天津市2020届高考数学一模试卷(文科)
2020届天津市一模数学试题(解析版)
2020届天津市一模数学试题一、单选题1.设集合{}11A x x =-<<,{}2,B y y x x A ==∈,则R A C B =I ( )A .{}01x x ≤<B .{}10x x -<< C .{}01x x << D .{}11x x -<<【答案】B【解析】求解出集合B ,根据补集定义求得R C B ,利用交集定义求得结果. 【详解】当()1,1x ∈-时,[)20,1x ∈,即[)0,1B =()[),01,R C B ∴=-∞+∞U{}10R A C B x x ∴⋂=-<<本题正确选项:B 【点睛】本题考查集合运算中的补集、交集运算的问题,属于基础题.2.若点(),3m 在函数()()121log 1f x x =--的图象上,则πtan 6m =( )A B C .D .3-【答案】D【解析】将点(),3m 代入函数解析式可求得m ,根据特殊角三角函数值可求得结果. 【详解】由题意知:()121log 13m --=,解得:5m =5tantan 663m ππ∴==-本题正确选项:D 【点睛】本题考查三角函数值的求解问题,关键是能够利用点在函数上求得参数的取值,属于基础题.3.若ABC V 的三个内角A ,B ,C 满足6sin 4sin 3sin A B C ==,则ABC V 是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .以上都有可能【答案】C【解析】根据正弦定理可得三边关系,利用余弦定理可求得cos 0C <,从而得到三角形为钝角三角形. 【详解】由正弦定理可得:643a b c ==,则34b c =,12a c =由余弦定理可知:222222191416cos 01324224c c c a b c C ab c c +-+-===-<⨯⨯ 又()0,C π∈ ,2C ππ⎛⎫∴∈⎪⎝⎭ABC ∆∴为钝角三角形本题正确选项:C 【点睛】本题考查三角形形状的判断,关键是能够灵活运用正余弦定理,通过最大角的余弦值的符号确定三角形形状.4.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为( ) A .22230x y x +--= B .2240x y x ++= C .22230x y x ++-= D .2240x y x +-=【答案】D【解析】设圆心坐标为(,0)(0)C a a >,根据圆与直线3440x y ++=相切可求出2a =,进而得到圆心和半径,于是可得圆的方程.【详解】由题意设圆心坐标为(,0)(0)C a a >, ∵圆C 与直线3440x y ++=相切,2=,解得a =2.∴圆心为(2,0)C ,半径为2r ==,∴圆C 的方程为(x ﹣2)2+y 2=4,即2240x y x +-=. 故选D . 【点睛】求圆的方程时要把握两点:一是求出圆心的坐标;二是求出圆的半径,然后再根据要求写出圆的方程即可,求圆心坐标时注意圆的几何性质的应用,这样可以简化运算,提高解题的速度.5.在等比数列{}n a 中,公比为q ,则“1q >”是“等比数列{}n a 为递增数列”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【解析】当1q >时,当10a <时,可知等比数列不是递增数列,得不充分条件;当等比数列{}n a 为递增数列时,当10a <时,01q <<,得不必要条件;综上可得结果. 【详解】当1q >时,若2q =,12a =-,则24a =-,则21a a <,此时等比数列{}n a 不是递增数列∴“1q >”是“等比数列{}n a 为递增数列”的不充分条件;当等比数列{}n a 为递增数列时,此时1n n a a +>,即111n n a q a q ->若10a <,则1n n q q -<,此时01q <<∴“等比数列{}n a 为递增数列”是“1q >”的不必要条件;综上所述:“1q >”是“等比数列{}n a 为递增数列”的既不充分也不必要条件 本题正确选项:D 【点睛】本题考查充分条件、必要条件的判定,关键是通过等比数列的通项公式的形式判断出数列为递增数列和公比之间的关系.6.已知函数()f x 是定义在R 上的偶函数,且在(),0-∞上单调递减,若21log 5a f ⎛⎫= ⎪⎝⎭,()2log 4.1b f =,()0.52c f =,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c a b <<D .c b a <<【答案】D【解析】根据奇偶性可判断出()f x 在()0,∞+上单调递增,并能将a 变为()2log 5f ;根据自变量的大小关系,结合函数单调性可得结果. 【详解】Q 函数()f x 是定义在R 上的偶函数,且在(),0-∞上单调递减()f x ∴在()0,∞+上单调递增则:()()2221log log 5log 55a f f f ⎛⎫==-= ⎪⎝⎭0.522log 5log 4.1220>>>>Q ()()()0.522log 5log 4.12f f f ∴>>即:a b c >> 本题正确选项:D 【点睛】本题考查利用函数的性质比较大小的问题,关键是能够根据奇偶性得到函数的单调性,进而将问题转变为自变量的大小的比较. 7.已知函数()()sin 2f x x ϕ=+,若()3f x f x π⎛⎫-= ⎪⎝⎭,且()2f f ππ⎛⎫> ⎪⎝⎭,则()f x 取最大值时x 的值为( ) A .()3k k Z ππ+∈ B .()4k k Z ππ+∈ C .()6k k Z ππ+∈D .()6k k Z ππ-∈【答案】C【解析】根据()2f f ππ⎛⎫> ⎪⎝⎭可求得ϕ的范围;利用()3f x f x π⎛⎫-= ⎪⎝⎭可知()f x 关于6x π=对称,从而可得ϕ的取值;二者结合求得ϕ,代入函数解析式,令()222x k k Z πϕπ+=+∈解出x 即为结果.【详解】由()2f f ππ⎛⎫> ⎪⎝⎭得:()()sin 2sin πϕπϕ+>+,即:sin sin ϕϕ>-sin 0ϕ∴> ()22k k k Z πϕππ∴<<+∈由()3f x f x π⎛⎫-=⎪⎝⎭得:()f x 关于6x π=对称 ()262k k Z ππϕπ∴⨯+=+∈()6k k Z πϕπ∴=+∈,又()22k k k Z πϕππ<<+∈()26k k Z πϕπ∴=+∈ ()sin 22sin 266f x x k x πππ⎛⎫⎛⎫∴=++=+ ⎪ ⎪⎝⎭⎝⎭当()2262x k k Z πππ+=+∈,即()6x k k Z ππ=+∈时,()f x 取最大值本题正确选项:C 【点睛】本题考查根据三角函数的性质求解函数解析式、根据函数的最值求解自变量取值的问题,关键是能够判断出函数的对称轴,并能够根据函数值的大小关系得到ϕ的范围.8.在矩形ABCD 中,3AB =,2BC =,设矩形所在平面内一点P 满足1CP =u u u r,记1I AB AP =⋅u u u v u u u v ,2I AC AP =⋅u u u v u u u v ,3I AD AP =⋅u u u v u u u v,则( )A .存在点P ,使得12I I =B .存在点P ,使得13I I =C .对任意点P ,都有12I I <D .对任意点P ,都有13I I <【答案】C【解析】以C 为原点建立平面直角坐标系,可知P 点轨迹方程为221x y +=;利用坐标表示出12I I -和13I I -,利用y 的取值范围和三角函数的知识可求得结论. 【详解】以C 为原点,可建立如下图所示的平面直角坐标系:则P 点轨迹是以C 为圆心,1为半径的圆;()0,2B ,()3,0D ,()3,2A设(),P x y ,则221x y +=()12I I AB AP AC AP AB AC AP CB AP -=⋅-⋅=-⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r又()0,2CB =u u u v,()3,2AP x y =--u u u r1224I I CB AP y ∴-=⋅=-u u u r u u u r[]1,1y ∈-Q []246,2y ∴-∈-- 120I I ∴-<,即12I I < ()13I I AB AP AD AP AB AD AP DB AP -=⋅-⋅=-⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r又()3,2DB =-u u u r ,()3,2AP x y =--u u u r133924325I I DB AP x y x y ∴-=⋅=-++-=-++u u u r u u u r设()cos ,sin P θθ则()133cos 2sin 55I I θθθϕ-=-++-+,其中2tan 3ϕ=-()[]sin 1,1θϕ-∈-Q ()55θϕ⎡-+∈+⎣即130I I ->,即13I I >综上所述,对于任意点P ,都有12I I <,13I I > 本题正确选项:C 【点睛】本题考查平面向量的应用问题,关键是能够通过建立平面直角坐标系的方式,将问题转化为坐标运算的问题;通过作差法比较大小,利用求解函数值域的方式来确定大小关系.二、填空题9.设复数z 满足()1i 3i z +=-,则z =______.【解析】求解出复数z ,根据模长的定义可求得结果. 【详解】 由题意得:()()3132412122i i i iz i i ----====-+z ∴==【点睛】本题考查复数的模长的求解问题,属于基础题.10.已知三棱锥P ABC -的侧棱PA ,PB ,PC 两两垂直,且长度均为1,若该三棱锥的四个顶点都在球O 的表面上,则球O 的表面积为______. 【答案】3π【解析】利用三线垂直确定三棱锥为正方体的一部分,其外接球直径为正方体的体对角线长,可得半径和表面积. 【详解】由三棱锥P ﹣ABC 的侧棱P A ,PB ,PC 两两垂直可知, 该三棱锥为棱长为1的正方体的一角,故球O 的表面积为:3π. 故答案为3π. 【点睛】此题考查了几何体外接球问题,难度不大.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.11.若不等式2322x x x ax +-≤-在()0,4内有解,则实数a 的取值范围是______.【答案】)+∞.【解析】将问题转换为()232f x x x x =+-与2y ax =-在()0,4内有交点;分类讨论去掉原不等式中的绝对值符号,利用导数求解出()f x 在不同区间内的单调性,从而可得()f x 的图象;由于直线2y ax =-恒过点()0,-2,通过图象可知当直线2y ax =-过)A时为临界状态,求出临界状态时a 的取值,从而得到取值范围.【详解】当(x ∈时,320x x -<,此时不等式为:3222x x x ax -++≤-当)2,4x ⎡∈⎣时,320x x -≥,此时不等式为:3222x x x ax +-≤- 令()322g x x x x =-++,()0,2x ∈,则()2322g x x x '=-++,()0,2x ∈当170,3x ⎛⎫+∈ ⎪ ⎪⎝⎭时,()0g x ¢>;17,23x ⎛⎫+∈⎪ ⎪⎝时,()0g x ¢< 即()g x 在170,3⎛⎫+ ⎪ ⎪⎝⎭上单调递增;在17,23⎛⎫+ ⎪ ⎪⎝上单调递减 令()322h x x x x =+-,)2,4x ⎡∈⎣,则()2322h x x x '=+-,)2,4x ⎡∈⎣当)2,4x ⎡∈⎣时,()()24220h x h''≥=+>()h x ∴在)2,4⎡⎣上单调递增由此可得:()()232,0,4f x x x x x =+-∈的图象如下图所示:可知:)2,2A则不等式2322x x x ax +-≤-在()0,4内有解等价于()232f x x x x =+-与2y ax =-在()0,4内有交点 Q 直线2y ax =-恒过点()0,-2∴当直线2y ax =-过点A 时为临界状态,此时22a =∴当22a ≥时,不等式2322x x x ax +-≤-在()0,4内有解本题正确结果:)22,⎡+∞⎣ 【点睛】本题考查根据不等式在某一区间解的个数的情况求解参数范围的问题,关键是能够将问题转化为曲线和直线的交点问题,通过数形结合的方式来进行求解;其中涉及到利用导数来判断函数的单调性,从而得到函数的大致图象.12.如图,已知2AC =,B 为AC 的中点,分别以AB ,AC 为直径在AC 的同侧作半圆,M ,N 分别为两半圆上的动点(不含端点A ,B ,C ),且BM BN ⊥,则AM CN⋅u u u u r u u u r的最大值为______.【答案】14【解析】分析:以A 为坐标原点,AC 所在直线为x 轴,建立如图所示的直角坐标系,求得AB C ,,的坐标,可得以AB 为直径的半圆方程,以AC 为直径的半圆方程,设出M N ,的坐标,由向量数量积的坐标表示,结合三角函数的恒等变换可得2αβ=,再由余弦函数、二次函数的图象和性质,计算可得最大值.详解:以A 为坐标原点,AC 所在直线为x 轴,建立如图所示的直角坐标系,可得001020A B C (,),(,),(,),以AB 为直径的半圆方程为2211,0024x y x y -+=()(>,>), 以AC 为直径的半圆方程为(2211,00x y x y -+=)(>,>) , 设11110222Mcos sin N cos sin BM BN (,),(,),<,<,,ααββαβπ++⊥ 可得1110222BM BN cos sin cos sin ααββ⋅=-+⋅=u u u u v u u u v (,)(,), 即有11022cos cos cos sin sin βαβαβ-++=(), 即为cos cos cos sin sin ,βαβαβ=+ 即有0cos cosβαβαβπ=-(),<,<, 可得αββ-= ,即2αβ= , 则111 1222AM CN cos sin cos sin ααββ⋅=+⋅-+u u u u v u u u v (,)(,)11112222cos cos cos cos sin sin αβαβαβ=--+++()2211114222cos cos cos cos cos αββββ=--+=-=--+(),可得102cos ,β-= 即β233ππα==,时, AM CN ⋅u u u u v u u u v 的最大值为14,故答案为14.点睛:本题考查向量的坐标运算,向量的数量积的坐标表示以及圆的参数方程的运用,三角函数的恒等变换,考查余弦函数的性质,考查运算能力,属于中档题. 13.已知正实数x ,y 满足141223x y x y+=++,则x y +的最小值为______. 【答案】94【解析】构造与已知条件有关的等式关系.x+y=()()12234x y x y ⎡⎤+++⎣⎦,利用基本不等式的性质即可解决. 【详解】∵x >0,y >0,∴2x+y >0,2x+3y >0,x+y >0,12x y ++423x y +=1,x+y=()()12234x y x y ⎡⎤+++⎣⎦, 那么:x+y=(x+y )×1=()()12234x y x y ⎡⎤+++⎣⎦×(12x y ++423x y +) =14(1+()42234232x y x y x y x y ++++++)=()522342342x y x y x y x y ++++++∵()2232342x y x y x y x y +++≥++=1,当且仅当2x=y=32时取等号.所以:x+y≥59144+=. 故x+y 的最小值为94.故答案为94【点睛】本题考查了整体思想的构造和转化.构造出与已知条件的形式.利用基本不等式的性质求解.属于中档题.14.某老师一天上3个班级的课,每班一节,如果一天共9节课,且老师不能连上3节课(第5节和第6节不算连上),那么这位老师一天的课表的所有排法有______种. 【答案】474.【解析】采用间接法,首先求解出任意安排3节课的排法种数;分别求出前5节课连排3节和后4节课连排3节的排法种数;作差即可得到结果.【详解】从9节课中任意安排3节共有:39504A =种其中前5节课连排3节共有:33318A =种;后4节课连排3节共有:33212A =种∴老师一天课表的所有排法共有:5041812474--=种本题正确结果:474 【点睛】本题考查有限制条件的排列问题的求解,对于限制条件较多的问题,通常采用间接法来进行求解.三、解答题15.已知向量,14x m ⎫=⎪⎭r,2cos ,cos 44x x n ⎛⎫= ⎪⎝⎭r ,()f x m n =⋅r r . (Ⅰ)求函数()f x 的单增区间; (Ⅱ)若()1f x =,求πcos 3x ⎛⎫+⎪⎝⎭的值; (Ⅲ)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2cos cos a c B b C -=,求函数()y f A =的范围.【答案】(1)4π2π4π,4π()33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)12;(3)31,2⎛⎫⎪⎝⎭. 【解析】试题分析:(1)利用平面向量的数量积得到f (x )的解析式,求解单调区间即可;(2)由(1)的解析式,利用f (x )=1,结合倍角公式求πcos 3x ⎛⎫+⎪⎝⎭的值即可; (3)结合正弦定理结合内角和公式,得到fA .的解析式,结合三角函数的有界性求值域即可.试题解析:(1)21cosπ12cos sin 44222262xx x xx m n v v+⎛⎫⋅=+=+=++ ⎪⎝⎭,∴()π1262x f x sin ⎛⎫=++ ⎪⎝⎭. 由πππ2π2π2262x k k -≤+≤+,k Z ∈得:4π2π4π4π33k x k -≤≤+,k Z ∈. ()f x 的递增区间是()4π2π4π4π33k k k Z ,⎡⎤-+∈⎢⎥⎣⎦. (2)()2cos cos 444x x x f x m n v v =⋅=+.11π1cos sin 22222262x x x ⎛⎫++=++ ⎪⎝⎭. ∵()1f x =,∴π1sin 262x ⎛⎫+=⎪⎝⎭,∴2ππ1cos 12sin 3262x x ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭.(3)∵()2cos a c cosB b C -=.由正弦定理得()2sin sin cos sinA C cosB B C -=. ∴2sin cos sin cos sin cos A B C B B C -=.∴()2sin cos sin A B B C =+. ∵πA B C ++=.∴()sin sin 0B C A +=≠.∴1cos 2B =. ∵0πB <<.∴π3B =.∴2π03A <<.∴πππ6262A <+<,π1sin 1262A ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,. 又∵()π1262x f x sin ⎛⎫=++⎪⎝⎭.∴()π1262A f A sin ⎛⎫=++ ⎪⎝⎭.故函数()f A 的取值范围是312⎛⎫⎪⎝⎭,.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如()sin y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.某中学选派40名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计所示.参加人数51520(Ⅰ)从“青志队”中任意选3名学生,求这3名同学中至少有两名同学参加活动次数恰好相等的概率;(Ⅱ)从“青志队”中任选两名学生,用X表示这两人参加活动次数之差的绝对值,求随机变量X的分布列及数学期望EX.【答案】(1)(2)略【解析】(Ⅰ)这名同学中至少有名同学参加活动次数恰好相等的概率为…………………………………………4分…………………………………………5分(Ⅱ)由题意知……………………………………6分……………………………………7分……………………………………8分的分布列:0 1 2…………………………………………10分的数学期望:…………12分17.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD.E 为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)13.【解析】试题分析:本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值.试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PA⋂AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE ⊥平面PAH.过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE. 所以∠APH 是PA 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH=45°,AE=1, 所以AH=22. 在Rt △PAH 中,PH=22PA AH +=32, 所以sin ∠APH=AH PH =13.方法二:由已知,CD ⊥PA ,CD ⊥AD ,PA ⋂AD=A , 所以CD ⊥平面PAD. 于是CD ⊥PD.从而∠PDA 是二面角P-CD-A 的平面角. 所以∠PDA=45°. 由PA ⊥AB ,可得PA ⊥平面ABCD. 设BC=1,则在Rt △PAD 中,PA=AD=2.作Ay ⊥AD ,以A 为原点,以AD u u u r ,AP u u u r的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),P (0,0,2),C(2,1,0),E(1,0,0), 所以PE u u u r =(1,0,-2),EC uuu r =(1,1,0),AP u u u r=(0,0,2) 设平面PCE 的法向量为n=(x,y,z),由0,{0,n PEn EC⋅=⋅=u u u u u u u u ru u u r得20,{0,x zx y-=+=设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα=||n APnAP⋅⋅u u u u ru u u r=22221322(2)1=⨯+-+.所以直线PA与平面PCE所成角的正弦值为13.【考点】线线平行、线面平行、向量法.18.已知椭圆C:2222x ya b+=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=24c(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P 作圆G的两切线,切点分别为M、N.(1)若椭圆C经过两点421,3⎛⎝⎭、33⎫⎪⎪⎝⎭,求椭圆C的方程;(2)当c为定值时,求证:直线MN经过一定点E,并求OPuuu r·OEuuu r的值(O是坐标原点);(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..【答案】(1)2294x y+=1.(2)见解析(3)5110222e≤--【解析】(1)解:令椭圆mx2+ny2=1,其中m=21a,n=21b,得3219271.4m nm n⎧⎪⎪⎨⎪⎪⎩+=,+=所以m=19,n=14,即椭圆方程为2294x y+=1.(2)证明:直线AB:x ya b+-=1,设点P(x0,y0),则OP的中点为00,22x y⎛⎫⎪⎝⎭,所以点O、M、P、N所在的圆的方程为220022x yx⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭+y-=22004x y+,化简为x2-x0x+y2-y0y=0,与圆x2+y2=24c作差,即直线MN:x0x+y0y=24c.因为点P(x0,y0)在直线AB上,得00x ya b+-=1,所以x0bx ya⎛⎫⎪⎝⎭++24cby⎛⎫⎪⎝⎭-=0,即24bx yacby⎧⎪⎪⎨⎪⎪⎩+=,-=,得x=-24ca,y=24cb,故定点E2244c ca b⎛⎫⎪⎝⎭-,,OPuuu r·OEuuu r=220044b c cx x ba a b⎛⎫⎛⎫⋅ ⎪⎪⎝⎭⎝⎭,+-,=24c.(3)解:由直线AB与圆G:x2+y2=24c(c是椭圆的焦半距)22a b+>2c,即4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因为0<e<1,所以0<e2<35①.连结ON、OM、OP,若存在点P使△PMN为正三角形,则在Rt△OPN中,OP=2ON=2r=c22a b+≤c,a2b2≤c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),得e4-3e2+1≤0.因为0<e<135-≤e2<1,②.35-≤e2<3551102e≤--19.已知数列{}n a中,02a=,13a=,26a=,且对3n≥时,有()()1234448n n n na n a na n a---=+-+-.(Ⅰ)设数列{}n b满足1n n nb a na-=-,n*∈N,证明数列{}12n nb b+-为等比数列,并求数列{}n b 的通项公式;(Ⅱ)记()121!n n n ⨯-⨯⨯⨯=L ,求数列{}n na 的前n 项和n S .【答案】(Ⅰ)证明见解析;122n n n b n -=-⋅;(Ⅱ)()()1121!1n n S n n +=-+++【解析】(Ⅰ)利用已知等式表示出12n n b b +-和12n n b b --,整理可知11222n nn n b b b b +--=-,从而可证得数列{}12n n b b +-为等比数列,根据等比数列通项公式求得122n n n b b +=-;利用配凑的方式可证得数列12n n b -⎧⎫⎨⎬⎩⎭为等差数列,利用等差数列通项公式,整理可得n b ;(Ⅱ)将n b 代入1n n n b a na -=-,整理可得:1122nn n n a n a ---=-,利用累乘的方式可求得n a ,进而可得()21!!nn na n n n =⋅++-;采用分组求和的方式,分别对2n n ⋅用错位相减的方法求和,对()1!!n n +-采用裂项相消的方法求和,分别求和后加和即可得到结果. 【详解】(Ⅰ)由题意知:()()()11254144n n n n a n a n a n a +--=+-++-()()11111212232n n n n n n n n n b b a n a a na a n a na ++-+-∴-=-+-+=-++ ()()()1112122221221n n n n n n n n n b b a na a n a a n a n a -------=--+-=-++- ()()()()12111222241222221n n n n n n n n n n a n a n a b b b b a n a n a --+----++--∴==--++-又212110222261242b b a a a a -=--+=-+=-∴数列{}12n n b b +-是以2-为首项,2为公比的等比数列11222n n n b b -+∴-=-⋅ 122n n n b b +∴=-,即11122n nn n b b +-=- ∴数列12n n b -⎧⎫⎨⎬⎩⎭是以1012b =为首项,1-为公差的等差数列 ()()111122n n b n n -∴=+-⨯-=- ()112222n n n n b n n --∴=-⋅=-⋅ (Ⅱ)由(Ⅰ)知:1122nn n n n a na ---⋅=-,即:1122nn n n a n a ---=- 则:1122212n n n n a n a -----=--,2233222n n n n a n a -----=--,……,2211222a a -=-左右两侧分别相乘可得:()()1212121!2nn a n n n n n a -=⨯-⨯⋅⋅⋅⨯=⨯-⨯⋅⋅⋅⨯⨯=- ()12!2!n n a n a n ∴-=-= 2!n n a n ∴=+ ()2!21!!n n n na n n n n n n ∴=⋅+⋅=⋅++-令()()()()()2!1!3!2!4!3!1!!1!1n A n n n =-+-+-+⋅⋅⋅++-=+-⎡⎤⎣⎦()1231122232122n n n B n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯则()23412122232122nn n B n n +=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯()()()1231121222222212212n n n n n n B n n n +++⨯-∴-=-⋅+++⋅⋅⋅+=-⋅=---则()1122n n B n +=-+()()1121!1n n n n S A B n n +∴=+=-+++【点睛】本题考查利用递推关系式求解数列的通项公式的形式、数列求和方法中的分组求和法、错位相减法和裂项相消法.本题的难点是能够对递推关系式进行转化,配凑出等差或等比数列的形式,进而利用等差、等比数列的通项公式来进行求解. 20.已知函数()2112xf x e x kx =---,k ∈R . (Ⅰ)若()f x 在R 上是增函数,求实数k 的取值范围; (Ⅱ)讨论函数()f x 的极值,并说明理由;(Ⅲ)若()f x 有两个极值点1x ,2x ,求证:函数()f x 有三个零点.【答案】(Ⅰ)(],1-∞;(Ⅱ)当(],1k ∈-∞时,()f x 无极值;当()1,k ∈+∞时,()f x 存在一个极大值和一个极小值;(Ⅲ)见解析【解析】(Ⅰ)利用()0f x '≥得x k e x ≤-;利用导数求得()xg x e x =-的最小值,则()min k g x ≤;(Ⅱ)由(Ⅰ)知(],1k ∈-∞,函数单调递增,无极值;当()1,k ∈+∞,可证得()g x k =有两根,即()0f x '=有两根,从而可得函数的单调性,进而确定有一个极大值和一个极小值;(Ⅲ)由(Ⅱ)知()1,k ∈+∞且120x x <<;利用1x 和2x 表示k ,代入函数()f x 中,可表示出()1f x 和()2f x ;根据()1f x 和()2f x 设()()21112x h x x e x =-+-,通过导数可验证出()h x 单调递减,进而求得()10f x >,()20f x <,结合()f x 图象可证得结论.【详解】(Ⅰ)由()2112xf x e x kx =---得:()x f x e x k '=-- ()f x Q 在R 上是增函数 ()0f x '∴≥在R 上恒成立即:x k e x ≤-在R 上恒成立 设()xg x e x =-,则()1xg x e '=-当(),0x ∈-∞时,()0g x '<;当()0,x ∈+∞时,()0g x '> 即()g x 在(),0-∞上单调递减;在()0,∞+上单调递增()()min 01g x g ∴== 1k ∴≤即k 的取值范围为:(],1-∞(Ⅱ)由(Ⅰ)知:当(],1k ∈-∞时,()f x 在R 上是增函数,此时()f x 无极值; 当()1,k ∈+∞时,令()0f x '=,即()g x k =x →-∞Q 时,()g x →+∞;()01g =;x →+∞时,()g x →+∞()g x k ∴=有两个根,设两根为1x ,2x 且120x x <<可知:()1,x x ∈-∞和()2,x +∞时,()0f x '>;()12,x x x ∈时,()0f x '< 即()f x 在()1,x -∞,()2,x +∞上单调递增;在()12,x x 上单调递减()f x ∴在1x x =处取得极大值()1f x ;在2x x =处取得极小值()2f x综上所述:当(],1k ∈-∞时,()f x 无极值;当()1,k ∈+∞时,()f x 存在一个极大值和一个极小值(Ⅲ)由(Ⅱ)知,()f x 有两个极值点1x ,2x ,则()1,k ∈+∞,且120x x <<()1110x f x e x k '∴=--=;()2220x f x e x k '=--=又()()()111122************1111222xx x x f x e x kx e x e x x x e x =---=----=-+- ()()222221112x f x x e x =-+-第 21 页 共 21 页 令()()21112x h x x e x =-+-,则()()1x h x x e '=- 则()0h x '≤在R 上恒成立,即()h x 在R 上单调递减又()00h = (),0x ∴∈-∞时,()0h x >;()0,x ∈+∞时,()0h x <120x x <<Q ()()110f x h x ∴=>,()()220f x h x =<当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞可得()f x 大致图象如下:()f x ∴有三个零点【点睛】本题考查导数在函数中的综合应用问题,主要考查了根据函数单调性求解参数范围、讨论函数的极值个数、判断函数的零点个数问题,涉及到构造函数的方式、恒成立的处理方法、数形结合的方式等,对学生的综合运用能力要求较高.。
2020年普通高等学校招生全国统一考试数学文试题(天津卷,解析版)
2020年普通高等学校招生全国统一考试数学文试题(天津卷,解析版)注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.i 是虚数单位,复数131ii--= A.2i - B. 2i + C.12i -- D. 12i -+【答案】A 【解析】因为13(13)(1)212i i i i i --+==--,故选A. 2.设变量,x y 满足约束条件140340x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数3z x y =-的最大值为A.-4B.0C.43D.4【答案】D【解析】画出不等式表示的平面区域,容易求出最大值为4,选D.3.阅读右边的程序框图,运行相应的程序,若输入x的值为-4,则输出y的值为A.0.5B.1C.2D.46.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为 A.23 B.25 C.43 D. 45 【答案】B【解析】由题意知,抛物线的准线方程为2x =-,所以4p =,又42pa +=,所以2a =,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为12y x =±,即12b a =,所以1b =,即25c =,225c =,选B.7.已知函数()2sin(),,f x x x R ωϕ=+∈其中0,.ωπϕπ>-<≤若()f x 的最小正周期为6π,且当2x π=时, ()f x 取得最大值,则A. ()f x 在区间[2,0]π-上是增函数B. ()f x 在区间[3,]ππ--上是增函数C. ()f x 在区间[3,5]ππ上是减函数D. ()f x 在区间[4,6]ππ上是减函数二、填空题:本大题共6小题,每小题5分,共30分.9. 已知集合{}||1|2,A x R x Z =∈-<为整数集,则集合A Z ⋂中所有元素的和等于 . 【答案】3【解析】因为{}|13A x x =-<<,所以{}0,1,2A Z ⋂=,故其和为3.10. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为3m .【答案】4【解析】由三视图知,该几何体是由上、下两个长方体组合而成的,容易求得体积为4.11. 已知{}n a 是等差数列,n S 为其前n 项和,n N *∈.若316a =,2020S =,则10S 的值为 .【答案】110三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)编号分别为1216,,,A A A L 的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 得分 15 35 21 28 25 36 18 34 运动员编号 A 9A 10 A 11 A 12 A 13 A 14 A 15 A 16 得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格:区间[10,20)[20,30)[30,40)人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,(i)用运动员编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.16.(本小题满分13分)在ABC∆中,内角A,B,C的对边分别为,,a b c.已知B=C, 23b a=.(Ⅰ)求cos A的值;(Ⅱ)求cos(2)4Aπ+的值.【解析】(Ⅰ)由B=C,23b a=,可得3c b==,所以22222233144cos2333222aa ab c aAbca a+-+-===⨯⨯.(Ⅱ)因为1cos3A=,(0,)Aπ∈,所以22sin A=,27cos22cos19A A=-=-,故42sin22sin cosA A A==,所以cos(2)cos 2cos sin 2sin 444A A A πππ+=-=87218+-. 【命题意图】本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力. 17.(本小题满分13分)如图,在四棱锥P-ABCD 中,底面ABCD 为平行四边形,45ADC ∠=o,AD=AC=1,O 为AC 的中点,PO ⊥平面ABCD,PO=2,M 为PD 的中点.(Ⅰ)证明PB ∥平面ACM ; (Ⅱ)证明AD ⊥平面PAC;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.【解析】(Ⅰ)证明:连接BD,MO.在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点,又M 为PD 的中点,所以PB∥MO,因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB∥平面ACM .(Ⅱ)证明:因为45ADC ∠=o,AD=AC=1,所以AD⊥AC,又PO⊥平面ABCD,AD ⊂平面ABCD,所以PO⊥AD,而 AC PO O ⋂=,所以AD⊥平面PAC.(Ⅲ)取DO 点N,连接MN,AN,因为M 为PD 的中点,所以MN∥PO,且MN=12PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD,所以MAN ∠是直线AM 与平面ABCD 所成的角.在Rt DAO ∆中,AD=1,AO=12,所以54DO =,从而1524AN DO ==.在Rt ANM ∆中,tan 5MN MAN AN ∠=== 455,即直线AM 与平面ABCD 所成角的正切值为45. 【命题意图】本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力. 18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(3)16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.19.(本小题满分14分)已知函数322()4361,,f x x tx t x t x R =+-+-∈其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意(0,)t ∈+∞,()f x 在区间(0,1)内均在零点.【解析】(Ⅰ)当1t =时,32()436,(0)0,f x x x x f =+-= 2'()1266,'(0)6f x x x f =+-=-, 所以曲线()y f x =在点(0,(0))f 处的切线方程为6y x =-. (Ⅱ) 22'()1266,f x x tx t =+-令'()0f x =,解得x t =-或2t,因为0t ≠,以下分两种情况讨论: (1)若0t <,则2tt <-.当x 变化时, '()f x ,()f x 的变化情况如下表: x (,)2t -∞ (,)2tt -(,)t -+∞'()f x +- + ()f x所以()f x 的单调递增区间是(,)2-∞,(,)t -+∞;()f x 的单调递减区间是(,)2t -. (2)若0t >,则2tt >-.当x 变化时, '()f x ,()f x 的变化情况如下表: 所以()f x 的单调递增区间是(,)t -∞-,(,)2+∞;()f x 的单调递减区间是(,)2t -.x(,)t -∞-(,)2t t -(,)2t+∞ '()f x +- + ()f x所以()f x 在(,1)2t 内存在零点. 若(1,2)t ∈,37()(1)24t f t t =-+-<37104t -+<, (0)10,f t =->所以()f x 在(0,)2t内存在零点,所以,对任意(0,2)t ∈,()f x 在区间(0,1)内均在零点.综上, 对任意(0,)t ∈+∞,()f x 在区间(0,1)内均在零点.【命题意图】本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法. 20.(本小题满分14分)已知数列{}n a 与{}n b 满足11(2)1nn n n n b a b a +++=-+,13(1),2n n b n N -+-=∈*,且12a =. (Ⅰ)求23,a a 的值;(Ⅱ)设2121n n n c a a +-=-,n N ∈*,证明{}n c 是等比数列; (Ⅲ)设n S 为{}n a 的前n 项和,证明21212122121()3n n n n S S S S n n N a a a a *--++++≤-∈L .。
2020届天津市高三高考全真模拟(一)数学试题(解析版)
根据函数的性质排除选项是解题关键.
7.设 a 0.30.6 , b 0.60.3 , c 0.30.3 ,则 a,b,c 的大小关系为(
)
A. b a c
【答案】B
B. a c b
C. b c a
D. c b a
【解析】根据指数函数的单调性得出 0.30.6 0.30.3 ,而根据幂函数的单调性得出
A. AE
B. AC
C. DC
第 1 页 共 18 页
D. BC
【答案】A
【解析】利用 AB, DC 是相等向量及 E 为中点可得正确的选项.
【详解】
因为 1 AB AD AD DE AE ,故选 A. 2
【点睛】 本题考查向量的加法及向量的线性运算,属于容易题. 4.下列命题中错误的是( )
2020 届天津市高三高考全真模拟(一)数学试题
一、单选题
1.已知全集U R ,集合 A {x | 2 x 3} , B {y | y 2x1, x 0} ,则 A U B
()
A.{x | 2 x 0} C.{x | 0 x 1}
2
【答案】B
B.{x | 2 x 1} 2
点睛:抓住两个边界:当直线 1 与 OP 垂直时,弦长|AB|最小;当直线 1 过圆心 O 时,
弦长|AB|最大,从而定出了弦长的变化范围,又弦长为整数,故中间只有一种情况,结
合圆的对称性,不难发现此时有两种情况.
9.已知函数 f (x) 1 m cos 2x (m 2)sin x ,其中1 m 2 ,若函数 f x 的最大值
第 7 页 共 18 页
定理和化简整理能力,属于中档题.
13. (x 1)7 (x 1)3 的展开式中 x 的系数是__________. 【答案】 4
2020年天津市和平区高考数学一模试卷(含答案解析)
2020年天津市和平区高考数学一模试卷一、选择题(本大题共9小题,共45.0分)1.设全集,,0,,则A. B. 1, C. D. 1,2.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知表示不超过实数x的最大整数,为取整函数,是函数的零点,则A. 4B. 5C. 2D. 34.已知双曲线的两条渐近线与抛物线:的准线分别交于A,B两点.若双曲线C的离心率为2,的面积为,O为坐标原点,则抛物线的焦点坐标为A. B. C. D.5.某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,,从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上含90分的人数为,则的数学期望为A. B. C. D.6.已知函数,给出下列四个结论,其中正确的结论是A. 函数的最小正周期是B. 函数在区间上是减函数C. 函数的图象关于对称D. 函数的图象可由函数的图象向左平移个单位得到7.函数是定义在R上的奇函数,对任意两个正数,都有,记,则a,b,c之间的大小关系为A. B. C. D.8.国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为A. 378B. 306C. 268D. 1989.已知圆O的半径为2,P,Q是圆O上任意两点,且,AB是圆O的一条直径,若点C满足,则的最小值为A. B. C. D.二、填空题(本大题共6小题,共30.0分)10.已知a为实数,i为虚数单位,若复数为纯虚数,则______.11.若的展开式中的系数为,则实数______.12.已知一个体积为8的正方体内接于半球体,即正方体的上底面的四个顶点在球面上,下底面的四个顶点在半球体的底面圆内.则该半球体的体积为______.13.函数的图象在处的切线被圆C:截得弦长为2,则实数a的值为______.14.若,,且,则此时______,的最小值为______.15.已知函数,则______;若方程在区间有三个不等实根,则实数的取值范围为______.三、解答题(本大题共5小题,共75.0分)16.在中,内角A、B、C的对边分别为a,b,c,.Ⅰ求角C的大小;Ⅱ若,求:边长c;的值.17.如图所示,平面平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,,,,.Ⅰ求证:平面CDE;Ⅱ求平面ADE与平面BCEF所成锐二面角的大小;Ⅲ求直线EF与平面ADE所成角的余弦值.18.已知椭圆C:的离心率,左、右焦点分别是、,以原点O为圆心,椭圆C的短半轴为半径的圆与直线l:相切.求椭圆C的标准方程;设P为椭圆C上不在x轴上的一个动点,过点作OP的平行线交椭圆与M、N两个不同的点,记,,令,求S的最大值.19.数列是等比数列,公比大于0,前n项和,是等差数列,已知,,,.Ⅰ求数列,的通项公式,;Ⅱ设的前n项和为:求;若,记,求的取值范围.20.已知函数,a,,且若函数在处取得极值,试求函数的解析式及单调区间;设,为的导函数,若存在,使成立,求的取值范围.-------- 答案与解析 --------1.答案:B解析:解:0,1,,,0,,,1,.故选:B.可以求出集合I,然后进行补集、并集的运算即可.本题考查了描述法、列举法的定义,补集和并集的运算,考查了计算能力,属于基础题.2.答案:C解析:解:“”,即,“”是“”的充要条件.故选:C.,化简即可判断出结论.本题考查了三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.答案:C解析:解:函数是在时,函数是连续的增函数,,,函数的零点所在的区间为,.故选:C.由函数的解析式可得,,再根据函数的零点的判定定理求得函数的零点所在的区间.即可求得则本题主要考查函数的零点的判定定理的应用,属于基础题.4.答案:B解析:解:双曲线的两条渐近线方程是,又抛物线的准线方程是,故A,B两点的纵坐标分别是,又由双曲线的离心率为2,所以,即,则,A,B两点的纵坐标分别是,又的面积为,可得,得,抛物线的焦点坐标为,故选:B.求出双曲线的渐近线方程与抛物线的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,的面积为,列出方程,由此方程求出p的值,可得所求焦点坐标.本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A,B两点的坐标,考查离心率公式和三角形的面积公式,有一定的运算量,属于中档题.5.答案:B解析:解:由题意得:,解得,由题意得内的人数为人,内的人数为人,从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上含90分的人数为,则的可能取值为0,1,2,,,,则的数学期望.故选:B.由频率分布直方图求出,内的人数为9人,内的人数为3人,从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上含90分的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的数学期望.本题考查离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、排列组、古典概型等基础知识,考查运算求解能力,是中档题.6.答案:B解析:解:函数,函数的周期为:,所以A不正确;,解得:,所以函数在区间上是减函数,所以B正确.时,可得:,所以C不正确;由函数的图象向左平移个单位得到函数,所以D不正确;故选:B.利用二倍角公式以及两角和与差的三角函数化简函数的解析式,然后求解函数的周期,单调减区间,对称轴以及函数图象的变换,判断选项的正误即可.本题考查两角和与差的三角函数,函数的图象的对称性,单调性,三角函数的特征的变换,是基本知识的考查.7.答案:A解析:解:构造函数,则函数单调递减,,,,故选:A.构造函数,则函数单调递减,比较变量的大小,即可得出结论.本题考查函数的单调性,考查构造方法的运用,正确构造函数是关键.8.答案:D解析:解:由题可知选出的3个媒体团的构成有如下两类:选出的3个媒体团中只有一个国内媒体团,有种不同的提问方式;选出的3个媒体团中有两个国内媒体团,有种不同的提问方式;综上,共有种不同的提问方式.故选:D.先对选出的3个媒体团的构成情况进行分类,再考虑提问顺序,借助于两大原理解决问题.本题主要考查排列、组合的综合应用,属于基础题.9.答案:C解析:【分析】运用向量的三角形法则和数量积的定义,化简要求的最小值问题就是求的最小值,由于点C满足,两边平方转化为二次函数的最值问题,即可得到所求最小值.本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.【解答】解:由题意可得,是圆O的任意一条直径,,,.要求的最小值问题就是求的最小值,由于点C满足,两边平方可得,当时,,取得最小值1,故的最小值为,故选C.10.答案:解析:解:复数为纯虚数,,,解得.又.则.故答案为:.复数为纯虚数,可得,,解得又利用复数模的运算性质即可得出.本题考查了复数的周期性、纯虚数的定义、复数模的运算性质,考查了推理能力与计算能力,属于基础题.11.答案:解析:解:的展开式的通项公式为,令,可得,故展开式中的系数为,则实数,故答案为:.先求出二项式展开式的通项公式,再令x的幂指数等于4,求得r的值,即可求得展开式中的系数,再根据的系数为,求出a的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.12.答案:解析:解:由正方体的体积为8,可知正方体的棱长为2,作其截面图如图,可得半球体的半径,则其体积故答案为:.由题意画出截面图,结合正方体的体积求出外接球的半径,再由球的体积公式求解.本题考查多面体外接球体积的求法,考查数形结合的解题思想方法,是中档题.13.答案:或2解析:解:由题意得,所以,.所以切线为:,即.圆C:的圆心为,半径,又因为弦长.所以圆心到直线的距离为.所以到切线的距离为:,解得或2.故答案为:或2.先利用导数表示出函数在处的切线方程,然后利用点到直线的距离公式列方程求出a的值.本题考查导数的几何意义和直线与圆的位置关系.涉及直线与圆相交的弦长问题,注意利用垂径定理列方程求解.属于中档题.14.答案:2解析:解:因为,所以,,且x,..故答案为:2,.先根据已知的等式,找到x,y之间的关系式,然后结合基本不等式的使用条件求出结论的最值.本题考查利用基本不等式求最值的问题,关键是适用条件要把握准,取等号的条件成立.属于中档题.15.答案:81解析:解:函数,;;;若,则,,.若,则,,.,,.设和,则方程在区间内有3个不等实根,、等价为函数和在区间内有3个不同的零点.作出函数和的图象,如图:当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点时,两个图象有4个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程在区间内有3个不等实根,则或.故实数的取值范围为:故答案为:81,根据分段函数的解析式得到;即可求出第一问;作出函数和的图象.利用两个图象的交点个数问题确定a的取值范围.本题主要考查方程根的个数的应用,将方程转化为函数,利用数形结合是解决此类问题的基本方法.注意第二问是问a的倒数的取值范围.16.答案:解:Ⅰ由已知及正弦定理得分,,,分分Ⅱ因为,,由余弦定理得,分由,分因为B为锐角,所以分,分分解析:利用正弦定理、和差公式化简即可得出.因为,,利用余弦定理即可得出.由,可得cos B再利用倍角公式、和差公式即可得出.本题考查了正弦定理、余弦定理、倍角公式、和差公式,考查了推理能力与计算能力,属于中档题.17.答案:Ⅰ证明:四边形BCEF为直角梯形,四边形ABCD为矩形,,,又平面平面BCEF,且平面平面,平面BCEF.以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:0,,0,,0,,0,,4,,2,,则,0,.,,为平面CDE的一个法向量.又平面CDE.平面CDE.Ⅱ设平面ADE的一个法向量为,则0,,4,,得1,平面BCEF,平面BCEF一个法向量为,设平面ADE与平面BCEF所成锐二面角的大小为,则因此,平面ADE与平面BCEF所成锐二面角的大小为.Ⅲ根据Ⅱ知平面ADE一个法向量为得1,,,设直线EF与平面ADE所成角为,则因此,直线EF与平面ADE所成角的余弦值为.解析:以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立空间直角坐标系.Ⅰ为平面CDE的一个法向量,证明平面CDE,只需证明;Ⅱ求出平面ADE的一个法向量、平面BCEF一个法向量,利用向量的夹角公式,即可求平面ADE 与平面BCEF所成锐二面角的余弦值;Ⅲ求出平面ADE一个法向量为1,,,利用向量的夹角公式,即可求直线EF与平面ADE所成角的余弦值.本题主要考查空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.18.答案:解:由题意可知:椭圆C:焦点在x轴上,以原点O为圆心,椭圆C的短半轴为半径的圆与直线l:相切,即,又椭圆的离心率,解得:,椭圆C的方程为:;由可知:椭圆的右焦点,设,,,丨丨丨丨,设直线MN:,,整理得:,,,,,由,,当且仅当时,即时,取等号,S的最大值.解析:椭圆C:焦点在x轴上,,又椭圆的离心率,解得:,即可求得椭圆C的方程为;由,,丨丨丨丨,设直线MN:,代入椭圆方程,由韦达定理及弦长公式可知:,由基本不等式的性质,即可求得S的最大值.本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查三角形的面积公式,韦达定理,弦长公式及基本不等式的应用,考查椭圆与不等式的综合应用,考查计算能力,属于中档题.19.答案:解:Ⅰ设数列的公比为,,因为,,可得,整理得,解得舍或,所以数列通项公式为.设数列的公差为d,因为,,即解得,,所以数列的通项公式为;Ⅱ由等比数列的前n项和公式可得,所以;由可得,所以的前n项和.又在上是递增的,.所以的取值范围为解析:Ⅰ先设出等比数列与等差数列的公比与公差,然后利用题设条件列出公差与首项及公比与首项的方程,求出结果代入通项公式即可解决问题;Ⅱ先由Ⅰ中得到的结果求出,再利用分组求和的办法算出;先由前面的结果求出,再利用裂项相消法求出,最后利用数列的单调性求出其取值范围.本题主要考查等差、等比数列通项公式的求法及数列的前n项和的求法,还有利用数列的单调性求取值范围,属于有一定难度的题.20.答案:解;由题意,,由函数在处取得极值,得,即,解得,则函数的解析式为,定义域为,,又对恒成立,令则有,解得,且,即或;同理令可解得或;综上,函数的单调增区间为和,单调减区间为和由题意,则,,由条件存在,使成立得,对成立,又对成立,化简得,令,则问题转化为求在区间上的值域,求导得,令,为二次函数,图象开口向上,,则,又,则,在区间上单调递增,值域为,所以的取值范围是.解析:先求导函数,再由函数在处取得极值,得,代入求解参数a,b,然后利用令和求解函数的单调区间;将代入化简,再求,然后得,令其为0,得,令,则问题转化为求在区间上的值域,利用导数求解.本题考查了导数在函数的单调性和最值求解中的综合应用,属于比较复杂的问题,注意利用转化的思想求解问题.。
2020届天津市河东区高三数学文科第一次模拟考试卷 人教版
2020届天津市河东区高三数学文科第一次模拟考试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,试卷满分150分,考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题卡上。
注意:直接写在题后无效!1.(文)若集合A ={x ∣x ≤2},B ={x ∣x 2-3x =0},则集合A ∩B =( )(A ){3}(B ){0} (C ){0,2}(D ){0,3}2.函数 y =x 2+2(x ≤0)的反函数是( )(A )y =x 2-2(x ≥2) (B )y =-x 2-2(x ≥2) (C )y =x 2-2(x ≥0)(D )y =-x 2-2(x ≥0)3.△ABC 的内角满足sinA +cosA >0,tanA -sinA <0,则A 的取值范围是( )(A )(0,π4)(B )(π2,3π4)(C )(π4,π2)(D )(3π4,π)4.椭圆与双曲线 x 25-y 2=1有共同的焦点,且一条准线的方程是x =36,则此椭圆的方程为( ) (A )x 218+y212=1(B )x 212+y218=1(C )x 212+y26=1(D )x 29+y26=15.在下面给出的四个图形中,与函数 y =2-log 3x 的图象关于直线 y =x 对称的图形只可能是( )6.已知直线l ⊥平面α,直线m∩平面β,有如下四个命题: ① 若α∥β,则l ⊥m ;② 若α⊥ β,则l ∥m ;(A )(B )(C )(D )③ 若l ∥m ,则α⊥β; ④ 若l ⊥m ,则α∥β.其中正确的两个命题是( ) (A )①与② (B )①与③ (C )②与④(D )③与④7.若函数f (x)=x 2-2x -8 的定义域为A ,函数g(x)=11-|x -a|的定义域为B ,则使A ∩B =〇/的实数a 的取值范围是( ) (A )(-1,3) (B )[-1,3] (C )(-2,4)(D )[-2,4]8.设坐标原点为O ,抛物线 y 2=4x 与过抛物线焦点的直线l 交于点A 、B ,则向量OA →·OB →的值为( ) (A )3 4(B )-3 4(C )-3(D )39.(文)已知三棱锥P —ABC 的三条侧棱两两垂直,且PA =1,PB =3,PC =6,则底面三角形的内角ABC 的大小为( ) (A )30° (B )45° (C )60°(D )90°10.(文)函数 f (x)=a ∣x ∣(a >0,x ∈R )的值域是 { f (x)∣0<f (x)≤1},则 f (-2)与f (1) 的大小关系是( )(A )f (-2)<f (1) (B )f (-2)=f (1) (C )f (-2)>f (1)(D )不能确定二、填空题:本大题共6小题,每小题4分,共24分.请把答案直接填在题中横线上. 11.某体协参加全运会有男运动员56人,女运动员42人.比赛后立即用分层抽样的方法从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查.其中男、女运动员应分别抽取16 、 12 人.12.在条件 ⎩⎪⎨⎪⎧0≤x ≤20≤y ≤2y -x ≥1下,函数z =4-2x +y 的最大值是 6 .13.如果等比数列{a n }的前n 项和为S n =3n+r ,那么r = -1 .14.(文)在等差数列{a n }中,a 1>0,S n 为{a n }的前n 项和,且S 3=S 9,则使S n 取最大值的n的值为 6 .15.在 ⎝ ⎛⎭⎪⎫3x-2310的展开式中,第五项等于8,则x 的值为 12-16log 335 .16.(文)设a 为常数,已知 f (x)=x 3+2ax 2+28x +a 2在x =-2时有极值,则a = 5 . 三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(文)箱中装有大小相同的五个白球,三个红球.现从箱中每次任意取出一个球,若取出的是红球则结束,若取出的是白球,则白球不放回并继续从箱中任意取出一个球,但取出四个白球取球也结束.(Ⅰ)求取出一个白球的概率; (Ⅱ)求取出四个白球的概率. 解:(Ⅰ)P 1=5×3A 28 =1556 ;---------------------------------6分 (Ⅱ)P 2= A 45 A 48 =114 .---------------------------------12分18.(本小题满分12分)已知:向量 a →=(1,x ),b →=(x 2+x ,-x ),m 为常数且m ≤-2.求使向量 a →·b →+2>m ⎝ ⎛⎭⎪⎫2 a →·b →+1 成立的x 的取值范围.解:∵a →=(1,x ),b →=(x 2+x ,-x ),∴a →·b →=x 2+x -x 2=x ,∴原不等式等价于:x +2>m ⎝ ⎛⎭⎪⎫ 2x +1,----------------------------4分整理,得:(x +2) (x -m)x>0,即:x (x +2) (x -m)>0.------------------------------------------------6分 当m =-2时,x ∈(0,+∞);---------------------------------------9分 当m <-2时,x ∈(m ,-2)∪(0,+∞).-------------------12分 19.(本小题满分12分)已知:正方体ABCD —A 1B 1C 1D 1的棱长为1. (Ⅰ)求棱AA 1与平面A 1BD 所成的角; (Ⅱ)求二面角B —A 1D —B 1的大小; (Ⅲ)求四面体A 1—BB 1D 的体积. 解:(Ⅰ)取BD 的中点O ,连结OA ,OA 1.∵四边形ABCD 为正方形,∴AO ⊥BD , 又AA 1⊥BD ,∴BD ⊥平面AA 1O , ∴AA 1在平面A 1BD 上的射影落在OA 1上, ∴∠AA 1O 为AA 1与平面A 1BD 所成的角. ∵AA 1=1,AO =22,∴tan ∠AA 1O =22,∴∠AA 1O =arctan 22.----4分 (Ⅱ)取B 1C 的中点E ,A 1D 的中点F ,连结BE 、EF 、FB .∵△A 1BD 为正三角形,∴BF ⊥A 1O , 又四边形A 1B 1CD 是矩形,∴EF ⊥A 1D , ∴∠BFE 为二面角B —A 1D —B 1的平面角. ∵EF ∥A 1B 1,A 1B 1⊥平面BC 1,∴EF ⊥BF .在Rt △BEF 中,BE =22,EF =1,∴tan ∠BFE =22,∴∠BFE=arctan22.-----------------------------------------------------------------8分 (Ⅲ)V A 1—BB 1D =V B —A 1B 1D =V B —B 1DC =V D —BCB 1 =13·12·1·1·1=16 .--12分20.(本小题满分12分)在△ABC 中,设a 、b 、c 分别为角A 、B 、C 的对边,S 为△ABC 的面积,且满足条件4sinB ·sin 2(π4+B2)+cos2B =1+3. (Ⅰ)求∠B 的度数;(Ⅱ)若a =4,S =53,求b 的值.解:(Ⅰ)由已知条件可得:2sinB ·⎣⎢⎡⎦⎥⎤1-cos(π2 +B)+1-2sin 2B =1+3,ABCDC 1B 1A 1D 1A BC DC 1B 1A 1D 1F E O化简整理,得:2sinB =3,∴sinB =32,B =60°或120°;------------5分 (Ⅱ)∵a =4,S =53,∴S =12acsinB =53,∴c =5;--------------------------8分当B =60°时,由b 2=42+52-2·4·5·cos60°=21,得b =21;-----10分 当B =120°时,由b 2=42+52-2·4·5·cos120°=61,得b =61.--12分21.(本小题满分14分)(文)设数列{a n }、{b n }都是正项数列,且对于任意n ∈N*,都有a n ,b 2n ,a n +1 成等差数列,b 2n ,a n +1,b 2n +1成等比数列.(Ⅰ)求证:数列{b n }是等差数列;(Ⅱ)如果a 1=1,b 1=2,S n =1a 1+1a 2+1a 3+…+1a n,求S n 的表达式.(Ⅰ)证明:∵a n>0,b n>0,且 ⎩⎨⎧2b 2n=a n+a n +1①a 2n +1=b 2n ·b 2n +1 ②,由②得:a n +1=b n ·b n +1,∴当n ≥2时,有a n =b n -1·b n , 代入①,得:2b 2n =b n -1b n +b n b n +1,∴2b n =b n -1+b n +1(n ≥2),∴数列{b n }是等差数列.---------------------------------6分(Ⅱ)解:由a 1=1,b 1=2,可得a 2=3,b 2=322, ∴b n =b 1+(n -1)d =22(n +1),-----------------------------8分 ∴a n =n(n +1)2,(n ∈N*)-------------------------------------10分 ∴S n =21·2+22·3+…+2n(n +1)=2 ⎣⎢⎡⎦⎥⎤1-12+12-13+…+1n -1n +1 =2n n +1.-------------14分22.(本小题满分14分)(理)已知:抛物线方程为 y =14 x 2+1,点P (x 0,y 0)在抛物线上,且点P 处抛物线的切线为直线l .(Ⅰ)写出直线l 的方程;(Ⅱ)设直线l 交x 轴于点Q ,求使∣PQ ∣的长最小的P 点坐标.(文)已知:A 、B 是椭圆 x 2a 2 +y 2b 2 =1(a >b >0)的一条弦,向量 OA →+OB →交AB 于点M ,且向量OM →=(2,1).以M 为焦点,以椭圆的右准线为相应准线的双曲线与直线AB 交于点N (4,-1).(Ⅰ)求椭圆的离心率e 1;(Ⅱ)设双曲线的离心率为e 2,若e 1+e 2=f (a),求 f (a) 的解析式,并确定它的定义域. 解:(Ⅰ)由 OA →+OB →与AB 相交于点M ,可知:AB 的中点是M ,由 OM →=(2,1),知:M (2,1).设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,y 1+y 2=2,且AB 在椭圆上,有 x 12a 2 +y 12b 2 =1,x 22a 2 +y 22b2 =1,两式相减,得: (x 1-x 2) (x 1+x 2) a 2+ (y 1-y 2) (y 1+y 2)b 2=0, ∴k AB = y 1-y 2 x 1-x 2=-2b 2a2=k MN =-1,∴a 2=2b 2,又a 2=b 2+c 2,∴b 2=c 2, ∴椭圆的离心率e 1=22.--------------------------------------------------------6分 (Ⅱ)设椭圆的右准线为 l ,过点N 作 NN ′⊥ l 于N ′,则由双曲线定义及题意知:e 2=MNMN ′ =(2-4)2+22a 2c -4=22 a 2c -4 =2a -22 ; ∴e 1+e 2=f (a)=22+2a -22 =2a 2a -42,-----------------------10分 由题设条件,lAB:y =-x +3, 代入椭圆方程并消去y ,得:3x 2-12x +18-a 2=0,由△=122-12(18-a 2)>0,得a 2>6,∴a >6,又e 2=2a -22,∴a ≠22,又由e 2>1,得22<a <2+22,∴f (a)的定义域为:a ∈(22,2+22).---------------------------14分。
2020年天津市和平区高考数学一模试卷(文科)
高考数学一模试卷(文科)一、选择题(本大题共8小题,共40.0分)1.设集合A={1,2,3,4},B={x∈N|-3≤x≤3},则A∩B=()A. {1,2,3,4}B. {-3,-2,-1,0,1,2,3,4}C. {1,2,3}D. {1,2}2.设变量x,y满足约束条件则z=2x+y的最大值为()A. 1B. 6C. 5D. 43.执行如图所示的程序框图,输出的S值为()A. 1B. -1C. 0D. -24.在△ABC中,若a2=b2+c2-bc,bc=4,则△ABC的面积为()A. B. 1 C. D. 25.不等式成立的充分不必要条件是()A. x>1B. x>-1C. x<-1或0<x<1D. x<0或x>16.已知log2a>log2b,则下列不等式一定成立的是()A. B. log2(a-b)>0C. 2a-b<1D.7.设双曲线mx2+ny2=1的一个焦点与抛物线的焦点相同,离心率为2,则抛物线的焦点到双曲线的一条渐近线的距离为()A. 2B.C.D.8.已知函数f(x)=|ln x|,若关于x的方程f(x)+m=g(x)恰有三个不相等的实数解,则m的取值范围是()A. [0,ln2]B. (-2-ln2,0)C. (-2-ln2,0]D. [0,2+ln2)二、填空题(本大题共6小题,共30.0分)9.已知a∈R,且复数是纯虚数,则a=______.10.直线l:x+y+m=0与圆C:x2+y2-4x+2y+1=0相交于A、B两点,若△ABC为等腰直角三角形,则m=______.11.已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为______cm3.12.已知函数f(x)=x3+ax2+bx+c,若f(1)=0,f'(1)=0,但x=1不是函数的极值点,则abc的值为______.13.如图,在直角梯形ABCD中,,AB=AD=2.若M、N分别是边AD、BC上的动点,满足,,其中λ∈(0,1),若,则λ的值为______.14.已知正数x,y满足x2+2xy-3=0,则2x+y的最小值是______.三、解答题(本大题共6小题,共80.0分)15.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求的值.16.为预防H1N1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:已知在全体样本中随机抽取个,抽到组疫苗有效的概率是.(Ⅰ)求x的值;(Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?(Ⅲ)已知y≥465,z≥30,求不能通过测试的概率.17.如图,在四棱柱ABCD-A1B1C1D1中,BB1⊥底面ABCD,AD∥BC,∠BAD=90°,AC⊥BD.(Ⅰ)求证:B1C∥平面ADD1A1;(Ⅱ)求证:AC⊥B1D;(Ⅲ)若AD=2AA1,判断直线B1D与平面ACD1是否垂直?并说明理由.18.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.19.已知椭圆(a>b>0)经过点,左、右焦点分别F1、F2,椭圆的四个顶点围成的菱形面积为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设Q是椭圆C上不在x轴上的一个动点,O为坐标原点,过点F2作OQ的平行线交椭圆于M、N两个不同的点,求的值.20.已知函数f(x)=x lnx.(Ⅰ)求函数f(x)的极值点;(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)答案和解析1.【答案】C【解析】【分析】可解出集合B,然后进行交集的运算即可.考查描述法、列举法的定义,以及交集的运算.【解答】解:B={0,1,2,3};∴A∩B={1,2,3}.故选:C.2.【答案】C【解析】解:不等式组表示的平面区域如图所示,设z=2x+y,∵直线z=2x+y过可行域内A(2,1)的时候z最大,最大值为5,故选:C.先根据约束条件画出可行域,利用几何意义求最值,只需求出直线z=2x+y过点A时,z最大值即可.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.3.【答案】B【解析】解:第一次,i=1,i>5不成立,S=1-=,i=2,第二次,i=2,i>5不成立,S=1-=1-2=-1,i=3,第三次,i=3,i>5不成立,S=1-(-1)=2,i=4,第四次,i=4,i>5不成立,S=1-=,i=5,第五次,i=5,i>5不成立,S=1-=1-2=-1,i=6,第六次,i=6,i>5成立,重新终止,输出S=-1,故选:B.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,结合条件进行模拟运算是解决本题的关键.4.【答案】C【解析】【分析】此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键,属于基础题.利用余弦定理表示出cos A,将已知等式变形后代入求出cos A的值,确定出A的度数,再由bc的值,利用三角形面积公式求出三角形ABC面积即可.【解答】解:∵△ABC中,a2=b2+c2-bc,即b2+c2-a2=bc,∴cos A==,∴A=60°,∵bc=4,∴S△ABC=bc sin A=,故选:C.5.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键,属于基础题.求出不等式的等价条件,结合充分条件和必要条件的定义转化为对应集合关系进行求解即可.【解答】解:由得,即x(x-1)>0,解得x<0或x>1,则不等式成立的充分不必要条件应该是{x|x<0或x>1}的真子集,即x>1满足条件.故选A.6.【答案】D【解析】解:∵log2a>log2b,∴a>b>0,所以0<,2a-b>20=1,故A、C不正确;当a-b>1时,log2(a-b)>0,当0<a-b≤1时,log2(a-b)≤0,故B不正确;∵,∴选项D正确;故选:D.由题意可得a>b>0,依次比较即可.本题考查函数的单调性,函数值的比较,属于中档题.7.【答案】B【解析】解:∵抛物线x2=8y的焦点为(0,2)∴mx2+ny2=1的一个焦点为(0,2)∴焦点在y轴上∴a2=,b2=-,c=2根据双曲线三个参数的关系得到4=a2+b2=-又离心率为2即=4解得n=1,m=-∴此双曲线的方程为.b=,渐近线方程:x+=0抛物线的焦点到双曲线的一条渐近线的距离:=.故选:B.利用抛物线的方程先求出抛物线的焦点即双曲线的焦点,利用双曲线的方程与系数的关系求出a2,b2,利用双曲线的三个系数的关系列出m,n的一个关系,再利用双曲线的离心率的公式列出关于m,n的另一个等式,解方程组求出m,n的值,求出双曲线的渐近线方程,然后求解焦点到渐近线的距离.解决双曲线、椭圆的三参数有关的问题,有定注意三参数的关系:c2=a2+b2而椭圆中三参数的关系为a2=c2+b2.8.【答案】C【解析】解:设h(x)=f(x)+m,作出函数f(x)和g(x)的图象如图则h(x)是f(x)的图象沿着x=1上下平移得到,由图象知B点的纵坐标为h(1)=f(1)+m=ln1+m=m,A点的纵坐标为g(2)=-2,当x=2时,h(2)=ln2+m,g(1)=0,要使方程f(x)+m=g(x)恰有三个不相等的实数解,则等价为h(x)与g(x)的图象有三个不同的交点,则满足,即得,即-2-ln2<m≤0,即实数m的取值范围是(-2-ln2,0],故选:C.设h(x)=f(x)+m,则h(x)是f(x)的图象沿着x=1上下平移得到,作出函数h(x)与g(x)的图象,利用图象关系确定两个函数满足的条件进行求解即可.本题主要考查分段函数的应用,利用函数图象平移关系以及数形结合是解决本题的关键.综合性较强,有一定的难度.9.【答案】-2【解析】解:∵=是纯虚数,∴,即a=-2.故答案为:-2.利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.【答案】1或-3【解析】【分析】本题考查直线与圆的位置关系,点到直线的距离的应用,是基础题.确定圆心坐标与半径,利用△ABC为等腰直角三角形,可得=2×,即可求出m.【解答】解:圆C:x2+y2-4x+2y+1=0即,圆心坐标为:(2,-1),半径为2,因为△ABC为等腰直角三角形,所以=2×,所以m=1或-3.故答案为:1或-3.11.【答案】【解析】【分析】本题考查空间几何体的三视图求解几何体的体积,考查转化思想以及计算能力,是基础题.画出几何体的直观图,利用三视图的数据求解几何体的体积即可.【解答】解:几何体的直观图是一个棱柱挖去一个圆锥的几何体,如图,几何体的体积为:=36-.故答案为:36-.12.【答案】9【解析】解:∵f′(x)=3x2+2ax+b,∴f′(1)=3+2a+b=0①,又f(1)=1+a+b+c=0②,由x=1不是f(x)的极值点,得f′(x)=0有一个根,∴△=4a2-12b=0③,由①②③解得:a=-3,b=3,c=-1,∴abc=9,故答案为:9.先求出函数的导数,再由题意得方程组,解出即可.本题考查了函数的单调性,导数的应用,求参数的取值,是一道基础题.13.【答案】【解析】解:由图可知:=+=+(1-λ),==,又,所以[+(1-λ)]•()=-2,所以2+λ(1-λ)=-2,又=2,=||2=3,可得:3λ2-5λ+2=0, 又0<λ<1,所以,故答案为:.由平面向量的线性运算得:=+=+(1-λ),==,由平面向量数量积的性质及其运算得:[+(1-λ)]•()=-2,所以2+λ(1-λ)=-2,又=2,=||2=3,可得:3λ2-5λ+2=0,又0<λ<1,所以,得解.本题考查了平面向量的线性运算、平面向量数量积的性质及其运算及向量投影的定义,属中档题. 14.【答案】3【解析】【分析】本题考查基本不等式的应用,属于基础题.用x 表示y ,得到2x +y 关于x 的函数,利用基本不等式得出最小值. 【答案】解:∵x 2+2xy -3=0,∴y =,∴2x +y =2x +==≥2=3.当且仅当即x =1时取等号.故答案为:3.15.【答案】(Ⅰ) 解:由A =2B ,知sin A =sin2B =2sin B cosB ,…………(1分)由正、余弦定理得.………………(3分)因为b =3,c =1,所以a 2=12,则.………………(5分)(Ⅱ) 解:由余弦定理得.……(6分) 由于0<A <π,所以………(8分)故…………(11分)………(13分)【解析】(Ⅰ)利用正弦定理和余弦定理建立方程关系进行求解空间(Ⅱ)利用两角和差的余弦公式进行求解本题主要考查解三角形的应用,利用正弦定理余弦定理以及两角和差的余弦公式是解决本题的关键.考查学生的计算能力.16.【答案】解:(I)∵在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.∴,∴x=660,(II)C组样本个数是y+z=2000-(673+77+660+90)=500用分层抽样方法在全体中抽取360个测试结果,应在C组抽取的个数为360×.(III)由题意知本题是一个等可能事件的概率,设测试不能通过事件为M,C组疫苗有效与无效的可能情况有(465,35)(466,34)(467,33)(468,32)(469,31)(470,30)共有6种结果,满足条件的事件是(465,35)(466,34)共有2个根据等可能事件的概率知P=.【解析】(I)根据在抽样过程中每个个体被抽到的概率相等,得到要求的数字与样本容量之间的比值等于0.33,做出结果.(II)做出每个个体被抽到的概率,利用这一组的总体个数,乘以每个个体被抽到的概率,得到要求的结果数.(III)本题是一个等可能事件的概率,C组疫苗有效与无效的可能情况有(465,35)(466,34)(467,33)(468,32)(469,31)(470,30)共有6种结果,满足条件的事件是(465,35)(466,34)共有2个,得到概率.本题考查分层抽样方法,考查在抽样过程中每个个体被抽到的概率相等,考查等可能事件的概率,本题是一个概率与统计的综合题目.17.【答案】(本题满分为14分)证明:(Ⅰ)∵AD∥BC,BC⊄平面ADD1A1,AD⊂平面ADD1A1,∴BC∥平面ADD1A1,…(2分)∵CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1,又∵BC∩CC1=C,∴平面BCC1B1∥平面ADD1A1,…(3分)又∵B1C⊂平面BCC1B1,∴B1C∥平面ADD1A1.…(4分)(Ⅱ)∵BB1⊥平面ABCD,AC⊂底面ABCD,∴BB1⊥AC,…(5分)又∵AC⊥BD,BB1∩BD=B,∴AC⊥平面BB1D,…(7分)又∵B1D⊂底面BB1D,∴AC⊥B1D;…(9分)(Ⅲ)结论:直线B1D与平面ACD1不垂直,…(10分)证明:假设B1D⊥平面ACD1,由AD1⊂平面ACD1,可得B1D⊥AD1,…(11分)由棱柱ABCD-A1B1C1D1中,BB1⊥底面ABCD,∠BAD=90°,可得:A1B1⊥AA1,A1B1⊥A1D1,又∵AA1∩A1D1=A1,∴A1B1⊥平面AA1D1D,∴A1B1⊥AD1,…(12分)又∵A1B1∩B1D=B1,∴AD1⊥平面A1B1D,∴AD1⊥A1D,…(13分)这与四边形AA1D1D为矩形,且AD=2AA1矛盾,故直线B1D与平面ACD1不垂直.…(14分)【解析】(Ⅰ)先证明BC∥平面ADD1A1,CC1∥平面ADD1A1,又BC∩CC1=C,即可证明平面BCC1B1∥平面ADD1A1,从而可证B1C∥平面ADD1A1.(Ⅱ)先证明BB1⊥AC,又AC⊥BD,BB1∩BD=B,即可证明AC⊥平面BB1D,从而可证AC⊥B1D;(Ⅲ)用反证法,假设B1D⊥平面ACD1,由AD1⊂平面ACD1,可得B1D⊥AD1,再证明A1B1⊥AD1,即可证明AD1⊥平面A1B1D,从而可得AD1⊥A1D,这与四边形AA1D1D为矩形,且AD=2AA1矛盾,故得证.本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了反证法的应用,考查了空间想象能力和推理论证能力,属于中档题.18.【答案】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n-S n-1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n-1=b n-1+b n,∴a n-a n-1=b n+1-b n-1.∵数列{b n}为等差数列,设公差为d,∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n-1)=3n+1.(Ⅱ)c n========6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①-②可得-T n=6[2•2+22+23+…+2n-(n+1)•2n+1]=12+6×-6(n+1)•2n+1=(-6n)•2n+1=-3n•2n+2,∴T n=3n•2n+2.【解析】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.(Ⅰ)求出数列{a n}的通项公式,再求数列{b n}的通项公式;(Ⅱ)求出数列{c n}的通项,利用错位相减法求数列{c n}的前n项和T n.19.【答案】(本题14分)(Ⅰ)解:由题知……………………………(2 分)解得……………………………(3 分)则椭圆C的标准方程为.……………………………(4 分)(Ⅱ)解:由(Ⅰ)知,,…………………………(5 分)设直线OQ:x=my,则直线………………………(6 分)联立得,所以………………………(8 分)由得.………(9 分)设M(x1,y1),N(x2,y2),则.…(10 分)所以………(11 分)==.……………………(13 分)所以……………………(14分)【解析】(Ⅰ)由题知求出a,b即可得到椭圆方程.(Ⅱ)设直线OQ:x=my,则直线与椭圆联立,求出OQ,MN,然后求解比值即可.本题考查椭圆的简单性质椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.20.【答案】解:(Ⅰ)f'(x)=ln x+1,x>0,由f'(x)=0得,所以f(x)在区间上单调递减,在区间上单调递增.所以是函数f(x)的极小值点,极大值点不存在.(Ⅱ)设切点坐标为(x0,y0),则y0=x0ln x0,切线的斜率为ln x0+1,所以,解得x0=1,y0=0,所以直线l的方程为x-y-1=0.(Ⅲ)g(x)=x lnx-a(x-1),则g'(x)=ln x+1-a,解g'(x)=0,得x=e a-1,所以在区间(0,e a-1)上,g(x)为递减函数,在区间(e a-1,+∞)上,g(x)为递增函数.当e a-1≤1,即a≤1时,在区间[1,e]上,g(x)为递增函数,所以g(x)最小值为g(1)=0.当1<e a-1<e,即1<a<2时,g(x)的最小值为g(e a-1)=a-e a-1.当e a-1≥e,即a≥2时,在区间[1,e]上,g(x)为递减函数,所以g(x)最小值为g(e)=a+e-ae.综上,当a≤1时,g(x)最小值为0;当1<a<2时,g(x)的最小值a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.【解析】本题考查了导数的应用:利用导数判断函数的单调性及求单调区间;函数在区间上的最值的求解,其一般步骤是:先求极值,比较函数在区间内所有极值与端点函数.若函数在区间上有唯一的极大(小)值,则该极值就是相应的最大(小)值.(I)先对函数求导,研究函数的单调区间,根据F′(x)>0求得的区间是单调增区间,F′(x)<0求得的区间是单调减区间,求出极值.(II)求出曲线方程的导函数,利用导函数中即可求出切线方程的斜率,根据求出的斜率和已知点的坐标写出切线方程即可;(III)求导:g'(x)=ln x+1-a解g'(x)=0,得x=e a-1,得出在区间(0,e a-1)上,g(x)为递减函数,在区间(e a-1,+∞)上,g(x)为递增函数,下面对a进行讨论:当e a-1≤1,当1<e a-1<e,当e a-1≥e,从而得出g(x)的最小值.。
2020届天津市部分区高考一模数学试题及答案
绝密★启用前2020届天津市部分区高考一模数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知a ,b R ∈,若2b ia i i+-=(i 是虚数单位),则复数a bi +是() A .12i - B .12i +C .2i -D .2i +答案:B根据复数的除法,先得到21a i bi -=-+,根据复数相等,求出参数,即可得出结果. 解:因为()()()21b i i b i a i bi i i i +-+-===-+-, 所以12a b =⎧⎨=⎩,因此12a bi i +=+.故选:B. 点评:本题主要考查复数的除法,以及由复数相等求参数的问题,属于基础题型. 2.设R θ∈,则22ππθ-<是“sin 0θ>”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分又不必要条件 答案:A根据充分条件与必要条件的概念,以及正弦函数的性质,即可得出结果. 解: 若22ππθ-<,则222πππθ-<-<,即0θπ<<,所以sin 0θ>;若sin 0θ>,则22,k k k Z πθππ<<+∈,不能推出“22ππθ-<”.所以22ππθ-<是“sin 0θ>”的充分不必要条件.故选:A.点评:本题主要考查判断命题的充分不必要条件,涉及正弦函数的性质,属于基础题型. 3.已知函数()2ln f x x x ax =+-.若曲线()y f x =在点()()1,1f 处的切线与直线2y x =平行,则实数a =()A .72B .2C .32D .1答案:D先对函数求导,求得()13f a '=-;再由题意,得到32a -=,求解,即可得出结果. 解:因为()2ln f x x x ax =+-,所以()12f x x a x'=+-,则()13f a '=-; 又曲线()y f x =在点()()1,1f 处的切线与直线2y x =平行, 所以32a -=,解得:1a =. 故选:D. 点评:本题主要考查已知曲线在某点处的切线斜率求参数的问题,属于基础题型.4.在ABC 中,90B ∠=︒,3AB =,4BC =,以边BC 所在的直线为轴,将ABC 旋转一周,所成的曲面围成的几何体的体积为() A .36π B .12π C .36 D .12答案:B根据旋转体的概念,结合题意得到该几何体是圆锥,根据体积计算公式,即可得出结果. 解:因为在ABC 中,90B ∠=︒,所以BC AB ⊥,若以边BC 所在的直线为轴,将ABC 旋转一周,所得的几何体是以BC 为高,以AB 为底面圆半径的圆锥,因为3AB =,4BC =, 因此,其体积为:()21123V AB BC ππ=⨯⨯⨯=.故选:B. 点评:本题主要考查求圆锥的体积,熟记圆锥的体积公式即可,属于基础题型.5.为普及环保知识,增强环保意识,某中学随机抽取部分学生参加环保知识测试,这些学生的成绩(分)的频率分布直方图如图所示,数据(分数)的分组依次为[)20,40,[)40,60,[)60,80,[]80,100.若分数在区间[)20,40的频数为5,则大于等于60分的人数为()A .15B .20C .35D .45答案:C根据分数在区间[)20,40的频数,求出样本容量,再根据大于等于60分频率,即可得出对应的人数. 解:因为分数在区间[)20,40的频数为5,由频率分布直方图可知,区间[)20,40对应的频率为1(0.010.020.015)200.1-++⨯=, 因此样本容量为5500.1=, 所以,大于等于60分的人数为()500.020.0152035⨯+⨯=. 故选:C. 点评:本题主要考查频率分布直方图的简单应用,属于基础题型.6.已知函数()25x f x x =+.若131log 2a f ⎛⎫= ⎪⎝⎭,(3log 5b f =,()0.26c f =.则a ,b ,c 的大小关系为() A .a b c >> B .a c b >> C .c a b >> D .c b a >>答案:D先根据对数函数与指数函数的性质,得到13310log log 512<<<,0.261>,再根据函数单调性,即可判断出结果. 解:因为113333310log 1log log log 5lo 2g 312=<=<<=,0.261>,函数2x y =与5y x =都是增函数,所以()25xf x x =+也是增函数,因此(()0.21331log log 62f f f ⎛⎫< ⎪<⎝⎭, 即c b a >>. 故选:D. 点评:本题主要考查由函数单调性比较大小,熟记指数函数与对数函数的性质即可,属于常考题型.7.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,其图象关于直线6x π=对称.给出下面四个结论:①将()f x 的图象向右平移6π个单位长度后得到函数图象关于原点对称;②点5,012π⎛⎫⎪⎝⎭为()f x 图象的一个对称中心;③142f π⎛⎫= ⎪⎝⎭;④()f x 在区间06,π⎡⎤⎢⎥⎣⎦上单调递增.其中正确的结论为()A .①②B .②③C .②④D .①④答案:C先由函数周期性与对称轴,求出函数解析式为()sin 26f x x π⎛⎫+⎝=⎪⎭,根据三角函数的平移原则,正弦函数的对称性与单调性,逐项判断,即可得出结果. 解:因为函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,其图象关于直线6x π=对称,所以2,62k k Z ππωππωϕπ⎧=⎪⎪⎨⎪+=+∈⎪⎩,解得2,6k k Z ωπϕπ=⎧⎪⎨=+∈⎪⎩, 因为2πϕ<,所以6π=ϕ,因此()sin 26f x x π⎛⎫+ ⎝=⎪⎭;①将()sin 26f x x π⎛⎫+⎝=⎪⎭的图象向右平移6π个单位长度后函数解析式为()sin 26f x x π⎛⎫=- ⎪⎝⎭,由2,6x k k π-=π∈Z 得,122k x k Z ππ=+∈,所以其对称中心为:,0,122k k Z ππ⎛⎫+∈ ⎪⎝⎭,故①错; ②由2,6x k k Z ππ+=∈,解得,122k x k Z ππ=-+∈,即函数()f x 的对称中心为,0,122k k Z ππ⎛⎫-+∈ ⎪⎝⎭;令512212k πππ-+=,则1k =,故②正确;③sin cos 26624f ππππ⎛⎫+== ⎪⎝⎫⎭⎭⎛=⎪⎝,故③错; ④由222,262k x k k Z πππππ-+≤+≤+∈得2,36k x k k Z ππππ-+≤≤+∈, 即函数()f x 的增区间为2,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,因此()f x 在区间06,π⎡⎤⎢⎥⎣⎦上单调递增.即④正确. 故选:C. 点评:本题主要考查三角函数的性质,熟记正弦函数的对称性,单调性,周期性等即可,属于常考题型.8.设双曲线()222210x y a b a b-=>>的两条渐近线与圆2210x y +=相交于A ,B ,C ,D四点,若四边形ABCD 的面积为12,则双曲线的离心率是() A.3BC或3D.答案:A先由题意,得到四边形ABCD 为矩形,设点00(,)A x y 位于第一象限,得到004ABCD S x y =矩形;根据双曲线的渐近线方程与圆的方程联立,求出22010e x =,再由四边形面积,得到20x =,进而可求出离心率.解:根据双曲线与圆的对称性可得,四边形ABCD 为矩形;不放设点00(,)A x y 位于第一象限,则0000224ABCD S x y x y =⨯=矩形;因为双曲线()222210x y a b a b-=>>的渐近线方程为:b y x a =±,由00220010b y x a x y ⎧=⎪⎨⎪+=⎩得2220010b x x a ⎛⎫+= ⎪⎝⎭,即2220210a b x a +=,所以2222010c e a x ==, 又20004412ABCD b S x y x a===矩形,所以203a x b===因此22010e x ==整理得:4291001000e e -+=,解得:2109e =或210e =,所以e =或e = 又0a b >>,所以双曲线的离心率e ===因此3e =. 故选:A. 点评:本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型. 9.在等腰梯形ABCD 中,//AB CD ,60BAD ∠=︒,8AB =,4CD =.若M 为线段BC 的中点,E 为线段CD 上一点,且27AM AE ⋅=,则DM DE ⋅=() A .15 B .10 C .203D .5答案:D过点D 作DF AB ⊥于点F ,根据平面向量的基本定理,根据题意,得到3142AM AB AD =+,设DE tDC =,得到2t AE A AB D =+,再由27AM AE ⋅=,求出14t =;再由向量数量积运算,即可求出结果. 解:过点D 作DF AB ⊥于点F ,因为四边形ABCD 为等腰梯形,且8AB =,4CD =,所以2AF =, 又60BAD ∠=︒,所以4cos60AFAD ==︒;因为M 为线段BC 的中点, 所以()()111131222242AM AB AC AB AD DC AB AD AB AB AD ⎛⎫=+=++=++=+ ⎪⎝⎭, 又E 为线段CD 上一点,所以存在t R ∈,使得DE tDC =, 则2tAE AD AD DE AB =+=+, 由27AM AE ⋅=得3127422t AB AD A B D A ⎛⎫⎛⎫+⋅+= ⎪ ⎪⎝⎭⎝⎭,即22331274824tAB AD t AB AD AD AB ⋅+++⋅=, 即33184cos60641648cos60274824tt ⨯⨯⨯︒+⨯+⨯+⨯⨯⨯︒=, 解得:14t =; 所以()13118428DM DE AM AD AB A A A D AB B D ⎛⎫⋅=-⋅=+-⋅ ⎪⎝⎭ 231131311cos 606484615428321632162AB AD A AB AB AB D ⎛⎫=-⋅=-︒=⨯-⨯⨯⨯=-= ⎪⎝⎭故选:D.点评:本题主要考查由向量数量积求参数,以及求平面向量的数量积,熟记向量数量积运算法则,以及平面向量基本定理即可,属于常考题型. 二、填空题10.已知集合{}2,2mA =,{}(),,B m n m n R =∈,且14AB ⎧⎫=⎨⎬⎩⎭,则A B =________.答案:12,,24⎧⎫-⎨⎬⎩⎭根据交集的结果,先求出2m =-,从而得到14n =,再求并集,即可得出结果.解: 因为{}2,2mA =,{}(),,B m n m n R =∈,14AB ⎧⎫=⎨⎬⎩⎭,所以124m=,解得2m =-;因此14n =. 所以12,,24AB ⎧⎫=-⎨⎬⎩⎭.故答案为:12,,24⎧⎫-⎨⎬⎩⎭. 点评:本题主要考查由集合的交集求参数,以及集合的并集运算,属于基础题型.11.在522x⎫⎪⎭-的展开式中,5x 项的系数为________(用数字作答). 答案:80-根据二项展开式的通项公式,写出通项,即可根据题意求解. 解:因为522x⎫⎪⎭-的展开式的通项为()()5521555222r r rr rrrT C C xx -+-==--,令5552r -=,则3r =, 所以5x 项的系数为()335280C -=-.故答案为:80-. 点评:本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.12.设0a >,0b >,若a 与2b 的等差中项是2,则22log 2log a b +的最大值是________. 答案:2根据题意,先得到24b a +=,再由对数运算,以及基本不等式,即可求出结果. 解:因为a 与2b 的等差中项是2, 所以24b a +=,又0a >,0b >,则()2222222log 2log log log 22a b a b ab ⎛⎫++== ⎪⎝⎭≤,当且仅当2a b =,即2,a b ==.故答案为:2. 点评:本题主要考查由基本不等式求最值问题,涉及等差数列,以及对数运算,属于常考题型. 13.已知圆()()22:1116C x y ++-=,过点()2,3P -的直线l 与C 相交于A ,B 两点,且AB =l 的方程为________. 答案:280x y -+=根据几何法求弦长的公式,先求出圆心到直线l 的距离,根据点到直线距离公式,列出等式,即可求出直线斜率,进而可求出结果. 解:由题意,圆()()22:1116C x y ++-=的圆心为()1,1-,半径为4r =, 又由题意可知,AB 为弦长,所以圆心到直线l的距离为:d ===设直线l 的方程为:3(2)y k x -=+,即230kx y k -++=,所以d ==d ==24410k k -+=,解得:12k =. 故直线l 的方程为280x y -+=. 故答案为:280x y -+=. 点评:本题主要考查由弦长求直线方程,熟记直线与圆位置关系,以及弦长的求法即可,属于常考题型.14.天津市某学校组织教师进行“学习强国”知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为34,12,p .若教师甲恰好答对3个问题的概率是14,则p =________;在前述条件下,设随机变量X 表示教师甲答对题目的个数,则X 的数学期望为________. 答案:23;2312. 先根据独立事件的概率计算公式,由题意,求出23p =;结合题意确定X 可能取的值分别为0,1,2,3,求出对应的概率,即可计算期望. 解:因为教师甲恰好答对3个问题的概率是14,所以311424p ⨯⨯=,解得:23p =; 由题意,随机变量X 的可能取值分别为:0,1,2,3;所以3121(0)11142324P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 31231231261(1)111111423423423244P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯==⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,31231231211(2)11142342342324P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,31261(3)423244P X ==⨯⨯==,因此,()1111123012324424412E X =⨯+⨯+⨯+⨯=. 故答案为:23;2312. 点评:本题主要考查独立事件的概率,以及求离散型随机变量的期望,属于常考题型.15.已知函数()2,0x x x f x x ⎧-≤⎪=⎨>⎪⎩.若存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立,则实数a 的取值范围是________. 答案:(][),31,-∞--+∞分0x =,0x <,0x >三种情况,结合分离参数的方法,分别求出a 的范围,即可得出结果. 解:由题意,当0x =时,不等式()1f x ax ≤-可化为01≤-显然不成立; 当0x <时,不等式()1f x ax ≤-可化为21x x ax -+≤,所以11a x x≤+-, 又当0x <时,11()2x x x x ⎡⎤⎛⎫+=--+-≤- ⎪⎢⎥⎝⎭⎣⎦,当且仅当1x x -=-,即1x =-时,等号成立;当0x >时,不等式()1f x ax ≤-可化为1ax ≤,即21111ax ⎫≥=+-≥-⎪⎭;因为存在x ∈R 使得关于x 的不等式()1f x ax ≤-成立, 所以,只需213a ≤--=-或1a ≥-. 故答案为:(][),31,-∞--+∞.点评:本题主要考查由不等式恒成立求参数的问题,注意利用参变分离把问题转化为函数的最值问题,后者可利用基本不等式求最值,也可以利用二次函数的性质求最值,本题属于常考题型. 三、解答题16.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sinsin 2A Ba c A +=,c =23a b =.(1)求角C 的大小; (2)求()sin C B -的值.答案:(1)3π;(2. (1)根据正弦定理,诱导公式,以及二倍角公式,得出1sin22C =,进而可求出结果; (2)由(1)的结果,根据余弦定理,求出2b =,3a =,再求出cos B ,sin B ,即可根据两角差的正弦公式求出结果. 解:(1)因为sinsin 2A Ba c A +=,,,A B C 分别为三角形内角, 由正弦定理可得:sin sin sin sin 2CA C A π-=,因为()0,A π∈,故sin 0A ≠, 所以cossin 2sin cos 222C C C C ==, 又0,22C π⎛⎫∈ ⎪⎝⎭,因此2sin 12C =,所以1sin 22C =,因此26C π=即3C π=; (2)由(1)得1cos 2C =,因为7c =,23a b =, 由余弦定理可得:22222229713714cos 231232b b a bc C ab b b +-+-===-=,解得:2b =;所以3a =,因此2222cos 72767a c b B ac +-===,所以221sin 1cos B B =-=,故()3212121sin sin cos cos sin 7272714C B C B C B -=-=⨯-⨯=. 点评:本题主要考查正弦定理与余弦定理解三角形,以及三角恒等变换求函数值的问题,属于常考题型.17.如图,在三棱柱111ABC A B C -中,四边形11ABB A ,11BB C C 均为正方形,且1111A B B C ⊥,M 为1CC 的中点,N 为1A B 的中点.(1)求证://MN 平面ABC ; (2)求二面角1B MN B --的正弦值;(3)设P 是棱11B C 上一点,若直线PM 与平面1MNB 所成角的正弦值为215,求111B P B C 的值答案:(1)证明过程见详解;(2)45;(3)13.(1)先取1AA 中点为O ,连接ON ,OM ,根据面面平行的判定定理,得到平面//MON 平面ABC ,进而可得//MN 平面ABC ;(2)先由题意,得到11B C ,1B B ,11B A 两两垂直,以1B 为坐标原点,分别以1B B ,11B C ,11B A 为x 轴,y 轴,z 轴建立空间直角坐标系,设11ABB A 边长为2,分别求出平面BMN和平面1B MN 的一个法向量,根据向量夹角公式,求解,即可得出结果;(3)先设[]1110,1B Pt B C =∈,得到()1,22,0PM t =-,根据空间向量的夹角公式,列出等式求解,即可得出结果. 解:(1)取1AA 中点为O ,连接ON ,OM , 因为M 为1CC 的中点,N 为1A B 的中点, 所以//ON AB ,//OM AC , 又AB平面ABC ,AC ⊂平面ABC ,AC AB A ⋂=,所以平面//MON 平面ABC , 又MN ⊂平面MON , 所以//MN 平面ABC ;(2)因为四边形11ABB A ,11BB C C 均为正方形,所以11B C ,1B B ,11B A 两两垂直, 以1B 为坐标原点,分别以1B B ,11B C ,11B A 为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设11ABB A 边长为2,则1(0,0,0)B ,(2,0,0)B ,1(0,2,0)C ,(2,2,0)C ,1(0,0,2)A ,所以(1,0,1)N ,(1,2,0)M ,因此1(1,2,0)B M =,(0,2,1)MN =-,(1,2,0)BM -=, 设平面BMN 的一个法向量为(),,m x y z =,则m BM m MN ⎧⊥⎨⊥⎩,所以2020m BM x y m MN y z ⎧⋅=-+=⎨⋅=-+=⎩,令1y =,则22x z =⎧⎨=⎩,因此()2,1,2m =;设平面1B MN 的一个法向量为()111,,n x y z =,则1m B M m MN ⎧⊥⎨⊥⎩,所以12020m B M x y m MN y z ⎧⋅=+=⎨⋅=-+=⎩,令1y =,则22x z =-⎧⎨=⎩,因此()2,1,2n =-,设二面角1B MN B --的大小为θ, 则1cos cos ,94m nm n m nθ⋅=<>===+, 所以sin θ==; (3)因为P 是棱11B C 上一点,设[]1110,1B Pt B C =∈,则(0,2,0)P t , 所以()1,22,0PM t =-,由(2)知,平面1MNB 的一个法向量为()2,1,2n =-, 又直线PM 与平面1MNB所成角的正弦值为215,记直线PM 与平面1MNB 所成角为α 则有2sin cos ,151PM n PM n PM nα⋅=<>====, 整理得221850t t +-=,解得13t =或57t =-(舍)所以11113B P t BC ==.点评:本题主要考查证明线面平行,求二面角,已知线面角求其它量的问题,熟记面面平行的判定定理与性质,以及二面角,线面角的向量求法即可,属于常考题型.18.已知抛物线2:42C y x =的焦点为椭圆()2222:10x y E a b a b+=>>的右焦点,C的准线与E 交于P ,Q 两点,且2PQ =. (1)求E 的方程;(2)过E 的左顶点A 作直线l 交E 于另一点B ,且BO (O 为坐标原点)的延长线交E 于点M ,若直线AM 的斜率为1,求l 的方程.答案:(1)22142x y +=;(2)220x y ++=. (1)根据题意,先得到椭圆焦点坐标,再由2PQ =,得到222b a=,根据焦点坐标得到2222c a b =-=,两式联立,求出24a =,22b =,即可得出结果;(2)先由题意,设直线l 的方程为2x my =-,()00,B x y ,联立直线与椭圆方程,求出点B 坐标,根据对称性,得到M 的坐标,再由直线斜率公式,即可求出结果. 解:(1)因为抛物线2:2C y x =的焦点为)2,0,由题意,可得:椭圆()2222:10x y E a b a b+=>>的两焦点为())2,0,2,0-,又抛物线C 的准线与E 交于P ,Q 两点,且2PQ =,将x c =-代入椭圆方程得22221c y a b+=,所以2b y a =±,则222b a =,即2b a =①, 又2222c a b =-=②,根据①②解得:24a =,22b =,因此椭圆E 的方程为22142x y +=;(2)由(1)得22142x y +=的左顶点为()2,0A -,设直线l 的方程为2x my =-,()00,B x y ,由222142x my x y =-⎧⎪⎨+=⎪⎩得22(2)40m y my +-=,所以0242A m y y m +=+,因此0242m y m =+,所以20022422m x my m -=-=+,则222244,22m m B m m ⎛⎫- ⎪++⎝⎭,又因为BO (O 为坐标原点)的延长线交E 于点M ,则M 与B 关于原点对称,所以222244,22m m M m m ⎛⎫--- ⎪++⎝⎭,因为直线AM 的斜率为1,所以2224212422mm m m +=--++,解得:2m =-, 因此,直线l 的方程为:220x y ++=. 点评:本题主要考查求椭圆的方程,以及根据直线与椭圆位置关系求直线方程的问题,属于常考题型.19.设{}n a 是等比数列,{}n b 是等差数列.已知48a =,322a a =+,12b a =,265b b a +=.(1)求{}n a 和{}n b 的通项公式;(2)设21212,211,2m m n m a b n m c b n m--=-⎧=⎨+=⎩,其中*m N ∈,求数列{}n c 的前2n 项和.答案:(1)12n na ,2nb n =;(2)2122510222399n n n n +⎛⎫-⋅+++⎪⎝⎭. (1)先设{}n a 的公比为q ,{}n b 的公差为d ,根据等差数列与等比数列的基本量运算,以及题中条件,求出q 和d ,即可得出通项公式;(2)分别求出奇数项与偶数项的和,再求和,即可得出结果. 解:(1)设{}n a 的公比为q ,{}n b 的公差为d , 由48a =,322a a =+得4422q a a q =+,即2882q q =+,解得:2q ,所以4131a a q==,因此12n n a ,又12b a =,265b b a +=,所以142612262b b b b d =⎧⎨+=+=⎩,解得122b d =⎧⎨=⎩, 因此2n b n =;(2)因为21212,211,2m m n m a b n m c b n m--=-⎧=⎨+=⎩,其中*m N ∈,当n 为偶数时,121n n c b n =+=+, 所以2242(341) (222)n n n c c n c n +++++==+;当n 为奇数时,2nn n n c a b n ==⋅,记352113521...123252...(21)2n n M c c c c n --=++++=⋅+⋅+⋅++-⋅①则357214123252...(21)2n M n +=⋅+⋅+⋅++-⋅②①-②得357212132222222 (22)(21)2n n M n -+-=+⋅+⋅+⋅++⋅--⋅()4224682212122122222...2(21)22(21)212n n n n n n -++-=+++++--⋅=+--⋅-()422212122121052(21)2221233n n n n n -++-⎛⎫=+--⋅=-+-⋅ ⎪-⎝⎭,所以2110252939n n M +⎛⎫=+-⋅ ⎪⎝⎭, 因此数列{}n c 的前2n 项和为2122510222399n n n n +⎛⎫-⋅+++ ⎪⎝⎭.点评:本题主要考查等差数列与等比数列基本量的运算,以及数列的求和,熟记等差与等比数列的通项公式,以及求和的方法即可,属于常考题型.20.已知函数()()ln 1f x x m x m R =--∈在1x =处取得极值A ,函数()()1x g x f x e x -=+-,其中 2.71828e =…是自然对数的底数.(1)求m 的值,并判断A 是()f x 的最大值还是最小值; (2)求()g x 的单调区间;(3)证明:对于任意正整数n ,不等式2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭成立. 答案:(1)1m =;A 是最小值;(2)单调递减区间是()0,1,单调递增区间是()1,+∞;(3)证明过程见详解.(1)先对函数求导,根据题意,得到()10f '=,求出1m =,研究函数单调性,即可判断出结果; (2)对函数()1ln 1x g x ex -=--求导,得到()11x xe g x x--'=,令1()1x h x xe -=-,对其求导,研究其单调性,即可判断函数()1ln 1x g x ex -=--的单调性;(3)先由(1)得1x >时,ln 1x x <-恒成立,令112nx =+,则11ln 122n n ⎛⎫+< ⎪⎝⎭,进而求和,即可得出结果. 解:(1)因为()ln 1f x x m x =--,0x >,所以()1m f x x'=-, 又()ln 1f x x m x =--在1x =处取得极值A , 则()110f m '=-=,即1m =;所以()111x f x x x-'=-=,由()10x f x x -'=>得1x >;由()10x f x x-'=<得01x <<, 所以函数()ln 1f x x x =--在()0,1上单调递减,在()1,+∞上单调递增, 因此()ln 1f x x x =--在1x =处取得最小值,即A 是最小值; (2)由(1)得()11ln 1ln 1x x g x x x e x e x --=--+-=--,所以()1111x x xe g x e x x---'=-=, 令1()1x h x xe-=-,则111()(1)x x x h x e xe x e ---'=+=+,因为0x >,所以1()(1)0x h x x e -'=+>恒成立,因此1()1x h x xe-=-在()0,∞+上单调递增;又(1)0h =,所以,当(0,1)x ∈时,()0h x <,即()0g x '<; 当()1,x ∈+∞时,()0h x >,即()0g x '>;所以函数()g x 的单调递减区间是()0,1,单调递增区间是()1,+∞; (3)由(1)知,()ln 1(1)0f x x x f =--≥=, 所以ln 1x x ≤-,当1x >时,ln 1x x <-恒成立;令112n x =+,则11ln 122n n ⎛⎫+< ⎪⎝⎭, 因此231111ln 1ln 1ln 1...ln 12222n ⎛⎫⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭231111111122 (1112222212)n n n ⎛⎫- ⎪⎝⎭<++++==-<-, 即2111ln 1111ln 222n e ⎡⎤⎛⎫⎛⎫⎛⎫+++<= ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 因此2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 点评:本题主要考查根据函数极值点求参数,考查求函数单调性,以及导数的方法证明不等式,属于常考题型.。
2020年天津市和平区高考数学一模试卷(含答案解析)
2020年天津市和平区高考数学一模试卷一、选择题(本大题共9小题,共45.0分)1.设全集,,0,,则A. B. 1, C. D. 1,2.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知表示不超过实数x的最大整数,为取整函数,是函数的零点,则A. 4B. 5C. 2D. 34.已知双曲线的两条渐近线与抛物线:的准线分别交于A,B两点.若双曲线C的离心率为2,的面积为,O为坐标原点,则抛物线的焦点坐标为A. B. C. D.5.某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,,从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上含90分的人数为,则的数学期望为A. B. C. D.6.已知函数,给出下列四个结论,其中正确的结论是A. 函数的最小正周期是B. 函数在区间上是减函数C. 函数的图象关于对称D. 函数的图象可由函数的图象向左平移个单位得到7.函数是定义在R上的奇函数,对任意两个正数,都有,记,则a,b,c之间的大小关系为A. B. C. D.8.国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为A. 378B. 306C. 268D. 1989.已知圆O的半径为2,P,Q是圆O上任意两点,且,AB是圆O的一条直径,若点C满足,则的最小值为A. B. C. D.二、填空题(本大题共6小题,共30.0分)10.已知a为实数,i为虚数单位,若复数为纯虚数,则______.11.若的展开式中的系数为,则实数______.12.已知一个体积为8的正方体内接于半球体,即正方体的上底面的四个顶点在球面上,下底面的四个顶点在半球体的底面圆内.则该半球体的体积为______.13.函数的图象在处的切线被圆C:截得弦长为2,则实数a的值为______.14.若,,且,则此时______,的最小值为______.15.已知函数,则______;若方程在区间有三个不等实根,则实数的取值范围为______.三、解答题(本大题共5小题,共75.0分)16.在中,内角A、B、C的对边分别为a,b,c,.Ⅰ求角C的大小;Ⅱ若,求:边长c;的值.17.如图所示,平面平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,,,,.Ⅰ求证:平面CDE;Ⅱ求平面ADE与平面BCEF所成锐二面角的大小;Ⅲ求直线EF与平面ADE所成角的余弦值.18.已知椭圆C:的离心率,左、右焦点分别是、,以原点O为圆心,椭圆C的短半轴为半径的圆与直线l:相切.求椭圆C的标准方程;设P为椭圆C上不在x轴上的一个动点,过点作OP的平行线交椭圆与M、N两个不同的点,记,,令,求S的最大值.19.数列是等比数列,公比大于0,前n项和,是等差数列,已知,,,.Ⅰ求数列,的通项公式,;Ⅱ设的前n项和为:求;若,记,求的取值范围.20.已知函数,a,,且若函数在处取得极值,试求函数的解析式及单调区间;设,为的导函数,若存在,使成立,求的取值范围.-------- 答案与解析 --------1.答案:B解析:解:0,1,,,0,,,1,.故选:B.可以求出集合I,然后进行补集、并集的运算即可.本题考查了描述法、列举法的定义,补集和并集的运算,考查了计算能力,属于基础题.2.答案:C解析:解:“”,即,“”是“”的充要条件.故选:C.,化简即可判断出结论.本题考查了三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.答案:C解析:解:函数是在时,函数是连续的增函数,,,函数的零点所在的区间为,.故选:C.由函数的解析式可得,,再根据函数的零点的判定定理求得函数的零点所在的区间.即可求得则本题主要考查函数的零点的判定定理的应用,属于基础题.4.答案:B解析:解:双曲线的两条渐近线方程是,又抛物线的准线方程是,故A,B两点的纵坐标分别是,又由双曲线的离心率为2,所以,即,则,A,B两点的纵坐标分别是,又的面积为,可得,得,抛物线的焦点坐标为,故选:B.求出双曲线的渐近线方程与抛物线的准线方程,进而求出A,B两点的坐标,再由双曲线的离心率为2,的面积为,列出方程,由此方程求出p的值,可得所求焦点坐标.本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A,B两点的坐标,考查离心率公式和三角形的面积公式,有一定的运算量,属于中档题.5.答案:B解析:解:由题意得:,解得,由题意得内的人数为人,内的人数为人,从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上含90分的人数为,则的可能取值为0,1,2,,,,则的数学期望.故选:B.由频率分布直方图求出,内的人数为9人,内的人数为3人,从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上含90分的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的数学期望.本题考查离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、排列组、古典概型等基础知识,考查运算求解能力,是中档题.6.答案:B解析:解:函数,函数的周期为:,所以A不正确;,解得:,所以函数在区间上是减函数,所以B正确.时,可得:,所以C不正确;由函数的图象向左平移个单位得到函数,所以D不正确;故选:B.利用二倍角公式以及两角和与差的三角函数化简函数的解析式,然后求解函数的周期,单调减区间,对称轴以及函数图象的变换,判断选项的正误即可.本题考查两角和与差的三角函数,函数的图象的对称性,单调性,三角函数的特征的变换,是基本知识的考查.7.答案:A解析:解:构造函数,则函数单调递减,,,,故选:A.构造函数,则函数单调递减,比较变量的大小,即可得出结论.本题考查函数的单调性,考查构造方法的运用,正确构造函数是关键.8.答案:D解析:解:由题可知选出的3个媒体团的构成有如下两类:选出的3个媒体团中只有一个国内媒体团,有种不同的提问方式;选出的3个媒体团中有两个国内媒体团,有种不同的提问方式;综上,共有种不同的提问方式.故选:D.先对选出的3个媒体团的构成情况进行分类,再考虑提问顺序,借助于两大原理解决问题.本题主要考查排列、组合的综合应用,属于基础题.9.答案:C解析:【分析】运用向量的三角形法则和数量积的定义,化简要求的最小值问题就是求的最小值,由于点C满足,两边平方转化为二次函数的最值问题,即可得到所求最小值.本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.【解答】解:由题意可得,是圆O的任意一条直径,,,.要求的最小值问题就是求的最小值,由于点C满足,两边平方可得,当时,,取得最小值1,故的最小值为,故选C.10.答案:解析:解:复数为纯虚数,,,解得.又.则.故答案为:.复数为纯虚数,可得,,解得又利用复数模的运算性质即可得出.本题考查了复数的周期性、纯虚数的定义、复数模的运算性质,考查了推理能力与计算能力,属于基础题.11.答案:解析:解:的展开式的通项公式为,令,可得,故展开式中的系数为,则实数,故答案为:.先求出二项式展开式的通项公式,再令x的幂指数等于4,求得r的值,即可求得展开式中的系数,再根据的系数为,求出a的值.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.12.答案:解析:解:由正方体的体积为8,可知正方体的棱长为2,作其截面图如图,可得半球体的半径,则其体积故答案为:.由题意画出截面图,结合正方体的体积求出外接球的半径,再由球的体积公式求解.本题考查多面体外接球体积的求法,考查数形结合的解题思想方法,是中档题.13.答案:或2解析:解:由题意得,所以,.所以切线为:,即.圆C:的圆心为,半径,又因为弦长.所以圆心到直线的距离为.所以到切线的距离为:,解得或2.故答案为:或2.先利用导数表示出函数在处的切线方程,然后利用点到直线的距离公式列方程求出a的值.本题考查导数的几何意义和直线与圆的位置关系.涉及直线与圆相交的弦长问题,注意利用垂径定理列方程求解.属于中档题.14.答案:2解析:解:因为,所以,,且x,..故答案为:2,.先根据已知的等式,找到x,y之间的关系式,然后结合基本不等式的使用条件求出结论的最值.本题考查利用基本不等式求最值的问题,关键是适用条件要把握准,取等号的条件成立.属于中档题.15.答案:81解析:解:函数,;;;若,则,,.若,则,,.,,.设和,则方程在区间内有3个不等实根,、等价为函数和在区间内有3个不同的零点.作出函数和的图象,如图:当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点时,两个图象有4个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程在区间内有3个不等实根,则或.故实数的取值范围为:故答案为:81,根据分段函数的解析式得到;即可求出第一问;作出函数和的图象.利用两个图象的交点个数问题确定a的取值范围.本题主要考查方程根的个数的应用,将方程转化为函数,利用数形结合是解决此类问题的基本方法.注意第二问是问a的倒数的取值范围.16.答案:解:Ⅰ由已知及正弦定理得分,,,分分Ⅱ因为,,由余弦定理得,分由,分因为B为锐角,所以分,分分解析:利用正弦定理、和差公式化简即可得出.因为,,利用余弦定理即可得出.由,可得cos B再利用倍角公式、和差公式即可得出.本题考查了正弦定理、余弦定理、倍角公式、和差公式,考查了推理能力与计算能力,属于中档题.17.答案:Ⅰ证明:四边形BCEF为直角梯形,四边形ABCD为矩形,,,又平面平面BCEF,且平面平面,平面BCEF.以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:0,,0,,0,,0,,4,,2,,则,0,.,,为平面CDE的一个法向量.又平面CDE.平面CDE.Ⅱ设平面ADE的一个法向量为,则0,,4,,得1,平面BCEF,平面BCEF一个法向量为,设平面ADE与平面BCEF所成锐二面角的大小为,则因此,平面ADE与平面BCEF所成锐二面角的大小为.Ⅲ根据Ⅱ知平面ADE一个法向量为得1,,,设直线EF与平面ADE所成角为,则因此,直线EF与平面ADE所成角的余弦值为.解析:以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立空间直角坐标系.Ⅰ为平面CDE的一个法向量,证明平面CDE,只需证明;Ⅱ求出平面ADE的一个法向量、平面BCEF一个法向量,利用向量的夹角公式,即可求平面ADE 与平面BCEF所成锐二面角的余弦值;Ⅲ求出平面ADE一个法向量为1,,,利用向量的夹角公式,即可求直线EF与平面ADE所成角的余弦值.本题主要考查空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.18.答案:解:由题意可知:椭圆C:焦点在x轴上,以原点O为圆心,椭圆C的短半轴为半径的圆与直线l:相切,即,又椭圆的离心率,解得:,椭圆C的方程为:;由可知:椭圆的右焦点,设,,,丨丨丨丨,设直线MN:,,整理得:,,,,,由,,当且仅当时,即时,取等号,S的最大值.解析:椭圆C:焦点在x轴上,,又椭圆的离心率,解得:,即可求得椭圆C的方程为;由,,丨丨丨丨,设直线MN:,代入椭圆方程,由韦达定理及弦长公式可知:,由基本不等式的性质,即可求得S的最大值.本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查三角形的面积公式,韦达定理,弦长公式及基本不等式的应用,考查椭圆与不等式的综合应用,考查计算能力,属于中档题.19.答案:解:Ⅰ设数列的公比为,,因为,,可得,整理得,解得舍或,所以数列通项公式为.设数列的公差为d,因为,,即解得,,所以数列的通项公式为;Ⅱ由等比数列的前n项和公式可得,所以;由可得,所以的前n项和.又在上是递增的,.所以的取值范围为解析:Ⅰ先设出等比数列与等差数列的公比与公差,然后利用题设条件列出公差与首项及公比与首项的方程,求出结果代入通项公式即可解决问题;Ⅱ先由Ⅰ中得到的结果求出,再利用分组求和的办法算出;先由前面的结果求出,再利用裂项相消法求出,最后利用数列的单调性求出其取值范围.本题主要考查等差、等比数列通项公式的求法及数列的前n项和的求法,还有利用数列的单调性求取值范围,属于有一定难度的题.20.答案:解;由题意,,由函数在处取得极值,得,即,解得,则函数的解析式为,定义域为,,又对恒成立,令则有,解得,且,即或;同理令可解得或;综上,函数的单调增区间为和,单调减区间为和由题意,则,,由条件存在,使成立得,对成立,又对成立,化简得,令,则问题转化为求在区间上的值域,求导得,令,为二次函数,图象开口向上,,则,又,则,在区间上单调递增,值域为,所以的取值范围是.解析:先求导函数,再由函数在处取得极值,得,代入求解参数a,b,然后利用令和求解函数的单调区间;将代入化简,再求,然后得,令其为0,得,令,则问题转化为求在区间上的值域,利用导数求解.本题考查了导数在函数的单调性和最值求解中的综合应用,属于比较复杂的问题,注意利用转化的思想求解问题.。
2020年天津市高考模拟考试文科数学试题与答案
2020年天津市高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是A. A C φ⋂=B. A C C ⋃=C. B C B ⋂=D. A B C =2. 若复数2(1)z m m m i =+++是纯虚数,其中m 是实数,则1z= A. i B. i - C. 2iD. 2i -3. 若1sin()43x π-=,则sin 2x = A.79B. 79-C.13D. 13-4. 在矩形ABCD 中,8AB =,6AD =,若向该矩形内随机投一点P ,那么使ABP ∆与ADP ∆ 的面积都小于4的概率为 A.136B.112C.19D.495. 在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A. 66B. 132C. -66D. -1326. 设函数2()23f x x x =--,若从区间[2,4]-上任取一个实数x ,则所选取的实数x 满足()0f x ≤的概率为A.12B.13C.23D.147. 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m8. 已知双曲线)0(13222>=-a y a x 的离心率为2,则 =aA. 2B.26C. 25D. 19. 函数ln ()xf x x=的图象大致为 A. B.C. D.10.已知函数532sin 2064y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象与一条平行于x 轴的直线有两个交点,其横坐标分别为1x ,2x ,则12x x =+ A.43πB.23π C.3π D.6π 11.已知三棱锥ABC D -四个顶点均在半径为R 的球面上,且22===AC BC AB ,,若该三棱锥体积的最大值为1,则这个球的表面积为 A.81500π B. 9100π C. 925πD. π412. 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分別为12,F F ,过2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角项点的等腰直角三角形,则椭圆的离心率为A B .22 D -二、填空题:本题共4小题,每小题5分,共20分。
天津市南开区2020届高三数学一模试题 文(无答案)
天津市南开区2020届高三一模数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至9页.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上;2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.本卷共8小题,每小题5分,共40分.参考公式:·如果事件A,B互斥,那么·球的体积公式V球=pR3,P(A∪B)=P(A)+P(B).其中R表示球的半径.·棱柱的体积公式V柱体=Sh,其中S表示棱柱的底面积,h表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i是虚数单位,复数=().(A)–i (B)i(C)––i (D)–+i(2)已知实数x,y满足约束条件,则目标函数z=x–2y的最小值是().(A)0 (B)–6(C)–8 (D)–12(3)设A,B为两个不相等的集合,条件p:xÏ(A∩B),条件q:xÏ(A∪B),则p是q的().(A)充分不必要条件(B)充要条件(C)必要不充分条件(D)既不充分也不必要条件(4)如图,是一个几何体的三视图,其中主视图、左视图是直角边长为2的等腰直角三角形,俯视图为边长为2的正方形,则此几何体的表面积为().(A)8+4(B)8+4(C)(D)8+2+2(5)已知双曲线ax2–by2=1(a>0,b>0)的一条渐近线方程是x–y=0,它的一个焦点在抛物线y2=–4x的准线上,则双曲线的方程为().(A)4x2–12y2=1 (B)4x2–y2=1(C)12x2–4y2=1 (D)x2–4y2=1(6)函数y=log0.4(–x2+3x+4)的值域是().(A)(0,–2] (B)[–2,+∞)(C)(–∞,–2] (D)[2,+∞)(7)已知函数f(x)=sinwx–coswx(w>0)的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为().(A)(–,0) (B)(–,)(C)(0,) (D)(,)(8)已知函数f(x)=|mx|–|x–1|(m>0),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为().(A)0<m≤1 (B)≤m<(C)1<m<(D)≤m<2南开区2020~2020学年度第二学期高三年级总复习质量检测(一)题号二三总分(15) (16) (17) (18) (19) (20)得分第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔答题;110分.得分评卷人二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上。
2020年普通高等学校招生全国统一考试(天津卷)数学【含答案】
6
(Ⅲ)解:依题意, AB (2, 2, 0) .由(Ⅱ)知 n (1, 1, 2) 为平面 DB1E 的一个法向量,于是
cos
AB n
3
.
| AB || n |
3
3 所以,直线 AB 与平面 DB1E 所成角的正弦值为 3 .
18.满分 15 分.
(Ⅰ)解:由已知可得 b 3 .记半焦距为 c ,由| OF || OA | 可得 c b 3 .又由 a2 b2 c2 ,可得
(k R) 恰有 4 个零点,则 k 的取值范
围是( )
A.
,
1 2
(2
2, )
B.
,
1 2
(0,
2
2)
C. (, 0) (0, 2 2) D. (, 0) (2 2, )
绝密★启用前
2020 年普通高等学校招生全国统一考试(天津卷)
数学
第Ⅱ卷
注意事项:
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.
_________.
三、解答题:本大题共 5 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分 14 分)
在 ABC 中,角 A, B,C 所对的边分别为 a,b, c .已知 a 2 2,b 5, c 13 .
(Ⅰ)求角 C 的大小;
(Ⅱ)求 sin A 的值;
① f (x) 的最小正周期为 2 ;
②
f
2
是
f
(x)
的最大值;
③把函数 y sin x 的图象上所有点向左平移 个单位长度,可得到函数 y f (x) 的图象. 3
其中所有正确结论的序号是
A.① B.①③ C.②③ D.①②③
2020年天津市高考数学模拟试卷(含解析)
2020年天津市高考数学模拟试卷一、选择题(本大题共9小题,共45.0分)1.设全集U={1,2,3,4,5},集合A={2,3,4},集合B={3,5},则集合B∩(C U A)等于()A. {5}B. {1,2,3,4,5}C. {1,3,5}D. ⌀2.已知a∈R,则a2>3a是a>3的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3.函数y=4x的图象大致为()x2+1A. B.C. D.4.如图是容量为200的样本的频率分布直方图,那么样本数据落在[10,14)内的频率,频数分别为()A. 0.32; 64B. 0.32; 62C. 0.36; 64D. 0.36; 725.正方体的棱长为2,且它的8个顶点都在同一球面上,则球的表面积是()A. 16πB. 8πC. 4πD. 12π6. 设a =30.1,b =(13)−0.2,c =log 0.70.8,则a,b,c 的大小关系为 ( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b7. 已知抛物线y 2=8x 的准线过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一个焦点,且双曲线的一条渐近线方程为x +√3y =0,则该双曲线的方程为( )A. x 23−y 2=1B. x 2−y 23=1C. x 26−y 22=1D. x 22−y 26=18. 将函数f(x)=sin2x 的图象向左平移π4个单位,得到y =g(x)的图象 ( )A. y =g(x)是奇函数B. g(x)在的周期为2πC. g(x)的图象关于直线x =π4对称D. g(x)在[0,π2]上单调递减9. 已知函数f(x)={x 3,x ⩾0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( )A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)二、填空题(本大题共6小题,共30.0分) 10. i 是虚数单位,复数8−i2+i =_________.11. 在(x 2√x )5的展开式中,x 2的系数为______.12. 已知直线x −√3y +8=0和圆x 2+y 2=r 2(r >0)相交于A,B 两点.若|AB|=6,则r 的值为_________.13. 甲、乙2人下棋,下成和棋的概率是12,乙获胜的概率是13,则甲获胜的概率是_______. 14. 已知a >0,b >0,且12a+b +1b+1=1,则a +2b 的最小值为________.15. 如图,在四边形ABCD 中,∠B =60°, AB =3,BC =6,且AD →=λBC →, AD →⋅AB →=−32,则实数λ的值为_________,若M,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM →⋅DN →的最小值为_________.三、解答题(本大题共5小题,共75.0分)16.在△ABC中,内角A,B,C所对的边为a,b,c,且满足sinA−sinCb =sinA−sinBa+c.(1)求C;(2)若cosA=17,求cos(2A−C)的值.17.如图,在三棱柱ABC−A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D, E分别在棱AA1和棱CC1上,且AD=1 CE=2, M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B −B 1E −D 的正弦值;18. 已知椭圆x 2a 2+y2b 2=1(a >b >0)的一个顶点为A(0,−3),右焦点为F ,且|OA|=|OF|,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.19. 已知等差数列{a n }满足a 3=5,a 2+a 6=14,等比数列{b n }满足b 1=1,b 4=8.(1)求数列{a n },{b n }的通项公式; (2)设c n =a n b n ,求数列{c n }的前n 项和S n .20.已知函数f(x)=x3+klnx(k∈R),f′(x)为f(x)的导函数.(Ⅰ)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)−f′(x)+9x的单调区间和极值;(Ⅱ)当k≥−3时,求证:对任意的,且x1>x2,有f′(x1)+f′(x2)2>f(x1)−f(x2)x1−x2.-------- 答案与解析 --------1.答案:A解析:本题考查了求集合的补集与交集的运算问题,属于基础题. 根据补集与交集的定义,求出∁U A ,即可得到B ∩(∁U A).解:全集U ={1,2,3,4,5}, 集合A ={2,3,4},B ={3,5}, ∴∁U A ={1,5}, ∴B ∩(∁U A)={5}. 故选A .2.答案:B解析:解:由a 2>3a ,解得a >3或a <0. ∴a 2>3a 是a >3的必要不充分条件. 故选:B .由a 2>3a ,解得a >3或a <0.即可判断出结论.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.答案:A解析:本题考查了函数图象的识别,属于基础题. 根据函数的奇偶性和函数值的正负即可判断.解:函数y =f(x)=4xx 2+1,则f(−x)=−4xx 2+1=−f(x), 则函数y =f(x)为奇函数,故排除C ,D , 当x >0是,y =f(x)>0,故排除B , 故选:A .4.答案:D解析:本题考查了频率分布直方图的应用问题,小矩形的面积等于样本数据落在相应区间上的频率,是基础题目.小矩形的面积即为样本数据落在[10,14)内的频率,频率乘以样本容量即为样本数据落在[10,14)内的频数.解:根据频率分布直方图,得:样本数据落在[10,14)内的频率为:4×0.09=0.36;样本数据落在[10,14)内的频数为:200×0.36=72.故选:D.5.答案:D解析:本题主要考查正方体外接球的表面积,是基础题.正方体的对角线就是该球(外接球)的直径2R,求出R,即可求出该球的表面积.解:由题意,正方体的对角线就是该球(外接球)的直径2R,∴2R=√22+22+22=2√3,∴R=√3,∴该球的表面积S=4πR2=12π.故选D.6.答案:D解析:本题考查了利用指数函数和对数函数的性质比较大小,属于基础题.根据指数函数和对数函数的性质即可求出.)−0.2=30.2,解:a=30.1,b=(13则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.7.答案:A解析:解:抛物线的准线方程为x=−2,∴(−2,0)为双曲线的一个焦点,∴a2+b2=4,又双曲线的渐近线方程为y=±bax,且双曲线的一条渐近线方程为x+√3y=0,∴ba =√33,∴a=√3,b=1.∴双曲线方程为x23−y2=1.故选:A.根据焦点坐标和渐近线方程求出a、b的值即可.本题考查了双曲线和抛物线的简单性质,属于中档题.8.答案:D解析:【试题解析】本题考查了函数y=Asin(ωx+φ)的图象性质,函数平移,属于基础题.利用函数y=Asin(ωx+φ)图象变换规律得函数g(x),即可得到答案.解:将f(x)=sin2x的图象向左平移π4个单位,可得g(x)=sin2(x+π4)=sin(2x+π2)=cos2x,则y=g(x)为偶函数,故A错误;g(x)的周期为π,故B错误;当x=π时,g(x)=0,故C错误;4]时,2x∈[0,π],当x∈[0,π2]上单调递减,故D正确.故g(x)在[0,π2故选D.9.答案:D解析:本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,(x2<x1)当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k图象如图所示,。
2020年天津市第一次高考模拟考试文科数学试题与答案
2020年天津市第一次高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
|﹣1<x<5},集合A={1,3},则集合∁U A的子集的个数是()1. 设全集U={x NA. 16B. 8C. 7D. 42. 下列各式的运算结果为纯虚数的是()A. i(1+i)2B. i2(1﹣i)C. (1+i)2D. i(1+i)3. 为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。
其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④4. 已知直线,直线为,若则( )A.或 B.C .D .或5. 已知,条件甲:;条件乙:,则甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( ) A . B .C .D .7. 在中,a ,b ,c 分别是角A ,B ,C 的对边,,则角B=( )A.B. C.D.8. 执行如图所示的程序框图,输出的S=( )A. 25B. 9C. 17D. 209. 设直线1:210l x y -+=与直线A 的交点为A ;,P Q 分别为12,l l 上任意两点,点M 为,P Q 的中点,若12AM PQ =,则m 的值为( ) A. 2B. 2-C. 3D. 3-10.在V ABC 中,sin B A =,BC =4C π=,则=AB ( )B. 5C. D.11. 已知函数,若,且函数存在最小值,则实数的取值范围为( ) A.B.C. D. 12.已知三棱锥的底面的顶点都在球的表面上,且,,,且三棱锥的体积为,则球的体积为( ) A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学文(天津卷,含答案)
2020年普通高等学校招生全国统一考试数学文(天津卷,含答案)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页。
第II 卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I 卷时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫干净后,在选涂其他答案标号。
3.答第II 卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚。
必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:S 表示底面积,h 表示底面的高如果事件A 、B 互斥,那么 棱柱体积 V Sh = P(A+B)=P(A)+P (B) 棱锥体积 13V Sh = 第I 卷(选择题 共50分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,52ii=- A.12i + B. 12i -- C. 12i - D. 12i -+2.设变量x,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为A. 6B. 7C.8D.23 3.设,x R ∈则"1"x =是3""x x =的A.充分而不必要条件B. 必要而不充分条件C. 充要条件D.既不充分也不必要条件4.设双曲线()22220x y a b a b-=>>的虚轴长为2,焦距为23,则双曲线的渐近线方程为A.2y x =±B. 2y x =±C. 22y x =±D. 12y x =± 5.设0.3113211log 2,log ,32a b c ⎛⎫=== ⎪⎝⎭,则A. a b c <<B.a c b <<C. b c a <<D.b a c << 6.阅读右面的程序框图,则输出的S =A. 14B.20C.30D.55 7.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,将()y f x =的图像向左平移ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是A.2πB.38πC. 4πD.8π8.设函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()()1f x f >的解集是A.()()3,13,-+∞UB. ()()3,12,-+∞UC. ()()1,13,-+∞UD. ()(),31,3-∞-U9.设,,1,1x y R a b ∈>>,若3,23x ya b a b ==+=,则11x y+的最大值为 A.2 B.32 C. 1 D.1210.设函数()f x 在R 上的导函数为()'f x ,且()()22'f x xf x x +>,下面的不等式在R 上恒成立的是A.()0f x >B.()0f x <C. ()f x x >D.()f x x <第二卷二.填空题:本大题共6小题,每小题4分,共24分,把答案填在答题卡的相应位置。
2020年普通高等学校招生全国统一考试数学文试题(天津卷,含答案)
2020年普通高等学校招生全国统一考试数学文试题(天津卷,含答案) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:﹒如果事件A,B 胡斥,那么P(AUB)=P(A)+P(B).﹒棱柱的体积公式V=Sh.其中S 表示棱柱的底面面积,h 表示棱柱的高。
﹒圆锥的体积公式V=13Sh 其中S 表示圆锥的底面面积,H 表示圆锥的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数534ii +-=(A )1-i (B )-1+I(C )1+I (D )-1-i2x+y-2≥0,(2) 设变量x,y 满足约束条件 x-2y+4≥0,则目标函数z=3x-2y的最小值为x-1≤0,(A )-5 (B )-4 (C )-2 (D )3(3) 阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18(C )26 (D )80(4) 已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为 (A )c<b<a (B )c<a<b C )b<a<c (D )b<c<a (5) 设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件(B ) 必要而不充分条件(C ) 充分必要条件(D ) 既不充分也不必要条件(6) 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) y =cos2x ,x ∈R(B ) y =log 2|x|,x ∈R 且x ≠0(C ) y =2x x e e --,x ∈R (D ) y =x3+1,x ∈R(7) 将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13 (B )1 C )53 (D )2(8) 在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP r =AB λr ,AQ r =(1-λ)AC r ,λ ∈R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一模试卷(文科)
一、选择题:本大题共8小题,每小题5分,共40分,在每小题的4个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.
1.(5分)已知集合A={x|x2﹣x<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()
A.(﹣∞,1]B.(﹣∞,1)C.[1,+∞)D.(1,+∞)
2.(5分)若实数x,y满足,则目标函数z=2x+y的最大值为()
A.2B.4C.10D.12
3.(5分)数列{a n}中“a n2=a n﹣1a n+1对任意n≥2且n∈N*都成立”是“{a n}是等比数列”
的()
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件
4.(5分)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=2.5(单位:升),则输入k的值为()
A.4.5B.6C.7.5D.10
5.(5分)设双曲线=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲
线的离心率等于()
A.B.2C.D.
6.(5分)已知y=f(x)是定义在R上的奇函数,且当x>0时不等式f(x)+xf'(x)<0成立,若a=30.3•f(30.3),b=logπ3•f(logπ3),c=log3•f(log3),则a,b,c大小关系是()
A.b>a>c B.b>c>a C.c>a>b D.c>b>a 7.(5分)已知函数f(x)=2sinωx cos2()﹣sin2ωx(ω>0)在区间[]上是增函数,且在区间[0,π]上恰好取得一次最大值,则ω的取值范围是()A.(0,]B.[]C.(]D.()
8.(5分)已知函数f(x)=,函数g(x)=f(x)﹣ax恰有三个不同
的零点,则a的取值范围是()
A.(,3﹣2)B.(,)C.(﹣∞,3﹣2)D.(3﹣2,+∞)
二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上.
9.(5分)已知实数m,n满足(m+ni)(4﹣2i)=3i+5,则m+n=.
10.(5分)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=.11.(5分)过点(2,2)作圆x2﹣2x+y2=0的切线,则切线方程为.
12.(5分)正三棱柱的顶点都在同一个球面上,若球的半径为4,则该三棱柱的体积的最大值为.
13.(5分)如图,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=AB=1,F是BC的中点,点P在以A为圆心,AD为半径的圆弧DE上变动,E为圆弧DE与AB的交点,若=,其中λ,μ∈R,则2λ+μ的取值范围是.
14.(5分)设a,b为正实数,,(a﹣b)2=4(ab)3,则log a b=.三、解答题:本大题共6小题,共80分,将解题过程及答案填写在答题纸上.
15.(13分)已知函数f(x)=2sin2x﹣2sin2(x﹣),x∈R
(Ⅰ)求函数y=f(x)的对称中心;
(Ⅱ)已知在△ABC中,角A、B、C所对的边分别为a、b、c,且b=3,c=4,f()=,求边a的值
16.(13分)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.
(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;
(Ⅱ)求“抽取的卡片上的数字a、b、c不完全相同”的概率.
17.(13分)如图,三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,AC=BC,AB=2A1A=4.以AB,BC为邻边作平行四边形ABCD,连接A1D和DC1.
(Ⅰ)求证:A1D∥平面BCC1B1;
(Ⅱ)若二面角A1﹣DC﹣A为45°,
①证明:平面A1C1D⊥平面A1AD;
②求直线A1A与平面A1C1D所成角的正切值.
18.(13分)已知数列{a n},{b n},S n是数列{a n}的前n项和,已知对于任意n∈N*,都有3a n=2S n+3,数列{b n}首项为1的正项等差数列,满足,,成等比数列.
(Ⅰ)求数列{a n}和{b n}的通项公式;
(Ⅱ)设c n=,求数列{c n}的前n项和R n.
19.(14分)已知函数f(x)=lnx﹣ax2+x(a∈R),函数g(x)=﹣2x+3.(Ⅰ)判断函数F(x)=f(x)+ag(x)的单调性;
(Ⅱ)若﹣2≤a≤﹣1时,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤t|g(x1)﹣g(x2)|恒成立,求实数t的最小值.
20.(14分)已知椭圆C:(a>b>0)的右焦点为(,0),且经过点(﹣1,),点M是y轴上的一点,过点M的直线l与椭圆C交于A,B两点(Ⅰ)求椭圆C的方程;
(Ⅱ)若=2,且直线l与圆O:x2+y2=相切于点N,求|MN|的长.
参考答案
一、选择题:本大题共8小题,每小题5分,共40分,在每小题的4个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.
1.C;2.C;3.A;4.D;5.C;6.A;7.B;8.A;
二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上.
9.;10.﹣1;11.3x﹣4y+2=0或x=2;12.64;13.[0,2];14.﹣1;
三、解答题:本大题共6小题,共80分,将解题过程及答案填写在答题纸上.
15.;16.;17.;18.;19.;20.;。