 + … + a mn x n = b mx 1 ,x 2 ,… ,x n ≥ 0,b i ≥04.线性问题的性质与判断 (1 )线性规划可行域为凸集(2)最优解在凸集上某一顶点达到(特殊情况下为凸集的某条边)(3 )可行域有界,则一定有最优解5.图解法与解的状况(1)图解法使用范围:仅有两个决策变量的LP(2)基本步骤:a.建立平面直角坐标系;b.将约束条件图解,求得满足约束条件的解的集合;c.作出目标函数的等值线,并根据优化要求,平移目标函数等值线,求出最优解。

运筹学复习

运筹学复习
变量没有符号限制转化为变量非负: 没有符号限制的变量用两个非负变量的差表示
例如:max z=3x1+4x2-2x3+5x4 s.t 4x1-x2+2x3-x4=4
x1+x2+3x3-x4≤14 -2x1+3x2-x3+2x4≥3 x1≥0,x2≥2,x3≤0,x4:unr
线性规划的图解
– 画约束直线 – 确定满足约束条件的半平面 – 所有半平面的交集—凸多边形—线性规划的
• Max z=4x1+5x2+x3 S.t 3x1+2x2+x3≥18
2x1+x2 ≤ 4 x1+x2-x3 =5
X1,x2,x3 ≥0
线形规划问题的应用
• 某车间有一批长度为180cm的钢管,且数量充足.为制造 零件的需要,要将其截成三种不同长度的管料,分别为 72cm,52cm,35cm.生产任务规定这三种不同的需要量分 别不少于100,150和100根.问如何下料才能使消耗的钢 管数量最少?试建立此问题的线形规划模型.
单纯形表的运算
Step 0 获得一个初始的单纯形表,确定基变量和非基变量
Step 1 检查基变量在目标函数中的系数是否等于0,在约束条件 中的系数是否是一个单位矩阵
Step 2 如果表中非基变量在目标函数中的系数全为负数,则已得 到最优解。停止。否则选择系数为正数且绝对值最大的变 量进基。
Step 3 如果进基变量在约束条件中的系数全为负数或0,可行域 开放,目标函数无界。停止。否则选取右边常数和正的系 数的最小比值,对应的基变量离基。
x4=0 6
x2=0 9
最优解(x1,x2,x3,x4)=(8,2,0,0)

《运筹学》复习资料

《运筹学》复习资料

《运筹学》复习资料注:如学员使用其他版本教材,请参考相关知识点一、客观部分:(单项选择、多项选择、判断)(一)多选题1.线性规划模型由下面哪几部分组成?(ABC)A决策变量 B约束条件 C目标函数 D 价值向量★考核知识点: 线性规划模型的构成.(1.1)附1.1.1(考核知识点解释):线性规划模型的构成:实际上,所有的线性规划问题都包含这三个因素:(1)决策变量是问题中有待确定的未知因素。

例如决定企业经营目标的各产品的产量等。

(2)目标函数是指对问题所追求的目标的数学描述。

例如利润最大、成本最小等。

(3)约束条件是指实现问题目标的限制因素。

如原材料供应量、生产能力、市场需求等,它们限制了目标值所能到达的程度。

2.下面关于线性规划问题的说法正确的是(AB)A.线性规划问题是指在线性等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。

B.线性规划问题是指在线性不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。

C.线性规划问题是指在一般不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。

D.以上说法均不正确★考核知识点: 线性规划模型的线性含义.(1.1)附1.1.2(考核知识点解释):所谓“线性”规划,是指如果目标函数是关于决策变量的线性函数,而且约束条件也都是关于决策变量的线性等式或线性不等式,则相应的规划问题就称为线性规划问题。

3.下面关于图解法解线性规划问题的说法不正确的是( BC )A在平面直角坐标系下,图解法只适用于两个决策变量的线性规划B 图解法适用于两个或两个以上决策变量的线性规划C 图解法解线性规划要求决策变量个数不要太多,一般都能得到满意解D 以上说法A正确,B,C不正确★考核知识点: 线性规划图解法的条件. (1.2)附 1.1.3(考核知识点解释):线性规划图解法的条件:对于只有两个变量的线性规划问题,可以在二维直角坐标上作图.4.在下面电子表格模型中,“决策变量”的单元格地址为( AB )A . C12B . D12C . C4 D. D4★考核知识点: 电子表格中如何建立线性数学模型. (1.3)附1.1.4(考核知识点解释):电子表格中的数学模型的建立:(1)要做出的决策是什么?(决策变量);(2)在做出这些决策时有哪些约束条件?(约束条件);(3)这些决策的目标是什么?(目标函数),将对应的问题数据放在相应的电子表格中即可.5.通常,在使用“给单元格命名”时,一般会给(ABCD )有关的单元格命名A 公式B 决策变量C 目标函数D 约束右端值★考核知识点: 给单元格命名的原则. (1.3)附1.1.5(考核知识点解释):给单元格命名的原则:一般给跟公式和模型有关的四类单元格命名。

运筹学考试复习资料

运筹学考试复习资料

《运筹学课程》第一次作业 第一题:某工厂生产某一种型号的机床,每台机床上需要2.9m 、2.1m 、1.5m 的轴、分别为1根、2根、1根。

这些轴需用同一种圆钢制作,圆钢的长度为7.4m 。

如果要生产100台机床,问应如何安排下料,才能用料最省?试建立其线性规划模型。

第二题:用图解法求解,线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0,52426155..2max 212121221x x x x x x x t s x x Z 第一题:求以下各图的最小支撑树(1)(2)第二题:表1《运筹学课程》第二次作业第一题:用图解法求解下列线性规划问题,并指出问题是具有唯一最忧解、多重最优解、无界解或无可行解.第二题:将下列线性规划模型的一般形式转化为标准型(1)()⎪⎪⎩⎪⎪⎨⎧∞-∞∈≥≤++=+-≥+-+-=,321321321321321,0,1036345..32max x x x x x x x x x x x x t s x x x Z (2)()⎪⎩⎪⎨⎧-∞∞∈≥≤-≤-+--=++-+-=,,0,0824..22min 321321321321x x x x x x x x x t s x x x Z第三题:用单纯型法求解线性规划问题,并用图解法进行验证注:按照我上课所讲例题的求解步骤进行(参照课件),好好理解单纯型法的基本原理,做题时先不要使用单纯型法的表格形式。

第四题:自己亲自动手推到一下单纯型法中的检验数,参照课件中29-31页。

第一题:(1)求点v 1到图中个点的最短路;(2)指出v 1不可到达哪些点。

第二题:已知某地区的交通网络如图所示,图中点代表居民小区,边表示公路,l ij为小区间公路距离,问该地区中心医院应建在哪个小区较为合适。

第一题:用最简单方法求解该线性规划问题(提示:求出该问题的对偶问题,然后用单纯型法求解对偶问题,可减少计算量,从最后一张单纯形表获得原问题的最优解)第二题:表1第三题:已知产销平衡问题,见表2表2分别用“最小元素法”和“伏格尔法”求该问题的初始基可行解,并求出这两个基可行解的目标函数值。

运筹学复习资料

运筹学复习资料

运筹学复习资料
运筹学是数学和计算机科学的一个分支,旨在寻找最佳决策和优化问题的解决方案。

以下是有关运筹学的复习资料:
1. 模型建立:在运筹学中,解决问题的第一步是建立数学模型。

数学模型是指将实际问题抽象为数学语言,建立相应的数学方程式,使之成为可计算的问题。

在建模时需要明确问题目标、约束条件等。

2. 线性规划:线性规划是一种常用的优化方法,其目标函数和约束条件都是线性的。

采用单纯形法、内点法等算法可以求得最优解。

常见应用包括生产计划、库存管理等方面。

3. 整数规划:整数规划针对决策变量必须为整数这一特殊问题,增加了解整数约束条件的限制,采用分支定界法、割平面法等算法进行求解。

常见应用包括制造业需求计划、网络设计等方面。

4. 动态规划:动态规划和线性规划不同,其适用于序列决策问题,采用递推式方法实现求解。

常见应用包括背包问题、任务调度等方面。

5. 随机规划:随机规划引入随机变量,结合概率模型,可对不确定因素进行分析。

常见应用包括金融风险管理、供应链问题等方面。

6. 对策论:对策论是一种博弈论,面对竞争环境下的决策,需要考虑对手的策略,采用最小最大原则求解博弈双方的最佳决策。

常见应用包括竞价拍卖、垄断竞争等方面。

运筹学是实际问题求解的一种强有力的工具和方法,深入了解运筹学的理论与方法对于提高问题求解的精度、效率具有重要意义。

运筹学复习

运筹学复习

2014-2015复习一、名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。

3.可行解:满足约束条件解为可行解。

4.可行域所有可行解的集合为可行域。

5.基:设A为约束条件②的m× n阶系数矩阵(m<n),其秩为m,B是矩阵A中m阶满秩子矩阵(∣ B∣≠0),称B是规划问题的一个基。

6.基本可行解:满足变量非负约束条件的基本解,简称基可行解。

7.影子价格在一对 P 和 D 中,若 P 的某个约束条件的右端项常数bi (第i种资源的拥有量)增加一个单位时,所引起目标函数最优值z* 的改变量称为第 i 种资源的影子价格,其值等于D问题中对偶变量yi*。

8.灵敏度分析:当某一个参数发生变化后,引起最优解如何改变的分析。

可以改变的参数有:bi ——约束右端项的变化,通常称资源的改变;cj ——目标函数系数的变化,通常称市场条件的变化;pj ——约束条件系数的变化,通常称工艺系数的变化;其他的变化有:增加一种新产品、增加一道新的工序等。

9.运输问题10.整数规划要求一部分或全部决策变量取整数值的规划问题称为整数规划。

11.0-1规划决策变量只能取值0或1的整数规划。

12.松弛问题13.目标规划目标规划是在线性规划的基础上,为适应经济管理多目标决策的需要而由线性规划逐步发展起来的一个分支。

14.偏差变量15.链图中某些点和边的交替序列,若其中各边互不相同,且对任意vi,t-1和vit均相邻称为链。

16.路链中所有顶点不相同,这样的链称为路17.最小生成树如果G2是G1的部分图,又是树图,则称G2是G1的部分树(或支撑树)。

树图的各条边称为树枝,一般图G1含有多个部分树,其中树枝总长最小的部分树,称为该图的最小部分树(或最小支撑树)。

18.PERT网络图注重于对各项工作安排的评价和审查。

19.关键路线法各弧权重总和最大的路线,或称主要矛盾路线,它决定网络图上所有作业需要的最短时间。

运筹学复习资料

运筹学复习资料

运筹学概念1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s?t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

线性规划的基本概念1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题。

3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零。

5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

运筹学基础复习资料

运筹学基础复习资料

第一章导论(领会)P1概述P1一、运筹学与管理决策P11.分析程序有两种基本形式:定性的和定量的定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。

2.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据二、计算机与运筹学P2三、决策方法的分类P21.决策方法的分类:P2定性决策:主观经验或感受到的感觉或知识而制定的决策定量决策:借助于某些正规的计量方法而做出的决策,称为定量决策。

混合性决策:必须运用定性和定量两种方法才能制定的决策,称为混合性决策2.决策人员采用计量方法的4种情况P2应用运筹学进行决策过程的六个步骤P3一、观察待决策问题所处的环境P3内部环境和外部环境二、分析和定义待决策的问题P3拟定研究目标,即确定问题的类型及解答方式;汇报情况,指出问题所在和成本/效益分析三、拟定模型P3建立一个从数学上表示的模型,然后对问题的解决提出一种预测某些决定性因素与效果的模型方程式一般是适用于运筹学中的数学模型上年的损益表和下一年的预算是两个符号式模型四、选择输入资料P4数据收集能够有效地影响模型的输出五、提出解并验证它的合理性P4有了模型的解答就试图改变模型及其输入,并注视将要发生什么样的输出,此过程叫敏感度试验模型的探讨结果。

限制范围,在此范围内,模型所取得的结果是有效的六、实施最优解P5例如:在某公司的预算模型中,收益表是显示公司在整个过程中效能的模型,平衡表是显示公司财务情况的模型第二章预测P6一定特点指具有一定的因果关系或具有一定的历史发展趋势预测的概念与程序(领会)P6一、预测的概念和作用P6预测:就是对未来的不确定的事件进行估计或判断企业价格预测:就是在调查研究的基础上,掌握各种可靠的信息,采用科学的预测方法,对未来一定时期内企业生产、经营的商品或劳务的价格作出估计或判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档