4.8.2 指数不等式与对数不等式(含答案)
指数、对数不等式的解法
log1 ( x 2 3x 4) log1 (2 x 10) 0
3 3
解:原不等式可以化为 log1 ( x 2 3x 4) log1 (2 x 10)
1 因为上不等式中所含的 以 为底的对数函数是减函 数, 3 所以以上不等式成立, 当且仅当 x 2 3 x 4 0 2 x 10 0 成立. x 2 3 x 4 2 x 10 解这个不等式组,得
2
2
Bu C 0
求使这个一元二次不等 式成立的u的范围,
使 loga x在这个范围的 x的值的集合 , 就是原不等式的解集。
指数式、对数式不等式的解法-----练习
解不等式: 1 ( 1) . 2
1 2
x 2 1
x 2 1
1 4
碌着,并没有随女眷们壹起去永和宫请安。因此直到乾清宫,他才见到魂牵梦萦の小仙女。两年不见,水清仍然如他三年前初见の那样,岁月 不曾在她の身上留下壹丝壹毫の痕迹。壹样の稚嫩脸庞,壹样の冰清玉洁,壹样の傲然孤立。而且二十三小格还知道,水清两年如壹日,壹样 の冷遇无宠。对于这各结果,他既是暗自高兴,也是黯然神伤。高兴,当然他是巴不得水清壹辈子不得宠才好;神伤,当然是后悔不已,假如 自己早早知道年羹尧还有这么壹各亲妹妹,他壹定会不惜壹切代价将她娶进二十三贝子府,做他の福晋。从此以后,他二十三小格再也不会看 其它任何壹各诸人壹眼,他の心会小得只装得下她壹各人,他会让她独享专宠,他会让她享尽尊荣,她是他の曾经沧海,她是他の巫山云。就 在二十三小格不停地后悔,不停地立下誓言之际,不多时,响鞭壹阵阵传来,随即鼓乐齐鸣,圣驾来至宴席,众人纷纷起立,请安之声不绝于 耳。由于是纯粹の家宴,待落座之后,先是后宫中位份最高の佟佳贵妃率众妃嫔向皇上祝寿,祝寿过后,所有在场人员随着李德全の口令起身 离座、跪下磕头、起身回座。后妃祝寿过后便是皇子们の祝寿。此时大小格、废太子都在圈禁中,因此三小格诚亲王作为皇子中最为年长者率 弟弟们向皇阿玛祝寿,完毕后所有人员再次在离座、磕头、回座。然后是儿媳妇们の祝寿,众人再次行磕头大礼。最后是皇孙、重皇孙们,众 人再行磕头大礼。多半各时辰里除咯祝寿和行磕头大礼之外,所有の人没有吃壹口饭,没有喝壹口水。好不容易集体祝寿结束,众人可以踏实 落座,李德全壹声令下,宫女太监们开始摆膳。第壹卷 第335章 小鬼 壹整天の时间里,弘时都对这各年姨娘讨厌透顶:额娘被太太冷落, 自己又没有机会跟太太说上话,平时在府里就瞧这年姨娘不顺眼,此刻更是“新仇旧恨”齐齐涌上心头,因此他那小脑袋瓜里壹刻不停地盘算 着如何好好地整治这各年姨娘の各种招数。他要让这各平时对他不够恭敬、不够谦卑の年姨娘必须吃点儿苦头,知道他小爷不是好惹の。此刻 の他,壹双小眼睛滴溜溜地转来转去,打着鬼主意,想着、想着,这主意就想出来咯!这不奴才们正摆膳嘛,于是他假意跟淑清撒娇,身子顿 时就扑向她怀里の同时开口说道:“额娘,您头上の珠花要掉咯!”弘时壹边说着,壹边抬起手去给淑清摆弄珠花,然后这只小手半路中就变 咯方向。他哪里是伸向咯他额娘の珠花,而是直直地照着正在布菜の壹各奴才の胳膊上伸咯过去。那各正在布菜の奴才不是别人,就是吟雪! 吟雪本来是站在水清の身后服侍,恰巧这各位置正是宫中太监往席上端盘子上菜の位置,因此她需要给上菜の太监搭把手,将菜盘子端到宴席 上。此时吟雪正接咯宫中太监递上来の菜盘子往桌子上摆呢,毫无防备の她被弘时猛地壹各突袭,壹盘子“金腿烧圆鱼”在她手上就打咯壹各 滑,幸好她眼疾手快,另壹只手及时地扶咯壹下,才没有酿成壹盘菜直接扣在地上の严重恶果!这可是皇上六十大寿の寿宴,假如发生这种事 情,她吟雪就是不会被要咯半条命,也得是脱咯壹层皮。虽然金腿、圆鱼还都在盘子里老老实实地呆着,但壹盘子の汤汁酱料可是结结实实地 洒在咯水清右侧の整各肩膀,还有几段大葱、两瓣大蒜,半颗大料沥沥拉拉地挂在衣服上。吟雪吃咯壹各哑巴亏!她哪儿敢说是弘时小格碰咯 她の胳膊,只能是赶快先找热巾来擦试。好不容易汤汁不再四处横流咯,但水清整整右肩膀外加右前襟全都是油腻腻の酱汁。今天因为是出席 宫中の寿宴,她の服饰完全是按品级穿戴,侧福晋の公服是粉红色旗装。因此,在粉红色旗装の映衬下,那壹大片近乎黑色の酱汁极为刺眼夺 目。看着平时漂漂亮亮、光光鲜鲜の年姨娘现在竟是这副狼狈不堪の样子,弘时の心中简直就是乐开咯花。好在他还没有猖狂到明目张胆の程 度,只是把头抵在淑清の怀中,却实在是抑制不住内心の狂喜,笑得身子都跟着抖动咯起来。淑清根本看不到弘时の表情,感觉到三小格在她 の怀中浑身颤抖,她以为这孩子是被这各突如其来の变故吓哭咯呢,于是壹边赶快拍着弘时の后背,壹边安慰着:“时儿,不要怕,有额娘在 呢,不就是壹各奴才嘛,有啥啊可怕の,还能反咯天不成?瞧你这点儿出息,你可是当主子の,你就是各吃奶の孩子,你也是主子,她也是奴 才!而且有啥啊样の主子就有啥啊样の奴才!”第壹卷 第336章 冲突其实淑清这番话哪里是啥啊安慰弘时の话语,分明就是说给水清壹各人 听の。她当然看到咯年妹妹身上那片难看の菜汁,也知道吟雪の胳膊被弘时挡咯壹下。不过,她可不想让时儿承担啥啊责任,更何况,壹各奴 才怎么可能追究主子の过错,再小の主子那也是主子,再老の奴才,她也是奴才!水清原本也没有打算追究啥啊,虽然她の样子很狼狈,但毕 竟也是自己の奴才失咯手。可是李姐姐の这番话说得可就不对咯,事情是有因才有果の,吟雪假如没有被三小格欺负,怎么可能犯咯这么大の 过失?而且淑清最后那壹句话,不但是话里有话,而且毫不掩饰地就将矛头直接指向咯水清。水清知道,这是因为锦茵格格出嫁の事情,淑清 姐姐壹直在记恨她,才会对她这么含沙射影,才不会放过吟雪の任何壹各过失。可是这是皇上六十大寿の寿宴,又是当着其它嫂子、弟妹们の 面,她就是再有天大の委屈,无论如何也不能跟李姐姐起
常见不等式的解法--高考数学【解析版】
专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。
经典不等式23种不等式
经典不等式23种不等式经典不等式23种不等式1、大于等式:若x>y,则x≥y。
2、小于等式:若x<y,则x≤y。
3、不等式:若x≠y,则x≠y。
4、加法不等式:若a+b>c,则a+b≥c。
5、减法不等式:若a-b<c,则a-b≤c。
6、乘法不等式:若ab>c,则ab≥c。
7、除法不等式:若a/b<c,则a/b≤c。
8、比较不等式:若x>y,则x·z>y·z。
9、一次不等式:若ax+b>0,则x>-b/a。
10、二次不等式:若ax2+bx+c>0,则x>-b/2a-√(b2-4ac)/2a。
11、立方不等式:若ax3+bx2+cx+d>0,则x>-b/3a-∛(b3-3abc+2d)/3a。
12、指数不等式:若a·cn>0,则n>lg a。
13、对数不等式:若a>b,则ln a>ln b。
14、平方根不等式:若a2>b,则a>√b。
15、立方根不等式:若a3>b,则a>∛b。
16、反比例不等式:若1/x>y,则x<1/y。
17、正比例不等式:若x>y,则kx>ky。
18、极限不等式:若limx→∞f(x)>L,则f(x)>L,对任意的x均成立。
19、重组不等式:若a+b>c+d,则a>d或b>c。
20、多项式不等式:若p(x)>q(x),则有关x的多项式p(x)-q(x)的系数均大于0。
21、三角不等式:若a>b,则sin a > sin b。
22、函数不等式:若f(x)>g(x),则f(x+h)>g(x+h),其中h为任意实数。
23、条件不等式:若A>B 且C>D,则AC>BD。
数学必修二:指数函数与对数函数习题答案
数学必修二:指数函数与对数函数习题答案一、基础知识概述在学习数学必修二:指数函数与对数函数课程中,对于习题的正确解答非常重要。
下面将为您逐一列举各章节习题的详细解答,帮助您更好地理解和掌握这门课程。
二、第一章:指数函数与对数函数基础1. 下列各式中,哪些是指数函数?答:a) f(x) = 3^xb) g(x) = 2x + 1c) h(x) = x^2解析:a)是指数函数,因为指数为x;b)不是指数函数,因为指数不是x;c)也不是指数函数,因为指数为2。
2. 计算下列指数函数的值:a) f(2) = 2^2 = 4b) g(4) = 3^4 = 813. 下列各式中,哪些是对数函数?答:a) f(x) = log₂xb) g(x) = x - 1c) h(x) = x^3解析:a)是对数函数,因为底数为2;b)不是对数函数,因为没有对数符号;c)也不是对数函数,因为没有对数符号。
4. 求以下对数函数的值:a) f(8) = log₄8解:log₄8 = log₂8 / log₂4 = 3 / 2 = 1.55. 指数函数与对数函数的图像特征是什么?答:指数函数的图像呈现上升或下降的曲线,而对数函数的图像则是上升的曲线。
两者均以某个点为对称中心。
三、第二章:指数函数与对数函数的运算1. 求解下列指数函数的乘法运算:a) f(x) = 2^x * 2⁴解:f(x) = 2^(x + 4)2. 求解下列指数函数的除法运算:a) f(x) = 3^x / 3³解:f(x) = 3^(x - 3)3. 求解下列对数函数的加法运算:a) f(x) = log₂x + log₂4解:f(x) = log₂(4x)4. 求解下列对数函数的减法运算:a) f(x) = log₂x - log₂2解:f(x) = log₂(x / 2)四、第三章:指数函数与对数函数的应用1. 某城市的人口数量按指数函数增长,过去10年的增长率为1.5倍/年,初始人口为100万。
4.7 指数不等式与对数不等式
D.∅
【答案】C
二、填空题
9.若2x<4,则x的取值范围是 (-∞,2) .
10.函数y=(lox+2)0的定义域是 (0,9)∪(9,+∞) .
11.不等式
1 2
x
<3的解集是
(log1 3, )
2
.
12.不等式log2(x+1)<3的解集是 (-1,7) .
三、解答题
13.解下列指数不等式.
【解】 要使函数y=log(x-1)(64-4x)有意义,
必须
64 x 1
4x 0,
0,
解得
x x
3, 1,
x 1 1,
x 2,
即1<x<3且x≠2,所以,所求定义域为{x|1<x<3且x≠2}.
【同步训练】 一、选择题 1.函数y= 2x 4 的定义域是
A.{x|x<2} C.{x|x>2}
14.解下列对数不等式. (1)log 1(4x2-x)>1;
2
【解】 (1) log1 (4x2 x) 1,
2
由对数性质得
4x2 4x2
x x
0,
1 2
,
解得{x
|
1 4
x
0}
{x
|
1 4
x
12}.
(2)lg(x+2)-lg(x-3)>1;
【解】 (2)lg(x 2) lg(x 3) 1,
0,
3 2
x 1,所以解集为
3 2
,
1
.
【点评】 在高考中经常出现这类型不等式,请同学们分析它的 解法,然后自己解第(2)问.
指数方程和不等式与对数方程和不等式
指数方程和不等式与对数方程和不等式一、指数方程和不等式与对数方程和不等式指数方程和不等式与对数方程和不等式是对指数函数和对数函数的性质的综合运用.我们将指数方程和对数方程的主要类型和解法列入下面的表格:分析:1、解指数方程和对数方程主要是运用转化的思想将方程化归为己学过的代数方程来解,同时要注意对数方程的同解变形,重视对根的检验.2、对于含有指数函数或对数函数的混合型方程,常用图象法求方程的近似解或确定方程的根的个数.3、在解含有参数的指数方程和对数方程时,必须注意对字母的取值范围的讨论.将上述表格中的等号“=”改为不等号“<”或“>”即得到指数不等式和对数不等式,它们的解法在本质上与方程的解法是相同的,同时也要对字母的取值范围进行讨论.但不同的地方在于要对底数a的取值范围进行讨论,因为a的取值范围不同时要影响指数函数和对数函数的单调性.要注意方程与不等式的本质联系与区别.例1 解下列方程:(1)lg2x·lg3x=lg2·lg3;(2);(3);(4)log(x+1)(2x2-2x+1)=2分析:(1)根据方程的结构,可以从方程中分离出变量lgx,利用换元的方法求解;(2)去分母后可采用换元的方法;(3)再对方程变形后采用两边取对数的方法求解;(4)利用对数定义将方程转化为代数方程求解.解:(1)原方程可化为(lg2+lgx)(lg3+lgx)=lg2·lg3,即lg2x+lg6·lgx=0.解得lgx=0或lgx=-lg6. ∴x=1或.经检验,x=1和都是方程的根.(2)方程可化为3x+1-3-x+2=0,即3·32x+2·3x-1=0.设y=3x,则3y2+2y-1=0,解得y1=-1,.当y=-1时,3x=-1<0,无意义,故舍去;当时,, ∴x=-1。
(3)原方程即,即, =3.两边取以3为底数的对数,得到(log3x)2=1, ∴log3x=±1, 解得x=3或.经检验,x=3和都是原方程的根.(4)根据对数的定义得到(x+1)2=2x2-2x+1,即x2-4x=0.解得x=0或x=4.当x=0时,x+1=1,故舍去.∴原方程的根为x=4.总结:(1)解对数方程时,必须注意对根的检验;(2)换元的方法是解方程的一种常用方法;(3)在解指数方程和对数方程时,要注意应用指数和对数的有关性质和法则对方程进行变形.当幂指数上含有未知数时,往往两边取对数求解.例2 解方程:lgx+lg(4-x)=lg(2x+a)解:原方程等价于:, ∴.设y1=a, y2=-x2+2x,x∈(0,4). 作出两个函数的图象,如图所示.分以下三种情况讨论:(1) a>1或a≤-8 时,方程无解;(2) 0<a<1时,方程有两解;(3) -8<a≤0, 方程有一解。
指数不等式和对数不等式解法
对数不等式的解法 a>1时
f (x) 0
log f (x) log g(x) g(x) 0
a
a
f (x) g(x)
f (x) 0
log f (x) log g(x) g(x) 0
a
a
f (x) g(x)
对数不等式的解法(0<a<1) 时
f (x) 0
log f (x) log g(x) g(x) 0
河南省泌阳县职业教育中心 周祥松
指数不等式的解法 是利用指数函数的性质化为同解的代 数不等式
a 1时,
a f (x) a g(x) f (x) g(x); a f (a 1时,
a f (x) a g(x) f (x) g(x); a f (x) a g(x) f (x) g(x);
所以原不等式的解集为 x | 1 x 3
例2 ax22x ax4,(a 0且a 1)
解 (1)当a 1时,
(2)当 0 a 1时,
a x22x a x4
a x2 2x a x4
x2 2x x 4
x2 2x x 4
x2 3x 4 0
x2 3x 4 0
1
0
3x 2 x 1
x
2 3
x 1
x
3
2
2 x 3
3
2
所以原不等式的解集为:
x
|
2 3
x
3
2
例4 解不等式3x1 18 3x 29
解:原不等式可化为: 3 (3x )2 29 3x 18 0
(3x 9)(3 3x 2) 0
3x 9或 3x 2
3
x
(x 4)(x 1) 0 (x 4)(x 1) 0
(精选试题附答案)高中数学第四章指数函数与对数函数重难点归纳
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数重难点归纳单选题1、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375= 0.0625<0.1,所以满足精确度0.1;所以方程x3+x2−2x−2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .故选:B2、已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.3、已知f (x )是定义在R 上的奇函数,当x ≥0时,f(x)=log 2(x +2)+t ,f (−6)=( ) A .−2B .2C .−4D .4 答案:A分析:因f (x )是定义在R 上的奇函数,所以f (0)=0,从而可求t ,再由奇函数的定义即可求出f (−6)的值. 解:∵f (x )是定义在R 上的奇函数,又当x ≥0时,f(x)=log 2(x +2)+t , ∴ f (0)=log 2(0+2)+t =0, ∴t =−1,∴当x ≥0时,f(x)=log 2(x +2)−1,∴f (−6)=−f (6)=−[log 2(6+2)−1]=−(log 223−1)=−2, 故选:A.4、已知函数f(x)=9+x 2x,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可. 当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a , 所以254≥3+a ,可得a ≤134.故选:A5、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x是增函数,y 1=(13)x与y 3=10−x=(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A . 故选:A6、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1, b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减;(2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.7、若32是函数f (x )=2x 2−ax +3的一个零点,则f (x )的另一个零点为( )A .1B .2C .(1,0)D .(2,0) 答案:A分析:由32是函数f (x )=2x 2−ax +3的一个零点,可得a 值,再利用韦达定理列方程解出f (x )的另一个零点. 因为32是函数f (x )=2x 2−ax +3的一个零点,所以f (32)=2×(32)2−a ×32+3=0,解得a =5.设另一个零点为x 0,则x 0+32=52,解得x 0=1,所以f (x )的另一个零点为1. 故选:A .8、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项. 因为0<a <1,故y =a x 的图象经过第一象限和第二象限, 且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限. 故选:A .9、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .10、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 填空题11、已知log a 13>1,则实数a 的取值范围为______.答案:(13,1).分析:分0<a <1和a >1两种情况求解即可.解:当0<a <1时,由log a13>1,可得log a13>log aa,解得13<a <1;当a >1时,log a 13>1,可得log a13>log aa,得a <13,不满足a >1,故无解.综上所述a 的取值范围为:(13,1). 所以答案是:(13,1).12、已知a ,b 为正数,化简√a 5b 2⋅(a 2b )−1⋅√b 3=_______.答案:a 12b 12分析:根据根式与分数指数幂的互化以及指数幂的运算公式即可求出结果.原式=a 52b 2⋅a −2b −1⋅b 32=a 12b 12. 所以答案是:a 12b 12.13、已知√(a −1)44+1=a ,化简(√a −1)2+√(1−a)2+√(1−a)33=_________. 答案:a −1分析:根据已知条件判断a 的范围,再结合根式的运算性质,即可求得结果. 由已知√(a −1)44+1=a ,即|a −1|=a −1,即a ⩾1,所以(√a −1)2+√(1−a)2+√(1−a)33=(a −1)+(a −1)+(1−a)=a −1, 所以答案是:a −1小提示:本题考查根式的运算性质,属简单题;注意公式的熟练应用即可. 14、函数f (x )=3x −3−x 3x +3−x+2,若有f (a )+f (a -2)>4,则a 的取值范围是________.答案:(1,+∞)分析:构造函数F (x )=f (x )-2,则f (a )+f (a -2)>4等价于F (a )+F (a -2)>0,分析F(x)奇偶性和单调性即可求解.设F (x )=f (x )-2,则F (x )=3x −3−x3x +3−x ,易知F (x )是奇函数,F (x )=3x −3−x3x +3−x =32x −132x +1=1-232x +1在R 上是增函数,由f (a )+f (a -2)>4得F (a )+F (a -2)>0, 于是可得F (a )>F (2-a ),即a >2-a ,解得a >1. (1,+∞)15、已知函数f (x )={x 2+4x x ≥22|x−a | x <2 ,若对任意的x 1∈[2,+∞),都存在唯一的x 2∈(−∞,2),满足f (x 2)=f (x 1),则实数a 的取值范围是______. 答案:0≤a <4分析:由题意可得函数f (x )在[2,+∞)时的值域包含于函数f (x )在(−∞,2)时的值域,利用基本不等式先求出函数f (x )在x ∈[2,+∞)时的值域,当x ∈(−∞,2)时,对a 分情况讨论,分别利用函数的单调性求出值域,从而求出a 的取值范围. 解:设函数g (x )=x 2+4x , x ≥2的值域为A ,函数ℎ(x )=2|x−a | , x <2的值域为B ,因为对任意的x 1∈[2,+∞),都存在唯一的x 2∈(−∞,2),满足f (x 2)=f (x 1), 则A ⊆B ,且B 中若有元素与A 中元素对应,则只有一个.当x1∈[2,+∞)时,g(x)=x2+4x =x+4x,因为x+4x ≥2√x⋅4x=4,当且仅当x=4x,即x=2时,等号成立,所以A=[4,+∞),当x2∈(−∞,2)时,ℎ(x)=2|x−a| , x<2①当a≥2时,ℎ(x)=2a−x , x<2,此时B=(2a−2,+∞),∴2a−2<4,解得2≤a<4,②当a<2时,ℎ(x)={2a−x,x<a2x−a,a≤x<2,此时ℎ(x)在(−∞,a)上是减函数,取值范围是(1,+∞),ℎ(x)在[a,2)上是增函数,取值范围是[1,22−a),∴22−a≤4,解得0≤a<2,综合得0≤a<4.所以答案是:0≤a<4小提示:关键点点睛:本题即有恒成立问题,又有存在性问题,最后可转化为函数值域之间的包含关系问题,最终转化为最值问题,体现了转化与化归的思想.解答题16、已知函数ℎ(x)=|log12x|.(1)求ℎ(x)在[12,a](a>12)上的最大值;(2)设函数f(x)的定义域为I,若存在区间A⊆I,满足:对任意x1∈A,都存在x2∈A(其中A表示A在I上的补集)使得f(x1)=f(x2),则称区间A为f(x)的“Γ区间”.已知ℎ(x)=|log12x|(x∈[12,2]),若A=[12,a)为函数ℎ(x)的“Γ区间”,求a的最大值.答案:(1)答案见解析;(2)1.解析:(1)作出函数ℎ(x)=|log12x|的图象,分12<a≤2,a>2,利用数形结合法求解.(2)根据对任意x1∈A,都存在x2∈A使得f(x1)=f(x2),分12<a≤1,1<a≤2,分别求得ℎ(x)在[12,a)和[a,2]上的值域,利用集合法求解.(1)函数ℎ(x)=|log12x|的图象如图所示:当12<a≤2时,ℎ(x)的最大值为ℎ(12)=1,当a>2时,ℎ(x)的最大值为ℎ(a)=−log12a.(2) 当12<a≤1时,ℎ(x)在[12,a)上的值域为(log12a,1],ℎ(x)在[a,2]上的值域为[0,1],因为满足:对任意x1∈A,都存在x2∈A使得f(x1)=f(x2),所以(log12a,1)[0,1],成立;此时A=[12,a)为函数ℎ(x)的“Γ区间”,当1<a≤2时,ℎ(x)在[12,a)上的值域为[0,1],ℎ(x)在[a,2]上的值域为[−log12a,1],当1≤x1<a时,ℎ(x1)<ℎ(a)=−log12a,所以∃x1∈[1,a),ℎ(x1)∉[−log12a,1],即存在x1∈A,对任意x2∈A使得f(x1)≠f(x2),所以A=[12,a)不为函数ℎ(x)的“Γ区间”,所以a的最大值是1.小提示:方法点睛:双变量存在与恒成立问题:若∀x 1∈D 1,∀x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )min >g (x )max ;若∃x 1∈D 1,∃x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )max >g (x )min ;若∃x 1∈D 1,∀x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )max >g (x )max ;若∀x 1∈D 1,∃x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )miax >g (x )min ;若∀x 1∈D 1,∃x 2∈D 2, f (x 1)=g (x 2)成立,则 f (x )的值域是g (x )的子集;17、(1)计算:(279)12+(lg5)0+(2764)−13; (2)设4a =5b =100,求2(1a +2b )的值.答案:(1)4;(2)2.分析:(1)根据指数的运算性质直接计算即可;(2)通过换底公式可得1a=1log 4100=log 1004,1b =1log 5100=log 1005,进而可得解. (1)原式=(259)12+(lg5)0+[(34)3]−13=53+1+43=4. (2)∵4a =100, ∴a =log 4100.同理可得,b =log 5100,则1a =1log4100=log 1004,1b =1log 5100=log 1005, ∴1a +2b=log 1004+2log 1005=log 100(4×52)=log 100100=1. ∴2(1a +2b )=2.18、已知函数f (x )=log 12x +12x −172.(1)用单调性的定义证明:f (x )在定义域上是减函数;(2)证明:f (x )有零点;(3)设f (x )的零点在区间(1n+1,1n )内,求正整数n .答案:(1)证明见解析(2)证明见解析(3)10分析:(1)设0<x 1<x 2,则结合对数的运算法则可证得f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2)>0,则f (x 1)>f (x 2),由此可得证.(2)结合函数的解析式有f (1)=−8<0,f (116)=72>0,且f (x )在区间(116 , 1)上连续不断,由零点存在定理可得证.(3)结合函数的解析式可得f (110)f (111)<0,由此可得答案.(1)因为f (x )的定义域为(0,+∞),设x 1,x 2是(0,+∞)内的任意两个不相等的实数,且x 1<x 2,则f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2), 因为x 2−x 1>0,x 1x 2>0,所以log 12x 1−log 12x 2>0,12x 1−12x 2=x 2−x 12x 1x 2>0,所以f (x 1)>f (x 2),故f (x )在定义域(0,+∞)上是减函数.(2)因为f (1)=0+12−172=−8<0,f (116)=4+8−172=72>0, 所以f (1)⋅f (116)<0,所以f (x )有零点.(3)f (111)=log 12111+112−172=log 211−3>log 28−3=0,f (110)=log 12110+5−172=log 210−72=log 25−52=log 2√25−log 2√32<0,所以f (110)f (111)<0,又f (x )在(0,+∞)上为减函数,所以f (x )的零点在区间(111,110)内,故n =10. 19、某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量y (件)与售价x (元/件)之间满足一次函数关系,部分对应数据如下表所示.(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?答案:(1)y =−20x +840(20⩽x ⩽40)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元分析:(1)设y =ax +b ,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与x 的关系,由二次函数的性质得最大值.(1)设y =ax +b ,不妨选择两组数据(20,440),(22,400)代入,可得{440=20a +b,400=22a +b,解得{a =−20,b =840, ∴一次函数的解析式为y =−20x +840(20⩽x ⩽40).(2)设利润为S 元,由题意可得S =(−20x +840)(x −20)=−20x 2+1240x −16800=−20(x −31)2+2420,∴当x =31时,S max =2420,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元.。
2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)
人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
高中数学不等式与不等式组的解法
高中数学不等式与不等式组的解法高中数学不等式与不等式组的解法高中数学不等式主要问题包括:大小比较(方法有作差法,作商法,图象法,函数性质法);证明题(比较法,反证法,换元法,综合法…);恒成立问题(判别式法,分离参数法…)等,下面是店铺为大家精心推荐不等式与不等式组的解法,希望能够对您有所帮助。
不等式与不等式组的数轴穿根解法数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。
做法:1.把所有X前的系数都变成正的(不用是1,但是得是正的);2.画数轴,在数轴上从小到大依次标出所有根;3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。
例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)⒈分解因式:(x-1)(x-2)≤0;⒉找方程(x-1)(x-2)=0的根:x=1或x=2;⒊画数轴,并把根所在的点标上去;⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
高次不等式也一样.比方说一个分解因式之后的不等式:x(x+2)(x-1)(x-3)>0一样先找方程x(x+2)(x-1)(x-3)=0的根x=0,x=1,x=-2,x=3在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
指数不等式、对数不等式的解法·例题
指数不等式.对数不等式的解法·例题例5-3-7 解不等式:解(1)原不等式可化为x2-2x-1<2(指数函数的单调性)x2-2x-3<0 (x+1)(x-3)<0所以原不等式的解为-1<x<3.(2)原不等式可化为注函数的单调性是解指数不等式.对数不等式的主要根据.例5-3-8 解不等式log x+1(x2-x-2)>1.解[法一] 原不等式同解于所以原不等式的解为x>3.[法二] 原不等式同解于log x+1(x2-x-2)>log x+1(x+1)所以原不等式的解为x>3.注解这类对数不等式,要留意真数为正数,并须对底数的分类评论辩论.解原不等式可化为22x-6×2x-16<0令2x=t(t>0),则得t2-6t-16<0 (t+2)(t-8)<0 -2<t<8又t>0,故0<t<8即0<2x<8,解得x<3.注解这类指数不等式,经常须要经由过程变量代换把它变成整式不等式来解.解原不等式可化为解得t<-2或0<t<1,即注解不合底的对数不等式,应先化为同底对数的不等式,再应用对数函数的单调性将它转化为整式不等式求解.这时也经经常应用到换元法.例5-3-11设a>0且a≠1,解不等式解原不等式可化为令log a x=t,则得当0<a<1时,由指数函数的单调性,有4-t2<1-2t t2-2t-3>0 (t+1)(t-3)>0t<-1,或t>3当a>1时,则有4-t2>1-2t t2-2t-3<0 (t+1)(t-3)<0 -1<t<3注解既含指数又含对数的不等式的根本思惟是“化同底,求单一”,即把不合底的指数或对数化为同底的,再经由过程函数的单调性将复合情况转化为只含指数或对数的单一情况求解.例5-3-12设f(x)是界说在实数集R内的函数,对随意率性x,y∈R,有f(x+y)=f(x)·f(y);并且当x>0时,f(x)>1,f(1)=a.解关于x的不等式f(x2+x-4)>a2.剖析由题设前提轻易联想到f(x)是指数型函数,又a2=f(1)·f(1)=f(2),故原不等式同解于f(x2+x-4)>f(2).于是,问题归结为先肯定f(x)的单调性,再解一个二次不等式.=0,不然,对随意率性x∈R,有f(x)=f((x-x0)+x0)=f(x-x0)f(x0)=0与已知抵触,所以对随意率性x∈R,有f(x)>0.现设x,y∈R,且y=x+δ(δ>0).则f(y)-f(x)=f(x+δ)-f(x)=f(x)f(δ)-f(x)=f(x)[f(δ)-1]>0(∵δ>0,∴f(δ)>1).故f(x)在R内是增函数.于是原不等式同解于x2+x-4>2 x2+x-6>0 x<-3或x>2注本题的症结是肯定函数f(x)的单调性,而不必求出它的具体表达式.。
指数函数与不等式
指数函数与不等式一、指数函数简介指数函数是一种特殊的幂函数,其表达式形式为f(x) = a^x,其中a 为常数且a>0且a≠1,x为实数。
指数函数在数学中具有广泛的应用,尤其在不等式问题中,起到至关重要的作用。
二、指数函数与不等式的关系1. 不等式的基本性质在讨论指数函数与不等式的关系之前,我们先来回顾一下不等式的基本性质。
对于任意实数a,b和c,我们有以下定理:- 若a > b且b > c,则a > c(传递性);- 若a > b,则a + c > b + c(增量性);- 若a > b且c > 0,则ac > bc(正倍性);- 若a > b且c < 0,则ac < bc(负倍性);- 若a > 0,则a^2 > 0(平方性)。
2. 不等式中的指数函数指数函数在不等式问题中具有重要的应用,它可以帮助我们解决一些复杂的不等式关系。
下面,我们将通过几个例子来具体说明指数函数与不等式之间的关系。
例一:解不等式2^x > 3我们将不等式两边同时取对数,得到x > log(3) / log(2)。
由于log函数的单调性,我们可以知道x > log(3) / log(2)为解。
例二:解不等式e^x + 1 < e^2首先,我们将不等式两边同时减去1,得到e^x < e^2 - 1。
然后,取对数得x < ln(e^2 - 1)。
由于ln函数的单调性,我们可以知道x < ln(e^2 - 1)为解。
例三:解不等式4^x + 2^(x+1) < 6我们可以将不等式转化为2^(2x) + 2^(x+1) < 6。
然后,将2^(x+1)看作一个整体,得到2^(2x) + 2 * 2^x < 6。
进一步化简可得2^(2x) + 2^x < 3。
我们将不等式两边取对数,得到log(2^(2x) + 2^x) < log(3)。
指数不等式和对数不等式解法
x2 2 x
x 2 2 x
a , (a 0且a 1)
( 2)当 0 a 1时, a
x2 2 x
x4
解 (1)当a 1时,
a
x4
a x4
x 2 2x x 4 x 3x 4 0
2
x 2 2x x 4 x 2 3x 4 0 ( x 4)( x 1) 0 1 x 4
( x 4)( x 1) 0 x 1或x 4 ;
x 所以原不等式的解集为: a 1时, | x 1或x 4
x 0 a 1时, | 1 x 4
例3
log 1 (3x 2) log 1 ( x 1)
2 2
3 x 2 0 解:原不等式 x 1 0 3 x 2 x 1 2 x 3 x 1 3 x 2 2 3 x 3 2
a
例1:解不等式:
•
0.2
x 2 2 x 1
0.04
0 .2
2
解 (1)原不等式
0 .2
x 2 2 x 1
x 2 2x 1 2 ( x 1)( x 3) 0 1 x 3
所以原不等式的解集为
x | 1 x 3
例2
a
所以原不等式的解集为:
2 3 x x | 3 2
解:原不等式可化为: 3 (3
x
3 例4 解不等式
x 1
x 2
18 3 29
x
x
x
) 29 3 18 0
2 x 2或x log 3 3 ∴原不等式的解集为 x | x 2或x log 2 3
指数对数不等式
x
1 = t, 解得 3 < t < 2 < x < 8. 2
1 x2 2 ax 3 x + a2 5. 1)对于x ∈ R, 不等式( ) <2 ( 2 2 2 x + (成立,a ) x +数a的取恒成立 = 9 12a < 0 恒 3 2 求实 a > 0 值范围. 解析: 解析:
3 3 2 x 29 3 x + 18 > 0 解:原不等式可化为:
即
(3 x 9)(3 3 x 2) > 0
x x
2 解之: 3 > 9或 3 < 3 2 ∴ x > 2或x < log 3 3
2 ∴ 不等式的解集为{x x > 2或x < log 3 }. 3
例1, 解不等式 lg(x2+2x-3)<lg(x+17). ,
�
2
3.不等式4 + 2
x
x+2
x>1 12 > 0的解集是 _________ .
解析: 解析:令2x=t(>0),解得t>2.
2 < x <8 x x 4. 不等式 2(log 0.5 ) 2 + 7 log 0.5 + 3 ≤ 0的解集是 ________ .
令 log 解析: 解析: 0.5
g( x ) > 0 log a f ( x ) > log a g ( x ) f ( x ) > g( x )
0 < a < 1时 a f ( x ) > a g ( x ) f ( x ) < g( x ) ,
f (x) > 0 log a f ( x ) > log a g ( x ) f ( x ) < g( x )
对数不等式知识点总结及习题精讲
对数不等式知识点总结及习题精讲1. 设0,1,log ()log ()a a a a f x g x >≠>﹒(1) 当1a >时()()()0()0f x g x f x g x >⎧⎪⇒>⎨⎪>⎩﹒(2)当01a <<时()()()0()0f x g x f x g x <⎧⎪⇒>⎨⎪>⎩2.欲解2(log )(log )0a a p x q x r ++>型式的不等式﹐则先令log a x t =﹐代入不等式得20pt qt r ++>﹐再利用因式分解求出t 的范围﹐即可求得x 之范围3.对数函数的极值求法:(1)欲求函数2()(log )(log )a a f x p x q x r =++的极值时﹐可以先令log a t x =代入函数得二次函数2()g t pt qt r =++﹐再利用配方法求极值 (2)利用算几不等式求极值典型例题1.解下列不等式:(1)log 2(3x ) > log 2(x + 2)﹒ (2)log 3(5x ) < log 3(x + 4)﹒【解答】(1)323020x x x x >+⎧⎪>⎨⎪+>⎩﹐得x > 1﹒(2)545040x x x x <+⎧⎪>⎨⎪+>⎩﹐得0 < x < 1﹒2.解不等式:(1) log 2(x - 1) < 1 + log 4(x + 2)之解为 。
(2) log 3(log 21x ) < 1之解为 。
【解答】(1)∵ 原式有意义 ⇒ ⎩⎨⎧>+>-0201x x ⇒ x > 1……①原式化为log 2(x - 1) < log 22 +21log 2(x + 2) ⇒ x - 1 < 2 (x + 2)21⇒ (x - 1)2 < 4 (x + 2)⇒ x 2 - 6x - 7 < 0 ⇒ (x + 1)(x - 7) < 0 ⇒ - 1 < x < 7……② 由①②得1 < x < 7(2)log 3(log 21x ) < 1 ⇒ log 3(log 21x ) < log 33 ⇒ 0 < log 21x < 3⇒ log 211 < log 21x < log 21(21)3⇒ 1 > x >813.解下列各不等式:(1)132log (log )2x ≥-﹒ (2)144log (log )2x >﹒【解答】(1)2131221log (log )2log ()2x -≥-=⇒ 0 < log 3x ≤ 4⇒ log 31 < log 3x ≤ log 334 ⇒ 1 < x ≤ 81﹒ (2)2141441log (log )2log ()4x >=⇒410log 16x <<⇒116444log 1log log 4x << ⇒1812x <<﹒随堂练习.解下列各不等式:(1)log 3(x - 4) < log 9(x - 2)﹒ (2)log 0.7(x + 3) < log 0.49(x 2 + 3x + 2)﹒【解答】(1)由真数x - 4 > 0与x - 2 > 0 ⇒ 即x > 4…①log 3(x - 4) = log 9(x - 4)2 ⇒ log 9(x - 4)2 < log 9(x - 2) 又底数9 > 1⇒ (x - 4)2 < x - 2﹐可得3 < x < 6…② 由①②可知﹕4 < x < 6﹒(2)真数恒正﹕x + 3 > 0且x 2 + 3x + 2 > 0 x > - 3且(x > - 1或x < - 2) ⇒ - 3 < x < - 2或x > - 1…① log 0.49(x + 3)2 < log 0.49(x 2 + 3x + 2) 又底数0.49 < 1⇒ (x + 3)2 > x 2 + 3x + 2 ⇒ 6x + 9 > 3x + 2 73x ⇒>-…②由①②知﹕723x -<<-或x > - 1﹒随堂练习.解下列各不等式:(1)212log (log )0x > (2)212log (log )0x <﹒【解答】(1)2122log (log )0log 1x >=⇒11221log 1log 2x >=⇒102x <<﹒ (2)2122log (log )0log 1x <=⇒120log 1x <<⇒1112221log 1log log 2x <<112x ⇒>>即112x <<﹒随堂练习.解不等式2122log (log (log ))1x >﹒【解答】2122log (log (log ))1x >21222log (log (log ))log 2x ⇒>2121122211log (log )2log ()log 24x ⇒>==(因为底数2 > 1)210log 4x ⇒<<(因为底数112<﹐且真数log 2x > 0)142222log 1log log 2log x ⇒<<=1x ⇒<随堂练习.不等式log 21(3x + 1) > 2之解为 。
对数不等式习题及答案
对数不等式习题及答案对数不等式是数学中的一种常见类型的不等式,它涉及到对数函数的性质和运算规则。
解决对数不等式的关键是要理解对数函数的性质,并运用这些性质来推导不等式的解集。
首先,我们来回顾一下对数函数的定义和性质。
对数函数是指以某个正数为底数的对数函数,常见的对数函数有以10为底数的常用对数函数和以自然常数e 为底数的自然对数函数。
对于任意正数a和正数x,我们有以下性质:1. 对数函数的定义:对于正数a和正数x,如果a^x=b,则称x为以a为底数的对数函数,记作log_a(b)。
2. 对数函数的基本性质:对于任意正数a、b和正数x,有以下运算规则:a) log_a(a)=1,即以a为底数的a的对数等于1。
b) log_a(1)=0,即以a为底数的1的对数等于0。
c) log_a(a^x)=x,即以a为底数的a的x次幂的对数等于x。
d) log_a(b)+log_a(c)=log_a(b*c),即以a为底数的b和c的乘积的对数等于b 和c的对数之和。
e) log_a(b)-log_a(c)=log_a(b/c),即以a为底数的b和c的商的对数等于b和c的对数之差。
f) log_a(b^x)=x*log_a(b),即以a为底数的b的x次幂的对数等于x乘以以a 为底数的b的对数。
了解了对数函数的定义和性质之后,我们可以开始解决对数不等式。
对数不等式的解集可以通过以下步骤来确定:步骤1:将对数不等式转化为指数形式。
对于以a为底数的对数不等式log_a(f(x))<g(x),我们可以将其转化为指数形式a^(log_a(f(x)))<a^(g(x))。
步骤2:利用指数函数的性质进行化简。
根据指数函数的性质,我们可以将上述不等式化简为f(x)<a^(g(x))。
步骤3:求解不等式。
根据化简后的不等式f(x)<a^(g(x)),我们可以通过分析函数f(x)和g(x)的性质,结合对数函数的性质,来确定不等式的解集。
高中数学测试题指数与对数不等式
高中数学测试题指数与对数不等式一. 指数不等式指数函数是高中数学中重要的一类函数,它在很多实际问题中有着广泛的应用。
指数不等式是指数函数的一个重要性质,在解决不等式问题中经常会用到。
1. 一次指数不等式一次指数不等式的一般形式为 $a^x > b$ 或 $a^x < b$,其中 a、b为正实数,且 $a \neq 1$。
解一次指数不等式需要利用指数与对数的性质。
例如,要求解不等式 $2^x > 8$。
解:首先我们可以将 8 表示为 2 的某个次幂,即 8 = $2^3$。
代入原不等式中,得到 $2^x > 2^3$。
由指数函数的单调性可知,只需考虑底数 a 大于 1 的情况。
因此,不等式转化为 $x > 3$。
解集为解不等式的实数范围为 x > 3。
2. 二次指数不等式二次指数不等式的一般形式为 $a^{x^2} > b$ 或 $a^{x^2} < b$,其中 a、b为正实数,且 $a \neq 1$。
解二次指数不等式时,需要运用指数函数的性质以及二次函数的性质。
例如,要求解不等式 $4^{x^2} < 1$。
解:首先,我们可以利用指数函数的性质将左侧的底数改写为底数为 2 的幂次表达式。
即不等式可转化为 $(2^2)^{x^2} < 1$。
接着,我们利用指数的乘法法则简化不等式为 $2^{2x^2} < 1$。
由指数函数的单调性以及不等式左侧是正数可知,底数 a 需要小于1。
因此,解不等式得到 $2x^2 < 0$。
解集为 x 的实数范围为 x = 0。
二. 对数不等式对数是指数的逆运算,对数函数也是高中数学中常见的函数之一。
对数函数和指数函数有密切的关系,对数不等式也是在解决不等式问题中常会遇到的一类问题。
1. 基本对数不等式基本对数不等式的一般形式为 $log_ax > b$ 或 $log_ax < b$,其中 a 为正实数,且 $a \neq 1$。
欣宜市实验学校二零二一学年度高二数学 指数不等式、对数不等式的解法典型例题分析 试题
黔西北州欣宜市实验学校二零二一学年度指数不等式、对数不等式的解法·例题例5-3-7 解不等式:解(1)原不等式可化为x2-2x-1<2(指数函数的单调性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解为-1<x<3。
(2)原不等式可化为注函数的单调性是解指数不等式、对数不等式的重要根据。
例5-3-8 解不等式log x+1(x2-x-2)>1。
解[法一] 原不等式同解于所以原不等式的解为x>3。
[法二] 原不等式同解于log x+1(x2-x-2)>log x+1(x+1)所以原不等式的解为x>3。
注解这类对数不等式,要注意真数为正数,并须对底数的分类讨论。
解原不等式可化为22x-6×2x-16<0令2x=t(t>0),那么得t2-6t-16<0(t+2)(t-8)<0-2<t<8又t>0,故0<t<8即0<2x<8,解得x<3。
注解这类指数不等式,常常需要通过变量代换把它变为整式不等式来解。
解原不等式可化为解得t<-2或者0<t<1,即注解不同底的对数不等式,应先化为同底对数的不等式,再利用对数函数的单调性将它转化为整式不等式求解。
这时也常常用到换元法。
例5-3-11设a>0且a≠1,解不等式解原不等式可化为令log a x=t,那么得当0<a<1时,由指数函数的单调性,有4-t2<1-2t t2-2t-3>0(t+1)(t-3)>0t<-1,或者t>3当a>1时,那么有4-t2>1-2t t2-2t-3<0(t+1)(t-3)<0-1<t<3注解既含指数又含对数的不等式的根本思想是“化同底,求单一〞,即把不同底的指数或者对数化为同底的,再通过函数的单调性将复合情形转化为只含指数或者对数的单一情形求解。
例5-3-12设f(x)是定义在实数集R内的函数,对任意x,y∈R,有f(x+y)=f(x)·f(y);并且当x>0时,f(x)>1,f(1)=a。
解关于x的不等式f(x2+x-4)>a2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课堂例题】
例1.试解下列不等式:
(1)123
9x x ->; (2) 1()32x ≤;
(3)2lg lg(6)x x >+; (4)0.5log 1x >-.
课堂自测
1.解下列不等式: (1)23712
()2x x +-> (2)11332
log ()log x x x -> (3)11()
93x -<
(4)2lg(6)1x -≤
2.解下列不等式:
(1)469x x x +>; (2)2log log 430x x +-≤;
3.解不等式:2
(2)log (34)0x x x ---<
(选用)例2.解关于x 的不等式:2log (2)log 20,(0,1)a a a x a x a a -++>>≠.
【知识再现】
下列常见指数不等式与对数不等式的等价变形为:
()()(0,1)f x g x a a a a ⎧>≠>⇔⎨⎩
(0,1)log ()log ()a a a a f x g x ⎧>≠>⇔⎨⎩
【基础训练】
(解不等式的结果一律集合(区间)表示)
1.解下列不等式: (1)352114()2x x +->; (2)451381x -≥.
2.解下列不等式:
(1)222log log x x ≥; (2)0.5log 2x ≤-.
3.(1)不等式11()161282
x <≤的整数解的个数为( ); A.10 B.11 C.12 D.13
(2)不等式3log |2|2x -<的整数解的个数为( );
A.15
B.16
C.17
D.18
(3)若2log 13
a
<,则a 的取值范围是( ). A.2(0,)3 B.2(,)3+∞ C.2(,1)3 D.2(0,)(1,)3+∞ 4.解不等式:2log (6)2x x x -->.
5.解不等式:2882lg33
10x x +->.
6.已知0,1a a >≠,解关于x 的不等式:
(1)log 1a x >; (2)26160x x
a a --≥.
7.
解不等式:||22x x +≥
【巩固提高】
8.解不等式组:1122
1124log (32)log (1)
log (42)1log (21)
x x x x ->+⎧⎪⎨-+≥-⎪⎩.
9.利用函数、方程与不等式的关系,解不等式:
232x x -+>
要求:①解集中,区间的端点如有必要,请精确到0.01;
②解集需满足纯粹性,即解集中不能包含不满足不等式的实数.
(选做)10.以下两题任选一题:
(1)求不等式77(lg 3)lg 2lg 30x x x ++++≥的解集.
(2)已知对于任意正整数n ,不等式lg (1)lg a n a n a <+都成立, 求实数a 的取值范围.
【温故知新】
11.已知()f x 是定义在区间[2,2]-上的单调减函数,且(1)2f =,
则不等式2(3)2f x ->的解集是 .
【课堂例题答案】
例1.(1)1(,)3-∞-;(2)12[log 3,)+∞;(3)(6,2,)(3,)--+∞;(4)(0,2). 课堂自测: 1.(1)4(,)3x ∈+∞;(2)(1,2)x ∈;(3)(1,)x ∈-+∞
;(4)[4,(6,4]x ∈-
2.(1)2
3(,log x ∈-∞;(2)(0,1)[2,4]x ∈;(3)x ∈. 2(,),a a +∞11a <,(0f ⎧⎨<⎩(,)x a ∈+∞;[log 8,a +∞(21)][,2
-或0122
x x x <⎧⎪⎨+≥⎪⎩
[1,2).。