2022年广东汕头中考数学真题及答案

合集下载

2022中考数学考试试卷真题(含答案和解析)(2)

2022中考数学考试试卷真题(含答案和解析)(2)

2022中考数学考试试卷真题(含答案和解析)1.2020的相反数是()A .2020B .﹣2020C .12020D .12020-2.下列图形中既是轴对称图形,也是中心对称图形的是()A .B .C .D .3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A .0.15×108B .1.5×107C .15×107D .1.5×1084.下列哪个图形,主视图、左视图和俯视图相同的是()A .圆锥B .圆柱C .三棱柱D .正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是()A .253,253B .255,253C .253,247D .255,2476.下列运算正确的是()A .a+2a=3a 2B .235a a a ⋅=C .33()ab ab =D .326()a a -=-7.一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=()A .50°B .60°C .70°D .80°8.如图,已知AB =AC ,BC =6,尺规作图痕迹可求出BD =()A .2B .3C .4D .59.以下说法正确的是()A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程11222x x x -=---的解为x =2D .三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为()A .200tan70°米B .200tan 70︒米C .200sin70°米D .200sin 70︒米11.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是()A .B .4ac -b 2<0C .3a +c =0D .ax 2+bx +c =n +1无实数根12.如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论:①EF ⊥BG ;②GE=GF ;③△GDK 和△GKH 的面积相等;④当点F 与点C 重合时,∠DEF =75°.其中正确..的结论共有()A .1个B .2个C .3个D .4个13.分解因式:3m m -=__________.14.口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是___.15.如图,在平面直角坐标系中,ABCO 为平行四边形,O (0,0),A (3,1),B (1,2),反比例函数(0)ky k x=≠的图象经过OABC 的顶点C ,则k =___.16.如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,11tan ,23BO ACB OD ∠==,则ABD CBDS S =___.17.计算:101()2cos30||(4)3π--︒+--.18.先化简,再求值:213(2)211a aa a a +-÷+-+-,其中a =2.19.已知反比例函数ky x=的图象分别位于第二、第四象限,化简:21644k k k -+--.20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.如图,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数()0ky x x=>的图象经过点()3,4A 和点M .(1)求k 的值和点M 的坐标;(2)求OABC 的周长.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.如图,ABD ∆中,ABD ADB ∠=∠.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,DC ,连接AC ,交BD 于点O .①求证:四边形ABCD 是菱形;②取BC 的中点E ,连接OE ,若132OE =,10BD =,求点E 到AD 的距离.24.如图,O 为等边ABC ∆的外接圆,半径为2,点D 在劣弧 AB 上运动(不与点,A B 重合),连接DA ,DB ,DC .(1)求证:DC 是ADB ∠的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点,M N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.25.平面直角坐标系xOy 中,抛物线()2:012G y ax bx c a =++<<过点()1,5A c a -,()1,3B x ,()2,3C x ,顶点D 不在第一象限,线段BC 上有一点E ,设OBE △的面积为1S ,OCE △的面积为2S ,1232S S =+.(1)用含a 的式子表示b ;(2)求点E 的坐标;(3)若直线DE 与抛物线G 的另一个交点F 的横坐标为63a+,求2y ax bx c =++在16x <<时的取值范围(用含a 的式子表示).参考答案1.B 【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【详解】解:将150000000用科学记数法表示为1.5×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D【解析】【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【详解】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A 不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B 不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C 不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D 符合题意;故选:D .【点睛】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.A 【解析】【分析】根据题干找出基准数,排列出新数列,则找到平均数,再由从小到大排列找出中位数.【详解】求平均数可用基准数法,设基准数为250,则新数列为-4,3,-3,5,13,新数列的平均数为3,则原数列的平均数为253;对数据从小到大进行排列,可知中位数为253,故选A .【点睛】此题考查中位数和平均数相关知识,难度一般.6.B 【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方逐项分析即可.【详解】A .a +2a =3a ,该选项错误;B .235a a a ⋅=,该选项正确;C .333()ab a b =,该选项错误;D .326()a a -=,该选项错误;故选B .本题考查了整式的运算,熟练掌握幂的运算法则是解答本题的关键.7.D 【解析】【分析】如图:根据直角三角形的性质可得360︒∠=,然后再根据两直线平行,同旁内角互补解答即可.【详解】解:如图:∵含30°直角三角形∴360︒∠=∵直尺两边平行∴∠1+∠2+∠3=180°∴21803180︒︒∠=-∠-∠=.故答案为D .【点睛】本题考查了直角三角形的性质和平行线的性质,其中灵活运用两直线平行、同旁内角互补的性质是解答本题的关键.8.B 【解析】【分析】根据尺规作图的方法步骤判断即可.由作图痕迹可知AD为∠BAC的角平分线,而AB=AC,由等腰三角形的三线合一知D为BC重点,BD=3,故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质.9.A【解析】【分析】根据平行四边形的性质、圆周角定理、解分式方程以及三角形外角的性质逐项分析即可.【详解】解:A选项正确;B选项:同弧所对的圆周角等于圆心角的一半,故B选项错误;C选项:x=2为增根,原分式方程无解,故C选项错误;D选项:没有指明两个内角为不想邻的内角,故D选项错误.故答案为A.【点睛】本题考查了平行四边形的性质、圆周角定理、解分式方程以及三角形外角的性质等知识,掌握相关性质、定理所关注的细节是解答本题的关键.10.B【解析】【分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【详解】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°-70°=20°,∴∠PTQ=70°,∴tan 70PQ PT ︒=,∴200tan 70tan 70PQ PT ==︒︒,即河宽200tan 70︒米,故选:B .【点睛】此题考查了解直角三角形的应用-方向角问题,掌握方向角与正切函数的定义是解题的关键.11.B【解析】【分析】根据函数图象确定a 、b 、c 的符号判断A ;根据抛物线与x 轴的交点判断B ;利用抛物线的对称轴得到b=2a ,再根据抛物线的对称性求得c=-3a 即可判断C ;利用抛物线的顶点坐标判断抛物线与直线y=n+1即可判断D .【详解】由函数图象知a <0,c >0,由对称轴在y 轴左侧,a 与b 同号,得b <0,故abc>0,选项A 正确;二次函数与x 轴有两个交点,故∆=240b ac ->,则选项B 错误,由图可知二次函数对称轴为x =-1,得b =2a ,根据对称性可得函数与x 轴的另一交点坐标为(1,0),代入解析式y =ax 2+bx +c 可得c =-3a ,∴3a +c =0,选项C 正确;∵二次函数y=ax 2+bx+c 的顶点坐标为(-1,n ),∴抛物线与直线y=n+1没有交点,故D 正确;故选:B .【点睛】此题考查抛物线的性质,抛物线的图象与点坐标,抛物线的对称性,正确理解和掌握y=ax 2+bx+c 型抛物线的性质及特征是解题的关键.【解析】【分析】由折叠的性质可得四边形EBFG是菱形从而判断①②正确;由角平分线定理即可判断DG≠GH,由此推出③错误;根据F、C重合时的性质,可得∠AEB=30°,进而算出④正确.【详解】连接BE,由折叠可知BO=GO,∵EG//BF,∴∠EGO=∠FBO,又∵∠EOG=∠FOB,∴△EOG≌△FOB(ASA),∴EG=BF,∴四边形EBFG是平行四边形,由折叠可知BE=EG,则四边形EBFG为菱形,故EF⊥BG,GE=GF,∴①②正确;∵四边形EBFG为菱形,∴KG平分∠DGH,∴,DG≠GH,∴S△GDK≠S△GKH,故③错误;当点F与点C重合时,BE=BF=BC=12=2AB,∴∠AEB=30°,1752DEF DEB∠=∠=︒,故④正确.综合,正确的为①②④.【点睛】本题考查矩形的性质,菱形的判断,折叠的性质,关键在于结合图形对线段和角度进行转换.13.(1)(1)m m m +-【解析】【分析】综合利用提取公因式法和平方差公式法分解因式即可得.【详解】原式2(1)m m =-(1)(1)m m m =-+故答案为:(1)(1)m m m +-.【点睛】本题考查了利用提取公因式法和平方差公式法分解因式,熟练掌握因式分解的方法是解题关键.14.37【解析】【分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【详解】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.15.-2【解析】连接OB,AC,交点为P,根据O,B的坐标求解P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【详解】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标1,12⎛⎫ ⎪⎝⎭,∵A(3,1),∴C的坐标为(-2,1),∵反比例函数kyx=(k≠0)的图象经过点C,∴k=-2×1=-2,故答案为-2.【点睛】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.3 17【解析】【分析】过B 点作BE//AD 交AC 于点E ,证明ADO EBO ∽△△,得到3,AO OE =再证明,ABE ACB ∠=∠利用1tan tan ,2BE AE ACB ABE CE BE ∠==∠==设,OE a =利用三角形的面积公式可得答案.【详解】解:过B 点作BE//AD 交AC 于点E ,90,DAC ∠=︒∴BE ⊥AD ,ADO EBO ∴ ∽,∴,AO DO EO BO =13BO OD = ∴3,AO DO EO BO ==3,AO OE ∴=由1tan 2ACB ∠=,1,2BE CE ∴=2,CE BE ∴=90,,ABC BE AC ∠=︒⊥ 90,ABE CBE CBE ACB ∴∠+∠=︒=∠+∠,ABE ACB ∴∠=∠1tan tan ,2AE ACB ABE BE ∴∠=∠==2,BE AE ∴=24,CE BE AE ∴==∴OAB OAD ABD CBD OCB OCD S S S S S S ∆∆+=+ ()()11221122AO AD AO BE AO AD BE AO OC AD BE OC OC AD OC BE ∙+∙+===+∙+∙设,OE a =则3,AO a =4,AE AO OE a ∴=+=16,CE a =17.OC OE CE a =+=33.1717ABD CBD S AO a S OC a ∆∆===故答案为:3.17【点睛】本题考查相似三角形的性质和判定,锐角三角函数的应用,能正确作出辅助线,借助三角函数和相似三角形表示线段的长度是解题关键.17.2【解析】【分析】分别计算负整数指数幂,锐角三角函数,绝对值,零次幂,再合并即可.【详解】解:101()2cos30|3|(4)3π--︒+---332312=-⨯-3331=2.=【点睛】本题考查实数的运算,考查了负整数指数幂,锐角三角函数,绝对值,零次幂的运算,掌握以上知识是解题的关键.18.11a -,1.【解析】【分析】先将分式进行化简,再把a 的值代入化简的结果中求值即可.【详解】213(2211a a a a a +-÷+-+-212(1)3(1)1a a a a a +-+-=÷--211(1)1a a a a ++=÷--211(1)1a a a a +-=⨯-+11a =-当a=2时,原式1121==-.【点睛】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.5【解析】【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值.【详解】由题意得k <0.()()224416164444k k k k k k k k +---+++----441415k k k k k ++=++-=+-+==【点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.20.(1)中位数是82,众数是85;(2)13.【解析】【分析】(1)根据中位数及众数的定义解答;(2)列树状图解答即可.【详解】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82,出现次数最多的年龄是85,故众数是85;(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A 、B 、C 、D ,列树状图如下:共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB ,BA ,CD ,DC ,∴P (这2名老人恰好来自同一个社区)=41123=.【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.21.(1)k=12,M (6,2);(2)28【解析】【分析】(1)将点A (3,4)代入k y x=中求出k 的值,作AD ⊥x 轴于点D ,ME ⊥x 轴于点E ,证明△MEC ∽△ADC ,得到12ME MC AD CA ==,求出ME=2,代入12y x=即可求出点M 的坐标;(2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.【详解】(1)将点A(3,4)代入kyx=中,得k=3412⨯=,∵四边形OABC是平行四边形,∴MA=MC,作AD⊥x轴于点D,ME⊥x轴于点E,∴ME∥AD,∴△MEC∽△ADC,∴12 ME MCAD CA==,∴ME=2,将y=2代入12yx=中,得x=6,∴点M的坐标为(6,2);(2)∵A(3,4),∴OD=3,AD=4,∴5OA==,∵A(3,4),M(6,2),∴DE=6-3=3,∴CD=2DE=6,∴OC=3+6=9,∴OABC的周长=2(OA+OC)=28.【点睛】此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.22.(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.【详解】解:(1)依题意得:()501-50%=25⨯(万元)(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260-x )辆,依题意得:()50260x +25x=9000⨯-解得:x=160答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【点睛】本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程.23.(1)见解析;(2)①见解析:②12013.【解析】【分析】(1)过点A 做BD 的垂线交BD 于点M ,在A M 的延长线上截取AM CM =,即可求出所作的点A 关于BD 的对称点C ;(2)①利用ABD ADB ∠=∠,AC BD ⊥得出BO DO =,利用AO CO =,以及AC BD ⊥得出四边形ABCD 是菱形;②利用OE 为中位线求出AB 的长度,利用菱形对角线垂直平分得出OB 的长度,进而利用Rt AOB ∆求出AO 的长度,得出对角线AC 的长度,然后利用面积法求出点E 到AD 的距离即可.【详解】(1)解:如图:点C 即为所求作的点;(2)①证明:∵ABD ADB ∠=∠,AC BD ⊥,又∵AO AO =,∴ABO ADO ∆≅∆;∴BO DO =,又∵AO CO =,AC BD⊥∴四边形ABCD 是菱形;②解:∵四边形ABCD 是菱形,∴AO CO =,BO DO =,AC BD⊥又∵10BD =,∴=5BO ,∵E 为BC 的中点,∴CE BE =,∵AO CO =,∴OE 为ABC ∆的中位线,∵132OE =,∴13AB =,∴菱形的边长为13,∵AC BD ⊥,=5BO在Rt AOB ∆中,由勾股定理得:222AO AB BO =-,即:AO =,∴12224AC =⨯=,设点E 到AD 的距离为h ,利用面积相等得:12410132h ⨯⨯=,解得:12013h =,即E 到AD 的距离为12013.【点睛】本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.24.(1)详见解析;(2)是,24)4S x x =<≤;(3)【解析】【分析】(1)根据等弧对等角的性质证明即可;(2)延长DA 到E,让AE=DB,证明△EAC ≌△DBC,即可表示出S 的面积;(3)作点D 关于直线BC 、AC 的对称点D 1、D 2,当D 1、M 、N 、D 共线时△DMN 取最小值,可得t =D 1D 2,有对称性推出在等腰△D 1CD 2中,t ,D 与O 、C 共线时t 取最大值即可算出.【详解】(1)∵△ABC 为等边三角形,BC=AC ,∴ AC BC =,都为13圆,∴∠AOC=∠BOC=120°,∴∠ADC=∠BDC=60°,∴DC 是∠ADB 的角平分线.(2)是.如图,延长DA 至点E ,使得AE=DB .连接EC ,则∠EAC=180°-∠DAC =∠DBC .∵AE =DB ,∠EAC =∠DBC,AC =BC ,∴△EAC ≌△DBC(SAS),∴∠E=∠CDB=∠ADC=60°,故△EDC 是等边三角形,∵DC=x ,∴根据等边三角形的特殊性可知DC 边上的高为2x∴214)224DBC ADC EAC ADC CDE S S S S S S x x x x =+=+==⋅⋅=<≤.(3)依次作点D 关于直线BC 、AC 的对称点D 1、D 2,根据对称性C △DMN =DM+MN+ND=D 1M+MN+ND 2.∴D 1、M 、N 、D 共线时△DMN 取最小值t ,此时t =D 1D 2,由对称有D 1C=DC=D 2C=x ,∠D 1CB=∠DCB ,∠D 2CA=∠DCA,∴∠D 1CD 2=∠D 1CB+∠BCA+∠D 2CA=∠DCB+60°+∠DCA=120°.∴∠CD 1D 2=∠CD 2D 1=60°,在等腰△D 1CD 2中,作CH ⊥D 1D 2,则在Rt △D 1CH 中,根据30°特殊直角三角形的比例可得D 1H=13322x =,同理D 2H=222CD x =∴t =D 1D 2=.∴x 取最大值时,t 取最大值.即D 与O 、C 共线时t 取最大值,x =4.所有t 值中的最大值为【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.25.(1)6b a =-;(2)7,32E ⎛⎫⎪⎝⎭或5,32E ⎛⎫ ⎪⎝⎭;(3)当16x <<时,有0<y <9.a 【解析】【分析】(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<,即可得到答案;(2)先求解抛物线的对称轴,记对称轴与BC 的交点为H ,确定顶点的位置,分情况利用1232S S =+,求解OEH S ,从而可得答案;(3)分情况讨论,先求解DE 的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系数的关系求解,c 结合二次函数的性质可得答案.【详解】解:(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<,5,c a a b c ∴-=++6,b a ∴=-(2)6,b a =- ∴抛物线为:()26012,y ax ax c a =-+<<∴抛物线的对称轴为:63,2a x a-=-= 顶点D 不在第一象限,∴顶点D 在第四象限,如图,设1x <2,x 记对称轴与BC 的交点为H ,则,BH CH =,OBH OCH S S ∴= 1232S S =+ ,3,2OBH OHE OCH OHE S S S S ∴+=-+3,4OHE S ∴= 133,24EH ∴⨯=1,2EH ∴=7,3,2E ⎛⎫∴ ⎪⎝⎭当1x >2,x 同理可得:5,3.2E ⎛⎫ ⎪⎝⎭综上:7,32E ⎛⎫ ⎪⎝⎭或5,3.2E ⎛⎫ ⎪⎝⎭(3)()22639,y ax ax c a x c a =-+=-+- ()3,9,D c a ∴-当7,32E ⎛⎫ ⎪⎝⎭,设DE 为:,y kx b =+73239k b k b c a⎧+=⎪∴⎨⎪+=-⎩解得:621876318k c ab c a =-+⎧⎨=--⎩DE ∴为()621876318,y c a x c a =-++--()26621876318y ax ax c y c a x c a ⎧=-+⎪∴⎨=-++--⎪⎩消去y 得:()26224663180,ax c a x c a +-+--++=由根与系数的关系得:6622433,c a a a-+-++=-解得:9,c a =()22693,y ax ax a a x ∴=-+=-当1x =时,4,y a =当6x =时,9,y a =当3x =时,0y =,当16x <<时,有0<y <9.a 当5,32E ⎛⎫ ⎪⎝⎭,()3,9,D c a -同理可得DE 为:()218654518,y c a x c a =---++()22186545186y c a x c a y ax ax c⎧=---++∴⎨=-+⎩同理消去y 得:()21226645180,ax a c x c a +-++--=612266,a c a a-+∴+=-解得:96,c a =+()2269636,y ax ac a a x ∴=-++=-+此时,顶点在第一象限,舍去,综上:当16x <<时,有0<y <9.a 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题。

广东汕头2022中考试卷-数学(解析版)

广东汕头2022中考试卷-数学(解析版)

广东汕头2022中考试卷-数学(解析版)一、选择题(本大题共8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。

分析:依照绝对值的性质求解.解答:解:依照负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题要紧考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104考点:科学记数法—表示较大的数。

分析:科学记数法的形式为a×10n,其中1≤a<10,n为整数.解答:解:6400000=6.4×106.故选B.点评:此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.数据8、8、6、5、6、1、6的众数是()A. 1 B. 5 C. 6 D.8考点:众数。

分析:众数指一组数据中显现次数最多的数据,依照众数的定义即可求解.解答:解:6显现的次数最多,故众数是6.故选C.点评:本题要紧考查了众数的概念,注意众数是指一组数据中显现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯独的,比较简单.4.如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。

分析:主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.点评:本题要紧考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是把握主视图所看的位置.5.下列平面图形,既是中心对称图形,又是轴对称图形的是()A.等腰三角形B.正五边形C.平行四边形D.矩形考点:中心对称图形;轴对称图形。

广东汕头龙湖2022初三中考重点考试数学试卷

广东汕头龙湖2022初三中考重点考试数学试卷

广东汕头龙湖2022初三中考重点考试数学试卷一、选择题(本大题8小题,每小题4分,共32分) 1.下列各数中,最小的数是( ). A .21B .0C .-1D .-32.运算232(3)x x ⋅-的结果是( ) A .56x -B .56xC .62x -D .62x【答案】A【解析】原式=-6x 2+3=-6x 5,故选A3.如图,装修工人向墙上钉木条.若∠2=110°,要使木条b 与a 平行,则∠1的度数等于( ).A .55°B .70°C .90°D .110°4.不等式5+2x <1的解集在数轴上表示正确的是( ).A. B. C. D.【答案】C【解析】5+2x <1的解集是x <-2,故选C 5.2008年5月10日北京奥运会火炬接力传递活动在漂亮的海边都市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是(保留两个有效数字)( ) A .4.0×103米 B .40.8×103米 C .4.1×104米 D .0.40×105米 【答案】C【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于40820有5位,因此能够确定n=5-1=4. 有效数字的运算方法是:从左边第一个不是0的数字起,后面所有的数字差不多上有效数字-2第10题图40820=4.0820×104≈4.1×104 故选 C7.下列方程中,有两个不等实数根的是( )A .238x x =-B .2510x x +=-C .271470x x -+=D .2753x x x -=-+ 【答案】D 【解析】:(1)△=9-32=-23<0,方程无根. (2)△=25-40=-15<0,方程无根.(3)△=196-196=0,方程有两个相等的实数根. (4)△=4+12=16>0,方程有两个不相等的实数根. 故选D8.同学们玩过滚铁环吗?当铁环的半径是30cm ,手柄长40cm .当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm 时,铁环所在的圆与手柄所在的直线的位置关系为( ) A .相离 B .相交 C .相切 D .不能确定二、填空题(本大题5小题,每小题4分,共20分)9.点M(2,-3)关于y 轴对称的对称点N 的坐标是 . 【答案】(-2,-3)【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,因此M(2,-3)关于y 轴对称的对称点N 的坐标是(-2,-3)10.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是 °. 【答案】140MP O 【解析】:∵九边形的内角和=(9-2)•180°=1260°, 又∵九边形的每个内角都相等, ∴每个内角的度数=1260°÷9=140°11.假如等腰三角形的两边长分别为3和5,那么那个等腰三角形的周长是 .12.如图,已知点P 为反比例函数4y x=的图象上的一点,过点P 作横轴的垂线,垂足为M ,则OPM ∆的面积为 . 【答案】2【解析】依照反比例函数k 的几何意义可得:S △OPM= 12k=213.如图,矩形A 1B 1C 1D 1的面积为4,顺次连结各边中点得到四边形A 2B 2C 2D 2,再顺次连结四边形A 2B 2C 2D 2四边中点得到四边形A 3B 3C 3D 3,依此类推,求四边形A n B n C n D n 的面积是 .三、解答题(本大题5小题,每小题7分,共35分)14.运算:03)2008(830tan 33π---︒⋅+-+231-⎪⎭⎫ ⎝⎛-【答案】10【解析】解: 原式=123333--⨯++9 =1213--++9 =10第12题图第13题图15.如图,已知△ABC(1)AC的长等于.(2)若将△ABC向右平移2个单位得到△A'B'C',则A点的对应点A'的坐标是;(3)若将△ABC绕点C按顺时针方向旋转90后得到∆A1B1C1,则A点对应点A1的坐标是.【解析】(1)利用勾股定理求解(2)利用平移的性质求解(3) 利用旋转的性质求解【答案】解:(1)10.…………………………………………3分(2)(1,2).…………………………………………5分(3)(3,0).…………………………………………7分16.小明和小华要到离学校15千米的图书馆看书.小明先骑自行车从学校动身,15分钟后,小华乘公交车从同一地点动身,结果两人同时到达图书馆.已知公交车的速度是自行车速度的1.5倍,求自行车的速度.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F。

2022届广东省汕头市龙湖区市级名校中考联考数学试卷含解析

2022届广东省汕头市龙湖区市级名校中考联考数学试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1 32.下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1 B.2 C.3 D.43.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,34.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°5.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A .1B .mC .m 2D .6.的倒数是( ) A . B . C . D .7.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个8.一个几何体的三视图如图所示,则该几何体的形状可能是( )A .B .C .D .9.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠CC .AB =ACD .DB =DC 10.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:211.-64的立方根是( )A .-8B .-4C .-2D .不存在12.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( ) A .20 B .25 C .30 D .35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于_____.14.已知二次函数f(x)=x 2-3x+1,那么f(2)=_________.15.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的角平分线,在AM 上求一点P ,使CP DP +的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置是如何找到的(不要求证明)___________.16.计算:3﹣1﹣30=_____.17.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为______.18.计算(x 4)2的结果等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组11232x x --≤,并将它的解集在数轴上表示出来.20.(6分)如图,在梯形ABCD 中,AD ∥BC ,对角线 AC 、BD 交于点 M ,点E 在边BC 上,且∠DAE=∠DCB ,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅;(2)连接DE ,如果BF=3FM ,求证:四边形ABED 是平行四边形.21.(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在∠AOB 的两边OA ,OB 上分别取OM =ON ;(2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ;(3)画射线OP .则射线OP 为∠AOB 的平分线.请写出小林的画法的依据______.22.(8分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP ∽△BCP ;②若 PA=3,PC=4,则 PB= .(2)已知锐角△ABC ,分别以 AB 、AC 为边向外作正△ABE 和正△ACD ,CE 和 BD 相交于 P 点.如图(2) ①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.23.(8分)关于x 的一元二次方程ax 2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.24.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x 、y ,求点(x ,y )位于第二象限的概率.25.(10分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)26.(12分)如图,▱ABCD 的边CD 为斜边向内作等腰直角△CDE ,使AD=DE=CE ,∠DEC=90°,且点E 在平行四边形内部,连接AE 、BE ,求∠AEB 的度数.27.(12分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a 的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确; C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误. 故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.2、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、A【解析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.4、B 【解析】解:5622180nππ⨯=,解得n=150°.故选B.考点:弧长的计算.5、D【解析】本题主要考察二次函数与反比例函数的图像和性质. 【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.6、C【解析】由互为倒数的两数之积为1,即可求解.【详解】∵,∴的倒数是.故选C7、B【解析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x 的增大而增大;当k<0时,y随x的增大而减小.8、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频9、D【解析】由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正确;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正确;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D.【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.10、B【解析】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B11、C【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案.详解:∵8=-,()328-=-, ∴的立方根为-2,故选C .点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键. 12、B【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得: k y x=,4007.5%30k =⨯=, ∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、40°.【解析】∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.14、-1【解析】根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】f(x)=x2-3x+1∴f(2)= 22-3⨯2+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.15、(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P.【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM 是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于+的值最小.点P,此时CP DP【详解】(Ⅰ)根据勾股定理得AC=22+=;345故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.16、﹣2 3 .【解析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【详解】原式=13﹣1=﹣23.故答案是:﹣2 3 .【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.17、2【解析】解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.18、x1【解析】分析:直接利用幂的乘方运算法则计算得出答案.详解:(x4)2=x4×2=x1.故答案为x1.点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、x≤1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】去分母,得:3x﹣2(x﹣1)≤3,去括号,得:3x﹣2x+2≤3,移项,得:3x﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.20、(1) 证明见解析;(2) 证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出FMDM=AMCM,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出AMCM=DMBM,进而可得出FMDM=DMBM,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴FMDM=AMCM.∵AD∥BC,∴△AMD∽△CMB,∴AMCM=DM FMBM DM,=DMBM,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴AFEF=DFBF=1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出FMDM=AMCM、AMCM=DMBM;(2)牢记“对角线互相平分的四边形是平行四边形”.21、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解析】利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.【详解】有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即射线OP为∠AOB的平分线.故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.【点睛】本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.22、(1)①证明见解析;②;(2)①60°;②证明见解析;【解析】试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴,∴PB2=PA•PC=12,∴PB=2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE ≌△ABD (SAS ),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF ∽△CFP ,∴AF•PF=DF•CF ,∵∠AFP=∠CFD ,∴△AFP ∽△CDF .∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC ﹣∠APC=120°,∴P 点为△ABC 的费马点.考点:相似形综合题23、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.24、(1)14;(2)16. 【解析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x ,y )位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14; (2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x ,y )位于第二象限的概率=212=16. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.25、至少涨到每股6.1元时才能卖出.【解析】根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【详解】解:设涨到每股x 元时卖出,根据题意得1000x-(5000+1000x )×0.5%≥5000+1000,解这个不等式得x≥1205199,即x≥6.1.答:至少涨到每股6.1元时才能卖出.【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.26、135°【解析】先证明AD=DE=CE=BC ,得出∠DAE=∠AED ,∠CBE=∠CEB ,∠EDC=∠ECD=45°,设∠DAE=∠AED=x ,∠CBE=∠CEB=y ,求出∠ADC=225°-2x ,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,∠BAD=∠BCD ,∠BAD+∠ADC=180°,∵AD=DE=CE ,∴AD=DE=CE=BC ,∴∠DAE=∠AED ,∠CBE=∠CEB ,∵∠DEC=90°,∴∠EDC=∠ECD=45°,设∠DAE=∠AED=x ,∠CBE=∠CEB=y ,∴∠ADE=180°﹣2x ,∠BCE=180°﹣2y ,∴∠ADC=180°﹣2x+45°=225°﹣2x ,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x )=2x ﹣45°,∴2x ﹣45°=225°﹣2y ,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【点睛】本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.27、(1)①点C 坐标为()1,5C 或()3,5C ';②y =x +2或y =-x +3;(2)217r ≤≤517r ≤≤【解析】(1)①根据“和谐点”的定义即可解决问题;②首先求出点C 坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);②如图2.由图可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,3 57 k bk b+=⎧⎨+=⎩,∴12kb=⎧⎨=⎩,∴y=x+2,当C2(5,﹣1)时,351k bk b+=⎧⎨+=-⎩,∴14kb=-⎧⎨=⎩,∴y=﹣x+3.综上所述:直线AC的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F在点E左侧时:连接OD .则OD =221417+=,∴217r ≤≤.②当点F 在点E 右侧时:连接OE ,OD .∵E (1,2),D (1,3),∴OE 22125+=OD 221417+=517r ≤≤综上所述:217r ≤≤517r ≤≤【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.。

2022年广东省汕头市澄海区中考数学模拟试题及答案解析

2022年广东省汕头市澄海区中考数学模拟试题及答案解析

2022年广东省汕头市澄海区中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −12022的相反数是( )A. 2022B. −2022C. 1D. −12. 我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为( )A. 0.3×106B. 3×107C. 3×106D. 30×1053. 一个不透明的袋子中装有3个白球,2个黑球,它们除了颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A. 25B. 1325C. 825D. 13204. 下列运算正确的是( )A. x2+2x2=3x4B. (x3)4=x7C. (2x+y)(2x−y)=2x2−y2D. x÷x3=x−25. 若关于x的一元二次方程ax2+2x+3=0有两个不相等的实数根,则a的值可以是( )A. 0B. 1C. 2D. −26. 如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为(0,2)、(−1,0),则点D的坐标为( )A. (√5,2)B. (2,√5)C. (√3,2)D. (2,√3)7. 如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接AE.若AE//BD,则∠CAD的度数为( )A. 45°B. 60°C. 70°D. 90°8. 文具店销售某种书袋,每个12元,王老师计划去购买这种书袋若干个.结账时店员说:“如果你再多买一个就可以打九折,总价钱会便宜24元”.王老师说:“那就多买一个吧,谢谢!”根据两人的对话可求得王老师原计划要购买书袋个( )A. 28B. 29C. 30D. 319. 如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD 与OA交于点E.设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α−β=90°D. 2α−β=90°10. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②关于x的不等式ax2+bx+c<0的解集为−1<x<2;③4a+2b+c<0;④8a+c<0.其中正确结论的个数为( )A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28.0分)11. 分解因式:25−x 2= ______ . 12. 若|a +2|+√b −3=0,则b a =______. 13. 计算a2−2aa−a =______.14. 人字梯为现代家庭常用的工具.如图,若AB ,AC 的长都为2.5m ,当α=55°时,人字梯顶端离地面的高度AD 为______m.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.4)15. 如图,点P 在反比例函数y =4x (x >0)的图象上,点Q 在反比例函数y =−2x (x <0)的图象上,若PQ//x 轴,则△OPQ 的面积为______.16. 如图所示,由8个有公共顶点O 的等腰直角三角形拼成的图形,∠AOB =∠BOC =⋯=∠MON =45°.若OA =64,则ON 的长为______.17. 如图,在Rt △ABC 中,∠C =90°,点P 在AC 边上.将∠A 沿直线BP 翻折,点A 落在点A′处,连接A′B ,交AC 于点D.若A′P ⊥AP ,tanA =23,则A′PBP的值为______.三、解答题(本大题共8小题,共62.0分。

2022届广东省汕头市潮阳区达标名校中考数学仿真试卷(含答案解析)

2022届广东省汕头市潮阳区达标名校中考数学仿真试卷(含答案解析)

2022届广东省汕头市潮阳区达标名校中考数学仿真试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .252.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断3.已知一次函数y =﹣12x +2的图象,绕x 轴上一点P (m ,1)旋转181°,所得的图象经过(1.﹣1),则m 的值为( )A .﹣2B .﹣1C .1D .24.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( )A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-25.将某不等式组的解集13x ≤<-表示在数轴上,下列表示正确的是( )A .B .C .D .6.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )A .极差是20B .中位数是91C .众数是1D .平均数是917.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->8.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( )A .a e a =B .e b b =C .1a e a =D .11a b a b= 9.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <010.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( ) A .16 B .17 C .18 D .19二、填空题(本大题共6个小题,每小题3分,共18分)11.若x=2-1, 则x 2+2x+1=__________.12.如图,点A 在反比例函数y=k x(x >0)的图像上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使CD=2AD ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E ,若△ABC 的面积为6,则k 的值为________.13.如图,在平面直角坐标系中,矩形活动框架ABCD 的长AB 为2,宽AD 为2,其中边AB 在x 轴上,且原点O 为AB 的中点,固定点A 、B ,把这个矩形活动框架沿箭头方向推,使D 落在y 轴的正半轴上点D′处,点C 的对应点C′的坐标为______.14.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.15.如图,反比例函数y =k x (x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B '在此反比例函数的图象上,则t 的值是( )A .1+5B .4+2C .42-D .-1+516.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.三、解答题(共8题,共72分)17.(8分)如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC=8,⊙O 的半径OA=6,求CE 的长.18.(8分)如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=>的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN≥PM ,结合函数的图象,直接写出n 的取值范围.19.(8分)先化简,再求值:2214422x x x x x x x -÷-++++,其中x=2﹣1. 20.(8分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C 点到地面AD 的距离(结果保留根号).21.(8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.用含m 或n 的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.22.(10分)已知()()a b A b a b a a b =---. (1)化简A ;(2)如果a,b 是方程24120x x --=的两个根,求A 的值.23.(12分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m 的值. 24.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,5应用两次勾股定理分别求BE 和a .【题目详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1.. ∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【答案点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.2、B【答案解析】比较OP与半径的大小即可判断.【题目详解】r5=,d OP6==,d r∴>,∴点P在O外,故选B .【答案点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.3、C【答案解析】根据题意得出旋转后的函数解析式为y=-12x-1,然后根据解析式求得与x 轴的交点坐标,结合点的坐标即可得出结论. 【题目详解】 ∵一次函数y =﹣12x +2的图象,绕x 轴上一点P (m ,1)旋转181°,所得的图象经过(1.﹣1), ∴设旋转后的函数解析式为y =﹣12x ﹣1, 在一次函数y =﹣12x +2中,令y =1,则有﹣12x +2=1,解得:x =4, 即一次函数y =﹣12x +2与x 轴交点为(4,1). 一次函数y =﹣12x ﹣1中,令y =1,则有﹣12x ﹣1=1,解得:x =﹣2, 即一次函数y =﹣12x ﹣1与x 轴交点为(﹣2,1). ∴m =242-+=1, 故选:C .【答案点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大. 4、B【答案解析】先利用待定系数法求出直线AB 的解析式,再求出将直线AB 向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l .【题目详解】解:设直线AB 的解析式为y =mx +n .∵A (−2,0),B (0,1),∴,解得 ,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【答案点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.5、B【答案解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、D【答案解析】测试卷分析:因为极差为:1﹣78=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为9178988598905x++++==,所以D选项错误.故选D.考点:①众数②中位数③平均数④极差.7、C【答案解析】根据各点在数轴上位置即可得出结论.【题目详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误.故选C.8、B【答案解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【题目详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【答案点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.9、A【答案解析】测试卷分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.10、A【答案解析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【答案点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【答案解析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【题目详解】∵x=2-1,∴x2+2x+1=(x+1)2=(2-1+1)2=2,故答案为:2.【答案点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.12、1【答案解析】连结BD,利用三角形面积公式得到S△ADB=13S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【题目详解】连结BD,如图,∵DC=2AD,∴S△ADB=12S△BDC=13S△BAC=13×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.【答案点睛】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13、(2,1)【答案解析】由已知条件得到,AO=12AB=1,根据勾股定理得到=1,于是得到结论. 【题目详解】解:∵,AO=12AB=1,∴,∵C′D′=2,C′D′∥AB ,∴C′(2,1),故答案为:(2,1)【答案点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.14、872【答案解析】由题意先求出DG 和FG 的长,再根据勾股定理可求得DF 的长,然后再证明△DGF ∽△DAI ,依据相似三角形的性质可得到DI 的长,最后依据矩形的面积公式求解即可.【题目详解】∵四边形ABCD 、CEFG 均为正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt △DGF 中, =∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA .又∵∠DAI=∠DGF ,∴△DGF ∽△DAI ,∴23DF DG DI AD ==23=,解得:∴矩形DFHI的面积是=DF•DI=32987 2922⨯=,故答案为:872.【答案点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.15、A【答案解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-4t,t),于是利用PB=PB′得t-2=|-4t|=4t,然后解方程可得到满足条件的t的值.【题目详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4x,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=1,(不符合题意,舍去),∴t的值为1+.故选A.【答案点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.16、3【答案解析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【题目详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为:3【答案点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.三、解答题(共8题,共72分)17、(1)证明见解析;(2)4.1.【答案解析】测试卷分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;测试卷解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.考点:切线的性质.18、(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【答案解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=kx,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=3x,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.1921.【答案解析】测试卷分析:测试卷解析:原式=2221 (2)2x x xx x x+-⨯-++=122 x xx x--++=12 x+当x=21-时,原式=121 212=--+.考点:分式的化简求值.20、C点到地面AD的距离为:(22+2)m.【答案解析】直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.【题目详解】过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=2m,∴C点到地面AD的距离为:()222m.【答案点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.21、(1)矩形的周长为4m ;(2)矩形的面积为1.【答案解析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【题目详解】(1)矩形的长为:m ﹣n ,矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2,当m=7,n=4时,S=72-42=1.【答案点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.22、(1)a b ab +;(2)-13. 【答案解析】(1)先通分,再根据同分母的分式相加减求出即可;(2)根据根与系数的关系即可得出结论.【题目详解】(1)A =a b a b -()﹣b a a b -()=22a b ab a b --()=a b ab+; (2)∵a ,b 是方程24120x x --=的两个根,∴a +b =4,ab =-12,∴41123a b A ab +===--. 【答案点睛】本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键.23、(1)1600千米;(2)1【答案解析】测试卷分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+109m%)=1600,进而解方程求出即可. 测试卷解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有: ()()8120816320x y x y ⎧+⎪⎨++⎪⎩== , 解得:801600x y ⎧⎨⎩== . 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+109m%)=1600, 解得:m 1=1,m 2=0(不合题意舍去),答:m 的值为1.24、(1)36 , 40, 1;(2)12. 【答案解析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.(2)画出树状图,根据概率公式求解即可.【题目详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人; 训练后篮球定时定点投篮平均每个人的进球数是324557647820⨯+⨯+⨯+⨯++=1, 故答案为:36,40,1.(2)三名男生分别用A 1,A 2,A 3表示,一名女生用B 表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M )的结果有6种,∴P (M )=612=12.。

2022年广东省汕头市潮阳区中考数学模拟试卷(A卷)(附答案详解)

2022年广东省汕头市潮阳区中考数学模拟试卷(A卷)(附答案详解)

2022年广东省汕头市潮阳区中考数学模拟试卷(A卷)1. 在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积之比为( )A. 16B. 14C. 13D. 122. 已知抛物线y=x2+bx+4经过(1,n)和(3,n)两点,则b的值为( )A. −2B. −4C. 2D. 43. 如图所示是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a−b+c>0;②3a+c>0;③b2= 4a(c−n);④一元二次方程ax2+bx+c=n−2没有实数根.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个4. 已知一个正多边形的每个内角都是150∘,则这个正多边形是正____边形.5. 如图,二次函数y=(x−1)(x−a)(a为常数)的图象的对称轴为直线x=2.则a的值为______.答案和解析1.【答案】B【解析】解:由题意得DE为△ABC的中位线,那么DE//BC,DE:BC=1:2.∴△ADE∽△ABC∴△ADE与△ABC的周长之比为1:2,.∴△ADE与△ABC的面积之比为1:4,即14故选:B.容易证明两个三角形相似,求出相似比,相似三角形的周长之比等于相似比,面积比等于相似比的平方.此题考查的是相似三角形的性质,掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方.是解决此题关键.2.【答案】B【解析】解:∵抛物线经过(1,n)和(3,n),=2,∴抛物线的对称轴为直线x=−b2解得b=−4,故选:B.由抛物线经过(1,n)和(3,n)可得抛物线对称轴为直线x=2,进而求解.本题考查二次函数图像上点的坐标特征,解题关键是掌握二次函数的性质,掌握二次函数图象与系数的关系.3.【答案】C【解析】解:∵抛物线顶点坐标为(1,n),∴抛物线对称轴为直线x=1,∵图象与x轴的一个交点在(3,0),(4,0)之间,∴图象与x轴另一交点在(−1,0),(−2,0)之间,∴x=−1时,y>0,即a−b+c>0,故①正确,符合题意.∵抛物线对称轴为直线x=−b=1,2a∴b=−2a,∴y=ax2−2ax+c,∴x=−1时,y=3a+c>0,故②正确,符合题意.∵抛物线顶点坐标为(1,n),∴ax2+bx+c=n有两个相等实数根,∴Δ=b2−4a(c−n)=0,∴b2=4a(c−n),故③正确,符合题意.∵y=ax2+bx+c的最大函数值为y=n,∴ax2+bx+c=n−2有实数根,故④错误,不合题意.故选:C.根据图象开口向下,对称轴为直线x=1可得抛物线与x轴另一交点坐标在(−1,0),(−2,0)之间,从而判断①.由对称轴为直线x=1可得b与a的关系,将b=−2a代入函数解析式根据图象可判断②由ax2+bx+c=n有两个相等实数根可得Δ=b2−4a(c−n)=0,从而判断③.由函数最大值为y=n可判断④.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4.【答案】十二【解析】【分析】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180∘−150∘=30∘,360∘÷30∘=12.则这个正多边形是正十二边形.故答案为:十二.5.【答案】3【解析】解:由二次函数y=(x−1)(x−a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴1+a2=2.解得a=3,故答案为:3.根据抛物线解析式得到抛物线与x轴的交点横坐标,结合抛物线的轴对称性质求得a的值即可.本题考查了二次函数图象和性质,抛物线与x轴的交点,求得交点坐标,熟知二次函数的对称性是解决本题的关键.。

2021-2022年汕头市初三数学下期中试卷(带答案) (3)

2021-2022年汕头市初三数学下期中试卷(带答案) (3)

一、选择题1.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)ky k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y ==【答案】B 【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可. 【详解】 ∵k <0, ∴反比例函(0)ky k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0, ∴312y y y <<, 故选B . 【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.2.若函数ky x=的图象经过点A (-1,2),则k 的值为( ) A .1 B .-1C .2D .-2【答案】D 【分析】把已知点的坐标代入计算即可. 【详解】 ∵函数ky x=的图象经过点A (-1,2), ∴21k =-, ∴k= -2; 故选D . 【点睛】本题考查了反比例函数与点的关系,根据图像过点,点的坐标满足函数的解析式求解是解题的关键.3.对于反比例函数2y x=-,下列说法正确的是( ) A .图象经过点()2,1--B .已知点()12,P y -和点()26,Q y ,则12y y <C .其图象既是轴对称图形也是中心对称图形D .当0x >时,y 随x 的增大而减小 【答案】C 【分析】根据反比例函数的性质进行判断即可. 【详解】解: A 、把点 ()2,1-- 代入反比例函数y=2x-,得-1≠2--2,故不正确;B 、把点 ()12,P y - 代入反比例函数y 1=221--=,把点 ()26,Q y 代入反比例函数y 2=2361-=-,12y y >,故不正确;C 、其图象既是轴对称图形也是中心对称图形,符合题意;D 、k=-2<0,∴在每一象限内y 随x 的增大而增大,故不正确; 故选C . 【点睛】本题考查了反比例函数y=kx(k≠0)的性质: ①当k>0 时,图象分别位于第一、 三象限;当k<0时, 图象分别位于第二、 四象限;②当k>0时,在同一个象限内, y 随x 的增大而减小;当k<0时, 在同一个象限, y 随x 的增大而增大.4.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是( )A .B .C .D .5.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .6.物体的形状如图所示,则从上面看此物体得到的平面图形是( )A .B .C .D .7.如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .有下列结论:①2BE AE =;②DFP BPH ∽△△;③PFD PDB ∽△△;④2DP PH PC =⋅.其中正确的个数是( )A .1B .2C .3D .48.如图,ABC 中,90ABC ∠=︒,点E 在CB 的延长线上,13BE AB =,过点E 作ED AC ⊥于D .若AD ED =,6AC =,则CD 的长为( )A .1.5B .2C .2.5D .49.如图,在ABC 中,点D 在AC 边上,连接,BD 点E 在BD 边上,过点E 作//,EF AC 交AB 于点F ,过点F 作//FG BC ,交AC 于点,G 则下列式子一定正确的是( )A .BF EFAF AD= B .EF FGAD BC= C .CG DEAC BD= D .AG DECG BE= 10.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。

2022年广东省汕头市中考数学总复习:二次函数附答案解析

2022年广东省汕头市中考数学总复习:二次函数附答案解析

2022年广东省汕头市中考数学总复习:二次函数
1.若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且
S2=5
2S1.
(1)抛物线的开口方向上(填“上”或“下”);
(2)求直线l相应的函数表达式;
(3)求该二次函数的表达式.
【解答】解:(1)如图,如二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).
∴y=ax2+bx+2,
令y=0,则ax2+bx+2=0,
∵0<x1<x2,
∴2
a
>0,
∴a>0,
∴抛物线开口向上,
故答案为:上;
(2)①若∠ACN=90°,则C与O重合,直线l与抛物线交于A点,因为直线l与该函数的图象交于点B(异于点A),所以不合题意,舍去;
②若∠ANC=90°,则C在x轴的下方,与题意不符,舍去;
③若∠CAN=90°,则∠ACN=∠ANC=45°,AO=CO=NO=2,
∴C(﹣2,0),N(2,0),
第1页共5页。

2022广东中考数学试卷+答案解析

2022广东中考数学试卷+答案解析

2022年广东中考数学一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. |―2|= ()A.―2B.2C.―12D.122.计算22的结果是()A.1B.√2C.2D.43.下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.如图,直线a∥b,∠1=40°,则∠2= ()A.30°B.40°C.50°D.60°5.如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE= ()A.14B.12C.1D.26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(―1,1)C.(1,3)D.(1,―1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.14B.13C.12D.238.如图,在▱ABCD中,一定正确的是()A.AD =CDB.AC =BDC.AB =CDD.CD =BC9. 点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =4x 的图象上,则y 1,y 2,y 3,y 4中最小的是 ( )A.y 1B.y 2C.y 3D.y 410. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr 。

下列判断正确的是 ( )A.2是变量B.π是变量C.r 是变量D.C 是常量二、填空题(本大题共5小题,每小题3分,共15分) 11. sin 30°= .12. 单项式3xy 的系数为 .13. 菱形的边长为5,则它的周长为 . 14. 若x =1是方程x 2―2x +a =0的根,则a = .15. 扇形的半径为2,圆心角为90°,则该扇形的面积为 .(结果保留π) 三、解答题(一)(本大题共3小题,每小题8分,共24分) 16. 解不等式组:{3x −2>1,x +1<3.17. 先化简,再求值:a +a 2−1a−1,其中a =5.18. 如图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E.求证:△OPD ≌△OPE.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.( 9分)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.学生人数和该书单价各是多少?20.( 9分)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.(1)求y与x的函数关系式;(2)当弹簧长度为20 cm时,求所挂物体的质量.21.( 9分)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10475410544188 3 5108(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?五、解答题(三)(本大题共2小题,每小题12分,共24分)22.( 12分)如图,四边形ABCD内接于☉O,AC为☉O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.23.( 12分)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东中考数学(参考答案)1.B|―2|=2,故选B.2.D22=2×2=4.故选D.3.A三角形具有稳定性,四边形不具有稳定性.故选A.4.B∵a∥b,∠1=40°,∴∠2=∠1=40°,故选B.5.D∵点D、E分别为AB、AC的中点,BC,∴DE是△ABC的中位线,∴DE=12∵BC=4,×4=2,故选D.∴DE=126.A将点(1,1)向右平移2个单位,横坐标加2,所以平移后的坐标为(3,1),故选A.7.B因为3本书中只有1本物理书,所以P(从中任取一本书是物理书)=1,故3选B.8.C∵四边形ABCD是平行四边形,∴AB=CD,故选C.9.D∵k=4>0,∴在第一象限内,y随x的增大而减小.的图象上,且1<2<3<4,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=4x∴y1>y2>y3>y4,即y4最小,故选D.10.C在C=2πr中,2,π是常量,r,C是变量.故选C.11.答案1212.答案 3 13.答案 20解析 ∵菱形的边长相等,均为5, ∴菱形的周长=4×5=20. 14.答案 1解析 将x =1代入x 2―2x +a =0中,得1―2+a =0,解得a =1. 15.答案 π 解析 S =nπr 2360=90π×22360=π.16.解析 {3x −2>1,①x +1<3,②解不等式①,得x >1, 解不等式②,得x <2, ∴不等式组的解集为1<x <2. 17.解析 a +a 2−1a−1=a +(a+1)(a−1)a−1=a +a +1=2a +1.当a =5时,原式=2×5+1=11.18.证明 ∵∠AOC =∠BOC ,PD ⊥OA ,PE ⊥OB , ∴PD =PE.在Rt △OPD 和Rt △OPE 中,{OP =OP,PD =PE,∴Rt △OPD ≌Rt △OPE (HL).19.解析 设学生有x 人,该书的单价为y 元, 根据题意得{8x −y =3,y −7x =4,解得{x =7,y =53.答:学生有7人,该书的单价为53元. 20.解析 (1)把x =2,y =19代入y =kx +15中, 得19=2k +15, 解得k =2,所以y 与x 的函数关系式为y =2x +15.(2)把y=20代入y=2x+15中,得20=2x+15,解得x=2.5.所以所挂物体的质量为2.5 kg.21.解析(1)补全统计图如图.(2)根据条形统计图可得,众数为4,中位数为5,平均数为1×(3×1+4×4+5×3+7×1+8×2+10×3+18×1)=7.15(3)应确定销售目标为8万元,使得较少的销售人员拿到奖励(答案不唯一,合理即可).22.解析(1)△ABC是等腰直角三角形,证明如下:∵AC为☉O的直径,∴∠ADC=∠ABC=90°.∵∠ADB=∠CDB,∴AB=BC,∴AB=BC.又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=√2,∴AC=2.在Rt△ADC中,AD=1,AC=2,∴CD=√AC2−AD2=√3.思路分析(1)根据圆周角定理的推论可得∠ABC=90°,由题意得AB=BC,进而可得AB=BC,即可判断△ABC是等腰直角三角形.(2)在Rt△ABC中由勾股定理可得AC的长,在Rt△ADC中由勾股定理求CD 的长.23.解析(1)∵抛物线y=x2+bx+c(b,c是常数)与x轴交于A,B两点,A(1,0),AB=4,∴B(―3,0),∴{1+b+c=0, 9−3b+c=0,解得{b=2, c=−3,∴抛物线的解析式为y=x2+2x―3.(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F.设P(m,0),则PA=1―m,∵y=x2+2x―3=(x+1)2―4,∴C(―1,―4).∵PQ∥BC,∴△PQA∽△BCA,∴QECF =APAB,即QE4=1−m4,∴QE=1―m,∴S△CPQ=S△PCA―S△PQA=12PA ·CF ―12PA ·QE=12(1―m )×4―12(1―m )(1―m ) =―12(m +1)2+2.∵―3≤m ≤1,∴当m =―1时,S △CPQ 有最大值2,∴△CPQ 面积的最大值为2,此时P 点坐标为(―1,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年广东汕头中考数学真题及答案
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.|2|
-=()
A.﹣2 B.2 C.
1
2
-D.
1
2
2.计算22()
A.1 B.2C.2 D.4 3.下列图形中有稳定性的是()
A.三角形B.平行四边形C.长方形D.正方形4.如题4图,直线a//b,∠1=40°,则∠2=()
A.30°B.40°C.50°D.60°5.如题5图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()
A.1
4
B.
1
2
C.1 D.2
6.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()
A.1
4
B.
1
3
C.
1
2
D.
2
3
8.如题8图,在▱ABCD中,一定正确的是()
A .AD=CD
B .AC=BD
C .AB=C
D D .CD=BC
9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4
y x
=图象上,则1y ,2y ,3y ,4y 中最小的是( )
A .1y
B .2y
C .3y
D .4y
10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )
A .2是变量
B .π是变量
C .r 是变量
D .C 是常量
参考答案: 题号 1 2 3 4 5 6 7 8 9 10 答案 B
D
A
B
D
A
B
C
D
C
二、填空题:本大题共5小题,每小题3分,共15分. 11.sin 30°=____________.
12.单项式3xy 的系数为____________.
13.菱形的边长为5,则它的周长为____________. 14.若x =1是方程220x x a -+=的根,则a =____________.
15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________. 参考答案: 题号 11 12 13 14 15
答案 12
3
20
1
π
三、解答题(二):本大题共3小题,每小题8分,共24分 16.解不等式组:32113
x x ->⎧⎨+<⎩
参考答案:
32113x x ->⎧⎨
+<⎩

② 由①得:1x > 由②得:2x <
∴不等式组的解集:12x <<
17.先化简,再求值:21
1
a a a -+-,其中a =5.
参考答案:
原式=(1)(1)
1211
a a a a a a a -++
=++=+-
将a =5代入得,2111a +=
18.如题18图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE . 参考答案:
证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中 PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩
∠⎪
⎨== ∴△OPD ≌△OPE (AAS )
四、解答题(二):本大题共3小题,每小题9分,共27分.
19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少? 参考答案:
设学生人数为x 人
8374x x -=+
7x =
则该书单价是8353x -=(元)
答:学生人数是7人,该书单价是53元.
20.物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足看数关系y =kx +15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.
x 0 2 5 y
15
19
25
(1)求y 与x 的函数关系式;
(2)当弹簧长度为20cm 时,求所挂物体的质量. 参考答案:
(1)将2x =和19y =代入y =kx +15得19=2k +15
解得:2k =
∴y 与x 的函数关系式:y =2x +15 (2)将20y =代入y =2x +15得20=2x +15
解得: 2.5x =
∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg .
21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:
10 4 7 5 4 10 5 4 4 18 8 3 5 10 8
(1)补全月销售额数据的条形统计图.
(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?
(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?
参考答案:
(1)月销售额数据的条形统计图如图所示:
(2)
3445378210318
715
x +⨯+⨯++⨯+⨯+=
=(万元)
∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.
五、解答题(三):本大题共2小题,每小题12分,共24分.
22.如题22图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB =∠CDB . (1)试判断△ABC 的形状,并给出证明; (2)若2AB =,AD =1,求CD 的长度.
参考答案:
(1)△ABC 是等腰直角三角形,理由如下:
∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90°
∴△ABC 是等腰直角三角形 (2)在Rt △ABC 中
222AC AB BC =+
可得:2AC = ∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中 222AC AD DC =+
可得:3DC = ∴CD 的长度是3
23.如题23图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A (1,0),AB =4,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q . (1)求该抛物线的解析式;
(2)求△CPQ 面积的最大值,并求此时P 点坐标. 参考答案:
(1)∵A (1,0),AB =4
∴结合图象点B 坐标是(﹣3,0)
将(1,0),(﹣3,0)代入2y x bx c =++得 01093b c b c =++⎧⎨
=-+⎩解得:2
3
b c =⎧⎨=-⎩ ∴该抛物线的解析式:223y x x =+- (2)设点P 为(,0)m
∵点C 是顶点坐标
∴将1x =-代入223y x x =+-得4y =- ∴点C 的坐标是(1,4)--
将点(1,4)--,(1,0)代入y kx b =+得 04k b k b =+⎧⎨
-=-+⎩解得:2
2
k b =⎧⎨=-⎩ ∴AC 解析式:22y x =-
将点(1,4)--,(﹣3,0)代入y kx b =+得
034k b k b =-+⎧⎨
-=-+⎩解得:2
6
k b =-⎧⎨=-⎩ ∴BC 解析式:26y x =-- ∵PQ //BC
∴PQ 解析式:22y x m =-+ 2222y x m y x =-+⎧⎨
=-⎩解得:121
m x y m +⎧=
⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2m
m +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△
111
44(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△
213
22CPQ S m m =--+△
21
(1)22
CPQ S m =-++△
当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。

相关文档
最新文档