指数不等式、对数不等式考试试题及答案
高三数学指数与指数函数试题
高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
高一数学具体的不等式试题答案及解析
高一数学具体的不等式试题答案及解析1.记关于x的不等式的解集为P,不等式的解集为Q.(1)若a=3,求P(2)若求正数a的取值范围【答案】(1)(2)【解析】思路分析:(1)解得(2)化简由得得到。
解:(1)由得(2)由得所以,即的取值范围是【考点】集合的概念,集合的运算,简单不等式的解法。
点评:中档题,为进行集合的运算,首先化简集合,明确集合中的元素是什么。
2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.不等式的解集是 .【答案】【解析】根据题意,由于不等式,故可知不等式的解集为【考点】一元二次不等式点评:主要是考查了一元二次不等式的求解,属于基础题。
4.若,则下列不等式:①;②;③;④中,正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】取,可以验证①②③都是正确的,所以正确的有3个.【考点】本小题主要考查不等式的性质的应用.点评:遇到考查不等式性质的题目时,要注意特殊值法的应用,这种方法一般情况下简单有效.5.函数在上满足,则的取值范围是()A.B.C.D.【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
6.不等式的解集是。
【答案】(-2,-1/3)【解析】根据题意,由于,故可知答案为(-2,-1/3)【考点】分式不等式点评:主要是考查了不等式的求解,移项通分合并是解不等式的常用的变形方法,属于基础题。
7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
【考点】一元二次不等式的解集。
点评:简单题,一元二次不等式的解集,可借助于相应二次函数的图象、一元二次方程的根写出。
高三数学对数与对数函数试题答案及解析
高三数学对数与对数函数试题答案及解析1.函数(其中且)的图像恒过定点,若点在直线上,其中,则的最小值为 .【答案】2【解析】由y=log(x+3)-1经过的定点为(-2,-1)a于是-2m-n+4=0,得2m+n=4,且mn>0,于是m>0,n>0所以=2当且仅当m=1,n=2时等号成立,即的最小值为2.【考点】函数图象过定点,基本不等式(2x-1)的定义域为________________.2.函数f(x)=log2【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.计算的结果是()A.B.2C.D.3【答案】B【解析】,选B【考点】对数基本运算.4.若的最小值是A.B.C.D.【答案】D【解析】由题意,且,所以又,所以,,所以,所以,当且仅当,即,时,等号成立.故选D.【考点】1、对数的运算;2、基本不等式.5.若,则=.【答案】【解析】∵,,∴.【考点】分段函数的函数值、三角函数值的计算、对数式的计算.6.设a=lg e,b=(lg e)2,c=lg,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a【答案】B【解析】∵1<e<3,则1<<e<e2<10.∴0<lg e<1.则lg=lg e<lg e,即c<a.又0<lg e<1,∴(lg e)2<lg e,即b<a.同时c-b=lg e-(lg e)2=lg e(1-2 lg e)=lg e·lg>0.∴c>b.故应选B.7.函数y=(x2-6x+17)的值域是________.【答案】(-∞,-3]【解析】令t=x2-6x+17=(x-3)2+8≥8,y=为减函数,所以有≤=-3.8.已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.【解析】解:当a>1时,f(x)=logax在上单调递增,要使x∈都有|f(x)|≤1成立,则有解得a≥3.∴此时a的取值范围是a≥3.当0<a<1时,f(x)=logax在上单调递减,要使x∈都有|f(x)|≤1成立,则有,解得0<a≤.∴此时,a的取值范围是0<a≤.综上可知,a的取值范围是∪[3,+∞).9.(5分)(2011•重庆)设a=,b=,c=log3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【答案】B【解析】可先由对数的运算法则,将a和c化为同底的对数,利用对数函数的单调性比较大小;再比较b和c的大小,用对数的换底公式化为同底的对数找关系,结合排除法选出答案即可.解:由对数的运算法则,a=log32>c;排除A和C.因为b=log23﹣1,c=log34﹣1=,因为(log23)2>2,所以log23>,所以b>c,排除D故选B.点评:本题考查对数值的大小比较,考查对数的运算法则和对数的换底公式,考查运算能力.10.函数的值域为 .【答案】【解析】由得 ,所以函数的定义域是:设点=所以,,所以答案填:【考点】1、对数函数的性质;2、数形结合的思想.11.函数的定义域是A.[1,2]B.C.D.【答案】C【解析】根据函数定义域的要求得:.【考点】(1)函数的定义域;(1)对数函数的性质.12.对任意实数a,b定义运算如下,则函数的值域为( )A.B.C.D.【答案】B【解析】因为,对任意实数a,b定义运算如下,所以,==,故,选B.【考点】分段函数,对数函数的性质,新定义.13.已知函数f(x)=log2x-2log2(x+c),其中c>0,若对任意x∈(0,+∞),都有f(x)≤1,则c的取值范围是________.【答案】c≥【解析】由题意,在x∈(0,+∞)上恒成立,所以c≥14. 若函数f(x)=log 2|ax -1|(a >0),当x≠时,有f(x)=f(1-x),则a =________. 【答案】2【解析】由f(x)=f(1-x),知函数f(x)的图象关于x =对称, 而f(x)=log 2+log 2|a|,从而=,所以a =2.15. 已知两条直线l 1:y =m 和l 2:y =,l 1与函数y =|log 2x|的图象从左至右相交于点A 、B ,l 2与函数y =|log 2x|的图象从左至右相交于点C 、D.记线段AC 和BD 在x 轴上的投影长度分别为a 、b.当m 变化时,求的最小值. 【答案】8【解析】由题意得x A =m,x B =2m ,x C =,x D =,所以a =|x A -x C |=,b =|x B -x D |=,即==·2m =2+m.因为+m = (2m +1)+-≥2-=,当且仅当 (2m +1)=,即m =时取等号.所以,的最小值为=8.16. 设则a ,b ,c 的大小关系为 A .a <c <b B .b <a <c C .a <b <c D .b <c <a【答案】B 【解析】因为所以显然,所以的值最大.故排除A,D 选项.又因为,所以.即.综上.故选B.本小题关键是进行对数的运算.【考点】1.对数的运算.2.数的大小比较的方法.17. 函数y=log a (x-1)+2(a>0,且a≠1)的图象恒过定点 . 【答案】(2,2)【解析】∵log a 1=0,∴x-1=1,即x=2,此时y=2,因此函数恒过定点(2,2).18. 已知函数f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =f,则a ,b ,c 的大小关系是________.【答案】c >a >b【解析】由f (x )+xf ′(x )>0得(xf (x ))′>0,令g (x )=xf (x ),则g (x )在(0,+∞)递增,且为偶函数,且a =g (40.2),b =g (log 43),c =g =g (-2)=g (2),因为0<log 43<1<40.2<2,所以c >a>b .19. 在ABC 中,若,则A=( )A .B .C .D .【答案】C【解析】由,整理得,又,选C.【考点】对数及其运算,余弦定理的应用.20.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围.【答案】(1);(2)【解析】(1)通过求导可得.又因为x=2是极值点.即可求得.(2)通过对对数的定义域可得符合题意的不等式.在上恒成立.所以转化为研究二次函数的最值问题.通过对称轴研究函数的单调性即可得到结论.本题的的关键是对含参的函数的最值的讨论.以二次的形式为背景紧扣对称轴这个知识点.试题解析:(1)因为.因为x=2为f(x)的极值点.所以即.解得.又当时.从而x=2为f(x)的极值点成立. (2)因为f(x)在区间上为增函数.所以.在区间上恒成立. ①当时. 在上恒成立.所以f(x)在上为增函数.故符合题意.②当时.由函数f(x)的定义域可知,必须有时恒成立.故只能.所以在区间上恒成立.令g(x)= .其对称轴为.因为.所以<1.从而g(x) 在上恒成立.只需要g(3) 即可.由g(3)= .解得:.因为.所以.综上所述. 的取值范围为.【考点】1.对数函数的知识点.2.最值问题.3.含参的讨论.21.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为 .【答案】【解析】的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=,(x1-1)(x2-1)=x1x2-(x1+x2)+1=+m+1<0,即∴-m<n<-3m-2,为平面区域D,∴m<-1,n>1,因为的图像上存在区域D内的点,所以,,因为,所以,所以解得.【考点】1.函数的导数;2.对数的性质.22.设是定义在上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是 .【答案】【解析】∵对于任意的x∈R,都有f(2-x)=f(x+2),∴函数f(x)的图象关于直线x=2对称,又∵当x∈[-2,0]时,f(x)=-1,且函数f(x)是定义在R上的偶函数,若在区间(-2,6)内关于x的方程f(x)-loga (x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有三个不同的交点,如下图所示:又f(-2)=f(2)=3,则有 loga (2+2)<3,且loga(6+2)≥3,解得.【考点】1.指数函数与对数函数的图象与性质;2.函数的零点与方程根的关系23.对于以下结论:①.对于是奇函数,则;②.已知:事件是对立事件;:事件是互斥事件;则是的必要但不充分条件;③.若,,则在上的投影为;④.(为自然对数的底);⑤.函数的图像可以由函数图像先左移2个单位,再向下平移1个单位而来.其中,正确结论的序号为__________________.【答案】③④⑤【解析】对①,不一定有意义,所以不正确;对②,是的充分但不必要条件;所以不正确;对③,易得在上的投影为;所以正确;对④,构造函数,则.由此可得在上单调递减,故成立;所以正确;对⑤,原函数可变为:,所以将函数图像先左移2个单位,再向下平移1个单位可得函数的图像.正确.【考点】1、函数的性质;2、随机事件及二项分布;3、向量的投影;4、充分必要条件.24.设,,,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c【答案】D【解析】,,,又,,,,所以,所以.【考点】对数与对数运算25.函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.3【答案】C【解析】将题中所给的函数画出如下:,根据图像,易知有2个交点.【考点】1.函数的零点;2.函数的图像画法.26.不等式的解集为_____________.【答案】【解析】原不等式等价于,解得.【考点】对数函数的定义与性质27.已知函数f(x)=|lg(x-1)|若a≠b,f(a)=f(b),则a+2b的取值范围是.【答案】【解析】由得,且,由对数函数的特征得,所以,故.【考点】对数函数性质、基本不等式.28.已知函数.(1) 当时,函数恒有意义,求实数a的取值范围;(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.【答案】(1);(2)存在,.【解析】(1)首先根据对数函数的底数,得到为减函数,最小值是,再根据对数函数的真数大于0,得到恒成立,在范围内解不等式即可;(2)先看真数部分是减函数,由已知“在区间上为增函数”可得,为减函数,此时得到;根据“的最大值为1”,结合对数函数的真数大于0,可知,解出,再判断它是不是在的范围内,在这个范围内,那么得到的的值满足题目要求,不在这个范围内就说明满足题目要求的是不存在的.试题解析:(1)∵,设,则为减函数,时,t最小值为, 2分当,恒有意义,即时,恒成立.即;4分又,∴ 6分(2)令,则;∵,∴函数为减函数,又∵在区间上为增函数,∴为减函数,∴,8分所以时,最小值为,此时最大值为;9分又的最大值为1,所以, 10分∴,即,所以,故这样的实数a存在. 12分【考点】1.对数函数的定义及定义域;2.对数函数的单调性及其应用;3.对数函数的值域与最值;4.简单复合函数的单调性;5.解不等式29.若函数(其中为常数且),满足,则的解集是 .【答案】【解析】函数定义域为,由,知函数为单调递减函数,所以.由知,满足:,解得.【考点】1.不等式求解;2.对数的单调性;3.函数的定义域.30.已知函数(为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对任意的,在上存在两个不同的使得成立,求的取值范围.【答案】(1)的减区间为,增区间为;(2)的最小值为;(3)的取值范围是.【解析】(1)将代入函数的解析式,利用导数求出的单调递增区间和递减区间;(2)将函数在上无零点的问题转化为直线与曲线在区间上无交点,利用导数确定函数在区间上的图象,进而求出参数的取值范围,从而确定的最小值;(3)先研究函数在上的单调性,然后再将题干中的条件进行适当转化,利用两个函数的最值或端点值进行分析,列出相应的不等式,从而求出的取值范围.试题解析:(1)时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不可能故要使在上无零点,只要对任意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当变化时,,的变化情况如下时,,任意定的,在区间上存在两个不同的使得成立,当且仅当满足下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④当时对任意,在上存在两个不同的使成立【考点】1.函数的单调区间;2.函数的零点;3.函数的存在性问题31.设函数,若对任意实数,函数的定义域为,则的取值范围为____________.【答案】【解析】函数的定义域为,则满足,即对任意实数恒成立,只要比的最大值大即可,而的最大值为,即.【考点】函数的定义域恒成立问题,学生的基本运算能力与逻辑推理能力.32.设,,则 ( )A.B.C.D.【答案】D.【解析】是上的增函数,又.【考点】对数值大小的比较.33.,,,则与的大小关系为()A.B.C.D.不确定【答案】C【解析】因为,,即,所以,故选C.【考点】对数的运算34.函数的定义域为()A.B.C.D.【答案】D【解析】要使函数解析式有意义需满足:解得且,即选D.【考点】1.对数函数;2.一元二次不等式.35.若,则()A.<<B.<<C.<<D.<<【答案】C【解析】因为所以,而,故,又,而,故,综上,,选C.【考点】对数函数.36.设,,,则()A.B.C.D.【答案】D【解析】一般地,只要涉及3个及以上的数比较大小,应找一中间量来比较,比如0、1.由对数的性质知:,,。
不等式高考试题精选
不等式高考试题精选(2)一.填空题(共40小题)1.已知a>0,b>0,且2a+b=4,则的最小值是.2.已知正数a,b满足4a+b=ab,则a+b的最小值为.3.函数f(x)=x+(x>0)的最小值为.4.已知,那么y的最小值是.5.设x,y∈R+且x+y=2,则+的最小值为.6.均值不等式已知x+3y=4xy,x>0,y>0则x+y的最小值是.7.若x>0,y>0,且xy=4,则的最小值为.8.若实数x满足x>﹣4,则函数f(x)=x+的最小值为.9.若实数a,b满足2a+2b=1,则a+b的最大值是.10.若x>1,则x+的最小值是.11.已知a>0,b>0且a+b=2,则的最小值为.12.若x,y>0,且,则x+3y的最小值为.13.若x≥0,则y=x+的取值范围为.14.若x∈(1,+∞),则y=x的最小值是.15.已知x>0,y>0,且2x+y=1,则+的最小值是.16.已知正实数x,y满足2x+y=1,则xy的最大值为.17.若x>0,y>0,x+xy=2,则x+y的最小值是.18.若x,y∈R,且3x+9y=2,则x+2y的最大值是.19.已知正数x,y满足,则log2x+log2y的最小值为.20.已知a>0,b>0,a+2b=3,则+的最小值为.21.已知x>0,则的最小值为.22.已知ab>0,且a+4b=1,则的最小值为.23.当x>0时,不等式x+≥a恒成立,则实数a的取值范围是.24.若正数x,y满足x+2y﹣9=0,则的最小值为.25.已知不等式对一切x∈(1,+∞)恒成立,则实数m的取值范围是.26.已知正数x,y满足2x+y=1,则+的最小值为.27.已知x>0,则的最小值等于.28.若正数x,y满足=5,则4x+3y的最小值为.29.若不等式x2﹣log a x<0对一切恒成立,则a的取值范围为.30.若正实数{a n}满足a+2b=1,则+的最小值为.31.已知x,y∈R*,且x+4y=1,则+的最小值为.32.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=.33.已知x>0,则函数f(x)=7﹣x﹣的最大值为.34.已知=1,且x>0,y>0,则x+y的最小值是.35.若直线ax+by﹣2=0(a>0,b>0)过点(1,2),则的最小值为.36.已知x>0,y>0,4x+y=1,则+的最小值为.37.设x≥0,y≥0,若2x+y=2,则xy2的最大值是.38.已知实数x,y满足y=2,则+的最小值为.39.若实数a,b满足2a=5b=λ且,则λ的值为.40.不等式(x﹣3)2﹣2﹣3<0的解是.不等式高考试题精选(2)参考答案与试题解析一.填空题(共40小题)1.已知a>0,b>0,且2a+b=4,则的最小值是.【解答】解:因为a>0,b>0,所以,所以.故答案为.2.已知正数a,b满足4a+b=ab,则a+b的最小值为9.【解答】解:∵正数a,b满足4a+b=ab,即=1.则a+b=(a+b)=5++≥5+2=9,当且仅当b=2a=6时取等号.∴a+b的最小值为9.故答案为:9.3.函数f(x)=x+(x>0)的最小值为4.【解答】解:∵x>0,∴f(x)=x+≥=4,当且仅当x=,即x=2时,函数f(x)=x+(x>0)的最小值为4.故答案为:44.已知,那么y的最小值是3.【解答】解:∵x>1,则y=x﹣1++1≥2+1=3,当且仅当x=2时取等号.故答案为:3.5.设x,y∈R+且x+y=2,则+的最小值为.【解答】解:∵x,y∈R+且x+y=2,∴+===,当且仅当=时取等号.∴+的最小值为.故答案为:.6.均值不等式已知x+3y=4xy,x>0,y>0则x+y的最小值是.【解答】解:x+3y=4xy,x>0,y>0,∴=4.则x+y=(x+y)=≥=,当且仅当x=y=时取等号.故答案为:.7.若x>0,y>0,且xy=4,则的最小值为1.【解答】解:x>0,y>0,且xy=4,则≥2=1,当且仅当x=y=2时取等号,故选:18.若实数x满足x>﹣4,则函数f(x)=x+的最小值为2.【解答】解:∵x>﹣4,∴x+4>0,∴f(x)=x+=x+4+﹣4≥2﹣4=2当且仅当x+4=即x=﹣1时取等号,故答案为:2.9.若实数a,b满足2a+2b=1,则a+b的最大值是﹣2.【解答】解:∵2a+2b=1,∴=,即,∴a+b≤﹣2,当且仅当,即a=b=﹣1时取等号,∴a=b=﹣1时,a+b取最大值﹣2.故答案为:﹣2.10.若x>1,则x+的最小值是3.【解答】解:∵x>1,∴x+=x﹣1++1+1=3,当且仅当x﹣1=即x=2时取等号,∴x=2时x+取得最小值3,故答案为:3.11.已知a>0,b>0且a+b=2,则的最小值为2.【解答】解:∵a>0,b>0且a+b=2,则===2,当且仅当a=b=1时取等号.因此其最小值为2.故答案为:2.12.若x,y>0,且,则x+3y的最小值为16.【解答】解:∵x,y>0,且,∴x+3y==10+≥10+6=16,当且仅当x+3y=1,即=y取等号.因此x+3y的最小值为16.故答案为16.13.若x≥0,则y=x+的取值范围为[3,+∞).【解答】解:∵x≥0,则y=x+=x+1+﹣1≥2﹣1=3,当且仅当x=1时取等号.∴y=x+的取值范围为[3,+∞).故答案为:[3,+∞).14.若x∈(1,+∞),则y=x的最小值是5.【解答】解:∵x∈(1,+∞),∴x﹣1>0,∴y=x+=x﹣1++1≥2 +1=4+1=5,当且仅当x=3时取等号,∴y=x+的最小值是5,故答案为:5.15.已知x>0,y>0,且2x+y=1,则+的最小值是3+2.【解答】解:∵x>0,y>0,且2x+y=1,则+=(2x+y)=3+≥3+2=3+2,当且仅当y==﹣1时取等号.其最小值为3+2.故答案为:3+2.16.已知正实数x,y满足2x+y=1,则xy的最大值为.【解答】解:根据题意,正实数x,y满足2x+y=1,则xy=(2x)y≤[]2=×=,当且仅当2x=y=,时等号成立,即xy的最大值为;故答案为:.17.若x>0,y>0,x+xy=2,则x+y的最小值是2﹣1.【解答】解:∵x>0,y>0,x+xy=2,∴y=﹣1,∴x+y=x+﹣1﹣1=2﹣1,当且仅当x=时取等号.故答案为:2﹣1.18.若x,y∈R,且3x+9y=2,则x+2y的最大值是0.【解答】解:∵3x+9y=2,∴2=3x+9y≥2=2,当且仅当x=0,y=0时取等号,∴3x+2y≤1=30,∴x+2y≤0,∴则x+2y的最大值是0,故答案为:019.已知正数x,y满足,则log2x+log2y的最小值为2.【解答】解:正数x,y满足+=xy,∴xy=+≥2=,当且仅当y=16x时,即x=取等号,∴(xy)3≥43,解得xy≥4,∴log2x+log2y=log2xy≥log24=2,故答案为:2.20.已知a>0,b>0,a+2b=3,则+的最小值为.【解答】解:∵a>0,b>0,a+2b=3,∴+=(+)(a+2b)×=≥+=,(当且仅当=即a=,b=时取等号),∴+的最小值为;故答案为:.21.已知x>0,则的最小值为4.【解答】解:∵x>0,∴=4,当且仅当x=时取等号.因此的最小值为4.故答案为4.22.已知ab>0,且a+4b=1,则的最小值为9.【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4++≥5+2=9,当且仅当a=,b=时取等号,∴的最小值为9,故答案为:9.23.当x>0时,不等式x+≥a恒成立,则实数a的取值范围是(﹣∞,2] .【解答】解:当x>0时,不等式x+≥2=2,当且仅当x=1时取等号,∵不等式x+≥a恒成立,∴a≤2,故答案为:(﹣∞,2]24.若正数x,y满足x+2y﹣9=0,则的最小值为1.【解答】解:,x=y=3时取等号.所以的最小值为1.故答案为:125.已知不等式对一切x∈(1,+∞)恒成立,则实数m的取值范围是[﹣5,+∞).【解答】解:不等式可得:(x﹣1)+>﹣1﹣m.∵x>1,∴x﹣1>0,∴(x﹣1)+≥2=4,当且仅当x=3时取等号.即:4≥﹣1﹣m,解得:m≥﹣5.实数m的取值范围是[﹣5,+∞).故答案为:[﹣5,+∞).26.已知正数x,y满足2x+y=1,则+的最小值为.【解答】解:正数x,y满足2x+y=1,则+=(2x+y)=2+++≥+2=,当且仅当x=y=时取等号.∴+的最小值为.故答案为:.27.已知x>0,则的最小值等于2+4.【解答】解:≥2+2=2+4,当且仅当x=时取等号,故最小值为.故答案为:2+428.若正数x,y满足=5,则4x+3y的最小值为5.【解答】解:正数x,y满足=5,则4x+3y=(4x+3y)=≥=5,当且仅当y=2x=1时取等号.∴4x+3y的最小值为5.故答案为:5.29.若不等式x2﹣log a x<0对一切恒成立,则a的取值范围为[).【解答】解:不等式x2﹣log a x<0对一切恒成立,即x2<log a x在内图象二次函数在下方,对数函数在上方;由此可知:0<a<1,当时,y=x2,这二次函数是递增函数,最大值小于.而y=log a x对数函数是减函数,其最小值大于log a.∴log a解得:a≥.∴a的取值范围为[)故答案为[).30.若正实数{a n}满足a+2b=1,则+的最小值为9.【解答】解:+=(a+2b)(+)=1+4++≥5+2=5+4=9,当且仅当a=b=,故+的最小值为9.故答案为:9.31.已知x,y∈R*,且x+4y=1,则+的最小值为9.【解答】解:已知x,y∈R*,且x+4y=1,则+=≥5+4=9.故答案为:9.32.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a=36.【解答】解:∵x>0,a>0,∴f(x)=4x+≥2=4,当且仅当4x=即x=时取得等号.∴,解得a=36.故答案为:36.33.已知x>0,则函数f(x)=7﹣x﹣的最大值为1.【解答】解:∵x>0,则函数f(x)=7﹣x﹣=7﹣≤7﹣=1,当且仅当x=3时取等号.故答案为:1.34.已知=1,且x>0,y>0,则x+y的最小值是25.【解答】解:∵=1,且x>0,y>0,∴x+y=()(x+y)=13++≥13+2=25当且仅当=即x=10且y=15时取等号.故选答案为:25.35.若直线ax+by﹣2=0(a>0,b>0)过点(1,2),则的最小值为.【解答】解:直线ax+by﹣2=0(a>0,b>0)过点(1,2),∴a+2b=2.则=+=≥=,当且仅当a=b=时取等号.故答案为:.36.已知x>0,y>0,4x+y=1,则+的最小值为16.【解答】解:∵x>0,y>0,4x+y=1,则+=(4x+y)=8+≥8+2=16,当且仅当y=4x=时取等号.其最小值为16.故答案为:16.37.设x≥0,y≥0,若2x+y=2,则xy2的最大值是.【解答】解:∵x≥0,y≥0,2x+y=2,∴2=2x++≥,化为:xy2≤,当且仅当4x=y=时取等号.则xy2的最大值是.故答案为:.38.已知实数x,y满足y=2,则+的最小值为.【解答】解:实数x,y满足y=2,∴y==,即xy=4.则+≥2=2=,当且仅当x=2y=2时取等号.故答案为:.39.若实数a,b满足2a=5b=λ且,则λ的值为10.【解答】解:∵2a=5b=λ,∴a=log2λ,b=log5λ,故=logλ2,=logλ5,故=logλ10,解得:λ=10,故答案为:10.40.不等式(x﹣3)2﹣2﹣3<0的解是(0,6).【解答】解:设=t,则原不等式化为t2﹣2t﹣3<0,(t≥0),所以t∈[0,3),即∈[0,3),所以(x﹣3)2<9,解得﹣3<x﹣3<3,所以0<x<6,故原不等式的解集为(0,6);故答案为:(0,6).。
(精选试题附答案)高中数学第四章指数函数与对数函数真题
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
高三数学不等式试题答案及解析
高三数学不等式试题答案及解析1.已知,则A.n<m<1B.1<n<m C.1<m<n D.m<n<1【答案】B【解析】函数是减函数,所以故选B2.现将一个质点随即投入区域中,则质点落在区域内的概率是【答案】【解析】略3.不等式的解集为或,则实数的取值范围.【答案】【解析】略4.如果实数满足条件,那么的最大值为()A.B.C.D.【答案】B【解析】解:当直线过点(0,-1)时,最大,故选B5.一元二次不等式的解集为,则的最小值为.【答案】【解析】由已知得,解得,又,则。
【考点】一元二次不等式的解法及基本不等式的应用。
6.设,则函数的最小值是()A.2B.C.D.3【答案】C【解析】因为,所以,令,则,由于,故知函数是减函数,因此;故选C.【考点】1.换元法;2.函数的最值.7.若变量x,y满足约束条件,则的最小值为.【答案】-6【解析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由与的交点得到,∴,故答案为:﹣6.【考点】简单线性规划.8.已知的大小关系是()A.a<c<b B.b<a<e C.c<a<b D.a<b<c【答案】D【解析】因为.所以,故D正确.【考点】指数函数,对数函数.9.设,则,,的大小关系是__________________.(用“<”连接)【答案】【解析】令,则,∴函数为增函数,∴,∴,∴,∴,又,∴.【考点】利用导数研究函数的单调性、作差比较大小.10.对一切实数x,不等式恒成立,则实数a的取值范围是()A.(-,-2)B.[-2,+)C.[-2,2]D.[0,+)【答案】B【解析】对一切实数x,不等式恒成立,等价于对任意实数,恒成立,因此有或,解得,故选B.【考点】不等式恒成立,二次函数的性质.【名师点晴】本题考查不等式恒成立问题,由于题中含有绝对值符号,因此解题的关键是换元思想,设,这样原来对一切实数恒成立,转化为对所有非负实数,不等式恒成立,也即二次函数在区间上的最小值大于或等于0,最终问题又转化为讨论二次函数在给定区间的最值问题,解题中始终贯彻了转化与化归的数学思想.11.设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为.【答案】【解析】如图所示区域是及其内部.即,所以其面积为.区域是图中阴影部分,面积为.所以所求概率为.【考点】1几何概型概率;2定积分的几何意义.12.已知实数x、y满足,如果目标函数的最小值为-1,则实数m=().A.6B.5C.4D.3【答案】B【解析】将化为,作出可行域和目标函数基准直线(如图所示),当直线向左上方平移时,直线在轴上的截距增大,即变小,所以当直线过点时,取得最小值,即,解得;故选B.【考点】简单的线性规划.13.已知正数满足,则的最小值为()A.2B.0C.-2D.-4【答案】D【解析】作出题设约束条件表示的可行域,如图内部(含边界),作直线,直线的纵截距是,因此向上平移直线,当过点时,取得最小值,故选D.【考点】简单的线性规划问题.14.已知,满足约束条件若的最小值为,则()A.B.C.D.【答案】B【解析】先根据约束条件画出可行域,设,将最大值转化为轴上的截距,当直线经过点时,最小,由得:,代入直线,解得故答案选【考点】线性规划.15.选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若时,,求实数的取值范围.【答案】(1)(2)【解析】(1)把要解的不等式等价转化为与之等价绝对值不等式,再求出此不等式的解集,即得所求(2)当时,即由此得讨论即可得到实数的取值范围试题解析:(1)当时,不等式为当时,不等式化为,不等式不成立;当时,不等式化为,解得;当时,不等式化为,不等式必成立.综上,不等式的解集为.(2)当时,即由此得当时,的最小值为7,所以的取值范围是【考点】绝对值不等式16.已知函数,其中且.(1)当时,若无解,求的范围;(2)若存在实数,(),使得时,函数的值域都也为,求的范围.【答案】(1);(2).【解析】(1)分析题意可知,不等式无解等价于恒成立,参变分离后即再进一步等价为,即可求解;(2)分析函数的单调性,可知其为单调递增函数,换元令,从而可将问题等价转化为二次方程根的分布,列得关于的不等式即可求解.试题解析:(1)∵,∴无解,等价于恒成立,即恒成立,即,求得,∴;(2)∵是单调增函数,∴,即,问题等价于关于的方程有两个不相等的解,令,则问题等价于关于的二次方程在上有两个不相等的实根,即,即,得.【考点】1.恒成立问题;2.二次方程的根的分布;3.转化的数学思想.17.选修4-5:不等式选讲已知函数(1)解不等式(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式,主要是分类讨论,分类标准由绝对值的定义确定;(2)不等式对任意的恒成立,即的最小值满足,由(1)的讨论,可得.试题解析:(1),当时,由,此时无解当时,由当时,由综上,所求不等式的解集为(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为,不等式,对任意的恒成立即,解得故的取值范围为.【考点】解绝对值不等式,不等式恒成立问题,函数的最值.18.若不等式组表示的平面区域为,不等式表示的平面区域为.现随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【答案】.【解析】不等式组表示的平面区域为,不等式表示的平面区域为.的面积为,其中满足的图形面积为,所以随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【方法点晴】本题属于几何概型的问题,通常在几何概型中,事件的概率计算公式为:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量.因此本题解题思路清晰,作出图形,计算相关三角形的面积,代入上述公式便得答案.19.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】试题解析:依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处取最大值是4,在处最小值是-2,所以,所以的最大值是4,故选B.【考点】简单线性规划20.选修4-5:不等式选讲已知命题“,”是真命题,记的最大值为,命题“,”是假命题,其中.(Ⅰ)求的值;(Ⅱ)求的取值范围.【答案】(Ⅰ).(Ⅱ).【解析】试题解析:(Ⅰ)因为“,”是真命题,所以,恒成立,又,所以恒成立,所以,.又因为,“”成立当且仅当时.因此,,于是.(Ⅱ)由(Ⅰ)得,因为“,”是假命题,所以“,”是真命题.因为(),因此,,此时,即时.即,,由绝对值的意义可知,.【考点】不等式选讲21.已知实数满足不等式组则的最小值为______.【答案】【解析】由得,则当直线在y轴上的截距最大时取得最小值,所以当直线经过A(2,3)时,z最小,即当x=2,y=3,取得最小值-4.【考点】线性规划22.若关于的不等式组,表示的平面区域是直角三角形区域,则正数的值为()A.1B.2C.3D.4【答案】B【解析】如图,易知直线经过定点,又知道关于的不等式组,表示的平面区域是直角三角形区域,且,所以,解得,故选B.【考点】线性规划.23.已知函数,且关于的不等式的解集为R.(1)求实数的取值范围;(2)求的最小值.【答案】(1);(2)9【解析】(1)由绝对值的性质可知,由此解不等式即可求出结果;(2)由(1),根据基本不等式的性质,即可求出结果.试题解析:解:(1)依题意,(2)时,当且仅当,即时等号成立。
高三数学对数与对数函数试题答案及解析
高三数学对数与对数函数试题答案及解析1.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围为.【答案】(0,1)【解析】因为由得:,又,所以由f(e x)<0得:【考点】利用导数解不等式2.函数f(x)=log2(2x-1)的定义域为________________.【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.函数y=(-x2+6x)的值域()A.(0,6)B.(-∞,-2]C.[-2,0)D.[-2,+∞)【答案】D【解析】∵-x2+6x=-(x-3)2+9,∴0<-x2+6x≤9,∴y≥9=-2,故选D.4.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.5.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.6.设a=log36,b=log510,c=log714,则a,b,c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c.7. [2014·湛江模拟]已知函数y=loga(2-ax)在区间[0,1]上是关于x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)【答案】B【解析】由题意可知,a>0,故内函数y=2-ax必是减函数,又复合函数是减函数,所以a>1,同时在[0,1]上2-ax>0,故2-a>0,即a<2,综上可知,a∈(1,2).8.已知上的增函数,那么的取值范围是A.B.C.D.【答案】C【解析】由题设,故选C.【考点】1、分段函数;2、对数函数的性质;3、不等式组的解法.9. 2log510+log50.25=()A.0B.1C.2D.4【答案】C【解析】∵2log510+log50.25=log5100+log50.25=log525=2故选C.10.下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C.D.(1,2)【答案】D【解析】∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D11.方程的解是.【答案】1【解析】原方程可变为,即,∴,解得或,又,∴.【考点】解对数方程.12.(1)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差是,则a=________;(2)若a=log0.40.3,b=log54,c=log20.8,用小于号“<”将a、b、c连结起来________;(3)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是________;(4)已知函数f(x)=|log2x|,正实数m、n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为________.【答案】(1)4(2)c<b<a(3)-1<x<0(4),2【解析】解析:(1)∵a>1,∴函数f(x)=loga x在区间[a,2a]上是增函数,∴loga2a-logaa=,∴a=4.(2)由于a>1,0<b<1,c<0,所以c<b<a.(3)由f(-x)+f(x)=0,得a=-1,则由lg<0,得解得-1<x<0.(4)结合函数f(x)=|log2x|的图象,易知0<m<1,n>1,且mn=1,所以f(m2)=|log2m2|=2,解得m=,所以n=2.13.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【答案】(1)k=-.(2){-3}∪(1,+∞).【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x),∴log4(4x+1)+kx=log4(4-x+1)-kx.log4=-2kx,即x=-2kx对一切x∈R恒成立,∴k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得方程2x+=a·2x-a有且只有一个实根.令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1t=-,不合题意;②a≠1时,Δ=0a=或-3.若a=t=-2,不合题意,若a =-3t=;③a≠1时,Δ>0,一个正根与一个负根,即<0a>1.综上,实数a的取值范围是{-3}∪(1,+∞).14.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.15. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a+log a+…+log a=log a m +log a n ,求m 、n 的值.【答案】【解析】左边=log a m +log a+log a+…+log a=log a=log a (m +n),∴已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1. ∵m 、n 为正整数,∴解得16. 若|log a |=log a ,|log b a|=-log b a,则a,b 满足的条件是( ) A .a>1,b>1 B .0<a<1,b>1 C .a>1,0<b<1 D .0<a<1,0<b<1【答案】B【解析】先利用|m|=m,则m≥0,|m|=-m,则m≤0,将条件进行化简,然后利用对数函数的单调性即可求出a 和b 的范围. ∵|log a |=log a ,∴log a ≥0=log a 1,根据对数函数的单调性可知0<a<1. ∵|log b a|=-log b a,∴log b a≤0=log b 1,但b≠1,所以根据对数函数的单调性可知b>1.17. 已知a>0,且a≠1,log a 3<1,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(3,+∞) C .(3,+∞) D .(1,2)∪(3,+∞)【答案】B【解析】由已知得log a 3<log a a.当a>1时,3<a ,所以a>3;当0<a<1时,3>a ,因此0<a<1.综合选B.18. 已知A={x|,x ∈R },B={x||x-i|<,i 为虚数单位,x>0},则A B=( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C 【解析】,即。
高一 不等式 知识点+例题+练习
科 教学设计不等式一.考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.二.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │【注意】不等式在数学的各个分支中都有广泛的应用,同时还是继续学习高等数学的基础.纵观历年试题,涉及不等式内容的考题大致可分为以下几类:①不等式的证明; ②解不等式;③取值范围的问题;④应用题.三.基础知识: 1.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.2.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.3.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外; 如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.4.含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.5.指数不等式与对数不等式(1)当1a >时,()()()()f x g x aa f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aa f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩四.基本方法和数学思想1.掌握不等式性质,注意使用条件;2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法; 3.掌握用均值不等式求最值的方法:在使用a+b ≥ab 2(a>0,b>0)时要符合“一正二定三相等”; 注意均值不等式的一些变形,如2222)2(;)2(2b a ab b a b a +≤+≥+;4.不等式的证明方法.在其他知识的应用. 如数列中不等式的证明方法.构造函数证明不等式的思想和方法.五.高考题回顾1.(福建卷)下列结论正确的是 ( B )A .当2lg 1lg ,10≥+≠>x x x x 时且B .21,0≥+>xx x 时当C .xx x 1,2+≥时当的最小值为2 D .当xx x 1,20-≤<时无最大值 2. (辽宁卷)在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( C )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 3. (全国卷Ⅰ) 设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞ (B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a4. (重庆卷)不等式组⎩⎨⎧>-<-1)1(log 2|2|22x x 的解集为 ( )(A) (0,3) (B) (3,2);(C) (3,4);(D) (2,4)5. (04年辽宁卷.2)对于01a <<,给出下列四个不等① 1log (1)log (1)a a a a+<+ ②1log (1)log (1)a a a a+>+③111aaaa++< ④111aaaa++>其中成立的是( ).A .①与③B .①与④C .②与③D .②与④6. (04年全国卷一.文理12)2222221,2,2,a b b c c a +=+=+=则ab bc ca ++的最小值为( ).A 12B .12 C . 12- D .127.若x,y 是正数,则2211()()22x y y x+++的最小值为( ) A.3 B.72 C. 4 D. 928. 04年湖南卷.理7)设a >0, b >0,则以下不等式中不恒成立....的是( ). A. 11()()a b a b++≥4 B. 33a b +≥22abC. 222a b ++≥22a b +D.9.(江西卷)已知实数a 、b 满足等式,)31()21(b a =下列五个关系式: ①0<b <a②a <b <0 ③0<a <b ④b <a <0 ⑤a =b其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个10.解关于x 的不等式20x ax a -<- 11.已知函数x x x f -+=)1ln()(,x x x g ln )(=.(Ⅰ)求函数)(x f 的最大值;(Ⅱ)设b a <<0,证明2ln )()2(2)()(0a b ba gb g a g -<+-+<.能力测试题(本卷共150分,考试时间120分钟)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b2.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N3.当|x |≤1时,函数y =ax +2a +1的值有正也有负,则实数a 的取值范围是( )A .a ≥-13B .a ≤-1C .-1<a <-13D .-1≤a ≤-134.二次不等式ax 2+bx +1>0的解集为{x |-1<x <13},则ab 的值为( )A .-6B .6C .-5D .55.已知全集U =R ,且A ={x ||x -1|>2},B ={x |x 2-6x +8<0},则(∁U A )∩B 等于( )A .[-1,4)B .(2,3)C .(2,3]D .(-1,4)6.函数y =3xx 2+x +1(x <0)的值域是( )A .(-1,0)B .[-3,0)C .[-3,1]D .(-∞,0)7.当x ≥0时,不等式(5-a )x 2-6x +a +5>0恒成立,则实数a 的取值范围是( )A .(-∞,4)B .(-4,4)C .[10,+∞)D .(1,10]8.若0<α<β<π4,sin α+cos α=a ,sin β+cos β=b ,则( )A .a <bB .a >bC .ab <1D .ab >29.(x +2y +1)(x -y +4)<0表示的平面区域为( )10.若a >0,b >0,则不等式-b <1x<a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a11.对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( )A .[-2,+∞)B .(-∞,-2)C .[-2,2]D .[0,+∞)12.函数y =f (x )的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f (x )>f (-x )+x 的解集为( )A.⎣⎡⎭⎫-1,-255∪(0,1] B .[-1,0)∪⎝⎛⎭⎫0,255C.⎣⎡⎭⎫-1,-255∪⎝⎛⎭⎫0,255D.⎣⎡⎭⎫-1,-255∪⎝⎛⎦⎤255,1二、填空题(本大题共4小题,把答案填在题中横线上)13.设点P (x ,y )在函数y =4-2x 的图象上运动,则9x +3y 的最小值为________.14.已知不等式axx -1<1的解集为{x |x <1或x >2},则a =________.15.设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,则u =y x -xy 的取值范围是________.16.已知点A (53,5),过点A 的直线l :x =my +n (n >0),若可行域⎩⎪⎨⎪⎧x ≤my +n x -3y ≥0y ≥0的外接圆的直径为20,则实数n 的值是________.三、解答题(本大题共6小题,解答应写出文字说明,证明过程或演算步骤)17.已知a >0,b >0,且a ≠b ,比较a 2b +b 2a与a +b 的大小.18.求z =3x -2y 的最大值和最小值,式中的x ,y 满足条件⎩⎪⎨⎪⎧4x -5y +21≥0,x -3y +7≤0,2x +y -7≤0.19.若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,求a 的取值范围.20.某化工厂生产甲、乙两种肥料,生产1车皮甲种肥料能获得利润10000元,需要的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料能获得利润5000元,需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存有磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种肥料.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?21.整改校园内一块长为15 m ,宽为11 m 的长方形草地(如图A),将长减少1 m ,宽增加1 m(如图B).问草地面积是增加了还是减少了?假设长减少x m ,宽增加x m(x >0),试研究以下问题:x 取什么值时,草地面积减少? x 取什么值时,草地面积增加?22.已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )满足:对任意实数x ,都有f (x )≥x ,且当x ∈(1,3)时,有f (x )≤18(x +2)2成立.(1)证明:f (2)=2;(2)若f (-2)=0,求f (x )的表达式;(3)设g (x )=f (x )-m 2x ,x ∈[0,+∞),若g (x )图象上的点都位于直线y =14的上方,求实数m 的取值范围.。
数学不等式的性质试题
数学不等式的性质试题1.若不等式(mx-1)[3m 2-( x + 1)m-1]≥0对任意恒成立,则实数x的值为.【答案】1【解析】根据题意可令,易得图象恒过点,又,可得;又令,易得图象恒过点,要使不等式(mx-1)[3m 2-( x + 1)m-1]≥0对任意恒成立,则要满足:,代入可得.【考点】不等式恒成立.2.设a>0,b>0()A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a<bC.若2a-2a=2b-3b,则a>bD.若2a-2a=2b-3b,则a<b【答案】A【解析】本题考查构造函数、利用函数性质来实现判断逻辑推理的正确与否,考查观察、构想、推理的能力.若2a+2a=2b+3b,必有2a+2a>2b+2b.构造函数:f(x)=2x+2x,则f(x)=2x+2x 在x>0上单调递增,即a>b成立,故A正确,B错误.其余选项用同样方法排除.3.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.【答案】2【解析】本题考查绝对值不等式的解法,考查运算求解能力,容易题.去绝对值得-2≤kx-4≤2,即2≤kx≤6,又∵其解集为,∴k=2.4.已知函数f(x)=x2+ax+b(a,b∈R)的值域为(0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.【答案】9【解析】本题考查二次函数的解析式以及性质和一元二次不等式的解法.解题突破口为二次函数的性质及三个“二次”之间的关系.由条件得a2-4b=0,从而f(x)=2,不等式f(x)<c解集为--<x<-+,故两式相减得=3,c=9.5.若,则下列不等式恒成立的是A.B.C.D.【答案】C【解析】对于,当时,,而,所以A选项不正确;对于,当时,,所以B选项不正确;令,则,对恒成立,在上为增函数,所以的最小值为,所以,,故C正确;令,则,令,得.当时,,当时,.在时取得最小值,所以D不正确。
指数不等式、对数不等式的解法·例题
指数不等式.对数不等式的解法·例题例5-3-7 解不等式:解(1)原不等式可化为x2-2x-1<2(指数函数的单调性)x2-2x-3<0 (x+1)(x-3)<0所以原不等式的解为-1<x<3.(2)原不等式可化为注函数的单调性是解指数不等式.对数不等式的主要根据.例5-3-8 解不等式log x+1(x2-x-2)>1.解[法一] 原不等式同解于所以原不等式的解为x>3.[法二] 原不等式同解于log x+1(x2-x-2)>log x+1(x+1)所以原不等式的解为x>3.注解这类对数不等式,要留意真数为正数,并须对底数的分类评论辩论.解原不等式可化为22x-6×2x-16<0令2x=t(t>0),则得t2-6t-16<0 (t+2)(t-8)<0 -2<t<8又t>0,故0<t<8即0<2x<8,解得x<3.注解这类指数不等式,经常须要经由过程变量代换把它变成整式不等式来解.解原不等式可化为解得t<-2或0<t<1,即注解不合底的对数不等式,应先化为同底对数的不等式,再应用对数函数的单调性将它转化为整式不等式求解.这时也经经常应用到换元法.例5-3-11设a>0且a≠1,解不等式解原不等式可化为令log a x=t,则得当0<a<1时,由指数函数的单调性,有4-t2<1-2t t2-2t-3>0 (t+1)(t-3)>0t<-1,或t>3当a>1时,则有4-t2>1-2t t2-2t-3<0 (t+1)(t-3)<0 -1<t<3注解既含指数又含对数的不等式的根本思惟是“化同底,求单一”,即把不合底的指数或对数化为同底的,再经由过程函数的单调性将复合情况转化为只含指数或对数的单一情况求解.例5-3-12设f(x)是界说在实数集R内的函数,对随意率性x,y∈R,有f(x+y)=f(x)·f(y);并且当x>0时,f(x)>1,f(1)=a.解关于x的不等式f(x2+x-4)>a2.剖析由题设前提轻易联想到f(x)是指数型函数,又a2=f(1)·f(1)=f(2),故原不等式同解于f(x2+x-4)>f(2).于是,问题归结为先肯定f(x)的单调性,再解一个二次不等式.=0,不然,对随意率性x∈R,有f(x)=f((x-x0)+x0)=f(x-x0)f(x0)=0与已知抵触,所以对随意率性x∈R,有f(x)>0.现设x,y∈R,且y=x+δ(δ>0).则f(y)-f(x)=f(x+δ)-f(x)=f(x)f(δ)-f(x)=f(x)[f(δ)-1]>0(∵δ>0,∴f(δ)>1).故f(x)在R内是增函数.于是原不等式同解于x2+x-4>2 x2+x-6>0 x<-3或x>2注本题的症结是肯定函数f(x)的单调性,而不必求出它的具体表达式.。
高一数学指数函数和对数函数试题答案及解析
高一数学指数函数和对数函数试题答案及解析1.若,那么满足的条件是()A.B.C.D.【答案】C【解析】即,所以,,故选C。
【考点】本题主要考查对数函数的单调性。
点评:解对数不等式,主要考虑化同底数对数,利用函数的单调性。
2.。
【答案】2【解析】==2lg10=2.【考点】本题主要考查对数运算。
点评:简单题,利用对数运算法则及对数性质。
3.已知函数的定义域为,值域为,求的值。
【答案】【解析】由,得,即∵,即由,得,由根与系数的关系得,解得【考点】本题主要考查对数函数的图象和性质,复合函数。
点评:已知函数定义域、值域,求参数问题,往往从求值域方法入手。
4.函数在上的最大值与最小值的和为3,则.【答案】2;【解析】因为,指数函数是单调函数,所以函数在上的最大值与最小值在区间[0,1]端点处取到,=3,a=2.【考点】本题主要考查指数函数的图象和性质,指数不等式解法。
点评:指数函数是重要函数之一,其图象和性质要牢记。
解答本题的关键是认识到最值在区间端点取到。
5.已知函数,判断的奇偶性和单调性。
【答案】(1)是奇函数;(2)为增函数。
【解析】(1),∴是奇函数(2),且,则,∴为增函数。
【考点】本题主要考查指数函数的图象和性质,复合函数,函数的奇偶性好的东西。
点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。
6.已知函数,(1)求的定义域;(2)判断的奇偶性。
【答案】(1);(2)为非奇非偶函数.【解析】(1)∵,∴,又由得,∴的定义域为。
(2)∵的定义域不关于原点对称,∴为非奇非偶函数。
【考点】本题主要考查对数函数的图象和性质,复合函数,函数的奇偶性。
点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。
7.已知函数的定义域为,值域为,求的值。
【答案】【解析】由,得,即∵,即由,得,由根与系数的关系得,解得【考点】本题主要考查对数函数的图象和性质,复合函数。
点评:已知函数定义域、值域,求参数问题,往往从求值域方法入手。
高一数学指数与指数函数试题答案及解析
高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。
所以,故D正确。
【考点】指数对数函数的单调性。
7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。
指数-对数试题及答案
1.已知函数()13log 02 0x x x f x x >⎧⎪=⎨⎪≤⎩,,,若()12f a >,则实数a 的取值范围是( ) A.30 ⎛⎫ ⎪ ⎪⎝⎭, B.(]1 0-, C.31 ⎛⎫- ⎪ ⎪⎝⎭, D.()31 00 ⎛⎫- ⎪ ⎪⎝⎭U ,, 2.函数()()21616log x x f x x -=-的图像大致为( )A .B .C .D .3.函数()()1log 2830,1a y x a a =+->≠且的图象恒过定点A ,若点A 的横坐标为0x ,函数024x xy a -=+的图象恒过定点B ,则B 点的坐标为( )A .()27,3--B .()27,5-C .()3,5-D .()2,5-4.函数()f x 的图象关于y 轴对称,且对任意x R ∈都有()()3f x f x +=-,若当35 22x ⎛⎫∈ ⎪⎝⎭,时,()12xf x ⎛⎫= ⎪⎝⎭,则()2017f =( ) A .14- B .14 C.4- D .4 5.设0.43a =,3log 0.4b =,30.4c =,则 a b c ,,的大小关系为( ) A .a c b >> B .a b c >>C .c a b >>D .c b a >>6.已知0.6122log 5log 313a b c d -====,,,,那么( ) A .a c b d <<< B .a d c b <<< C .a b c d <<< D .a c d b <<< 7.已知函数()f x 是奇函数,当0x >时,()x f x a =(0a >且1a ≠),且12(log 4)3f =-,则a 的值为( ) A . 32 B 3 C. 3 D .9 8.函数y =)21(|x|的图象是( )9.已知函数)(x f y =与函数x e y =互为反函数,函数)(x g y =的图象与函数)(x f y =关于x 轴对称,1)(-=a g ,则实数a 的值( )A.e -B.e 1- C.e 1D.e10.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2xf xg x -=,则有( )A.(2)(3)(0)f f g <<B.(0)(3)(2)g f f <<C.(2)(0)(3)f g f <<D.(0)(2)(3)g f f <<11.设实数30.1231log ,2,0.92a b c ===,则a 、b 、c 的大小关系为( )A.a c b <<B.c b a <<C.b a c <<D.a b c <<12.已知函数x x f 5)(=,若3)(=+b a f ,则=⋅)()(b f a f ( ).4 C 13.已知函数x x x f 411212)(+++= 满足条件1))12((log =+a f ,其中1>a ,则=-))12((log a f ( ) A .1 B .2 C .3 D .4 14.若()10x f x =,则()3f =( ) A .3log 10 B .lg 3 C .310 D .103 15.函数)2(log 1)(2-=x x f 的定义域是( ) A.)2,(-∞ B.),2(+∞ C.),3()3,2(+∞Y D.),4()4,2(+∞Y 16.已知()212()x x f x log a a =--的值域为 R ,且()f x在(3,1-上是增函数,则a 的范围是( )A.20a -≤≤B.02a ≤≤C.40a -≤≤D.42a -≤≤-17.函数()12log ,12,1x x x f x x ≥⎧⎪=⎨⎪<⎩的值域为 _________. 18.已知1173a ⎛⎫= ⎪⎝⎭,7log 4b =,用a 、b 表示49log 48为 . 19.若2312a b ==,则21a b += . 20.已知函数()22x x f x -=-,若不等式()()230f x ax a f -++>对任意实数x 恒成立,则实数a 的取值范围是 .21.若函数12(log )x y a =在R 上是减函数,则实数a 取值集合是22.函数212()log (45)f x x x =--的单调递减区间为23.⑴计算:20.52031103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;⑵计算:5log 350.5551log 352log log log 14550+--+.24.已知定义域为R 的函数a bx f x x ++-=+122)(是奇函数.(1)求b a ,的值;(2)判断函数)(x f 的单调性,并用定义证明;(3)当]3,21[∈x 时,0)12()(2>-+x f kx f 恒成立,求实数k 的取值范围.25.(1)已知32121=+-x x ,计算:37122++-+--x x x x ;(2)求232021)5.1()833()96.0()412(--+---.26.不使用计算器,计算下列各题:(1)()20.5312110510.7521627---⎛⎫⎛⎫+-÷+ ⎪ ⎪⎝⎭⎝⎭;(2)()70log 23log lg 25lg 479.8+++-.27.已知()()()22log 1log 1f x x x =--+.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并证明;(3)求使()0f x >的x 的取值集合.28.已知函22()log (1),()log (31)f x x g x x =+=+数. (1)求出使()()g x f x ≥成立的x 的取值范围; (2)当[0,)x ∈+∞时,求函数()()y g x f x =-的值域.参考答案1.C【解析】 试题分析:由题意,得131log 20x x ⎧>⎪⎨⎪>⎩或1220x x ⎧>⎪⎨⎪≤⎩,解得0a <或10a -<≤,即实数a 的取值范围为 1 ⎛- ⎝⎭,故选C. 考点:分段函数2.A【解析】试题分析:函数的定义域为{}0≠x x ,()()()x f x x f x x -=--=--2log 1616,故函数()x f 为奇函数,其图象关于原点对称,故应排除B 、C ;41521log 16162122121-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-f , 341log 16164124141-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-f ,由⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛4121f f ,则排除D ;故选A. 考点:函数的图象.3.B【解析】试题分析:当281,27x x +==-时,1log 133a y =-=-,所以点A 0(27,3),27x --=-,这时2724x y a +=+,所以当227,5x y =-=,即B ()27,5-.选B .考点:1.对数函数的图象;2.指数函数的图象.4.A【解析】试题分析:因为函数()f x 对任意x R ∈都有()()3f x f x +=-,所以()()()63f x f x f x +=-+=,函数()f x 是周期为6的函数,()()()2017336611f f f =⨯+=,由()()3f x f x +=-可得()()()2321f f f -+=--=,因为函数()f x 的图象关于y 轴对称,所以函数()f x 是偶函数,()()2112224f f ⎛⎫-=== ⎪⎝⎭,所以()2017f =()1f =()2f --=14-,故选A.考点:1、函数的解析式;2、函数的奇偶性与周期性.5.A【解析】试题分析:由指数函数的性质可得,0.431a =>,300.41c <=<,由对数函数的性质得3log 0.40b =<,所以 a b c ,,的大小关系为a c b >>,故选A.考点:1、指数函数的性质;2、对数函数的性质.6.B【解析】试题分析:由幂函数的性质可知()0.630,1d -=∈,再由对数的运算性质可知2log 50a =-<,而()2log 31,2b =∈,又1c =,综合以上可知a d c b <<<,故选B . 考点:1、对数函数及其性质;2、幂函数及其性质.7.B【解析】 试题分析:因为21221(log 4)(log )(2)34f f f a ==-=-=-,所以23a =,a =0a >,所以a = B.考点:1.函数的奇偶性;2.函数的表示与求值.8.C【解析】试题分析:由函数解析式可知函数为偶函数,当0x ≥时12xy ⎛⎫= ⎪⎝⎭时函数为减函数,所以在0x <时函数为增函数,所以C 图像正确考点:指数函数图像及性质9.D【解析】试题分析:由反函数可知()ln f x x =,函数)(x g y =的图象与函数)(x f y =关于x 轴对称()ln g x x ∴=- ()ln 1g a a a e ∴=-=-∴=考点:函数图像的对称性10.D【解析】试题分析:函数()(),f x g x 分别是R 上的奇函数、偶函数()()()(),f x f x g x g x ∴-=--=,由()()2x f x g x -=得()()()()()()222x x x f x g x f x g x f x g x ------=∴--=∴+=-,解方程组得()()2222,22x x x xf xg x -----==,代入计算()()()2,3,0f f g 比较大小可得()()()023g f f <<考点:函数奇偶性及函数求解析式11.A【解析】 试题分析:()30.1231log 1,21,0.90,12a b c a c b =<=>=∈∴<< 考点:函数性质比较大小12.A【解析】试题分析:()353()()5553a b a b a b f a b f a f b +++=∴=∴⋅===g考点:函数求值13.B【解析】试题分析:xx x f 411212)(+++=Θ x x x f --411212)(+++=-∴ 3411212411212)()(=+++++++=-+∴--x x x x x f x f )12(log )12(log --=+a a Θ3)]12([log )]12([log =-++∴a a f f2)]12([log =-∴a f故答案选B考点:函数求值.14.B【解析】试题分析:由函数的对应关系可得310=x,解之得3lg =x ,应选B.考点:函数概念的本质及对数的运算.15.C【解析】 试题分析:要使函数有意义,需满足()2202log 20x x x ->⎧∴>⎨-≠⎩且3x ≠,所以函数定义域为),3()3,2(+∞Y考点:函数定义域16.B【解析】试题分析:由题设0)(2≥--=a ax x x u 在)31,3(--上恒成立且⎪⎪⎩⎪⎪⎨⎧≥-->≥+=∆0)31(312042u a a a ,解之得20≤≤a .故应选B.考点:二次函数对数函数的图象和性质的综合运用.17.(),2-∞【解析】试题分析:当1x ≥时,1212()log log 10f x x =≤=,此时值域为(],0-∞;当1x <时,10()222x f x <=<=.此时值域为(0,2),故函数的值域为(],0(0,2)-∞U ,即(),2-∞.考点:函数的值域.18.22a b + 【解析】 试题分析:由1173a ⎛⎫= ⎪⎝⎭可以得出7log 3a =,而由7log 4b =可以得到72log 2b =,所以49log 48()7714log 2log 32=+772log 4log 3222b a ++==,即用a 、b 表示49log 48为22a b +,故答案填22a b +. 考点:1、指数式与对数式的互化;2、对数的运算性质.19.1【解析】试题分析:由题意得23log 12,log 12a b ==,则121211log 2,log 3a b ==, 所以()2121212212log 2log 3log 231a b+=+=⨯=. 考点:对数运算及其应用.【方法点晴】此题主要考查指数与对数互化,以及对数运算性质等有关方面的知识与技能,属于中低档题型.在此题的解决过程中,由条件中指数式转化为对数式,即232312log 12,log 12a b a b ==⇒==,利用对数运算的换底公式得121211log 2,log 3a b ==,代入式子得1212212log 2log 3a b+=+,再利用对数的运算性质,从而问题可得解.20.()2 6-,【解析】试题分析:()22x xf x -=-为奇函数且为R 上增函数,所以()()()()()()222230333f x ax a f f x ax a f f x ax a f x ax a -++>⇒-+>-⇒-+>-⇒-+>-对任意实数x 恒成立,即24(3)026a a a ∆=-+<⇒-<<考点:利用函数性质解不等式恒成立【思路点睛】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值的大小转化自变量大小关系21.),(121 【解析】 试题分析:因为函数12(log )x y a =在R 上是减函数 所以12121log log 1log 1log 021212121<<⇒<<⇒<<a a a 考点:指数函数的单调性;对数函数的单调性.22.()+∞,5【解析】试题分析:由2450x x -->得1x <-或5x >,函数可由()212log ,45f t t t x x ==--复合而成,其中()12log f t t =为减函数,245t x x =--的增区间为()+∞,5,所以函数212()log (45)f x x x =--的单调递减区间为()+∞,5考点:复合函数单调性23.⑴0;⑵5.【解析】试题分析:对问题⑴,根据有理指数幂的运算法则,即可求得代数式20.52031103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值;对问题⑵,根据对数恒等式、对数的运算法则即可求出5log 350.5551log 352log log log 14550+-+的值. 试题解析:⑴原式12238164922162716-⎛⎫⎛⎫=-⨯-⨯⎪ ⎪⎝⎭⎝⎭, 9990488=--=. …………………………6分 ⑵原式()512log 355014log 23=⨯÷++,3135=-+=. ………………………………12分考点:1、指数以及指数式的运算;2、对数以及对数式的运算.24.(1) 2=a ,1=b ;(2)证明见解析;(3) )1,(--∞.【解析】试题分析:(1)寻找关于a,b 的两个方程如).1()1(,0)0(f f f -=-=(2)根据)(x f 的单调性定义证明.(3)由)(x f 单调递减则2121)()(x x x f x f >⇔<且21,x x 满足)(x f 的定义域,将问题转化为关于参数a 的不等式.试题解析:(1)∵)(x f 在定义域为R 是奇函数.所以0)0(=f ,即021=++-ab ,∴1=b . 又由)1()1(f f -=-,即a a +--=++-411121,∴2=a ,检验知,当2=a ,1=b 时,原函数是奇函数.(2)由(1)知121212221)(1++-=+-=+x x x x f ,任取R x x ∈21,,设21x x <,则 )12)(12(22121121)()(21212112++-=+-+=-x x x x x x x f x f ,因为函数x y 2=在R 上是增函数,且21x x <,所以02221<-x x ,又0)12)(12(21>++x x ,∴0)()(12<-x f x f 即)()(12x f x f <,∴函数)(x f 在R 上是减函数.(3)因)(x f 是奇函数,从而不等式0)12()(2>-+x f kx f 等价于)21()12()(2x f x f kx f -=--<,因)(x f 在R 上是减函数,由上式推得x kx 212-<,即对一切]3,21[∈x 有:221xx k -<恒成立, 设x x x x x g 12)1(21)(22⋅-=-=,令]2,31[,1∈=t x t ,则有,2)(2t t t g -=]2,31[∈t ,∴1)1()()(min min -===g t g x g ,∴1-<k ,即k 的取值范围为)1,(--∞.考点:1、函数的奇偶性;2、函数的单调性;3、含参量问题的取值范围.【易错点晴】本题主要考查的是函数的奇偶性、函数的单调性、含参量问题的取值范围,属于难题.对于含参量不等式问题要注意进行灵活变形,转化为)()(x h m x g m <>或的形式,从而max )(x g m > .)(min x h m <或25.(1)4;(2).21 【解析】试题分析:由,32121=+-x x 两边平方得,71=+-x x 再对它两边平方得472=+-x x 代入所求式子中计算.(2)由公式n m n ma a=和n n n b a ab ⋅=)(进行各项的化简. 试题解析:(1)∵92)(122121=++=+--x x xx ,∴71=+-x x ; 同理492)(2221=++=+--xx x x ,∴4722=+-x x ,所以原式437747=+-=. (2)原式21)23()23(21)23()23(123)23()827(1)49(122)32(323221=+-=+--=+--=----⨯--. 考点:1、分式的化简;2、分数指数幂的运算.26.(1)94(2)132【解析】试题分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则即可得出. 试题解析:(1)原式20.523814279999116364416164⎛⎫⎛⎫⎛⎫=-÷+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)原式323100313log 3lg lg 4212lg 4lg 43422=++++=+-++= 考点:指数幂的运算,对数的运算27.(1)()1,1-(2)()f x 为奇函数;证明见解析(3){}|10x x -<<【解析】试题分析:(1)函数()f x 的定义域需满足1010x x +>⎧⎨->⎩解之可得;(2)因为定义域关于原点对称,故由奇函数的定义判断并证明即可;(3)由()0f x >得()()22log 1log 1x x ->+,利用函数的单调性并结合函数的定义域即可求得x 的取值集合. 试题解析:(1)由题可得:1010x x +>⎧⎨->⎩,解得11x -<<,函数()f x 的定义域为()1,1-(2)因为定义域关于原点对称,又()()()()22log 1log 1f x x x f x -=+--=-, 所以()f x 为奇函数;(3)由()0f x >得()()22log 1log 1x x ->+,所以11x x ->+,得0x <,而11x -<<,解得10x -<<,所以使()0f x >的x 的取值集合是{}|10x x -<<.考点:函数的定义域,奇偶性,单调性等有关性质28.(1)[0,)+∞(2)2[0,log 3)【解析】试题分析:(1)将不等式()()g x f x ≥代入后,结合函数2log y x =的单调性可得到关于x 的不等式,进而得到x 的取值范围;(2)将函数式化简22log (3)1y x =-+,通过[0,)x ∈+∞得到对数真数的取值范围,从而得到函数的值域试题解析:(1)∵22log (31)log (1)x x +≥+∴31010311x x x x +>⎧⎪+>⎨⎪+≥+⎩解得:0x ≥∴x 的取值范围为[0,)+∞ --------6分 (2)2222312log (31)log (1)log log (3)11x y x x x x +=+-+==-++ ∵0x ≥ ∴21331x ≤-<+ 又∵2log y x =在(0,)+∞上单调递增 ∴2220log (3)log 31x ≤-<+ ∴函数的值域为2[0,log 3) ---------12分 考点:对数函数单调性解不等式;函数单调性与值域。
高中数学测试题指数与对数不等式
高中数学测试题指数与对数不等式一. 指数不等式指数函数是高中数学中重要的一类函数,它在很多实际问题中有着广泛的应用。
指数不等式是指数函数的一个重要性质,在解决不等式问题中经常会用到。
1. 一次指数不等式一次指数不等式的一般形式为 $a^x > b$ 或 $a^x < b$,其中 a、b为正实数,且 $a \neq 1$。
解一次指数不等式需要利用指数与对数的性质。
例如,要求解不等式 $2^x > 8$。
解:首先我们可以将 8 表示为 2 的某个次幂,即 8 = $2^3$。
代入原不等式中,得到 $2^x > 2^3$。
由指数函数的单调性可知,只需考虑底数 a 大于 1 的情况。
因此,不等式转化为 $x > 3$。
解集为解不等式的实数范围为 x > 3。
2. 二次指数不等式二次指数不等式的一般形式为 $a^{x^2} > b$ 或 $a^{x^2} < b$,其中 a、b为正实数,且 $a \neq 1$。
解二次指数不等式时,需要运用指数函数的性质以及二次函数的性质。
例如,要求解不等式 $4^{x^2} < 1$。
解:首先,我们可以利用指数函数的性质将左侧的底数改写为底数为 2 的幂次表达式。
即不等式可转化为 $(2^2)^{x^2} < 1$。
接着,我们利用指数的乘法法则简化不等式为 $2^{2x^2} < 1$。
由指数函数的单调性以及不等式左侧是正数可知,底数 a 需要小于1。
因此,解不等式得到 $2x^2 < 0$。
解集为 x 的实数范围为 x = 0。
二. 对数不等式对数是指数的逆运算,对数函数也是高中数学中常见的函数之一。
对数函数和指数函数有密切的关系,对数不等式也是在解决不等式问题中常会遇到的一类问题。
1. 基本对数不等式基本对数不等式的一般形式为 $log_ax > b$ 或 $log_ax < b$,其中 a 为正实数,且 $a \neq 1$。
基本不等式测试卷(难)答案
参考答案与试题解析一.选择题(共5小题)1.考点:不等式比较大小。
专题:计算题。
分析:利用对数的运算性质可求得a=log23,b=log23>1,而0<c=log32<1,从而可得答案.解答:解:∵a=log23+log2=log23,b===>1,∴a=b>1,又0<c=log32<1,∴a=b>c.故选B.点评:本题考查不等式比较大小,掌握对数的运算性质既对数函数的性质是解决问题之关键,属于基础题.2.考点:基本不等式在最值问题中的应用。
专题:计算题。
分析:将x+3y=5xy转化成=1,然后根据3x+4y=()(3x+4y),展开后利用基本不等式可求出3x+4y的最小值.解答:解:∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选C点评:本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.3.考点:基本不等式。
分析:①由ab>0,bc﹣ad>0可得出﹣>0.②bc﹣ad>0,两端同除以ab,得﹣>0.③ab>0.这三个都是正确命题.解答:解:由ab>0,bc﹣ad>0可得出﹣>0.bc﹣ad>0,两端同除以ab,得﹣>0.同样由﹣>0,ab>0可得bc﹣ad>0.ab>0.故选D.点评:本题考查基本不等式的性质和应用,解题时要认真审题,仔细求解.4.考点:基本不等式。
分析: 3a+3b中直接利用基本不等式,再结合指数的运算法则,可直接得到a+b.解答:解:∵a+b=2,∴3a+3b故选B点评:本题考查基本不等式求最值和指数的运算,属基本题.5.考点:基本不等式。
专题:计算题。
分析:设小王从甲地到乙地按时速分别为a和b,行驶的路程S,则v==及0<a<b,利用基本不等式及作差法可比较大小解答:解:设小王从甲地到乙地按时速分别为a和b,行驶的路程S则v==∵0<a<b∴a+b>0∴∵v﹣a===∴v>a综上可得,故选A点评:本题主要考查了基本不等式在实际问题中的应用,比较法中的比差法在比较大小中的应用.二.填空题(共5小题)6.考点:基本不等式在最值问题中的应用。
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。
(完整版)指数函数与对数函数高考题(含答案)
指数函数与对数函数高考题1、(2009湖南文)2log )A .BC .12-D . 122、(2012安徽文)23log 9log 4⨯=( )A .14B .12C .2D .43、(2009全国Ⅱ文)设2lg ,(lg ),lg a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >>4、(2009广东理)若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =( )A. 2log xB. 12log x C.12xD. 2x 5、(2009四川文)函数)(21R x y x ∈=+的反函数是( )A. )0(log 12>+=x x yB. )1)(1(log 2>-=x x yC. )0(log 12>+-=x x yD. )1)(1(log 2->+=x x y6、(2009全国Ⅱ理)设323log ,log log a b c π=== )A. a b c >>B. a c b >>C. b a c >>D. b c a >>7、(2009天津文)设3.02131)21(,3log ,2log ===c b a ,则( )A.c b a <<B. b c a <<C. a c b << D .c a b <<8、(2009湖南理) 若2log a <0,1()2b >1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <09、(2009江苏)已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆则实数a 的取值范围是(,)c +∞,其中c =10、(2010辽宁文)设25a b m ==,且112a b+=,则m =( )11、(2010全国文)函数)1)(1ln(1>-+=x x y 的反函数是( )A.y=1x e +-1(x>0)B. y=1x e -+1(x>0)C. y=1x e +-1(x ∈R)D.y=1x e -+1 (x∈R)12、(2012上海文)方程03241=--+x x 的解是_________ .13、(2011四川理)计算21100)25lg 41(lg -÷-_______ .14、(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________ 。
高三数学对数不等式试题答案及解析
高三数学对数不等式试题答案及解析(5﹣a)中实数a的取值范围是()1.代数式log(a﹣2)A.(﹣∞,5)B.(2,5)C.(2,3)∪(3,5)D.(2.∞)【答案】C(5﹣a)可得【解析】由b=log(a﹣2)解得,即实数a的取值范围是2<a<3或3<a<5故选C.2.不等式的解集为______________.【答案】【解析】因为,所以,整理得,,故.【考点】对数不等式.3.集合,,,,则集合的个数为()A.0B.2C.4D.8【答案】C【解析】法一:从0开始逐一验证自然数可知,,要使,中必含有元素1,可以有元素2,3,所以只有.法二:,=,所以集合S中必含元素1,可以是,共4个.故选.【考点】1.分式不等式的解法;2.对数不等式的解法.4.已知函数若,则的取值范围是 .【答案】【解析】当时,显然成立;当时,若,显然成立,所以只要时,成立即可,比较对数与一次函数的增长速度,不存在使在恒成立;当时,若,显然成立,所以只要时,解得,∴, ∴.【考点】不等式,对数不等式的解法.5.不等式的解集为 .【答案】(2,3)【解析】本题考查了对数函数不等式的解法及不等式的解法。
解:由题意得:解得:所以不等式的解集为6.(本题10分)解关于x的不等式:(a>0,a≠1).【答案】解:原不等式等价于……①……………1分①当时,①式可化为即亦即∴ x > a+1 ………………5分②当时,①式可化为即亦即∴………………9分综上所述,当时,原不等式的解集为;当时,原不等式的解集为..………………10分【解析】略7.当时,不等式恒成立,则实数的取值范围为A.B.C.D.【答案】C【解析】本题考查函数与不等式之间的关系及恒成立问题。
由和图像得故实数的取值范围为。
8.(本小题满分14分)解不等式log3(x2 – 6x + 8 ) – log3x < 1【答案】1 < x < 2或 4 < x < 8.【解析】由,得0 < x< 2 或x > 4 . 4 分不等式化成:log3(x2 – 6x + 8 ) <log33x 4分得x2 – 9x + 8< 0.即(x – 8 )( x – 1) < 0,解得 1< x < 8时, 4分综上得不等式的解为 1 < x < 2或 4 < x < 8. 2分9.不等式的解集是【答案】【解析】略10.设则m、n、p的大小关系是()A.B.C.D.【答案】D【解析】本题考查对数函数的单调性,不等式的性质,基本不等式.,则又对数函数是减函数,所以故选D11.不等式的解集为A.B.C.[-1,0)D.【答案】C【解析】略12.不等式对任意都成立,则的取值范围为()A.B.C.D.【答案】B【解析】略13.不等式的解集为【答案】【解析】略14.当时,,则下列大小关系正确的是()A.B.C.D.【答案】A【解析】略15.已知的解集为A.B.C.D.【答案】C【解析】略16..不等式ln2x+ln x<0的解集是A.(e-1,1)B.(1,e)C.(0,1)D.(0,e-1)【答案】A【解析】本题考查二次不等式的解法和对数函数的单调性.设,则原不等式可化为,解得即,解得故选A17.不等式成立的一个充分不必要条件是()A.B.C.D.【答案】B【解析】略18.不等式≥1的解集为A.B.C.D.【答案】C【解析】略19.不等式的解集为______________.【答案】【解析】原不等式可化为:20.已知函数,,若至少存在一个,使成立,则实数a的范围为()A.[,+∞)B.(0,+∞)C.[0,+∞)D.(,+∞)【答案】B【解析】由题意得:在上有解,即,设则因此当时,,选B.【考点】利用导数求函数最值。
高一上学期期中重难点检测卷(培优卷)(考试范围:集合、常用逻辑用语、不等式、指数与对数)(解析版)
高一上学期期中重难点检测卷(培优卷)【考试范围:集合、常用逻辑用语、不等式、指数与对数】注意事项:本试卷满分150分,考试时间120分钟,试题共19题。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2023·全国·一模)已知集合{}1,2,4A =,集合{}|21B x x =−<,则A B = ( )A .{}1,4B .{}2,4C .{}1,2D .{}4【答案】B【解析】可以求出集合B ,然后进行交集的运算即可.【详解】解:{}{}|21|1B x x x x =−<=>, 所以{}2,4A B = . 故选:B.【点睛】本题考查描述法和列举法的定义,以及交集的运算. 2.(21-22高三上·江苏南通·期中)设,R a b ∈,集合{}0,1,P a =,{}1,0,Q b =−,若P Q =,则a b +=( )A .2−B .1−C .0D .2【答案】C【分析】按照集合相等的定义,计算可求解. 【详解】P Q = ,1,1a b ∴=−=,0a b ∴+=. 故选:C3.(23-24高一上·江苏南京·期中)1a <是21a <的( )A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分又不必要条件【答案】C【分析】根据题干直接判断即可.【详解】因为211a a <⇒<,且 211a a <⇒<,所以211a a <⇔<,所以1a <是21a <的充要条件. 故选:C4.(23-24高一上·江苏无锡·期中)若R a b c ∈,,,且a b >,则( )A .11a b< B .22a b >C .a c b c −+<−+D .若0a b c >>>,则a a cb b c+<+ 【答案】C【分析】举出反例检验选项A ,B ,D ,结合不等式性质检验选项C 即可. 【详解】对于A ,若1,2a b ==−,则11112a b =>=−,故A 错误; 对于B ,若1,2a b ==−,则22a b <,故B 错误;对于C ,因为a b >,所以a b −<−,所以a c b c −+<−+,故C 正确; 对于D ,若5,2,1a b c ===,则56223a a cb bc +=>==+,故D 错误; 故选:C5.(23-24高一上·江苏徐州·期中)已知关于x 的不等式20ax bx c ++>的解集是()(),13,−∞∪+∞,则不等式20bx ax c ++≥的解集是( )A .31,4−B .3,14−C .[)3,1,4−∞−+∞D .(]3,1,4−∞−+∞【答案】B【分析】根据一元二次不等式与一元二次方程的关系,结合韦达定理即可求出a ,b ,c ,之间的关系,再代入不等式即可求解.【详解】 关于x 的不等式20ax bx c ++>的解集是()(),13,−∞∪+∞ ∴1和3是方程20ax bx c ++=的两个实数根,且0a >.则1313b ac a+=−×=,解得43b a c a =− = . 所以不等式20bx ax c ++≥等价于2430ax ax a −++≥(0a >),即2430x x −−≤,解得:314x −≤≤所以不等式20bx ax c ++≥的解集是3,14−故选:B.6.(23-24高一上·江苏连云港·期中)下列各式正确的是( )A .2368(8)−=− B .2(3π)3π−=−C .()*1,N n n a a n n =>∈D .()*()1,N nn a a n n =>∈【答案】D【分析】利用根式的运算性质即可判断出正误. 【详解】382−=−,66626264(8)2−,故A 错误;2(3π)3ππ3−=−=−,故B 错误;∵*1,n n >∈N ,∴当n 为奇数时,n n a a =;当n 为偶数时,n n a a =,故C 错误;()*()1,N n n a a n n =>∈成立,故D 正确. 故选:D.7.(23-24高一上·江苏苏州·期中)已知12a log 3−=,b1=52,3c=log 2,则a ,b ,c 的大小关系为A .c b a <<B .b a c <<C .a c b <<D .a b c <<【答案】B【分析】先将指数结构转化为对数结构可得122log 5log 5b ==−,再利用对数的性质即可比较大小.【详解】解:由b1=52,则122log 5log 5b ==−,又122log 3log 3a −==−,则有223log 5log 30log 2−<−<<, 即b a c <<, 故选:B.【点睛】本题考查了对数的运算,重点考查了运算能力,属基础题. 8.(22-23高一上·江苏南通·期中)计算:()225log lg 21lg 25−+=( )A .2lg 2B .1C .2lg 21−D .lg 5【答案】B【分析】利用换底公式和对数的运算律可计算出所求代数式的值. 【详解】lg 2lg101<=,lg 210∴−<, 由换底公式可得()()()2222555log lg 21log 1lg 2log 1lg 2−=−=−,因此,原式()5log 1lg 2lg 25lg 21lg 21−=+=+−=.故选:B.【点睛】本题考查对数的运算,解题时要充分利用换底公式、对数的运算律以及对数恒等式来进行化简计算,考查计算能力,属于基础题.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.(22-23高一上·江苏连云港·期中)图中阴影部分用集合表示正确的是( )A .AB ∩ B .()A U A BC .()B U B AD .()()U U A B【答案】ABC【分析】由图可得图中阴影部分表示为A B ∩,再根据集合的运算判断即可. 【详解】由图可得图中阴影部分表示为A B ∩,又()A U A B A B = ,()B U B A A B = ,()()()U U U A B A B = , 故符合题意的有A 、B 、C. 故选:ABC10.(22-23高一上·江苏南京·期中)若“,0x M x ∃∈<”为真命题,“,3x M x ∃∈≥”为假命题,则集合M 可以是( )A .(,1)−∞B .[]1,3−C .[)0,2D .()3,3−【答案】AD【分析】由已知条件,写出命题,3x M x ∃∈≥的否定,即为真命题,四个选项逐一判断即可.【详解】由题意,0x M x ∃∈<为真命题,,3x M x ∀∈<为真命题,则应满足选项为集合{}3x x <的子集,且满足,0x M x ∃∈<,AD 选项均满足,B 选项当3x =时不符合,3x M x ∀∈<,故错误,C 选项不存在,0x M x ∈<,故错误. 故选:AD11.(23-24高一上·江苏·期中)关于x 的不等式20ax bx c ++≥的解集为{}14x x x ≤−≥或,下列说法正确的是( )A .0a >B .不等式20cx bx a −+<的解集为114x x −<<C .3c b+的最大值为4−D .关于x 的不等式20x bx c ++<解集中仅有两个整数,则a 的取值范围是12,75【答案】ACD【分析】根据一元二次不等式的解与一元二次方程的根之间的关系,即可得3,4b a c a =−=−,进而可判断ABC ,根据二次函数零点分布即可求解D.【详解】不等式20ax bx c ++≥的解集为{1x x ≤−或xx ≥4}, 故1x =−和4x =是方程20ax bx c ++=的两个根,所以01414a ba ca> −=−+ =−× ,解得3,4b a c a =−=−,故A 正确, 对于B ,20cx bx a −+<可变为224304310ax ax a x x −++<⇔−−>,解得1x >或14x <−,故B 错误,对于C ,()31144443a a a a a a +−=−=−+≤− −−,当且仅当14a a =,即12a =时等号成立,所以3c b +的最大值为4−,C 正确,对于D ,20x bx c ++<的不等式可变为2340x ax a −−<,记()234,f x x ax a =−−由于()040f a =−<,故0是20x bx c ++<的一个整数解,由于对称轴302a x =>,要使不等式20x bx c ++<解集中仅有两个整数,则()()()117024100,110f a f a f a =−<=−≥ −=−≥,故1275a <≤,故D 正确, 故选:ACD三、填空题:(本题共3小题,每小题5分,共15分.)12.(22-23高一上·江苏淮安·期中)满足{}{}1,3,51,3,5,7A ∪=的集合A 的个数为 . 【答案】8【分析】由题可知,集合A 中必含有元素7,再一一列举即可.【详解】解:集合A 可以为{}{}{}{}{}{}{}{}7,7,1,7,3,7,5,7,1,3,7,1,5,7,3,5,1,3,5,7, 共8个. 故答案为:8.13.(23-24高一上·江苏无锡·期中)若命题:R p x ∃∈,21ax ax −≤−为假命题,则a 的取值范围为 . 【答案】[0,4)【分析】由它的否定是真命题求解.【详解】由题意:R,p x ¬∀∈21ax ax −>−是真命题,即210ax ax −+>, 0a =时显然满足,0a ≠时,2Δ40a a a > =−< ,解得04a <<, 综上a 的范围是[0,4). 故答案为:[0,4).14.(21-22高三上·江苏苏州·阶段练习)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足51gV L =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为 .(精确到0.1)(参考数据:1010 1.259≈) 【答案】0.8【分析】根据给定条件,把 4.9L =代入进行计算即可作答.【详解】在51gV L =+中,当 4.9L =时,lg 0.1V =−,则0.11011100.81.25910V −==≈≈,15.(23-24高一上·江苏无锡·期中)已知集合所以视力的小数记录法的数据为0.8.故答案为:0.8四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.){22},{03}P xx Q x x =−<<=≤<∣∣,求下列集合: (1)P Q ∩; (2)()()R R P Q ∪ . 【答案】(1){}|02x x ≤< (2){|0x x <或}2x ≥.【分析】(1)直接由交集的概念即可得解. (2)直接由补集、并集的概念即可得解.【详解】(1)因为{22},{03}P xx Q x x =−<<=≤<∣∣,所以{}|02P Q x x =≤< .(2)因为{22},{03}P x x Q x x =−<<=≤<∣∣, 所以{R |2Px x =≤− 或}2x ≥,{R |0Q x x =< 或}3x ≥, 从而()(){R R |0P Q x x ∪=< 或}2x ≥.16.(20-21高一上·江苏南通·期中)在①充分不必要;②必要不充分;③充要这三个条件中任选一个,补充到下面的横线中,求解下列问题:已知集合1|212,3A x a x a a=−≤≤+≥ ,{}|61,04B y y x x ==+≤≤.(1)若2a =,求A B ∩;(2)是否存在实数a ,使得x A ∈是x B ∈的 条件.若存在,求实数a 的取值范围;若不存在, 请说明理由.(注:如果选择多个条件分别解答按第一个解答计分)【答案】(1)[]15A B ∩=,;(2)选①113,;选②2a ≥;选③不存在,理由见解析. 【分析】(1)首先根据题意得到{}|05A x x =≤≤,{}|15By y =≤≤,再求A B ∩即可.(2)若选①,得到2112513a a a −≥ +≤ ≥ ,再解不等式组即可;若选②得到2112513a a a −≤+≥ ≥,再解不等式组即可;若选③,得到2112513a a a−=+=≥,再解方程组即可. 【详解】(1){}|05A x x =≤≤,{}{}|61,04|15By y x x y y ==+≤≤=≤≤,所以[]15A B ∩=,. (2)若选①,x A ∈是x B ∈的充分不必要条件,所以2111251313a a a a−≥ +≤⇒≤≤ ≥.若选②,x A ∈是x B ∈的必要不充分条件, 所以21125213a a a a−≤+≥⇒≥ ≥.若选③,x A ∈是x B ∈的充要条件,所以2112513a a a−=+=≥,无解. 17.(23-24高二下·江苏扬州·期末)已知a ∈R ,命题[]:1,2p x ∀∈,2a x ≤;命题:R q x ∃∈,使得()2220x ax a +−−=.(1)若p 是真命题,求a 的最大值;(2)若p ,q 一个为真命题,一个为假命题,求a 的取值范围; 【答案】(1)1; (2)()()2,11,−∪+∞.【分析】(1)先求出2x 的范围,利用全称命题为真命题即可求得;(2)先求出命题q 为真时a 的取值范围,进而分类讨论:i .p 真q 假时和ii. p 假q 真时分别求出对应a 的取值范围即可求解.【详解】(1)记[]2,1,2y x x =∈,由2y x =在[]1,2单调递增,所以2min 11y ==. 要使命题[]:1,2p x ∀∈,2a x ≤为真命题,只需1a ≤,即a 的最大值为1.(2)命题:R q x ∃∈,使得()2220x ax a +−−=为真命题,则()24420a a ∆=+−≥,解得:1a ≥或2a ≤−. i .p 真q 假时,只需12<<1a a ≤−,所以21a −<<;ii. p 假q 真时,只需>11a a ≥ 或>12a a ≤− ,所以1a >;所以21a −<<或1a >.综上所述:a 的取值范围为()()2,11,−∪+∞.18.(22-23高一上·江苏无锡·期中)试比较下列各组中两个代数式的大小 (1)()()15x x ++与()23x +;(2)当3x >时,12x x +−与4. 【答案】(1)2(1)(5)(3)x x x ++<+ (2)142x x +>−【分析】(1)对两式进行做差化简判断与零的大小关系,即可判断出大小; (2)对两式进行做差通分化简合并判断与零的大小关系,即可判断出大小.【详解】(1)解:由题知,222(1)(5)(3)65(69)40x x x x x x x ++−+=++−++=−<, 故2(1)(5)(3)x x x ++<+;(2)221(2)14(2)69(3)42222x x x x x x x x x x x −+−−−+−+−===−−−−, 2(3)3,02x x x −>∴>− ,1402x x ∴+−>−,即142x x +>−.19.(23-24高一上·江苏扬州·期中)计算: (1)8615453552()5a b a b ÷÷ (2)333322log 2log log 89−+ 【答案】(1)15;(2)2 【分析】(1)利用指数幂和根式的运算法则计算化简;(2)利用对数运算法则计算得解.【详解】(1)原式=86434433155555555211()555a b a b a b−−÷⋅÷==; (2)原式=333333248log 4log log 8=log log 923299×−+==. 【点睛】本题主要考查指数幂和根式的运算,考查对数的运算法则,意在考查学生对这些知识的理解掌握水平.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数不等式、对数不等式考试试题及答案
例5-3-7 解不等式:
解(1)原不等式可化为
x2-2x-1<2(指数函数的单调性)
x2-2x-3<0 (x+1)(x-3)<0
所以原不等式的解为-1<x<3。
(2)原不等式可化为
注函数的单调性是解指数不等式、对数不等式的重要依据。
例5-3-8 解不等式log x+1(x2-x-2)>1。
解[法一] 原不等式同解于
所以原不等式的解为x>3。
[法二] 原不等式同解于
log x+1(x2-x-2)>log x+1(x+1)
所以原不等式的解为x>3。
注解这类对数不等式,要注意真数为正数,并须对底数的分类讨论。
解原不等式可化为
22x-6×2x-16<0
令2x=t(t>0),则得
t2-6t-16<0 (t+2)(t-8)<0 -2<t<8
又t>0,故0<t<8即0<2x<8,解得x<3。
注解这类指数不等式,常常需要通过变量代换把它变为整式不等式来解。
解原不等式可化为
解得t<-2或0<t<1,即
注解不同底的对数不等式,应先化为同底对数的不等式,再利用对数函数的单调性将它转化为整式不等式求解。
这时也常常用到换元法。
例5-3-11设a>0且a≠1,解不等式
解原不等式可化为
令log a x=t,则得
当0<a<1时,由指数函数的单调性,有
4-t2<1-2t t2-2t-3>0 (t+1)(t-3)>0
t<-1,或t>3
当a>1时,则有
4-t2>1-2t t2-2t-3<0 (t+1)(t-3)<0 -1<t<3
注解既含指数又含对数的不等式的基本思想是“化同底,求单一”,即把不同底的指数或对数化为同底的,再通过函数的单调性将复合情形转化为只含指数或对数的单一情形求解。
例5-3-12设f(x)是定义在实数集R内的函数,对任意x,y∈R,有f(x+y)=f(x)·f(y);并且当x>0时,f(x)>1,f(1)=a。
解关于x的不等式f(x2+x-4)>a2。
分析由题设条件容易联想到f(x)是指数型函数,又
a2=f(1)·f(1)=f(2),故原不等式同解于f(x2+x-4)>f(2)。
于是,问题归结为先确定f(x)的单调性,再解一个二次不等式。
=0,否则,对任意x∈R,有
f(x)=f((x-x0)+x0)=f(x-x0)f(x0)=0
与已知矛盾,所以对任意x∈R,有f(x)>0。
现设x,y∈R,且y=x+δ(δ>0)。
则
f(y)-f(x)=f(x+δ)-f(x)=f(x)f(δ)-f(x)
=f(x)[f(δ)-1]>0(∵δ>0,∴f(δ)>1)。
故f(x)在R内是增函数。
于是原不等式同解于
x2+x-4>2 x2+x-6>0 x<-3或x>2
注本题的关键是确定函数f(x)的单调性,而不必求出它的具体表达式。