初一数学下册第一章整式的除法习题(含详细解析答案)
北师大版七年级下册数学第一章 整式的乘除含答案
北师大版七年级下册数学第一章整式的乘除含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.3x+2y=5xyB.(x 4)3=x 12C.(x+y)2=x 2+y 2D.2x 2÷2x 2=02、如图,将完全相同的四个矩形纸片拼成一个正方形,则可得出一个等式为()A.(a+b)2=a 2+2ab+b 2B.(a﹣b)2=a 2﹣2ab+b 2C.a 2﹣b 2=(a+b)(a﹣b)D.(a+b)2=(a﹣b)2+4ab3、下列运算正确的是()A.5 2•5 3=5 6B.(5 2)3=5 5C.5 2÷5 3=5D.()2=54、下列运算正确的是()A. B. C. D.5、下列计算正确的是()A. B. C. D.6、下列运算结果正确的是()A. B. C. D.7、下列运算正确的是()A.﹣a 2•(﹣a 3)=a 6B.(a 2)﹣3=a ﹣6C.()﹣2=﹣a 2﹣2a﹣1D.(2a+1)0=18、下列多项式乘法中可以用平方差公式计算的是()A. B. C. D.9、下列整式的运算中,正确的是( )A. B. C. D.10、下列计算正确的是()A. B. C. D.11、计算4﹣(﹣4)0的结果是()A.0B.2C.3D.412、计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a 8+2a 4b 4+b 8B.a 8﹣2a 4b 4+b 8C.a 8+b 8D.a 8﹣b 813、规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0B.2aC.2bD.2ab14、下列运算正确的是()A. =±2B. =﹣16C.x 6÷x 3=x 2D.(2x 2)3=8x 615、下面计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、已知a﹣=3,那么a2+ =________.17、计算x•2x2的结果是________.18、若2x=3,4y=5,则2x+2y的值为________.19、若,则________20、若(x+m)(x+3)中不含x的一次项,则m的值为________.21、计算的结果是________.22、(﹣2x+y)(﹣2x﹣y)=________ .23、如图,从一个边长为a的正方形的一角上剪去一个边长为b(a>b)的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是________(用含a,b的等式表示).24、若a+b=5,ab=6,则a﹣b=________ .25、计算:=________.三、解答题(共5题,共计25分)26、计算:2sin60°+(- )-1-20180-|1- |27、已知3既是x﹣4的算术平方根,又是x+2y﹣10的立方根,求x2﹣y2的平方根.28、计算图中长方体的体积.29、一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.30、已知中不含x的二次项,求a的值.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、C5、D6、D7、B8、A10、D11、C12、B13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。
北师大版七年级数学下册第一章整式的乘除难点解析试题(含答案及详细解析)
北师大版七年级数学下册第一章整式的乘除难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算02022的结果是()A.1 B.0 C.2022 D.1 20222、下列计算正确的是()A.a+3a=4a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a73、三个数02,23-,()13--中,负数的个数是()A.0个B.1个C.2个D.3个4、已知并排放置的正方形ABCD和正方形BEFG如图,其中点E在直线AB上,那么DEG∆的面积1S和正方形BEFG的面积的2S大小关系是()A .1212=S S B .12S S C .122S S = D .1234S S = 5、计算(1)(2)m m m ++结果中,3m 项的系数是( )A .0B .1C .2D .36、下列运算正确的是( )A .(a 2)3=a 6B .a 2•a 3=a 6C .a 7÷a =a 7D .(﹣2a 2)3=8a 6 7、()23a -的值是( ) A .5a - B .6a C .5a D .6a -8、下列计算中,正确的是( )A .3515a a a ⋅=B .22a b ab +=C .()2362a b a b =D .()2224a a =++ 9、下列计算正确的是( ).A .()33xy xy =B .()222455xy x y -=- C .()22439x x -=- D .()323628xy x y -=- 10、下列计算中,结果正确的是( )A .3515x x ⋅=B .248x x x ⋅=C .()236x x =D .623x x x ÷=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:|﹣2|﹣20210+(12)﹣1=______________.2、比较大小:4442____33333、若(x +x )(2x −4)的结果中不含x 的一次项,则a 的值为______.4、(﹣2021)0=_____.5、计算:332a a +6a ÷2a =____________.三、解答题(5小题,每小题10分,共计50分)1、已知有理数x ,y 满足x +y 12=,xy =﹣3(1)求(x +1)(y +1)的值;(2)求x 2+y 2的值.2、化简:()()()2231x x x -+++.3、计算:20-211(3).93⎛⎫--+--- ⎪⎝⎭ 4、计算(1)(3x ﹣2)(2x +y +1).(2)62a (13ab ﹣2b )﹣22a b (a ﹣b ).5、计算:(1)53(9126)3x x x x +-÷(2)(-2x +1)(3x -2)-参考答案-一、单选题1、A【分析】根据任何数(除了0以外)的零次幂都为1可直接进行求解.【详解】解:02022=1;故答案为1.【点睛】本题主要考查零次幂,熟练掌握零次幂是解题的关键.2、A【分析】根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.【详解】解:A选项,原式=4a,故该选项符合题意;B选项,原式=b6,故该选项不符合题意;C选项,原式=a2,故该选项不符合题意;D选项,原式=a10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.3、B【分析】先计算各数,并与0比较大小,根据比0小的个数得出结论即可.【详解】解:021=>0,2211339-==>0,()111333--==--<0, 负数的个数是1个,故选:B .【点睛】本题考查有理数的幂运算,零指数幂,负指数幂,掌握有理数的幂运算,零指数幂,负指数幂,和比较大小是解题关键.4、A【分析】设正方形ABCD 和正方形BEFG 的边长分别为m 、n ,利用面积和差求出面积即可判断.【详解】解:设正方形ABCD 和正方形BEFG 的边长分别为m 、n ,S 1=S 正方形ABCD +S 正方形BEFG ﹣(S △ADE +S △CDG +S △GEF )=m 2+n 2﹣[12m (m +n )+ 12m (m ﹣n )+ 12n 2] =12n 2;∴S 1=12S 2.故选:A .【点睛】本题主要考查整式的混合运算,解题的关键是熟练用面积和差求三角形面积,准确进行计算.5、B【分析】根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加计算,最后根据要求求解即可.【详解】解:∵(1)(2)m m m ++=232(32)32m m m m m m ++=++,∴3m 项的系数是1.故选:B .【点睛】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.6、A【分析】根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.【详解】解:A 、()326a a =,原选项正确,故符合题意; B 、235a a a ⋅=,原选项错误,故不符合题意;C 、76a a a ÷=,原选项错误,故不符合题意;D 、()32628a a -=-,原选项错误,故不符合题意; 故选A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.【分析】根据幂的乘方法则计算即可.【详解】解:()23a-=6a,故选B.【点睛】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.8、C【分析】根据同底数幂的乘法、合并同类项、积的乘方、幂的乘方运算法则以及完全平方公式对各项进行计算即可解答.【详解】解:A. 3583+5=⋅=,故原选项计算错误,不符合题意;a a a aB. 2a与b不能合并,故原选项计算错误,不符合题意;C. ()2362=,计算正确,符合题意;a b a bD. ()22+=++,故原选项计算错误,不符合题意.a a a244故选:C.【点睛】本题主要考查了同底数幂的乘法、合并同类项、幂的乘方运算法则以及完全平方公式等知识点,灵活运用相关运算法则是解答本题的关键.【分析】幂的乘方,底数不变,指数相乘,积的乘方,等于每个因式乘方的积,据此计算即可.【详解】解:A、()333xy x y=,故本选项不合题意;B、()2224-=,故本选项符合题意;xy x y525C、()224-=,故本选项不合题意;x x39D、(−2xy2)3=−8x3y6,故本选项正确故选:D.【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.10、C【分析】根据整式乘法的法则及幂的乘方法则、同底数幂除法法则依次判断.【详解】解:A、3515x x⋅=x2,故该项不符合题意,B、246⋅=,故该项不符合题意,x x xC、()236=,故该项符合题意,x xD、624x x x÷=,故该项不符合题意,故选:C.【点睛】此题考查了整式的计算法则,正确掌握整式乘法的法则及幂的乘方法则、同底数幂除法法则是解题的关键.二、填空题1、3【分析】先化简绝对值、零指数幂和负整数指数幂,再算加减即可【详解】解:|﹣2|﹣20210+(1)﹣12=2-1+2=3.故答案为:3.【点睛】本题考查了有理数的意义,熟练掌握绝对值、零指数幂和负整数指数幂的意义是解答本题的关键,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.2、【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∵2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∴2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.3、2【分析】将原式化简后,将含有x 的项进行合并,然后令其系数为0即可求出答案.【详解】解:原式=2x 2−4x +2xx −4x=2x 2+(2x −4)x −4x令240a -=,2a ∴=,故答案为:2.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用多项式乘以多项式的乘法法则,本题属于基础题型.4、1【分析】根据任何非0的数的零指数幂为1进行求解即可.【详解】解:()020211-=,故答案为:1.【点睛】本题主要考查了零指数幂,解题的关键在于能够熟练掌握一个非0的数的零指数幂为1.5、47a【分析】由题意先计算同底数幂的乘法和同底数幂的除法,最后合并同类项即可得出答案.【详解】解:332a a +6a ÷2a =44467a a a +=.故答案为:47a .【点睛】本题考查整式的乘除,熟练掌握同底数幂的乘法和同底数幂的除法运算是解题的关键.三、解答题1、(1)112-(2)164【分析】(1)(x +1)(y +1)=xy +(x +y )+1,再整体代入计算即可求解;(2)将x 2+y 2变形为(x +y )2-2xy ,再整体代入计算即可求解.(1)(1)解:(1)(x +1)(y +1)=xy +(x +y )+1 =-3+12+1 =112- ;(2)(2)解:x 2+y 2=(x +y )2-2xy4=164.【点睛】本题考查了完全平方公式,多项式乘多项式,解题关键是整体思想的应用.2、227x【分析】先利用完全平方公式,多项式乘以多项式计算整式的乘法,再合并同类项即可.【详解】解:()()()2231x x x -+++224433x x x x x227x 【点睛】本题考查的是整式的乘法运算,完全平方公式的应用,掌握“利用完全平方公式进行简便运算”是解本题的关键.3、8.9【分析】先计算0次幂和负指数幂及绝对值和有理数的乘方运算,然后运用有理数的加减法法则计算即可.【详解】解:()20211393-⎛⎫--+--- ⎪⎝⎭ 1111999=-+-9【点睛】题目主要考查负指数幂、0指数幂、有理数的乘方,去绝对值,有理数的加减混合运算,熟练掌握各运算法则是解题关键.4、(1)62x+3xy﹣x﹣2y﹣2(2)﹣42a2b【分析】(1)根据多项式乘以多项式的运算法则计算即可;(2)根据单项式乘以多项式的运算法则计算即可.(1)解:(1)(3x﹣2)(2x+y+1)=62x+3xy+3x﹣4x﹣2y﹣2=62x+3xy﹣x﹣2y﹣2.(2)解:原式=62a×13ab﹣62a×2b﹣22a b×a+22a b×b=23a b﹣62a2b﹣23a b+22a2b=﹣42a2b.【点睛】本题考查了了整式的乘法,熟练掌握乘法运算的法则是解题的关键.5、(1)42342x x+-;(2)2672x x-+-【分析】(1)根据多项式除以单项式运算法则计算即可;(2)根据多项式乘以多项式的运算法则计算即可.【详解】(1)53x x x x+-÷(9126)3=53÷+÷+-÷x x x x x x(93)(123)(6)3=42+-;x x342(2)(-2x+1)(3x-2)=2x x x-++-6432=2-+-.x x672【点睛】本题考查了多项式除以单项式,多项式乘以多项式,熟练掌握运算法则是解题的关键.。
北师大版七年级数学下册第一章 整式的乘除练习(含答案)
第一章 整式的乘除一、单选题1.计算23()a a -⋅的结果正确的是( )A .6a -B .6aC .5a -D .5a2.下列计结果为a 10的是( )A .a 6+a 4B .a 11﹣aC .(a 5)2D .a 20÷a 23. 计算(x 3y)2的结果是( )A .x 3y 2B .x 6yC .x 5y2D .x 6y 24.下列运算正确的是( )A .842x x x ÷=B .347x x x ⋅=C .()32528x x -=-D .()32628x y x y -=-5.计算:23(2)a a •-=( )A .312a -B .27a -C .312aD .27a6.一个长方形的宽是a ,长是2a ,则这个长方形的周长是( )A .3aB .6aC .22aD .9a7.已知计算(2)(1)x p x --+的结果中不含x 的一次项,则p 等于是( )A .2-B .1-C .0D .18.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab 9.已知(m -n )2=8,(m+n )2=4,则m 2+n 2=( )A .32B .12C .6D .2 10.两个连续奇数的平方差是( ).A .6的倍数B .8的倍数C .12的倍数D .16的倍数二、填空题11.若10m =5,10n =4,则102m+n ﹣1=_____.12.若多项式223368x kxy y xy --+-不含xy 项,则k =______. 13.若a ﹣b =1,ab =2,那么a +b 的值为_____.14.计算3(22+1)(24+1)……(232+1)+1=___________.三、解答题15.计算(1)()()()523y y y y ---g g (2)2201920182020-⨯(3)222020404020192019-⨯+(4)()()2323x y z x y z +---16.若()()223x mx x x n +-+的展开式中不含2x 和3x 项,求m 和n 的值. 17.先化简再求值,2(1)(2)(2)(2)(2)ab ab a b a b b a +-+-++--,其中23a =,34b =-. 18.某同学在计算3(4+1)(24+1)时,把3写成(4﹣1)后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(24+1)=(4﹣1)(4+1)(24+1)=(24﹣1)(24+1)=216﹣1=255. 请借鉴该同学的经验,计算:2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 19.(1)比较下列两个算式的结果的大小(横线上选填"","">=或""<) ①2234___234+⨯⨯ ①22(2)(3)___2(2)(3)-+-⨯-⨯- ①221111()()___23434+⨯⨯ ①22(4)(4)___2(4)(4)-+-⨯-⨯- (2)观察并归纳(1)中的规律,用含,a b 的一个关系把你的发现表示出来.(3)若24a b +=,且,a b 均为正数,利用你发现的规律,求ab 的最大值答案1.D2.C3.D4.B5.C6.B7.A8.A9.C10.B11.1012.213.±3.14.26415.(1)原式=11y (2)原式=1 (3)原式=1 (4)原式=222496x y z xz -+- 16.m=3,n=917.2292--a b ab ,11418.2.19.(1)=>>>,,,;(2)22a 2b ab +≥;(3)2。
初一数学整式的除法试题答案及解析
初一数学整式的除法试题答案及解析1.若4x3﹣2x2+k﹣2x能被2x整除,则常数k的值为()A.1B.﹣1C.2D.0【答案】D【解析】因为多项式的前面几项均能被2x整除,所以k也能被2x整除,结合k为常数,可得k 只能为0.解:∵4x3、﹣2x2、﹣2x均能被2x整除,∴k也能被2x整除,又∵k为常数,∴k=0.故选D.2.(0.14m4n3﹣0.8m3n3)÷0.2m2n2等于()A.0.7m2n2﹣0.4mnB.0.28m2n﹣0.16nC.0.7m2n﹣4mnD.0.7m2n﹣4n【答案】C【解析】根据多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加的法则计算即可.解:(0.14m4n3﹣0.8m3n3)÷0.2m2n2,=0.14m4n3÷0.2m2n2﹣0.8m3n3÷0.2m2n2,=0.7m2n﹣4mn.故选C.3.如图,沿着正方形的对称轴对折,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2个B.4个C.6个D.8个【答案】C【解析】从图中看出,有四个小正方形,即有四个整式,把对折后重合的两个小正方形内的整式相乘即可.解:正方形有四条对称轴,有六组对应整式的积:x(x+1),x2(x﹣1),x2(x+1),x(x﹣1),(x+1)(x﹣1),x•x2,故选C.4.计算(28a3﹣14a2+7a)÷(﹣7a)的结果为()A.﹣4a2+2a B.4a2﹣2a+1C.4a2+2a﹣1D.﹣4a2+2a﹣1【答案】D【解析】此题直接利用多项式除以单项式的法则即可求出结果,也可以提取公因式(﹣7a),然后得出结果.解:原式=(28a3﹣14a2+7a)÷(﹣7a)=28a3÷(﹣7a)﹣14a2÷(﹣7a)+7a÷(﹣7a)=﹣4a2+2a﹣1.故选D.5.若(x3+27y3)÷(x2﹣axy+by2)=x+3y,则a2+b=.【答案】18【解析】先计算(x3+27y3)÷(x+3y)=x2﹣3xy+9y2,依此可得a=3,b=9,再代入计算即可求解.解:∵(x3+27y3)÷(x+3y)=x2﹣3xy+9y2,∴a=3,b=9,∴a2+b=9+9=18.故答案为:18.6.已知一个长方形的面积为4a2﹣2ab+,其中一边长是4a﹣b,则该长方形的周长为.【答案】10a﹣b【解析】利用长方形面积除以长=宽,求得另一条边的长,再进一步求得长方形的周长即可.解:(4a2﹣2ab+)÷(4a﹣b)=(16a2﹣8ab+b2)÷(4a﹣b)=(4a﹣b)2÷(4a﹣b)=(4a﹣b);则长方形的周长=[(4a﹣b)+(4a﹣b)]×2=[a﹣b+4a﹣b]×2=[5a﹣b]×2=10a﹣b.故答案为:10a﹣b.7.已知多项式3x3+ax2+3x+1能被x2+1整除,且商式是3x+1,那么a的值是.【答案】1【解析】先根据被除式=商×除式(余式为0时),得出3x3+ax2+3x+1=(x2+1)(3x+1),再运用多项式乘多项式的法则将等式右边展开,然后根据多项式相等的条件,对应项的系数相等得出a的值.解:由题意,得3x3+ax2+3x+1=(x2+1)(3x+1),∴3x3+ax2+3x+1=3x3+x2+3x+1,∴a=1.故答案为1.8.÷a2=4a3b4﹣2a3b3+4.【答案】2a5b4﹣a5b3+4a2【解析】用商乘以除数求得被除数即可.解:∵(4a3b4﹣2a3b3+4)×a2=2a5b4﹣a5b3+4a2,∴2a5b4﹣a5b3+4a2÷a2=4a3b4﹣2a3b3+4.故答案为:2a5b4﹣a5b3+4a2.9.()÷0.3x3y2=27x4y3+7x3y2﹣9x2y.【答案】8.1x7y5+7x6y4﹣9x5y3【解析】由于被除式等于商乘以除式,所以只需计算(27x4y3+7x3y2﹣9x2y)•0.3x3y2即可.解:(27x4y3+7x3y2﹣9x2y)•0.3x3y2=8.1x7y5+7x6y4﹣9x5y3.故答案为8.1x7y5+7x6y4﹣9x5y3.10.计算3x3÷x2的结果是()A.2x2B.3x2C.3x D.3【答案】C【解析】单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.解:原式=3x3﹣2=3x.故选C.11.计算6a6÷(﹣2a2)的结果是()A.﹣3a3B.﹣3a4C.﹣a3D.﹣a4【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算.解:6a6÷(﹣2a2)=[6÷(﹣2)]•(a6÷a2)=﹣3a4.故选B.12.一颗人造地球卫星的速度为2.88×107米/时,一架喷气式飞机的速度为1.8×106米/时,则这颗人造地球卫星的速度是这架喷气式飞机的速度的()A.1600倍B.160倍C.16倍D.1.6倍【答案】C【解析】根据速度=路程÷时间列出算式,再利用同底数幂相除,底数不变指数相减计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16,则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.故选C.13.下列计算正确的是()A.(﹣a2)3=a6B.2a6÷a3=2a2C.a2÷a×=a2D.a2+2a2=3a2【答案】D【解析】根据幂的乘方,底数不变指数相乘;单项式的除法和同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解:A、应为(﹣a2)3=﹣a6,故本选项错误;B、应为2a6÷a3=2a3,故本选项错误;C、应为a2÷a×=a×=1,故本选项错误;D、a2+2a2=3a2,正确.故选D.14.已知a=1.6×109,b=4×103,则a2÷b=()A.4×107B.8×1014C.6.4×105D.6.4×1014【答案】D【解析】根据题意得到a2÷b=(1.6×109)2÷(4×103),根据积的乘方得到原式=1.6×1.6×1018÷(4×103),再根据同底数的幂的除法法则得到原式=6.4×1014.解:a2÷b=(1.6×109)2÷(4×103)=1.6×1.6×1018÷(4×103)=6.4×1014.故选D.15.化简12a2b÷(﹣3ab)的结果是()A.4a B.4b C.﹣4a D.﹣4b【答案】C【解析】按照单项式的除法的运算法则进行运算即可;解:12a2b÷(﹣3ab)=12÷(﹣3)(a2÷a)(b÷b)=﹣4a,故选C.16.(﹣a4)2÷a3的计算结果是()A.﹣a3B.﹣a5C.a5D.a3【答案】C【解析】先算乘方(﹣a4)2=a8,再根据同底数幂的除法法则进行计算即可.解:原式=a8÷a3=a5,故选C.17.计算:9x3÷(﹣3x2)=.【答案】﹣3x【解析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.解:9x3÷(﹣3x2)=﹣3x.18.计算:(﹣2a)2÷a=.【答案】4a【解析】本题是积的乘方与同底数幂的除法的混合运算,求解时按照各自的法则运算即可.解:(﹣2a)2÷a=4a2÷a=4a.故填4a.19.计算:6x3÷(﹣2x)=.【答案】﹣3x2【解析】根据单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则就可以求出结果.解:6x3÷(﹣2x)=﹣(6÷2)x3﹣1=﹣3x2.20.计算:(a2b)2÷a4=.【答案】b2【解析】根据积的乘方,单项式除单项式的运算法则计算即可.解:(a2b)2÷a4=a4b2÷a4=b2.故填b2.。
第一章第08讲 整式的除法(6类热点题型讲练)(解析版)--初中数学北师大版7年级下册
第08讲整式的除法(6类热点题型讲练)1.复习单项式乘以单项式的运算,探究单项式除以单项式的运算规律;2.复习单项式乘以多项式的运算,探究多项式除以单项式的运算规律;3.能运用单项式除以单项式、多项式除以单项式进行计算并解决问题.知识点01单项式除以单项式单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式.根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑.知识点02多项式除以单项式多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加.即(a+b+c)÷m=a÷m+b÷m+c÷m多项式除以单项式其特点是把多项式除以单项式转化成单项式除以单项式,另外还要特别注意符号.多项式除以单项式,注意多项式各项都包括前面的符号.题型01单项式除以单项式1.(2023上·全国·八年级课堂例题)计算:(1)2284a b ab ÷;(2)32262x y x y -÷;(3)()233248x y y -÷-.【答案】(1)2ab(2)3xy-(3)23x 【分析】(1)根据单项式除以单项式的法则进行计算即可;(2)根据单项式除以单项式的法则进行计算即可;(3)根据单项式除以单项式的法则进行计算即可.【详解】(1)解:22842a b ab ab ÷=;(2)322623x y x y xy -÷=-;(3)()23322483x y y x -÷-=;题型02多项式除以单项式【例题】(2023上·全国·八年级专题练习)计算:(1)()()235224332a b a b a b ab -+÷-;(2)()()2224122x y y x xy ⎡⎤-+-÷-⎣⎦.【答案】(1)3232ab a b-+(2)24y -+【分析】(1)根据多项式除以单项式,进行计算即可求解.(2)先根据单项式乘以多项式计算括号内的,然后合并同类项,最后根据多项式除以单项式进行计算即可求解.【详解】(1)解:()()235224332a b a b a b ab -+÷-()2352224332a b a b a b a b -+÷=3232ab a b =-+;(2)解:()()2224122x y y x xy ⎡⎤-+-÷-⎣⎦()()2=+-xy xy x x-÷-2xy4822()()2÷-=-8yxy xy x42y=-+.24【点睛】本题考查了整式的混合运算,熟练掌握整式的运算法则是解题的关键.【变式训练】题型03含整式除法的整式四则混合运算【例题】(2023上·河南信阳·八年级统考阶段练习)计算:1.(2023上·辽宁盘锦·八年级校考阶段练习)计算:(1)()()()2353591x x x +---;(2)()()()232222y x x y x x y xy x y ---÷-⎡⎤⎣⎦.【答案】(1)1834x -(2)1xy -【分析】本题考查了整式的混合运算;(1)根据平方差公式与完全平方公式进行计算,即可求解.(2)先根据单项式乘以多项式,再根据多项式除以单项式计算.【详解】(1)解:()()()2353591x x x +---()22925921x x x =---+229259189x x x =--+-1834x =-;7373(8)(4)x y x y -+-=7312x y =-;(4)解:()()222226633m n m n m m --÷-()()222221(3)3n n m m =-++-÷-2221n n =-++.题型04整式的混合运算之化简求值题型05含整式除法的新定义型问题【例题】(2023下·福建三明·七年级统考期中)若定义表示xyz ,表示4d b a c ,则运算的结果为()A .22m nB .24m nC .22mnD .24mn 【答案】A 【分析】根据定义的公式列式计算即可.【详解】解:由题意得:322422m n mn m n÷=故选:A .【点睛】此题考查了单项式除以单项式,正确理解定义的计算公式及单项式除以单项式的计算法则是解题的关键.【变式训练】题型06利用竖式的方法求整式中多项式除以单项式1.(2023下·江苏苏州·七年级统考期末)阅读理解:由两个或两类对象在某些方面的相同或相似,得出它们在其他方面也可能相同或相似的推理方法叫类比法.多项式除以多项式可以类比于多位数的除法进行计算.如图1:+27812232∴÷=,一、单选题【分析】本题租用考查了多项式除以单项式,根据长方形面积公式只需要计算出()22a ab a a -+÷的结果即可得到答案.【详解】解:∵一个长方形的面积是22a ab a -+,宽是a ,∴这个长方形的长是()2221a ab a a a b -+÷=-+,故选D .5.(2023上·吉林长春·八年级校考期末)小明在做作业的时候,不小心把墨水滴到了作业本上,22102x x x ⨯=-■,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是()A .()51x -B .()51x +C .()252x -D .()251x -【答案】A【分析】本题考查了整式的除法,掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加是解题的关键.【详解】解:()21022x x x-÷210222x x x x =÷-÷51x =-,故选:A .二、填空题【答案】1m -【分析】先平方,再减m ,所得到的差除以m 即可.【详解】解:()21m m m m -÷=-.故答案为:1m -.【点睛】本题考查了程序流程图与整式的混合运算,解决问题的关键是读懂题意,找到所求的量的等量关系.三、解答题(2)“刻苦小组”把小学的除法运算法则运用在多项式除法运算上,这里运用的数学思想是(A .数形结合B .类比C .方程任务三学以致用(3)请计算23(456)(2)x x x x ++-÷+的商式与余式【答案】(1)2466x x +-;(2)B ;(3)商式是2x +【分析】本题考查多项式、单项式的次数及多项式的除法:“刻苦小组”把小学的除法运算法则运用在多项式除法运算上,运用了类比的思想,故选B ;(3)由题意可得,∴23(456)(2)x x x x ++-÷+的商式是221x x ++,余式是8-;。
初中数学整式的除法(含答案)
1.3 整式的除法◆赛点归纳整式的除法包括单项式除以单项式,多项式除以单项式,多项式除以多项式.多项式恒等定理:(1)多项式f(x)=g(x),•需且只需这两个多项式的同类项的系数相等;(2)若f(x)=g(x),则对于任意一个值a,都有f(a)=g(a).余数定理:多项式f(x)除以x-a所得的余数等于f(a).特别地,当f(x)•能被x-a整除时,有f(a)=0.◆解题指导例1设a、b为整数,观察下列命题:①若3a+5b为偶数,则7a-9b也为偶数;②若a2+b2能被3整除,则a和b也能被3整除;③若a+b是质数,则a-b不是质数;④若a3-b3是4的倍数,则a-b也是4的倍数.其中正确的命题有().A.0个B.1个C.2个D.3个以上【思路探究】对于①看7a-9b与3a+5b的和或差是不是偶数.对于②根据整数n的平方数的特征去判断.对于③、④若不能直接推导是否成立,也可举出反例证明不成立.例2 若2x3-kx2+3被2x+1除后余2,则k的值为().A.k=5 B.k=-5 C.k=3 D.k=-3【思路探究】要求k的值,须找到关于k的方程.由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此就可得关于k的一次方程.例3计算:(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5).【思路探究】被除式是一个6次六项式,除式是一个4次四项式,直接计算比较复杂,应列竖式计算.例4若多项式x4-x3+ax2+bx+c能被(x-1)3整除,求a、b、c的值.【思路探究】由条件知x4-x3+ax2+bx+c能被x3-3x2+3x-1整除,列竖式可知x4-x3+ax2+bx+c的商式和余式.根据一个多项式被另一个多项式整除,余式恒为零可求a、•b、c的值.【拓展题】设x1,x2,…,x7都是整数,并且x1+4x2+9x3+16x4+25x5+36x6+49x7=1,①4x1+9x2+16x3+25x4+35x5+49x6+64x7=12,②9x1+16x2+25x3+36x4+49x5+64x6+81x7=123,③求16x1+25x2+36x3+49x4+64x5+81x6+100x7的值.◆探索研讨整式除法的综合运用大多与多项式除以多项式相关.多项式除法运算实际上是它们的系数运算.在进行多项式乘除法恒等变形时,它们对应项系数是相等的,由此列方程可求解待定系数.请结合本节的例题,总结自己的发现.◆能力训练1.下列四个数中,对于任一个正整数k,哪个数一定不是完全平方数().A.16k B.16k+8 C.4k+1 D.32k+42.要使3x3+mx2+nx+42能被x2-5x+6整除,则m、n应取的值是().A.m=8,n=17 B.m=-8,n=17C.m=8,n=-17 D.m=-8,n=-173.(2001,武汉市竞赛)如果x3+ax2+bx+8有两个因式x+1和x+2,则a+b=().A.7 B.8 C.15 D.214.对任意有理数x,若x3+ax2+bx+c都能被x2-bx+x整除,则a-b+c的值是().A.1 B.0 C.-1 D.-25.满足方程x3+6x2+5x=27y3+9y2+9y+1的正整数对(x,y)有().A.0对B.1对C.3对D.无穷多对6.(2003,四川省竞赛)若(3x+1)4=ax4+bx3+cx2+dx+e,则a-b+c-d+e=________.7.(2004,北京市竞赛)用正整数a去除63,91,129所得的3个余数的和是25,则a 的值为________.8.已知多项式3x3+ax2+bx+1能被x2+1整除,且商式是3x+1,那么(-a)b的值是_____.9.若多项式x4+mx3+nx-16含有因式(x-1)和(x-2),则mn=________.10.多项式x135+x125-x115+x5+1除以多项式x3-x所得的余式是_______.11.计算:(1)(6x5-7x4y+x3y2+20x2y3-22xy4+8y5)÷(2x2-3xy+y2);(2)(41m-m3+15m4-70-m2)÷(3m2-2m+7).12.已知a、b、c为有理数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值;(3)若a、b、c为整数,且c≥a>1,试确定a、b、c的大小.13.(2000,“五羊杯”,初二)已知x6+4x5+2x4-6x3-3x2+2x+1=[f(x)] 2,其中f(x)是x的多项式,求这个多项式.14.已知一个矩形的长、宽分别为正整数a、b,其面积的数值等于它的周长数值的2倍,求a+b的值.15.(2004,北京市竞赛)能将任意8个连续的正整数分为两组,使得每组4•个数的平方和相等吗?如果能,请给出一种分组法,并加以验证;如果不能,请说明理由.答案:解题指导例1 C [提示:命题①成立.因为(7a-9b)-(3a+5b)=2(2a-7b)是偶数;命题②也成立.因为整数n的平方被3除余数只能为0或1,3整除a2+b2,表明a2、b2被3除的余数都是0,所以a和b都能被3整除;命题③不成立.如5+2=7和5-2=3都是质数;命题④也不成立.例如a=2,b=0.]例2 C [提示:∵2x3-kx2+3被2x+1除后余2,∴2x3-kx2+1能被2x+1整除.令2x+1=0,得x=-12.代入2x3-kx2+1=0,得2×(-12)3-k(-12)2+1=0,即-14-14k+1=0,解得k=3.]例3(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5)=3x2-2x+1……x+5.例4 x4-x3+ax2+bx+c=(x3-3x2+3x-1)(x+2)+(a+3)x2+(b-5)x+(c+2).由余式恒等于0,得a+3=0,b-5=0,c+2=0.∴a=-3,b=5,c=-2.【拓展题】设四个连续自然数的平方为:n2、(n+1)2、(n+2)2、(n+3)2,则(n+3)2=a(n+2)2+b(n+1)2+cn2.整理得n2+6n+9=(a+b+c)n2+(4a+2b)n+4a+b.∴a+b+c=1,4a+2b=6,4a+b=9.解得a=3,b=-3,c=1,∴16x1+25x2+36x3+49x4+64x5+81x6+100x7=③×3-②×3+①=123×3-12×3+1=334.能力训练1.B [提示:16k+8=8(2k+1).因2k+1是奇数,8•乘以一个奇数一定不是完全平方数.] 2.D [提示:∵3x3+mx2+nx+42=(x2-5x+6)(3x+7)+(m+8)x2+(n+17)x.∴80,8,170,17.m mn n+==-⎧⎧⎨⎨+==-⎩⎩解得.]3.D [提示:∵(x+1)(x+2)=x2+3x+2,∴x3+ax2+bx+8=(x2+3x+2)(x+4)+(a-7)x2+(b-14)x.∴70,7,140,14.a ab b-==⎧⎧∴⎨⎨-==⎩⎩∴a+b=21.]4.A [提示:∵x3+ax2+bx+c=(x2-bx+c)(x+1)+(a+b-1)x2+(2b-c)x,∴10,(1)20.(2)a bb c+-=⎧⎨-=⎩(1)-(2),得a-b+c=1.]5.A [提示:原方程可变形为x(x+1)(x+5)=3(9y3+3y2+3y)+1.①如果有正整数x、y使①成立,那么由于x,x+1,x+5=(x+2)+3这3个数除以3所得余数互不相同,所以其中必有一个被3整除,即①的左边被3整除,而①的右边不被3整除,这就产生矛盾.所以原方程没有正整数解.]6.16 [提示:令x=-1,得a-b+c-d+e=16.]7.43 [提示:由题意,有63=a×k1+r1,91=a×k2+r2,129=a×k3+r3.(0≤r1、r2、r3<a)相加得63+91+129=a(k1+k2+k3)+(r1+r2+r3)=a(k1+k2+k3)+25.故258被a整除.由于258=2×3×43,a大于余数,且3个余数的得25,所以a>8.•又a不超过63、91、129中的最小者63,故258的因数中符合要求的只有a=43.]8.-1 [提示:∵(x2+1)(3x+1)=3x3+x2+3x+1,∴3x3+ax2+bx+1=3x3+x2+3x+1.∴a=1,b=3,即(-a)b=(-1)3=-1.]9.-100 [提示:∵(x-1)(x-2)=x2-3x+2,x4+mx3+nx-16=(x2-3x+2)[x2+(m+3)x-8]+(3m+15)x2+(n-2m-30)x,∴3150,5,2300,20.m mn m n+==-⎧⎧⎨⎨--==⎩⎩解得∴mn=-100.]10.2x+1 [提示:设x135+x125-x115+x5+1=(x3-x)f(x)+ax2+bx+c,其中f(x)为商式.取x=0,得c=1;取x=1,得a+b+c=3.取x=-1,得a-b+c=-1.解得a=0,b=2,c=1.故所求余式为2x+1.]11.(1)商式为3x3+x2y+12xy2+34133,44y余式为xy4-94y5.(2)商式为5m2+3m-10,余式为0.12.(1)∵(x-1)(x+4)=x2+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a、b、c为整数,∴a≥2,c≥2,则a=2,c=4,又a+b+c=-1,∴b=-7.13.设f(x)=±(x3+Ax2+Bx+1)或±(x3+Ax2+Bx-1).先设f(x)=x3+Ax2+Bx+1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB+2)x3+(2A+B2)x2+2Bx+1,故2A=4,A2+2B=2,2AB+2=-6,2A+B2=-3,2B=2,无解.再设f(x)=x3+Ax2+Bx-1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB-2)x3+(B2-2A)x2-2Bx+1,故2A=4,A2+2B=2,2AB-2=-6,B2-2A=-3,-2B=2.解得A=2,B=-1.故所求的多项式为±(x3+2x2-x-1).14.由题意得ab=2(2a+2b).∴ab-4a=4b,∴a=416444bb b=+--.∵a、b均为正整数,且a>b.∴(b-4)一定是16的正约数.当(b-4)分别取1、2、4、8、16时,代入上式,得b-4=1时,b=5,a=20;b-4=2时,b=6,a=12;b-4=4时,b=8,a=8(舍去);b-4=8时,b=12,a=6(舍去);b-4=16时,b=20,a=5(舍去).∴只有a=20,b=5或a=12,b=6符合题意,把a+b=25或18.15.能设任意8个连续的正整数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7.将其分为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}即满足要求.验证如下:先将任意8个连续的正整数按如下分为等和的两组,满足a+(a+1)+(a+6)+(a+7)=(a+2)+(a+3)+(a+4)+(a+5)则[(a)+(a+1)]·[(a+6)+(a+7)]·1=[(a+2)+(a+3)]·1+[(a+4)+(a+5)]·1 即[(a)+(a+1)][(a+1)-(a)]+[(a+6)+(a+7)][(a+7)-(a+6)]=[(a+2)+(a+3)][(a+3)-(a+2)]+[(a+4)+(a+5)]·[(a+5)-(a+4)].故(a+1)2-a2+(a+7)2-(a+6)2=(a+3)2-(a+2)2+(a+5)2-(a+4)2.也就是(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.于是,分任意8个连续的正整数为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}.则满足(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.。
知识点详解北师大版七年级数学下册第一章整式的乘除专项训练试题(含答案及详细解析)
北师大版七年级数学下册第一章整式的乘除专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )A .2a +3b =5abB .x 8÷x 2=x 6C .(ab 3)2=ab 6D .(x +2)2=x 2+4 2、下列计算中,结果正确的是( )A .3515x x ⋅=B .248x x x ⋅=C .()236x x =D .623x x x ÷=3、下列计算正确的是( )A .3362a a a +=B .538a a a ÷=C .()3263a b a b =D .()211a a a -=-4、计算13-的结果是( )A .3-B .13- C .13 D .15、下列运算正确的是( )A .235a a a +=B .426a a a ⋅=C .33a a a ÷=D .()236a a -=-6、下列计算正确的是( )A .236236x x x ⋅=B .()4312x x -=-C .()33326xy x y =D .()32622m m m x x x ⋅= 7、下列运算正确的是( )A .5552x x x +=B .15052x x x =⋅C .623x x x ÷=D .()3327x x = 8、下列运算正确的是( )A .(a 2)3=a 6B .a 2•a 3=a 6C .a 7÷a =a 7D .(﹣2a 2)3=8a 6 9、2n n a a +⋅的值是( ).A .3n a +B .()2n n a +C .22n a +D .8a 10、若2,3x y a a ==,则x y a +=( )A .5B .6C .3D .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:2222022112202211120221132=+-________. 2、已知225a a -=,则代数式()()2221a a -++的值为______. 3、已知25a =,1208b =,则3(31)a b +-的值为__. 4、若()0211x -=,则x ≠______.5、将代数式215--y x化为只含有正整数指数幂的形式_______ 三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料:利用完全平方公式,可以把多项式2x bx c ++变形为2()x m n ++的形式.例如,243x x -+=24443x x -+-+=2(2)1x --.观察上式可以发现,当2x -取任意一对互为相反数的值时,多项式243x x -+的值是相等的.例如,当2x -=±1,即x =3或1时,243x x -+的值均为0;当2x -=±2,即x =4或0时,243x x -+的值均为3. 我们给出如下定义:对于关于x 的多项式,若当x m +取任意一对互为相反数的值时,该多项式的值相等,则称该多项式关于x =m -对称,称x =m -是它的对称轴.例如,243x x -+关于x =2对称,x =2是它的对称轴. 请根据上述材料解决下列问题:(1)将多项式265x x -+变形为2()x m n ++的形式,并求出它的对称轴;(2)若关于x 的多项式221+-x ax 关于x =-5对称,则a = ;(3)代数式22(21)(816)++-+x x x x 的对称轴是x = .2、按照要求进行计算:(1)计算:()()()222223x x y xy xy y x xy xy ⎡⎤----÷⎣⎦(2)利用乘法公式进行计算:()()22x y z x y z ++--3、观察下列各式:()()23111a a a a +-+=+;()()232248a a a a -++=-;()()2332964278a a a a -++=-.(1)请你按照以上各式的运算规律,填空.①()()2339x x x -++=______;②()21x +(______)381x =+;③(______)()2233x xy y x y ++=-.(2)应用规律....计算:()()()222222a b a ab b a ab b -++-+. 4、某种产品的原料提价,因而厂家决定对产品进行提价.现有三种方案:方案1第一次提价p %,第二次提价q %;方案2第一次提价q %,第二次提价p %;方案3第一,二次提价均为(p +q )/2%.(1)若p ,q 是相等的正数,则三种方案哪种提价多?(2)若p ,q 是不相等的正数,则三种方案哪种提价多?5、计算:(1)()22436310a a a a ⋅+-- (2)()()()211a a a a +-+--参考答案-一、单选题1、B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.2、C【分析】根据整式乘法的法则及幂的乘方法则、同底数幂除法法则依次判断.【详解】解:A、3515⋅=x2,故该项不符合题意,x xB、246x x x⋅=,故该项不符合题意,C、()236=,故该项符合题意,x xD、624÷=,故该项不符合题意,x x x故选:C.【点睛】此题考查了整式的计算法则,正确掌握整式乘法的法则及幂的乘方法则、同底数幂除法法则是解题的关键.3、C【分析】根据幂的运算及整式的乘法运算即可作出判断.【详解】A 、333622a a a a +=≠,故计算不正确;B 、5328a a a a ÷=≠,故计算不正确;C 、()3263a b a b =,故计算正确; D 、()21a a a a -=-,故计算不正确.故选:C【点睛】本题考查了同底数幂的除法、积的乘方、同类项合并、单项式乘多项式等知识,掌握这些知识是关键.4、C【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案.【详解】 解:1111333-==. 故选:C.【点睛】本题考查负整数指数幂的运算,解题的关键是正确理解负整数指数幂的意义.5、B由合并同类项可判断A ,由同底数幂的乘法运算判断B ,由同底数幂的除法运算判断C ,由积的乘方运算与幂的乘方运算判断D ,从而可得答案.【详解】解:23,a a 不是同类项,不能合并,故A 不符合题意;426a a a ⋅=,故B 符合题意;23,a a a ÷=故C 不符合题意;()236,a a -=故D 不符合题意;故选B【点睛】本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.6、B【分析】由题意直接依据幂的乘方和积的乘方以及同底数幂的乘法逐项进行计算判断即可.【详解】解:A. 235236x x x ⋅=,此选项计算错误;B. ()4312x x -=-,此选项计算正确; C. ()33328xy x y =,此选项计算错误;D. ()32522m m m x x x ⋅=,此选项计算错误. 故选:B.本题考查整式的乘法,熟练掌握幂的乘方和积的乘方以及同底数幂的乘法运算法则是解题的关键.7、A【分析】根据整式的加减运算、同底数幂的乘除运算,幂的乘方运算,求解即可.【详解】解:A、555+=,选项正确,符合题意;x x x2B、5510⋅=,选项错误,不符合题意;x x xC、624÷=,选项错误,不符合题意;x x xD、()339=,选项错误,不符合题意;x x故选:A【点睛】此题考查了整式的加减运算、同底数幂的乘除运算,幂的乘方运算,解题的关键是掌握整式的有关运算法则.8、A【分析】根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.【详解】解:A、()326=,原选项正确,故符合题意;a aB、235⋅=,原选项错误,故不符合题意;a a aC、76÷=,原选项错误,故不符合题意;a a aD 、()32628a a -=-,原选项错误,故不符合题意; 故选A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.9、C【分析】同底数幂的乘法:底数不变,指数相加,根据法则直接计算即可.【详解】解:2222n n n n n a a a a ++++⋅==故选:C【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法法则”是解本题的关键.10、B【分析】根据同底数幂乘法法则的逆运算解答.【详解】解:∵2,3x y a a ==,∴236y x y x a a a +⋅=⨯==,故选:B .【点睛】此题考查了同底数幂乘法的逆运算,熟记同底数幂乘法的计算法则是解题的关键.二、填空题1、12【分析】将22202211120221132+-变形为22(20221121)(20221121)2-++-,利用完全平方公式进行求解.【详解】 解:2222022112202211120221132+-, 2222022112(20221121)(20221121)2=-++-, 2222022112(20221121)(20221121)2=-++-, 2222022112202211222022112120221122202211212=-⨯+++⨯+-, 222202211220221122022112=+, 22202211222022112=⨯, 12=, 故答案是:12.【点睛】本题考查了完全平方公式的运用,解题的关键是掌握完全平方公式的运用. 2、11【分析】先将原代数式化简,再将225a a -=代入,即可求解.解:()()2221a a -++ 24422a a a =-+++226a a =-+∵225a a -=,∴原式5611=+= .故答案为:11【点睛】本题主要考查了整式混合运算,熟练掌握整式混合运算法则是解题的关键.3、27-【分析】将已知等式进行变形,求出()3a b +的值,再代入所求代数式中计算即可【详解】 解:3128b b -=, 3220b -∴=.25a =,3212252024a b --∴÷=÷==. 3222a b +-∴=.32a b ∴+=-.33(31)(21)27a b ∴+-=--=-.故答案为:27-.本题考查同底数幂的除法和负整数指数幂,综合应用这些知识点是解题关键.4、12##【分析】直接利用零指数幂的底数不为0可得出答案.【详解】解:∵(2x ﹣1)0=1,∴2x ﹣1≠0,解得:x ≠12. 故答案为:12.【点睛】此题主要考查了零指数幂,正确掌握零指数幂的底数不为0是解题关键.5、25x y 【分析】先根据负整数指数幂的定义将分子分母中的负整数指数幂化成正整数指数幂,再计算除法运算即可得.【详解】 解:原式215y x= 215x y =⋅25x y =, 故答案为:25x y . 【点睛】本题考查了负整数指数幂,熟记负整数指数幂的定义(任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1n na a -=(0,a n ≠为正整数))是解题关键. 三、解答题1、(1)2(3)4x --,对称轴为x =3;(2)5;(3)32【分析】(1)加上2(3)-,同时再减去2(3)-,配方,整理,根据定义回答即可; (2)将221+-x ax 配成22(a)1x a +--,根据对称轴的定义,对称轴为x =-a ,根据对称轴的一致性,求a 即可;(3)将代数式22(21)(816)++-+x x x x 配方成222(1)(4)[(1)(4)]x x x x +-=+- =2222325(34)[()]24x x x --=--,根据定义计算即可. 【详解】(1)265x x -+=26995x x -+-+=2(3)4x --.∴该多项式的对称轴为x =3;(2)∵221+-x ax =22(a)1x a +--,∴对称轴为x =-a ,∵多项式221+-x ax 关于x =-5对称,∴-a =-5,即a =5,故答案为:5;(3)∵22(21)(816)++-+x x x x=222(1)(4)[(1)(4)]x x x x +-=+-=22(34)x x -- =22325[()]24x --, ∴对称轴为x =32, 故答案为:32.【点睛】本题考查了配方法,熟练进行配方是解题的关键.2、(1)1133xy -(2)22242x y yz z ---【分析】(1)先计算中括号内的整式乘法,再运用多项式除以单项式的法则计算即可;(2)运用平方差公式计算即可.【详解】解:(1)()()()222223x x y xy xy y x xy xy ⎡⎤----÷⎣⎦=()()22322322233x y x y x y x y x y xy xy ⎡⎤----+÷⎣⎦=22322322233x y x y x y x y x y xy xy ⎡⎤--++-÷⎣⎦=23223x y xy xy ⎡⎤-÷⎣⎦ =1133xy -(2)()()22x y z x y z ++-- =()()222x y z -+=()22242x y yz z -++ =22242x y yz z ---.【点睛】本题考查了整式的乘除和乘法公式,解题关键是熟练掌握整式运算法则,熟练运用乘法公式进行计算.3、(1)①327x -②2421x x -+③x y -(2)66a b -【分析】(1)利用题目中所给式子的运算规律,即可得出正确答案.(2)先将22a b -因式分解,分别和后面两项进行运算,最后利用平方差公式求出答案即可.【详解】(1)解:由题目所给式子的规律可得:①()()2339x x x -++=327x - ;②()21x +(2421x x -+)381x =+;③(x y -)()2233x xy y x y ++=-.(2)解:原式2222()()()()a b a b a ab b a ab b =-+++-+2222()()()()a b a ab b a b a ab b =-+++-+3333()()a b a b =-+66a b =-【点睛】本题主要是考查了利用规律进行整式的乘法运算以及平方差公式,通过题目所给式子,找到规律,并利用规律进行运算,这是解决该题的关键.4、(1)三种方案提价一样多;(2)方案3提价多.【分析】(1)设产品的原价为a 元,先分别求出三种方案在提价后的价格,由此即可得;(2)设产品的原价为a 元,先分别求出三种方案在提价后的价格,再利用整式的乘法与完全平方公式进行化简,比较大小即可得.【详解】解:(1)设产品的原价为a 元,当,p q 是相等的正数时,方案1:提价后的价格为2(1%)(1%)(1%)a p q a p ++=+,方案2:提价后的价格为2(1%)(1%)(1%)a q p a p ++=+,方案3:提价后的价格为22(1%)(1%)2p q a a p ++=+, 答:三种方案提价一样多;(2)设产品的原价为a 元,当,p q 是不相等的正数时,方案1:提价后的价格为(1%)(1%)a p q ++,方案2:提价后的价格为(1%)(1%)a q p ++,方案3:提价后的价格为2(1%)2p q a ++, 因为2(1%)(1%)(1%)2p q a a p q ++-++ 2(100)(100)(100)100002a p q p q +⎡⎤=+-++⎢⎥⎣⎦ 2()1000010010010000100100100004a p q p q p q pq ⎡⎤+=+++----⎢⎥⎣⎦ 2224100004a p pq q pq ++-=⋅ 2()040000a p q -=>, 所以2(1%)(1%)(1%)2p q a a p q ++>++, 答:方案3提价多.【点睛】本题考查了整式乘法和完全平方公式的应用,熟练掌握整式的运算法则和公式是解题关键.5、(1)0;(2)21a +【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1)()22436310a a a a ⋅+-- 6669100a a a =+-=(2)()()()211a a a a +-+-2221a a a=21a【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.。
北师大版七年级数学下册第一章 整式的乘除练习(包含答案)
第一章 整式的乘除一、单选题1.计算a·a 3的结果是( ) A .a 4B .-a 4C .a -3D .-a 32.下列整式的运算中,正确的是( ) A .236a a a =gB .()325a a =C .325a a a +=D .()222ab a b =3.(﹣2a 3)2的计算结果是( ) A .4a 9B .2a 6C .﹣4a 6D .4a 64.计算322a a g 的结果是( )A .2aB .52aC .62aD .92a5.计算231232x y xy y ⎛⎫⋅-+⎪⎝⎭的结果是( ) A .2242x y x y -+B .2432223x y x y x y -+C .322462x y x y -+D .2423226x y x y x y +-6.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a+2b ),宽为(2a+b )的大长方形,则需要C 类卡片张数为( )A .2B .3C .4D .57.如图的分割正方形,拼接成长方形方案中,可以验证( )A .()2222a b a ab b +=++ B .()2222a b a ab b -=-+ C .()()224a b a b ab -=+-D .()()22a b a b a b +-=-8.若x +y +3=0,则x (x +4y )-y (2x -y )的值为 A .3 B .9 C .6 D .-99.如果多项式291x kx ++能用完全平方公式分解因式,那么k 的值是( ) A .6B .6-C .6或6-D .010.若124816326421111111(1)(1)(1)(1)(1)(1)(1)33333333A =-+++++++……21(1)13n ++,则A 的值是A .0B .1C .2213nD .1213+n二、填空题 11.计算(-223)2017×(-38)2018=______. 12.计算:()()43222015255x x y xx +-÷-=______________.13.请你计算:()()11x x -+,()()211x x x-++,…,猜想()()211n x x xx -+++⋅⋅⋅+的结果是________.14.若2(1)()2a a a b ---=-,则222a b ab +-的值为________.三、解答题 15.计算:()()()23334124ab a b -÷g ;()()()()22222x y x y x y -+--.16.阅读材料,回答问题.已知0a >, 0b >,若32a =,43b =,则a ,b 的大小关系是 a _______b (填“<”或“>”). 解:因为3 2a =,43b =,所以12344()216aa ===,12433()327b b ===,1627<,所以1212a b <.因为 0a >,0b >,所以 a b <.(1)上述求解过程中,逆用了哪一条幂的运算性质( ) A .同底数幂的乘法 B .同底数幂的除法 C .幂的乘方 D .积的乘方(2)已知 2m a =,3n a =,利用材料中的逆向思维分别求m n a +和2 m a 的值. 17.化简求值:(1)已知1x =,求()()()()22112x x x x -++--+的值. (2)已知2230x x -+=,求代数式()()()2233x x x -+-+的值.18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(1)根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般规律(x﹣1)(x n+x n﹣1+……+x+1)=;(3)根据以上规律求32018+32017+32016+…32+3+1的结果.>的长方形,沿图中虚线用剪刀均分成四19.如图①所示是一个长为2m,宽为2n(m n)个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m、n的代数式表示);()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)-、mn这三个代数式之间的等量关系:______;+、2(m n)()4根据()3题中的等量关系,若m n12=,求图②中阴影部分的面积+=,mn25答案2.D 3.D 4.B 5.D 6.B 7.D 8.B 9.C 10.D 11.-3812.-4x 2-3xy+513.11n x +- (n 为正整数) 14.2 15.(1)212b ;(2)242xy y -. 16.(1)C ;(2)6m n a +=,24m a = 17.(1)3;(2)-1118.(1)x 7﹣1;(2)x n+1﹣1;(3)2019212-.19.(1)()m n -(2)①2(m n)-①2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)。
北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)
《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。
北师大版七年级数学下册第一章 整式的乘除练习(包含答案)
第一章 整式的乘除一、单选题1.计算2016201523()()32-的结果是( ) A .23 B .23- C .32 D .32- 2.2m y +可以改写成( )A .2m yB .2·m y yC .2()m yD .2m y y + 3.计算(-2x 2)3的结果是( )A .-6x 5B .-8x 6C .-6x 6D .-8x 54.下列计算正确的是( )A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 4 5.下列计算错误的是( )A .(x +1)(x +4)=x 2+5x +4B .(m -2)(m +3)=m 2+m -6C .(x -3)(x -6)=x 2-9x +18D .(y +4)(y -5)=y 2+9y -206.计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB .6x 3+1C .6x 3+2xD .6x 2+2x7.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+ C .22()()a b a b a b +-=-D .2()a a b a ab +=+ 8.计算(x-1)(x+1)(x 2+1)结果正确的是()A .x 4-1B .x 4+1C .(x-1)4D .(x+1)49. 若x 2-6x+y 2+4y+13=0,则y x 的值为( ) A .8 B .-8 C .9 D .1910.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A .21718abm B .21318abm C .2518abm D .2118abm二、填空题11.若10m =5,10n =4,则102m+n ﹣1=_____.12.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.13.若a ﹣b =1,ab =2,那么a +b 的值为_____14.计算3(22+1)(24+1)……(232+1)+1=___________三、解答题15.用简便方法计算:(1)20162016122⎛⎫⨯ ⎪⎝⎭;(2)()11120.1258-⨯; (3) 336120.1250.2522⨯⨯⨯.16.计算:(1)()22234xy x y xy--. (2)()()22224a b a ab b -++.(3)()()43211m m m m m +-+-+. (4)()()()()22a b a b a b a b +--+-.17.已知1x ≠,计算2(1)(1)1+-=-x x x , ()23(1)11-++=-x x x x , ()234(1)11-+++=-x x x x x .猜想:()2(1)1-+++⋯+=n x x x x (n 为正整数);(1)根据你的猜想计算:①()2345(12)122222-+++++=②232222+++=n (n 为正整数)③()9998972(1)1-+++⋯+++=x x x x x x(2)通过以上规律请你进行下面的探索:①()()a b a b -+②()22()-++a b a ab b③()3223()-+++a b a a b ab b(3)判断2019201820172222221++++++L 的个位数字是18.解决问题:(1)如图1,已知正方形ABCD 的边长为a ,正方形FGCH 的边长为b ,长方形ABGE 和EFHD 为阴影部分,则阴影部分的面积是____.(写成平方差的形式) (2)将图1中的长方形ABGE 和EFHD 剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是____.(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式____.(4)利用所得公式计算:24814111112(1)(1)(1)(1)22222+++++19.(1)图(1)是一个长为2m ,宽为2n 的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式表示为(m-n)2或m2-2mn+n2.(3)由前面的探索可得出的结论是:在周长一定的矩形中,当时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?答案1.A 2.B 3.B 4.B 5.D 6.C 7.D 8.A 9.B 10.C11.1012.-513.±3.14.26415.(1)1;(2)-8;(3)816.(1)322368x y x y -+;(2)338a b -;(3)51m +;(4)2ab -.17.猜想:11n x +-;(1)①63-;①122n +-;①1001x -;(2)①22a b -;①33a b -;①44a b -;(3)5.18.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)419.(1)两图形周长不变;(2)(m -n )2或m 2-2mn+n 2;(3)长和宽相等;(4)6,36。
word版北师大版七年级教学下册数学第一章节整式乘除附答案
word整理版七年级数学下册——第一章整式的乘除(复习)单项式整式多项式整同底数幂的乘法幂的乘方式积的乘方的幂运算同底数幂的除法零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完整平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每题3分,共30分)1.以下运算正确的选项是()A .a4a5a9 B.a3a3a33a3C. 2a43a56a9D.a34a7 2012320122 .5()135A.1B.1 C.0D.19973 .设5a3b25a3b2A,则A=()A.30abB.60abC.15abD.12ab4 .已知x y 5,xy3,则x2y2()A.25.B2519、195 .已知x a3,x b5,则x3a2b()、27B 、9C、3D、52215506 ..如图,甲、乙、丙、丁四位同学给出了四a b种表示该长方形面积的多项式:m学习参照资料nword整理版①(2a+b)(m+n); ②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b); ④2am+2an+bm+bn,你以为此中正确的有A 、①②B、③④C、①②③D、①②③④()7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A 、–3B、3C、0D、18.已知.(a+b)=9,ab=-12,则a2+b的值等于()A 、84、78C、12D、64)9.计算(a-b)(a+b)(a+b)(a-b)的结果是(A.a8+2a4 b4+b8B.a8-2a4b4+b8.a8+b8D.a8-b81 0.已知P m 1,Qm28m(m为随意实数),则P、Q的大小关系为1515()A、P Q B 、P Q、PQ D、不可以确立二、填空题(共6小题,每题4分,共24分)1 1.设4x2mx121是一个完整平方式,则m=_______。
(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)
一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.若6a b +=,4ab =,则22a ab b ++的值为() A .40B .36C .32D .303.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b = D .623a a a ÷=4.若1x x -的值为1,则2215x x++的值为( ) A .7B .8C .9D .10 5.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( ) A .6abB .23a b +C .23a b +D .23a b6.如图,矩形ABCD 的周长是10cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为17cm 2,那么矩形ABCD 的面积是( )A .3cm 2B .4cm 2C .5cm 2D .6cm 2 7.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 8.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .129.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .1210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=11.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 12.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y = D .623x x x ÷=二、填空题13.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 14.已知x 满足()()22201820208x x -+-=,则()22019x -的值是___________. 15.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.16.若2421x kx ++是完全平方式,则k=_____________. 17.2(56)x x -+÷___________=3x -.18.已知29x mx ++是完全平方式,则m =_________.19.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S . (1)请比较1S 和2S 的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m 的代数式表示).23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值. 25.化简:2(3)3(2)m n m m n +-+. 26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据a+b=6,ab=4,应用完全平方公式,求出a 2+ab+b 2的值为多少即可. 【详解】解:∵a+b=6,ab=4, ∴a 2+ab+b 2 =(a+b )2-ab =36-4 =32 故选:D . 【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.3.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;4.B解析:B 【分析】把1x x-进行完全平方,展开计算221x x +的值即可.【详解】∵1x x-=1, ∴21()x x-=1, ∴221x x +-2=1, ∴221x x+=3, ∴2215x x++=8, 故选B. 【点睛】本题考查了完全平方公式的展开计算,熟练运用完全平方公式是解题的关键.5.D解析:D 【分析】根据同底数幂的乘法和幂的乘方计算即可; 【详解】()()23232322222+=⨯=⨯m n m n m n ,∵2m a =,2n b =, ∴原式23a b =; 故答案选D . 【点睛】本题主要考查了幂的运算,准确计算是解题的关键.6.B解析:B 【分析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=17,2(x +y )=10,利用完全平方公式即可求出xy 的值. 【详解】解:设AB =x ,AD =y ,∵正方形ABEF 和ADGH 的面积之和为17cm 2 ∴x 2+y 2=17,∵矩形ABCD 的周长是10cm ∴2(x +y )=10, ∵(x +y )2=x 2+2xy +y 2, ∴25=17+2xy , ∴xy =4,∴矩形ABCD 的面积为:xy =4cm 2, 故选:B . 【点睛】本题考查了正方形面积、矩形面积和完全平方公式,恰当的设未知数,建立方程,设而不求,只求xy 的值是解题关键.7.D解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ ,解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.12.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.二、填空题13.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b - 【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案. 【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2) =8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.14.3【分析】题目求(x-2019)2把方程中的x-2018x-2020转化为含有(x-2019)利用换元法求解即可【详解】解:方程可变形为:(x-2019)+12+(x-2019-1)2=8设x-20解析:3 【分析】题目求(x-2019)2,把方程中的x-2018、x-2020转化为含有(x-2019),利用换元法求解即可. 【详解】解:方程()()22201820208x x -+-=可变形为: [(x-2019)+1]2+[(x-2019-1)]2=8 设x-2019=y则原方程可转化为:(y+1)2+(y-1)2=8 ∴y 2+2y+1+y 2-2y+1=8 即2y 2=6 ∴y 2=3即(x-2019)2=3. 故答案为:3. 【点睛】本题考查了完全平方公式,把x-2018、x-2020转化为(x-2019+1)、(x-2019-1)是解决本题的关键.15.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a . 【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案. 【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦ =1526()a a a -÷- =158()a a -÷- =7a . 故答案为:7a . 【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键.16.±2【分析】根据完全平方式的结构特征解答即可【详解】解:∵是完全平方式∴∴故答案为:±2【点睛】本题考查了完全平方式的知识属于基础题目熟练掌握完全平方式的结构特征是解题关键解析:±2 【分析】根据完全平方式的结构特征解答即可. 【详解】解:∵2421x kx ++是完全平方式, ∴24k =±,∴2k =±. 故答案为:±2. 【点睛】本题考查了完全平方式的知识,属于基础题目,熟练掌握完全平方式的结构特征是解题关键.17.【分析】设要填的式子为根据题意可得利用整式的乘法计算左边各项对应即可得到答案【详解】解:设要填的式子为根据题意可得即可得解得故答案为:【点睛】本题考查整式的乘法掌握多项式乘多项式是解题的关键 解析:2x -【分析】设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+,利用整式的乘法计算左边,各项对应即可得到答案. 【详解】解:设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+, 即()223356ax a b x b x x +-+-=-+,可得1a =,36b -=, 解得1a =,2b =-,故答案为:2x -.【点睛】本题考查整式的乘法,掌握多项式乘多项式是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)12S S <;(2)42m +24m+36.【分析】(1)先计算两个长方形的面积,再利用作差法比较它们面积的大小;(2)先计算两个长方形的周长,再计算该正方形的边长和面积.【详解】解:(1)1S =(m+1)(m+5)=2m +6m+5,2S =(m+2)(m+4)=2m +6m+8,∵1S -2S=2m +6m+5﹣(2m +6m+8)=2m +6m+5﹣2m ﹣6m ﹣8=﹣3<0,∴12S S <.即甲的面积小于乙的面积;(2)甲乙两个长方形的周长和为:2(m+1+m+5+m+4+m+2)=8m+24,正方形的边长为:(8m+24)÷4=2m+6.该正方形的面积为:2(26)m +=42m +24m+36.答:该正方形的面积为:42m +24m+36.【点睛】本题考查了多项式乘多项式,整式的加减,作差法比较大小,完全平方公式的展开,熟练掌握矩形,正方形的性质,灵活使用作差法,完全平方公式是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()2320x y +-=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则.24.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.25.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。
完整word版北师大版七年级下册数学第一章整式的乘除附答案
word整理版七年级数学下册——第一章整式的乘除〔复习〕单项式整式多项式整同底数幂的乘法幂的乘方式积的乘方的幂运算同底数幂的除法零指数幂运负指数幂整式的加减算单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题〔共10小题,每题3分,共30分〕1.以下运算正确的选项是〔〕A.a4a5a9B.a3a3a33a3C.2a43a56a9D.a34a720213202 12.52〔〕135A.1B.1C.0D.19973.设5a3b25a3b2A,那么A=〔〕A.30abB.60abC.15abD.12ab4.x y5,xy3,那么x2y2〔〕A.25.B25C19D、195.x a3,x b 5,那么x3a2b〔〕A、27B、9C、3D、52251056..如图,甲、乙、丙、丁四位同学给出了四a b a种表示该长方形面积的多项式:m学习参考资料nword 整理版①(2a+b)(m+n); ②2a(m+n)+b(m+n); ③m(2a+b)+n(2a+b); ④2am+2an+bm+bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④〔 〕7.如(x+m)与(x+3) 的乘积中不含 x 的一次项,那么m 的值为〔〕A 、–3B 、3C 、0D 、12128..(a+b)=9,ab=-12,那么a2+b 的值等于〔〕A 、84B、78C 、12D 、62 244〕9.计算〔a -b 〕〔a+b 〕〔a+b 〕〔a -b 〕的结果是〔A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810. P7 m 1,Qm 28m 〔m 为任意实数〕,那么P 、Q 的大小关系为15 15〔〕A 、PQB 、P QC 、PQD、不能确定二、填空题〔共 6小题,每题4分,共 24分〕11. 设4 x 2mx 121 是一个完全平方式,那么m=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下册第一章整式的除法习题(含详
细解析答案)
------------------------------------------作者xxxx
------------------------------------------日期xxxx
北师大版数学七年级下册第一章1.7整式的除法课时练习
一、选择题
1. 15a3b÷(-5a2b)等于()
A.-3a B.-3ab C.a3b D.a2b
答案:A
解析:解答:15a3b÷(-5a2b)=-3a,故A项正确.
分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题.
2. -40a3b2÷(2a)3等于()
A.20b B.-5b2 C.-a3b D.-20a2b
答案:B
解析:解答:(-40a3b2)÷(2a)3=-5b2,故B项正确.
分析:先由积的乘方法则得(2a)3=8a3,再由单项式除以单项式法则可完成此题.
3. -20a7b4c÷(2a3b)2等于()
A.-ab2c B.-10ab2c C.-5ab2c D.5ab2c
答案:C
解析:解答:-20a7b4c÷(2a3b)2=-5ab2c,故C项正确.
分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式除以单项式法则与同底数幂的除法可完成此题.
4. 20x14y4÷(2x3y)2÷(5xy2)等于()
A.-x6 B. y4 C.-x7 D.x7
答案:D
解析:解答:20x14y4÷(2x3y)2÷(5xy2)= x7,故D项正确.
分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式除以单项式法则与同底数幂的除法法则可完成此题.
5.(2a3b2-10a4c)÷ 2a3等于()
A.a6b2c B.a5b2c C.b2-5ac D.b4c-a4c
答案:C
解析:解答:(2a3b2-10a4c)÷ 2a3=b2-5ac,故C项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
6. ( x4y3+x3yz)÷x3y等于()
A.x4y3+xz B.y3+x3y C.x14y4 D.xy2+z
答案:D
解析:解答:( x4y3+x3yz)÷x3y = xy2+z,故D项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
7.(x17y+x14z)÷(-x7)2 等于()
A.x3y+z B.-xy3+z C.-x17y+z D.xy+z
答案:A
解析:解答:(x17y+x14z)÷(-x7)2= x3y+z,故A项正确.
分析:先由幂的乘方法则得(-x7)2=x14,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.
8.(612b2-612ac)÷[(-6)3]4等于()
A.b2-b2c B.a5-b2c C.b2-ac D.b4c-a4c
答案:C
解析:解答:(612b2-612ac)÷[(-6)3]4= b2-ac,故C项正确.
分析:先由幂的乘方法则得[(-6)3]4=612,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.
9.(8x6y+8x3z)÷(2x)3等于()
A.x6y+x14z B.-x6y+x3yz C.x3y+z D.x6y+x3yz
答案:C
解析:解答:(8x6y+8x3z)÷(2x)3= x3y+z,故C项正确.
分析:先由积的乘方法则得(2x)3=8x3,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.
10.(4x2y4+4x2z)÷(2x)2等于()
A.4y4+z B.-y4+z C.y4+x2z D.y4+z
答案:D
解析:解答:4x2y4+4x2z)÷(2x)2= y4+z,故D项正确.
分析:先由积的乘方法则得(2x)2=4x2,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.
11.(x7y4+x7z)÷x7等于()
A.y4+z B.-4x2y4+xz C.x2y4+x2z D.x2y4+z
答案:A
解析:解答:(x7y4+x7z)÷x7=y4+z,故A项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
12.( x3y2+x2z)÷ x2等于()
A.xy+xz B.-x2y4+x2z C.x y2+z D.xy4+x2z
答案:C
解析:解答:x3y2+x2z)÷ x2= x y2+z,故C项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
13.( -5a4c-5ab2c) ÷(-5ac)等于()
A.-a6b2-c B.a5-b2c C.a3b2-a4c D.a3+b2
答案:D
解析:解答:( -5a4c-5ab2c) ÷(-5ac)= a3+b2,故D项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
14.( x2y2+y7+y5z)÷y2等于()
A.x2+ y5+y3z B.x2y2+y5z C.x2y+y5z D.x2y2+y7+y5z
答案:A
解析:解答:x2y2+y7+y5z÷y2=x2++ y5+y3z,故A项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
15.(2a4+2b5a2)÷a2等于()
A.a2c+b5c B.2a2+2b5 C.a4+b5D.2a4+ba2
答案:B
解析:解答:(2a4+2b5a2)÷a2=2a2+2b5,故B项正确.
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.
二、填空题
16.(5x3y2+5x2z)÷5x2等于;
答案:xy2+z
解析:解答:(5x3y2+5x2z)÷5x2=5x3y2÷5x2 +5x2z÷5x2 = xy2+z
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题
17.(2a3b2+8a2c)÷2a2等于;
答案:ab2+4c
解析:解答:(2a3b2+8a2c)÷2a2=2a3b2÷2a2 +8a2c÷2a2= ab2+4c
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题
18.(6a3b2+14a2c)÷a2等于;
答案: 6ab2+14c
解析:解答:(6a3b2+14a2c)÷a2=6a3b2÷a2+14a2c÷a2= 6ab2+14c
分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题
19.(-6a3-6a2c)÷(-2a2)等于;
答案:3a+3c
解析:解答:(-6a3-6a2c)÷(-2a2)= (-6a3)÷(-2a2)+(-6a2c)÷(-
2a2)=3a+3c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题20.(-12x3-4x2)÷(-4x2)等于;
答案:3x+1
解析:解答:(-12x3-4x2)÷(-4x2) = (-12x3)÷(-4x2)+(-4x2) ÷(-4x2)= 3x+1分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题
三、计算题
21.-20 x3 y5 z÷(-10x2y)
答案:2xy4z
解析:解答:解:-20 x3 y5 z÷(-10x2y)= 2 x3-1 y5-1 z=2xy4z
分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题
22.(-6 x4 y7)÷(-2 x y2) ÷(-3 x2y4)
答案:- x y
解析:解答:解:(-6 x4 y7)÷(-2 x y2) ÷(-3 x2y4)= - x4-1-2y7-2-4=- x y
分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题
23.(2a4 -6a2+4a)÷2a
答案:a3 -3a+2
解析:解答:解:(2a4 -6a2+4a)÷2a=2a4÷2a-6a2÷2a+4a÷2a= a3 -3a+2
分析:先由多项式除以单项式法则与同底数幂的除法法则计算,再合并同类项可完成此题.
24.(3a3b2+3 a2b3- 3 a2b2)÷3ab
答案:a2b+ ab2-ab
解析:解答:解:(3a3b2+3 a2b3- 3 a2b2)÷3ab=3a3b2÷3ab+3 a2b3÷3ab - 3 a2b2÷3ab=a2b+ ab2-ab
分析:由多项式除以单项式法则与同底数幂的除法法则计算可完成题.
25.( x2 y3-9x y5+8y2)÷y2
答案:x2y-9x y3+8
解析:解答:解:( x2y3-9x y5+8y2)÷y2= x2y3÷y2-9x y5÷y2+8y2÷y2= x2y3-2-9x y5-2 +8y2-2= x2y-9x y3+8
分析:先由多项式除以单项式法则与同底数幂的除法法则计算,再合并同类项可完成此题.。