冲刺中考必备之初中数学选择、填空精选50题(附详解)

合集下载

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)1.-8的绝对值是8.2.若∠α=35°,则∠α的补角为55°。

3.若分式(x-1)/(x-3)有意义,则实数x的取值范围是x≠3.4.若分式5/(x+3)有意义,则x的取值范围是x≠-3.5.二次根式的自变量x的取值范围是x≥0.6.若在实数范围内有意义,则x的取值范围是x≥1.7.在函数y=x中,自变量x的取值范围是(-∞,+∞)。

8.函数y=x-1的自变量x的取值范围是(-∞,+∞)。

9.函数y=x+3的自变量x的取值范围是(-∞,+∞)。

10.若二次根式√(x-1)有意义,则x的取值范围是x≥1.11.函数y=(x-1)/x中,自变量x的取值范围是x≠0.12.若x-y-3和x-2y+9互为相反数,则x+y的值为-6.13.已知点P(-2,1),则点P关于x轴对称的点的坐标是(-2,-1)。

14.地球与月球的平均距离大约km,用科学计数法表示这个距离为3.84×10^5 km。

15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为xxxxxxx 米,将xxxxxxx用科学记数法表示为6.7×10^6 m。

16.目前,世界上能制造出的最小晶体管的长度只有0.xxxxxxxxm,将0.xxxxxxxx用科学记数法表示为4×10^-8 m。

17.在人体血液中,红细胞的直径约为7.7×10^-4 cm,7.7×10^-4用小数表示为0. cm。

18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于12π。

19.一个多边形每个外角都是36°,则这个多边形的边数是10.20.已知菱形的两条对角线分别为2cm,3cm,则它的面积是3 cm^2.21.若点P(x,y)是平面直角坐标系xOy中第四象限内的一点,且满足2x-y=4,x+y=m,则m的取值范围是m>0.22.真命题的有①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等,即命题①、②、③、④都是真命题。

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案) 一、概念理解应用类1.-8的绝对值是________.2.若∠α=35°,则∠α的补角为 度. 3.若分式53x -有意义,则实数x 的取值范围是___. 4.若分式13x x -+有意义,则x 的取值范围是 . 5.二次根式中,x 的取值范围是 .6.若在实数范围内有意义,则x 的取值范围是 .7.在函数y =中,自变量x 的取值范围是 . 8.函数y =中自变量x 的取值范围是 . 9.函数y =的自变量x 的取值范围是 .10.若二次根式在实数范围内有意义,则x 的取值范围是 .11.函数y =1-x x中,自变量x 的取值范围是 . 12.若29x y -+与3x y --互为相反数,则x +y 的值为_________.13.已知点P (﹣2,1),则点P 关于x 轴对称的点的坐标是 .14.地球与月球的平均距离大约384000km ,用科学计数法表示这个距离为 km . 15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为 .16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为17. 在人体血液中,红细胞的直径约为7.7×10-4 cm ,7.7×10-4用小数表示为 18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于 . 19.一个多边形每个外角都是36︒,则这个多边形的边数是20.已知菱形的两条对角线分别为2cm ,3cm ,则它的面积是 2cm . 21.若点()P x y ,是平面直角坐标系xOy 中第四象限内的一点,且满足24x y -=,x y m +=,则m 的取值范围是 .22.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有 (填序号).23.如果5x +3与﹣2x +9是互为相反数,则x ﹣2的值是 . 24.若a m =2,a n =3,则a m ﹣n 的值为 . 25.若a ,b 都是实数,b =+﹣2,则a b 的值为 .26.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为 .27.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 28.如果点(m ,﹣2m )在双曲线上,那么双曲线在 象限.29.一个多边形的每一个外角为30°,那么这个多边形的边数为 . 30.命题“同旁内角互补”是一个 命题(填“真”或“假”) 31.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 . 32.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 33.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是 . 34.已知x m =6,x n =3,则x m ﹣n 的值为 . 35.9的平方根是 .36.若一个多边形的内角和是540°,则这个多边形是 边形. 37.若∠α=35°,则∠α的补角为 度.38.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为 cm². 二、计算、化简、因式分解类、 39.计算:23()a =________. 40.计算:182⨯=________. 41.分解因式:4m 2﹣16n 2= . 42.化简﹣(﹣)的结果是 . 43.因式分解2a 3b -8ab 3= . 44.因式分解:a 3﹣ab 2= .45.在实数范围内因式分解:23x y y -=_________. 46.计算:|﹣3|﹣1= . 47.化简:= .48.分解因式:3x 2﹣6x+3= . 49.化简:22(5)x x +-= . 50.已知a <0,那么|﹣2a |可化简为 .51.分解因式:x 3y ﹣2x 2y +xy = .52.分解因式:a 3﹣4ab 2= . 53.因式分解2a 3b -8ab 3= .54.在实数范围内分解因式:2232x -= . 55.化简:239m m --= .56.当﹣1<a <0时,则= .三、方程、不等式类57.不等式组()112333x x x +≥+->⎧⎨⎩的解集是__________.58.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是 . 59.若m 、n 是一元二次方程x 2–5x –2=0的两个实数根,则m +n –mn =_________. 60.设0a <,0b >,且a b >,用“<”号把a ,a -,b ,b -连接起来为__________. 61.关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是 . 62.已知关于x 的方程x 2+3x ﹣m =0有两个相等的实数根,则m 的值为 . 63.已知关于x 的一元二次方程x 2﹣2x +k =0有两个不相等的实数根,则k 的取值范围是 .64.关于x 的一元二次方程x 2﹣2mx +(m ﹣1)2=0有两个不相等的实数根.则m 的取值范围是 .65.已知关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则b 的值为 .66.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.67.已知x =-m 和x =m -4时,多项式ax 2+bx +4a +1的值都相等,且m ≠2.若当-1<x<2时,存在x 的值,使多项式ax 2+bx +4a +1的值为3,则a 的取值范围是 .四、函数类68.反比例函数y=kx(k≠0)的图像经过点A(-2,4),则在每一个象限内,y随x的增大而________.(填“增大”或“减小”)69.已知二次函数y=24x x k-+的图像的顶点在x轴下方,则实数k的取值范围是________.70.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.71.下列关于变量x和y的关系式:①y=x,②2x2-y=0,③y2=x,④2x-y2=0,其中y是x的函数的是 .72.如图,抛物线1C:223y x x=+-的顶点为P,将该抛物线绕点(0)A a,(0)a>旋转180︒后得到抛物线2C,抛物线2C的顶点为Q,与x轴的交点为B,C,点B在点C的右侧.若90PQB∠=︒,则a=.73.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.74.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.xyBOA75.如图所示,反比例函数y=(x<0)的图象经过矩形OABC的对角线AC的中点M,分别与AB,BC交于点D、E,若BD=3,OA=4,则k的值为.76.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l 上时,线段AC扫过的面积为平方单位.77.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.78.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B 点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当PA+PB最小时,P点的坐标为.79.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.80.如图,点A是反比例函数kyx=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C 为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是.五、几何计算、证明类81.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= .82.如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.83.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.xyBOA84.如图,在Rt △ABC 中,90C ∠=︒,CD 是AB 边上的中线,且5CD =,则△ABC 的中位线EF 的长是 .85.如图,12∠=∠,添加一个条件 ,使得△ADE ∽△ACB .86.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为______.87.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是 .88.在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,则这个三角形的外接圆的直径长为 .89.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则在 ①3.6②4,③5.5,④7,这四个数中AP 长不可能是 (填序号)90.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为 .91.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=.92.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.93.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC =4,则AD的长为.94.在平面直角坐标系中,已知A(2,4)、P(1,0),B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90°.M为BC的中点,则PM的最小值为.95.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC =.96.如图所示,⊙O是△ABC的外接圆,AD⊥BC于D,且AB=5,AC=4,AD=4,则⊙O 的直径的长度是.597.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.98.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.99.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.100.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.101.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.102.把一块矩形直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.103.如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF的长是.104.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.105.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.106.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC 于点E,则AE的长度是.ABDE107.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.108.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.109.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.110.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.111.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是.112.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=cm.113.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.114.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A=度.115.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x 的取值范围为.116.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.117.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为.118.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.则CG =.119.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.120.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.121.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.122.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC=2S△CEF;(4)若∠B=80°,则∠AEF=50°.其中一定成立的是(把所有正确结论的序号都填在横线上)123.T1、T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径r,T1、T2的边长分别为a、b,T1、T2的面积分别为S1、S2.下列结论:①r:a=1:1;②r:b=;③a:b =1:;④S1:S2=3:4.其中正确的有.(填序号)124.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为.125.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.126.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC 的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是.127.如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则tan ∠CFD= .128.如图,在△ABC 中,CA =CB =4,∠ACB =90°,以AB 中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分面积为 .129.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 满足的条件是130.如图,在Rt △ABC 中,∠C =90°,点D 是线段AB 的中点,点E 是线段BC 上的一个动点,若AC =6,BC =8,则DE 长度的取值范围是 .131.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°C DABOABCDE132.如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上,若sin∠B′AC=910,则AC=________.133.如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AE=13AB,CF=13CB,AG=13A D.已知△EFG的面积等于6,则菱形ABCD的面积等于________.六、统计、概率类134.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于.135.已知一组数据1,2,0,–1,x,1的平均数是1,则这组数据的中位数为__________.136.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.137.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.138.三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.139.初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示:CDFGABECABB'A'校服的尺码(单位:厘米)160 165 170 175 180 185 195 数量(单位:件) 2 4 10 22 14 6 1 由表可以看出,在校服的尺码组成的一组数据中,众数是.140.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:移栽棵树100 1000 10000 20000成活棵树89 910 9008 18004 依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)141.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.142.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.143.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.144.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.145.如图,⊙O的半径为,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是.七、规律探究类146.下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.147.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.148.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有个正方形.149.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=.150.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=.参考答案:1. 82.1453. x ≠34.3x ≠-5. x ≥﹣16.x ≤27. x ≥﹣1且x ≠08. x ≥9. x ≥﹣且x ≠3 10. x ≥2019 11. x ≥0且x ≠112. 27 13.(﹣2,﹣1) 14. 3.84×10515. 6.7×10616. 4×10-8 17. 0.00077 18. 12π 19. 10 20. 3 21. 42m -<< 22. ①③ 23.﹣6 24. 25. 4 26. 300π 27. 60°或120°28. 第二、四 29. 12 30. 假31. 4 32. 60°或120° 33.0<m <1 34. 2 35. ±3 36. 五 37. 145 38. 10π 39. a 640. 2 41. 4(m +2n )(m ﹣2n ) 42. 43. 2ab (a +2b ) (a -2b ) 44. a (a +b )(a ﹣b ) 45. y(x+3)(x- 3 ) 46. 2 47. 1 48. 3(x ﹣1)2 49. 1025x + 50. ﹣3a . 51. xy (x ﹣1)2 52. a (a +2b )(a ﹣2b ) 53. 2ab (a +2b ) (a -2b ) 54. 2(4)(4)x x +- 55.13m + 56. 2 57. 0 ≤ x <358. 0.5<m <3 59. 7 60. a < - b < b < - a 61. 1 62.- 63. k <3. 64. m >. 65. ±2. 66. 175 67.81<a <2 68. 增大 69. k < 4 70. 2 71. ①② 72.7 73.- 74. x <﹣2. 75. ﹣4. 76. 40 77. (,), 78. (,0) 79. 2 80. ﹣881. 40° 82. 2 83. 3≤AP <4. 84. 5 85. C D ∠=∠(答案不唯一) 86. 3 87. 10 88. 10. 89. ④ 90. 2﹣2.91. 40° 92. 30° 93. 94.95. 70°96. 5 97. 6 98. 68 99. 20 100. 22° 101.102. 130° 103. 5 104. 93 105. 3≤DE ≤5106. 3 107.108. 57° 109. 12 110. 144°.111. 47° 112.3 113. 2 114. 80 115. x =4或x ≥8.116. 12 117.12 118.12.5. 119. x +y ﹣z =90°. 120. 93 121. 122. (1)(2)(4). 123. ①②④ 124.2 125. 22° 126. 3 127. 43128. 2π﹣4129. 0x =,424x =-或442x << 130. 3≤DE ≤5131.40 132. 25 2 /9 133. 27 134. 5.2 135.1 136. 45 137.138 . 1/3 139. 175 140. 0.9141. 142. 1.3 143. 2 144. 85 145. 28146.15a 16 147. 4a +2×a , 2n ﹣1•4a +2×()n a .148. 55 149.150. (n 2+5n +5)2。

中考数学复习选择题填空题专题训练精选

中考数学复习选择题填空题专题训练精选

20XX年中考数学复习选择题填空题专题训练精选1选择填空题综合训练1、如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC 上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有( )①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.A.1个B.2个C.3个D.4个第1题第2题第3题2、如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB,且EF=②∠BAF=∠CAF;③S四边形 12AF DE12AB;ADFE;④∠BDF+∠FEC=2∠BAC,正确的个数是( )A.1B.2C.3D.43、如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2,其中正确的是( )A.②④ B.①④ C.②③ D.①③4、如图,分别以R t△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,DC DE22AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是( )A.②④ B.①③ C.②③④ D.①③④第4题第5题第6题第7题5、如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF;②∠CHF=45°;③GH=14BC;④FH2=HE·HB,正确结论的个数为( )A. 1个 B. 2个 C. 3个 D. 4个6、如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②AB⊥CM;③∠BMC=90°;④EF=EG;⑤△EFG是等腰直角三角形.上述结论中始终正确的序号有______7、如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.连接CE、CF、BD,AC、BD的交点为O,若CE⊥AB,AB=7,CD=3下列结论中:①AC=BD;②EF∥BD;③S四边形AECF AC EF;④EF=2572,⑤连接F0;则F0∥AB.正确的序号是___________8、如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S CDG的是( )A.①③S四边形DHGE;④图中有8个等腰三角形。

(完整版)初三数学选择题(50题含答案)

(完整版)初三数学选择题(50题含答案)

ABCD第4题图初三选择题(50题含答案)1.-5的绝对值等于(***).A . 5B .-5C .15D .15-2.下列平面图形中,不是轴对称图形的是(***).AB C D3.若1=x ,21=y ,则2244y xy x ++的值是(***). A .2 B .4 C .23 D .214.如图,△ABC 中,AC =AD =BD ,∠DAC =80º,则∠B 的度数是(***).A .40ºB .35ºC .25ºD .20º5.已知点P (a -1,a +2)在平面直角坐标系的第三象限内,则a 的取值范围在数轴上可表示为(***).6.阳光透过长方形玻璃窗投射到地面上,地面上会出现一个明亮的四边 形,用量角器量出这个四边形的一个锐角恰好是30°,又用直尺量 出一组邻边的长分别是40 cm 和55 cm ,那么地面上的四边形面积和 周长分别为(***).A .1512.5 2cm ;95 cmB .550 2cm ;190 cmC .1100 2cm ;190 cmD .800 2cm ;190 cm7.如图,已知⊙O 的两条弦AD ,BC 相交于点E ,∠A =70o ,∠D =50o,那么 sin ∠AEB 的值为(***).A. 21 B. 33 C.22 D. 238.下列说法中,你认为正确的是(***).A .等边三角形是中心对称图形B .四边形具有稳定性C .任意多边形的外角和是360oD .矩形的对角线一定互相垂直 9.把a ·1a-的根号外的a 移到根号内得(***). A . a B . -a C . -a - D . a -10.在Rt △ABC 中,∠BAC =90°,AB =3,M 为BC 上的点, 连接AM (如图),如果将△ABM 沿直线AM 翻折后,点B1-2 -3 -1 02 A .1-2 -3 -1 02B .C .1-2 -3 -1 02D .1-2 -3 -1 02第7题图第6题图第10题图MACB恰好落在边AC 的中点处,那么点M 到AC 的距离是(***). A . 1 B . 2 C .2 D . 411. 实数3的倒数是( )A .31-B .31C .3-D .312. 将二次函数2x y =的图像向下平移1个单位,则平移后的二次函数的解析式为( )A .12-=x yB .12+=x yC .2)1(-=x yD .2)1(+=x y13. 一个几何体的三视图如图1所示,则这个几何体是( )A . 四棱锥B .四棱柱C .三棱锥D .四棱柱14.下面的计算正确的是( )A .156=-a aB .3233a a a =+C .b a b a +-=--)(D .b a b a +=+22)(15.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD=5, DC=4, DE ∥AB 交BC 于点E ,且EC=3.则梯形ABCD的周长是( )A .26B .25C .21D .2016. 已知071=-+-b a ,则=+b a ( )A .8-B .6-C .6D .817.在Rt △ABC 中,∠C=90°, AC=9 , BC=12.则点C 到AB 的距离是( )A .536B .2512C .49D .433 图2ED C B A18.已知b a >,若c 是任意实数,则下列不等式总是成立的是( )A .c b c a +<+B .c b c a ->-C .bc ac <D .bc ac >19.在平面中,下列命题为真命题的是( )A .四边相等的四边形是正方形B .对角线相等的四边形是菱形C .四个角相等的四边形是矩形D . 对角线互相垂直的四边形是平行四边形20.如图3,正比例函数x k y 11=和反比例函数xk y 22=的图象交于)2,1(-A 、),(21-B 两点,若21y y <,则x 的取值范围是 ( )A .1-<x 或1>xB .1-<x 或10<<xC .01<<-x 或10<<xD .01<<-x 或1>x21. 下列四个数中,在-2和1之间的数是( )A. –3B. 0C. 2D. 322. 如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆沿,最后将正方形纸片展开,得到的图案是( )23. 下列各点中,在函数72-=x y 的图像上的是( )A. (2,3)B. (3,1)C. (0,-7)D. (-1,9)24. 不等式组⎩⎨⎧>-≥+0101x x 的解集是( )A. 1-≥xB. 1->xC. 1≥xD. 1>x25. 已知12112-=+=b a ,,则a 与b 的关系是( )A. a=bB. ab=1C. a=-bD. ab=-126. 如图,AE 切圆O 于E ,AC=CD=DB=10,则线段AE 的长为( )A. 210B. 15C. 310D. 2027. 用计算器计算,,,,15151414131312122222--------…,根据你发现的规律,判断112--=n n P 与1)1(1)1(2-+-+=n n Q (n 为大于1的整数)的值的大小关系为( )A. P<QB. P=QC. P>QD. 与n 的取值有关28. 当k>0时,双曲线xky =与直线kx y -=的公共点有( ) A. 0个 B. 1个 C. 2个 D. 3个29. 如图,多边形的相邻两边均互相垂直,则这个多边形的周长为( )A. 21B. 26C. 37D. 4230. 如图,已知点A (-1,0)和点B (1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,则满足这样条件的点P 共有( )A. 2个B. 4个C. 6个D. 7个31.四个数-5,-0.1,21,3中为无理数的是( ) A. -5 B. -0.1 C. 21D. 332.已知□ABCD 的周长为32,AB=4,则BC=( ) A. 4 B. 121 C. 24 D. 2833.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( ) A. 4 B. 5 C. 6 D. 1034.将点A (2,1)向左平移2个单位长度得到点A ',则点A '的坐标是( ) A. (0,1) B. (2,-1) C. (4,1) D. (2,3) 35.下列函数中,当x>0时,y 值随x 值增大而减小的是( ) A.2x y = B. 1-=x y C. x y 43=D. x y 1=36.若a<c<0<b ,则abc 与0的大小关系是( )A. abc<0B. abc=0C. abc>0D. 无法确定 37.下面的计算正确的是( )A. 2221243x x x =⋅B. 1553x x x =⋅C. 34x x x =÷D. 725)(x x =38.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )39.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤9(40.如图,AB 切⊙O 于点B ,OA=23,AB=3,弦BC//OA ,则劣弧BC 的弧长为( )A.π33 B. π23 C. π D. π23 41.如果+10%表示“增加10%”,那么“减少8%”可以记作( ) A .-18% B .-8% C .+2% D .+8%42.将图1所示的直角梯形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D .图143.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 44.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( )A .2.5B .5C .10D .15 45.不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( )A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-346.从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2A .41B .21C .43D .147.长方体的主视图与俯视图如图所示,则这个长方体的体积是( )A .52B .32C .24D .9l主视图 俯视图 48.下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 49.若a <11=( )A .a ﹣2B .2﹣aC .aD .﹣a 50.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s 对应密文cA .wkdrcB .wkhtcC .eqdjcD .eqhjc21~5:AABCD 6~10:CDCCB 11~15BADCC 16~20:BABCD 21~25:BACDA 26~30:CCADC 31~35:DBBAD 36~40: CCADBA 41~45: BCDAB45~50: ACDDA。

中考数学总复习《选择、填空、解答题重难点》专项提升练习题(附答案)

中考数学总复习《选择、填空、解答题重难点》专项提升练习题(附答案)

中考数学总复习《选择、填空、解答题重难点》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题(每题4分,共48分)1.某回收公司有四包可回收垃圾,每包以标准克数(50千克)为基准,超过的千克数记作正数,不足的千克数记作负数,以下数据是记录结果,其中表示实际质量最接近标准千克数的是 ( )A. -1B. +2C. -0. 5D.02.如图是由一个长方体和一个圆柱组成的几何体,它的俯视图是 ( )3.某市政府在 2022 年着力稳定宏观经济大盘,全市经济发展取得新成效,全年生产总值实现2502.7亿元.数据2502.7亿用科学记数法表示为 ( )A.2502.7×10⁸B.2.5027×10¹¹C.2.5027×10¹⁰D.2.5027×10³4.关于等边三角形,下列说法不正确的是 ( )A. 等边三角形是轴对称图形B. 等边三角形是中心对称图形C. 等边三角形是旋转对称图形D. 等边三角形都相似5.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各 1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是 ( )A. 平均数为 70分钟B. 众数为 67 分钟C. 中位数为 67分钟D. 方差为06.如图,正五边形ABCDE放入平面直角坐标系后,若顶点 A,B,C,E的坐标分别是(0,a),(b,m),(-2,-1),(e,m),则点 D 的坐标是 ( )A.(2,-1)B.(2,1)C.(-1,-2)D.(-2,1)7.已知a=√23−2,a 介于两个连续自然数之间,则下列结论正确的是 ( )A.1<a<2B.2<a<3C.3<a<4D.4<a<<58.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积不大于4的概率是 ( )B. 712 C. 13 D. 12 A.5129.如图,⊙O 的圆心O 与正方形的中心重合,已知⊙O 的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为 ( ) A. √2 B.2 C.4+2√2 D.4−2√210.如图1,在菱形ABCD 中,∠.A=60°,动点P 从点A 出发,沿折线AD→DC→CB 方向匀速运动,运动到点 B 停止.设点 P 的运动路程为x ,△APB 的面积为y ,y 与x 的函数图象如图2所示,则 AB 的长为 ( ) A. √3 B.2√3 C.3 √3 D.4 √311.已知抛物线 y =ax²+bx +c (a ≠0)的部分图象如图所示,则下列结论中正确的是 ( ) A. abc<0 B.4a -2b+c<0C.3a+c=0D.am²+bm +a ≤0(m 为实数)12.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F,连接 DE 并延长,交边BC 于点M,交边AB 的延长线于点G.若AF=2,FB=1,则MG= ( ) A.2√3 B.3√52C.√5+1D.√10二、填空题(每题4分,共24分) 13.因式分解: 18a −2a³=. 14.方程 23x−1=1x+2的解是 。

初中数学中考专项练习《有理数》50道填空题包含答案与解析(中考冲刺)

初中数学中考专项练习《有理数》50道填空题包含答案与解析(中考冲刺)

初中数学中考专项练习《有理数》50道填空题包含答案与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、填空题(共50题)1、2017的相反数是________.2、、、在数轴上的位置如图所示:试化简________.3、海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动物的高度为________.4、把下列各数填入相应集合的括号内.+6.5,,0.5,0,-3.2,13,-9,,-1,-3.6⑴正数集合:{________…};⑵整数集合:{________…};⑶非负数集合:{________ …};5、已知A、B为数轴上的两点,它们到原点的距离分别为4、5,则A、B两点之间的距离为________.6、0的绝对值是________.7、已知为互不相等的整数,且,则________.8、若实数x、y满足|x﹣5|+ =0,则以x、y的值为边长的等腰三角形的周长为________.9、在数轴上,A、B两点之间的距离为5,点A所表示的数为﹣1,则点B所表示的数为________.10、从1978年12月18日党的十一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将数字用a×10b的科学记数法表示,则b的值为________.11、一个数是8,另一个数比它的相反数小1,另一个数是________12、计算下列各题:⑴ ________;(2)________;(3)________;⑷ ________;(5)________;(6)________;13、在“生活中的数学”知识竞赛中,如将加20分记为+20分,则扣10分记为________分.14、比较有理数大小:________ (选用“>”、“<”或“=”号填空).15、比较大小:-(-2)________-3(填“<”、“=”或“>”)16、把下列各数填入相应的大括号里﹣7,3.01,2008,﹣0.142,+0.1,0,99,-①整数集:{________ ,…}②负分数集:{________ ,…}③正整数集:{ ________ ,…}.17、规定:符号(a,b)表示a,b中较小的一个,符号[a,b]表示a,b中较大的一个.计算:(-2,-6)-[-4,-7]=________.18、数轴上A点表示的数为-2,则与A点相距4个单位长度的点表示的数为________.在数轴上将表示-1的点向右移动3个单位后,对应点表示的数是________.19、计算:________.20、已知:和都在同一条数轴上,点A表示-2,又知点B和点A相距5个单位长度,则点B表示的数一定是________.21、把(+4)-(-6)-(+7)写成省略加号和的形式为________.22、若x ,y互为相反数,a、b互为倒数,则代数式2x+2y- 的值为________ .23、若x<0,则=________.24、已知实数满足,则代数式________.25、若a与b互为相反数,m和n互为倒数,则=________。

中考数学总复习《选择、填空题》专项测试卷带答案

中考数学总复习《选择、填空题》专项测试卷带答案

中考数学总复习《选择、填空题》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.22.截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是()A.B.C.D.3.苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”,数据218000 000 用科学记数法表示为()A.0.218×10° B.2.18×108C.21.8×101D.218×1054.下列数学符号中,既属于轴对称图形又属于中心对称图形的是()A.B.C.D.5.一瓶牛奶的营养成分中,碳水化合物的含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为x(g),y(g),则可列方程为()A.52x+y=30B.x+52y=30C.32x+y=30D.x+32y=306.一副三角尺如图所示放置,两把三角尺的斜边互相平行,每把三角尺的直角顶点都在另一把三角尺的斜边上,则∠α的度数为()A.45°B.60°C.75°D.85°7.(2022·绍兴)已知抛物线y=x2+mx的对称轴为直线x=2 ,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,-5D.-1,58.如图,已知PA ,PB 是∠O 的两条切线,A ,B 为切点,线段OP 交∠O 于点M.有下列说法:①PA=PB ;②OP∠AB ;③四边形OAPB 有外接圆;④点M 是∠AOP 的外接圆圆心.其中正确的个数是( )A .1B .2C .3D .49.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=-2x+3上的三个点,且x 1<x 2<x 3,,则下列判断正确的是( )A .若x 1x 2>0,则y 1y 3>0B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>010.(2023·绍兴)如图,在矩形ABCD 中,O 为对角线BD 的中点∠ABD =60°.动点E 在线段OB 上,动点F 在线段OD 上,点E ,F 同时从点O 出发,分别向终点B ,D 运动,且始终保持OE =OF .点E 关于AD ,AB 的对称点为E 1,E 2;点F 关于BC ,CD 的对称点为F 1,F 2.在整个过程中,四边形E 1E 2F 1F 2形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形二、填空题11.分解因式:3a 3-75a= .12.不等式组{x +3≥2,3x−12<4的解是 . 13.数学兴趣小组利用无人机测量学校旗杆高度.已知无人机的飞行高度为40m ,当无人机与旗杆的水平距离是45m 时,观测旗杆顶部的俯角为 30°,则旗杆的高度约为 m(结果精确到 1m.参考数据: √2≈1.41,√3≈1.73).14.三个能够重合的正六边形如图所示摆放.已知点B 的坐标为(-√3,3),则点A 的坐标为.15.为了预防传染病,某校定期对教室进行“药熏消毒”.如图,在药物燃烧阶段,教室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例关系;燃烧后,y与x成反比例关系. 若y>1.6,则x 的取值范围是.16.如图,在∠ABC中,AB=AC,∠A<90°,点D,E,F 分别在边AB,BC,AC 上,连结DE,EF,DF,已知点B 和点F 关于直线DE 对称.设BCAB=k,若AD=DF,则CFFA=(结果用含k的代数式表示).答案解析部分1.【答案】D【知识点】数轴及有理数在数轴上的表示;有理数的加法【解析】【解答】解:由数轴可得点A所表示的数为-1,∴比点A所表示的数大3的数为-1+3=2.故答案为:D.【分析】由数轴上的点所表示的数的特点,可得点A表示的数是-1,进而用求出-1与3的和即可得出答案.2.【答案】A【知识点】简单组合体的三视图【解析】【解答】解: 截面为扇环的几何体与长方体组成的摆件的主视图是A 选项的图形.故答案为:A.【分析】主视图,就是从正面看得到的图形,看得见的轮廓线画成实线,看不见但又存在的轮廓线画成虚线,从而即可判断得出答案.3.【答案】B【知识点】科学记数法表示大于10的数【解析】【解答】解:将218000000用科学记数法表示为2.18×108.故答案为:B .【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.4.【答案】D【知识点】轴对称图形;中心对称图形【解析】【解答】A 、∵该图形属于轴对称图形但不属于中心对称图形,∴A 不符合题意;B 、∵该图形不属于轴对称图形但属于中心对称图形,∴B 不符合题意;C 、∵该图形属于轴对称图形但不属于中心对称图形,∴C 不符合题意;D 、∵该图形既属于轴对称图形又属于中心对称图形,∴D 符合题意;故答案为:D.【分析】根据轴对称图形和中心对称图形的定义逐项分析判断即可。

初中数学选择题56道+填空50道+应用题的解题技巧(附带答案)

初中数学选择题56道+填空50道+应用题的解题技巧(附带答案)

A(1-12)一、选择题(本题共12小题;第1~8题每小题2分,第9~12题每小题3分,共28分.每小题只有一个选项是正确的)1. 某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A .—7℃B .7℃C .—1℃D .1℃ 2. 64的立方根等于A .4B . —4C . 8D . —8 3. 已知∠α=35°19′,则∠α的余角等于A . 144°41′B . 144°81′C . 54°41′D . 54°81′ 4. 根据国家信息产业部2006年5月21日的最新统计,截至2006年4月底,全国电话用户超过7.7亿户.将7.7亿用科学记数法表示为 A . 7.7³1011B . 7.7³1010C . 7.7³109D . 7.7³1085. 如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于A . 36°B . 54°C . 72 °D . 108°数学试卷 第1页 (共86. 某市对2400名年满15这一小组的频率为0.25,则该组的人数为A . 600人B . 150 人C .60人D . 15人7. 如图,已知P A 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B .C 两点,PB =2㎝,BC=8㎝,则P A 的长等于 A . 4㎝ B . 16㎝ C . 20㎝ D . 25㎝8. 二元二次方程组⎩⎨⎧-==+10,3xy y x 的解是A . ⎩⎨⎧-==⎩⎨⎧=-=5,22,52211y x y x B . ⎩⎨⎧==⎩⎨⎧==5,22,52211y x y xC . ⎩⎨⎧=-=⎩⎨⎧-==5,22,52211y x y x D . ⎩⎨⎧-=-=⎩⎨⎧-=-=5,22,52211y x y x 9.ABCD 的周长是28的周长是22A.6㎝ B . 12㎝ C .4㎝ D . 8㎝10. 如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进 12 m 到达D 处,在D 处测得建筑物顶端A 的仰角为 45°,则建筑物AB 的高度等于A .6(3+1)mB . 6 (3—1) mC . 12 (3+1) mD .12(3-1)m11. 已知圆锥侧面展开图的圆心角为90A . 1∶2 B . 2∶1 C . 1∶4 D .4∶112. 已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与A .x =1 时的函数值相等B . x =0时的函数值相等C . x =41时的函数值相等 D . x =-49时的函数值相等答案B(13-23)1.哈市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ).A .-2℃B . 8℃C .一8℃D . 2℃ 2.下列运算中,正确的是( ).A .x 2+x 2=x 4B .x 2÷x =x 2C .x 3-x 2=xD .x ²x 2=x 3 3.在下列图形中,既是轴对称图形又是中心对称图形的是( ).4.右图是某一几何体的三视图,则这个几何体是( ). A .圆柱体 B .圆锥体 C .正方体 D .球体 5.9的平方根是( ).A .3B .±3C .一3D .816.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( ).A .4种B .3种C .2种D .1种7.如图,圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面 积是( ).A .4000πcm 2B .3600πcm 2C .2000πcm 2D .1000πcm 28.已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是( ).A .k >2B . k ≥2C .k ≤2D . k <29.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( ).10.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). A .3cm B .4cm C .5cmD .6cm答案: 1.B 2.D 3.C4.A 5.B 6.B 7.C 8.A 9.D 10.AC(24-34)1.2-的绝对值是( )A .2-B .2C .12D .12-2.化简()221a a -+-的结果是( ) A .41a --B .41a -C .1D.1-3.如图,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为( )A .80︒B .90︒C .100︒D .110︒ 4.方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,.C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.5.在下列四种图形变换中,本题图案不包含的变换是() A .位似 B .旋转 C .轴对称 D .平移6则这个队队员年龄的众数和中位数分别是( )A .1516,B .1515,C .1515.5,D .1615, 7.如图,已知A B A D =,那么添加下列一个条件后, 仍无法判定A B C A D C △≌△的是( )A .CBCD = B .B A C D A C =∠∠C .B C AD C A =∠∠ D .90B D ==︒∠∠ 8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A 的半径为2.下列说法中不正确...的是( ) A .当5a <时,点B 在A 内 B .当15a <<时,点B 在A 内C .当1a <时,点B 在A 外D .当5a >时,点B 在A 外9.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .2个或3个B .3个或4个C .4个或5个D .5个或6个10.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )3mn2 1(第3题)ABCD(第7题)(第5题)主视图俯视图(第9题)A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x += D .()260.05163x +=答案D(35-45)1.|65-|=( )A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215-4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( )A .3场B .4场C .5场D .6场7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( )A .7B .8C .9D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5答案:1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C .E(46-56)1. 当x =1时,代数式2x +5的值为( ▲ )A .3 B. 5 C. 7 D. -2 2.直角坐标系中,点P (1,4)在( ▲ )A. 第一象限B.第二象限C.第三象限D.第四象限3.我省各级人民政府非常关注“三农问题”.截止到2005年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005年底我省农村居民人均收入约6600元,用科学记数法表示应记为( ▲ )A .0.66³104B. 6.6³103C.66³102D .6.6³1044.下图所示的几何体的主视图是( ▲ )A. B. C. D.5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ▲ )A. B. C. D.6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( ▲ ) A. 相离 B. 外切 C. 内切 D.相交7.不等式组⎨⎧≤≥+4235x x 的解是( ▲ ) A. -2 ≤x ≤2 B. x ≤2 C. x ≥-2 D. x <2 8.将叶片图案旋转180°后,得到的图形是( ▲ )叶片图案 A B C D9.下图能说明∠1>∠2的是( ▲ )A B C D10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③b 2-4a c >0, 其中正确的个数是( ▲ )A. 0个B. 1个C. 2个D. 3个一. 选择题(本题共10小题,每小题4分,共40分)A(1-6)填空题 11.在函数61-=x y 的表达式中,自变量x 的取值范围是 ▲ .12.分解因式:2x 2+4x +2= ▲ .13.一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数是 ▲ .14.如图,已知AB ∥CD ,直线EF 分别交 AB 、CD 于点 E ,F ,EG 平分∠BEF 交CD 于点G ,如果∠1=50°,那么∠2的度数是 ▲ 度.第14题 第15题 第16题15.如图,在菱形ABCD 中,已知AB =10,AC =16,那么菱形ABCD 的面积为 ▲ .16.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直于x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形.小明发现:当动点M 运动到(-1,1)时,y 轴上存在点P (0,1),此时有MN =MP ,能使△NMP 为等腰直角三角形.那么,在y 轴和直线上是否还存在符合条件的点P 和点M 呢?请你写出其它符合条件的点P 的答案:11.X ≠6 12.2()21+x ; 13.8; 14.65° 15.96 ;16.(0,0),(0,43),(0,-3)B(7-14)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 .10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 .12.一个四边形中,它的最大的内角不能小于 .13.某学习小组中共有12名同学,其中男生有7人.现在要从这12名同学中抽调两名同学去参加数学知识竞赛,抽调的两名同学都是男生的概率是 .14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BCDE = .15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为 ⊙O 的直径,则∠A +∠B +∠C =__________度.16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.答案:9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227;14.21 15.90;16.π49C AC(15-20)11.写出一个大于1且小于4的无理数 .12.选做题(从下面两题中只选做一题,如果做了两题的,只按第(........................1.)题评分....). (Ⅰ)方程0251x =.的解是 .3142.≈ .(结果保留三个有效数字)13.用直径为80cm 的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是 cm .14.不等式组23732x x +>⎧⎨->-⎩,的解集是 .15.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离16cm AB BC ==,则1=∠ 度.16.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3B C =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 . 答案:11.如π等 12.(Ⅰ)4x =;(Ⅱ)0.46413.20 14.25x << 15.120 16.①③④(说明:1。

中考数学总复习《选择、填空题》专项练习题带参考答案

中考数学总复习《选择、填空题》专项练习题带参考答案

中考数学总复习《选择、填空题》专项练习题带参考答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -5的绝对值是( )A. -5B. 5C. -15D. 152. 据统计,2020年我省上半年旅游收入3856亿元.数据“3856亿”用科学记数法表示为( ) A. 38.56×109 B.3.856×1010 C. 3.856×1011 D. 0.3856×1012 3. 如图所示的三视图表示的几何体是( )第3题图4. 下列运算正确的是( )A. a 6÷a 3=a 2B. (3a )-1=-13aC. (-a 2b )3=-a 6b 3D. 3a 2b 3-a 2b 3=35. 如图,直线m ∥n ,将一块含30°角(∠BAC =30°)的直角三角板按图中方式放置,其中A 和C 两点分别落在直线m 和n 上.若∠1=35°,则∠2的度数为( )A. 25°B. 35°C. 45°D. 55° 第5题图6. 在体育课上,某班30名女生的一分钟仰卧起坐的成绩统计如下表:成绩(个) 25 28 32 36 40 45 人数(人)239853该班女生仰卧起坐成绩的众数、中位数分别是( )A. 32,36B. 36,36C. 36,32D. 32,327. 《九章算术》中记载:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则符合题意的方程组是( )A. ⎩⎪⎨⎪⎧5x +6y =15x -y =6y -xB. ⎩⎪⎨⎪⎧6x +5y =15x +y =6y +xC. ⎩⎪⎨⎪⎧5x +6y =14x +y =5y +xD. ⎩⎪⎨⎪⎧6x +5y =14x -y =5y -x 8. 如图,在△ABC 中,∠ACB =90°,以顶点B 为圆心,适当长为半径画弧分别交AB 、BC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,若∠A =30°,AD =3,则BD 的长为( )A. 3B. 332C. 3D. 3 3 第8题图9. 如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0),(0,3),以AB 为边在第一象限内作正方形ABCD ,则点D 的坐标为( )A. (5,4)B. (6,3)C. (7,4)D. (7,3) 第9题图10. 如图,在菱形ABCD 中,AC 是对角线,点E 是AD 边上一点,过点E 作EF ⊥AC ,交CB 的延长线于点F ,交AC 、AB 于点G 、H .若AE BF =12,则AGAC的值为( )A. 15 B. 25 C. 27D. 16 第10题图 二、填空题(每小题3分,共15分)11. 写出一个你熟悉且满足条件1<a <4的无理数a :________.12. 不等式组⎩⎪⎨⎪⎧-x +3>13x +2≥2x 的解集为________.13. 有4张不透明的卡片,正面分别标有-2,0,1,2,除正面上的数字不同外,其他均相同.将这4张卡片背面向上洗匀,从中随机抽取2张,则这两张卡片上的数字均为正数的概率是________.14. 如图,在平行四边形ABCD 中,AB =4,AD =2,分别以点A 、B 为圆心,AD 、BC 长为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分图形的周长为________.第14题图15.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,AD=8,BC=12,点E是边BC上一动点,连接AE,将△ABE沿AE折叠,使点B的对应点B′落在AD的垂直平分线上,则BE的长为________.第15题图参考答案1. B2. C3.A【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.4. C【解析】逐项分析如下:选项逐项分析正误A a6÷a3=a6-3=a3≠a2×B(3a)-1=13a≠-13a×C(-a2b)3=(-a2)3·b3=-a2×3b3=-a6b3√D3a2b3-a2b3=a2b3·(3-1)=2a2b3≠3×5. A【解析】∵直线m∥n,∴(∠1+∠BAC)+(∠2+∠BCA)=180°,∵∠BAC=30°,∠BCA=90°,∠1=35°,∴∠2=25°.6. A 【解析】由表可知,32出现次数最多,∴众数为32;由于一共调查了30人,∴中位数为将成绩从小到大排列后的第15个和第16个数据的平均数,即36+362=36.7. C8. C 【解析】由作图步骤可知BD 平分∠ABC ,∵∠ACB =90°,∠A =30°,∴∠ABC =90°-∠A =60°.∴∠ABD =12∠ABC =30°.在△ABD 中,∵∠ABD =∠A =30°,∴BD =AD =3.9. C 【解析】如解图,过点D 作DE ⊥x 轴于点E ,∵A (4,0),B (0,3),∴OA =4,OB =3,在正方形ABCD 中,∠BAD =90°,AB =AD ,∵∠BAO +∠OBA =90°,∠BAO +∠DAE =90°,∴∠OBA =∠DAE ,∴△AOB ≌△DEA (AAS),∴AE =OB =3,DE =OA =4,∴OE =7,∴D (7,4).第9题解图10. D 【解析】如解图,连接BD .∵四边形ABCD 是菱形,∴AC ⊥BD ,AD =BC ,AD ∥BC .∵EF ⊥AC ,∴EF ∥BD .∵DE ∥BF ,∴四边形BDEF 为平行四边形,∴DE =BF .∵AE BF =12,∴AE DE =12,∴AE CF =AE BF +AD =15.∵AE ∥CF ,∴△AEG ∽△CFG ,∴AG CG =AE CF =15,∴AG AC =16.第10题解图11. 2(答案不唯一) 【解析】∵1=1,4=16,∴根据有理数比较大小,满足条件的无理数为1<a <16,例如:2、3、5, (15)12. -2≤x <2 【解析】{-x +3>1①3x +2≥2x ②,解不等式①,得x <2,解不等式②,得x ≥-2,∴不等式组的解集为-2≤x <2.13. 16【解析】列表如下:由列表可知,共有12种等可能的结果,其中两张卡片均是正数的情况有2种,∴P (这两张卡片均为正数)=212=16.14. 4+2π 【解析】设∠A =n °,∵四边形ABCD 是平行四边形,∴∠B =180°-n °,BC =AD =2,由题意得,AE =AD =2,BE =BC =2,图中阴影部分图形的周长之和=lDE ︵+lEC ︵+CD =nπ×2180+4+(180-n )π×2180=4+2π.15. 52或10 【解析】如解图①,当点B ′落在线段MN 上时,由折叠性质可知AB ′=AB =5,B ′E =BE ,在Rt △AMB ′中,AM =12AD =4,由勾股定理得MB ′=3,∴B ′N =2.设B ′E =BE =x ,则EN =4-x ,∴在Rt △B ′NE 中,由勾股定理得22+(4-x )2=x 2,解得x =52,∴BE =52;如解图②,当点B ′落在射线NM 上时,由折叠性质可知AB ′=AB =5,B ′E =BE ,在Rt △AMB ′中,AM =12AD =4,由勾股定理得MB ′=3,∴B ′N =8,设B ′E =BE =x ,则EN =x -4,∴在Rt △B ′NE 中,由勾股定理得82+(x -4)2=x 2,解得x =10,∴BE =10.综上所述,BE 的长是52或10.第15题解图。

初中数学选择、填空、简答题易错题集锦及答案

初中数学选择、填空、简答题易错题集锦及答案

初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B ) A 、1个 B 、3个 C 、4个 D 、无数个5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C )A 、-1B 、1C 、0D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A ) A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( D )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C ) A 、三角形的外心 B 、三角形的重心 C 、三角形的内心 D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D )A 、300B 、600C 、1500D 、300或1500 40、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于6 41、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C ) A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠, 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C DOBAA BD C EABC D E EAB C46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B ) A 、1个 B 、2个 C 、3个 D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A )A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。

(必考题)中考数学填空题专项练习经典练习(答案解析)

(必考题)中考数学填空题专项练习经典练习(答案解析)

一、选择题1.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒2.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°3.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 4.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .125.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象6.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56° 7.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .78.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④11.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下:x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.612.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .13.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 14.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根15.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24二、填空题16.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.17.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.18.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.19.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).20.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.21.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.22.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .23.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.24.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.25.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____.三、解答题26.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此方程的根.27.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.28.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?29.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?30.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.A4.D5.D6.D7.B8.B9.C10.D11.C12.D13.D14.C15.C二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(417.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x1=6故答案为6点睛:本题考查了一元二18.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离19.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能20.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次21.(0﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2计算即可求得抛物线与y轴的交点坐标【详解】解:将x=0代入y=(x﹣1)2﹣2得y=﹣1所以抛物线与y轴的交点坐标是(0﹣1)故答案为:(022.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性23.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==24.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小25.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t =﹣1p=﹣1故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.2.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.5.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【解析】【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.11.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.12.D解析:D 【解析】 【分析】 【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .13.D解析:D 【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确. 故选D.14.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.15.C解析:C 【解析】 【分析】连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长. 【详解】∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(4解析:715. 【解析】 【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015=;故答案为7 15.【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.17.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6【解析】【分析】【详解】解:设方程另一根为x1,把x=-2代入方程得(-2)2+2a-3a=0,解得a=4,∴原方程化为x2-4x-12=0,∵x1+(-2)=4,∴x1=6.故答案为6.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+ x2=ba-,x1·x2=ca.也考查了一元二次方程的解.18.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离19.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能 【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.20.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2 【解析】 【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4xcm ,2004x-cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm 2,故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.21.(0﹣1)【解析】【分析】将x =0代入y =(x ﹣1)2﹣2计算即可求得抛物线与y 轴的交点坐标【详解】解:将x =0代入y =(x ﹣1)2﹣2得y =﹣1所以抛物线与y 轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1) 【解析】 【分析】将x =0代入y =(x ﹣1)2﹣2,计算即可求得抛物线与y 轴的交点坐标. 【详解】解:将x =0代入y =(x ﹣1)2﹣2,得y =﹣1, 所以抛物线与y 轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.22.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.23.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=353=38.24.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.25.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t=﹣1p=﹣1故答案为:解析:-1-1【解析】【分析】设方程的另一根为t,根据根与系数的关系得到2+t=-p,2t=-2,然后先求出t,再求出p.【详解】解:设方程的另一根为t,根据题意得2+t=﹣p,2t=﹣2,所以t=﹣1,p=﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1•x2=ca.三、解答题26.(1)m>94;(2)x1=0,x2=1.【解析】解答本题的关键是是掌握好一元二次方程的根的判别式. (1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可. 【详解】解:(1)△=1+4(m +2) =9+4m >0∴94m >-. (2)∵m 为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x - ∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.27.(1)13;(2)16. 【解析】 【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案. 【详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)=13; (2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)=212=16. 【点睛】本题考查列表法与树状图法.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).29.(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【解析】【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%; (2)设每千克应涨价x 元,由题意,得 (10+x )(500﹣20x )=6000, 整理,得 x 2﹣15x +50=0, 解得:x 1=5,x 2=10,因为要尽快减少库存,所以x =5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元. 【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.30.2008年盈利3600万元. 【解析】 【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利. 【详解】解:设每年盈利的年增长率为x ,由题意得: 3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去), ∴年增长率20%, ∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.。

中考数学总复习《选择、填空题》专项练习题附含答案

中考数学总复习《选择、填空题》专项练习题附含答案

中考数学总复习《选择、填空题》专项练习题附含答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -4的绝对值是( )A. -4B. 4C. -14D. 142. 某种电子元件的面积大约为0.00000065 mm 2,将0.00000065用科学记数法表示为( ) A. 6.5×107 B. 6.5×10-6 C. 6.5×10-8 D. 6.5×10-7 3. 如图所示,该几何体的主视图是( )第3题图4. 下列计算正确的是( )A. 3+2= 5B. (-2a 3)2=4a 6C. a +2=2aD. 4a ·3a 2=12a 25. 为了提高同学们参加运动会的积极性,某校准备购买深受同学们喜爱的文具来作为奖品,因此统计本校学生最喜爱的文具,以下是排乱的统计步骤:①绘制扇形图来表示各个种类文具所占的百分比;②从扇形图中分析出最受学生喜爱的文具;③在校园内随机收集同学们平时选择的文具和人数;④整理所收集的数据,并绘制频数分布表.正确统计的步骤顺序是( )A. ②→①→④→③B. ③→④→①→②C. ③→④→②→①D. ②→①→③→④6. 下列一元二次方程有两个相等的实数根的是( ) A. x 2-2x =0 B. x 2-2x -1=0 C. x 2-2x +1=0 D. 5x 2+x +1=07. 如图,甲转盘被等分成三个扇形区域,分别标有数字1,2,3,乙转盘被等分成四个扇形区域,分别标有数字1,2,3,4,同时转动两个转盘,则转盘停止后,记录指针所指区域的数字(当指针恰好指在分界线上时不记,重新转动)相同的概率是( )A. 25B. 14C. 13D. 12第7题图8. 不等式组⎩⎪⎨⎪⎧2x -4<02-x ≤3的整数解的个数是( )A. 1B. 2C. 3D. 49. 如图,在▱ABCD 中,以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于M 、N 两点,分别以M 、N 为圆心,大于12MN 的长为半径作弧,两弧交∠ABC 内部于点P ,作射线BP ,交AD 于点E .若∠D =60°,BC =3,ED =1,则▱ABCD 的面积是( )A. 3B. 3 3C. 4D. 4 3 第9题图10. 将菱形OABC 按如图所示的方式放置,绕原点将菱形OABC 顺时针旋转,每次旋转90°,点A 的对应点依次为A 1、A 2、A 3、…,若∠AOC =60°,OA =2,则A 2021的坐标为( )A. (3,1)B. (-1,3)C. (-3,-1)D. (1,-3) 第10题图 二、填空题(每小题3分,共15分) 11. -8的立方根是________.12. 如图,在Rt △ABC 中,∠A =30°,BC =2,点D , E 分别是直角边BC ,AC 的中点,则DE 的长为________.第12题图13. 已知抛物线y =-x 2+bx +c 对称轴为直线x =1,抛物线与x 轴的一个交点坐标为(-1,0),则当函数值y ≥0时,自变量x 的取值范围是________.14. 如图,在扇形AOB 中,∠AOB =120°,OA =2,以点A 为圆心,AO 长为半径画弧,交AB ︵于点C ,过点C 作CD ⊥OB 于点D ,则阴影部分的面积为________.第14题图15.如图,在菱形ABCD中,AB=4,∠A=60°,点E是AB的中点,点F为AD上一动点,将△AEF 沿EF折叠,得到△A′EF.若A′E与菱形ABCD的对角线平行,则DF的长为________.第15题图参考答案1. B2. D3. A4. B【解析】逐项分析如下:选项逐项分析正误A3与2不是同类二次根式,不能合并×B(-2a3)2=4a6√C a与2不是同类项,不能合并×D4a·3a2=12a3≠12a2×5. B6.C【解析】∵b2-4ac=(-2)2-4×1×0=4>0,∴有两个不相等的实数根,故A选项错误;∵b2-4ac=(-2)2-4×1×(-1)=8>0,∴有两个不相等的实数根,故B选项错误;∵b2-4ac=(-2)2-4×1×1=0,∴有两个相等的实数根,故C选项正确;∵b2-4ac=12-4×5×1=-19<0,∴没有实数根,D错误.7. B【解析】列表如下:由表格可知,共有12种等可能的情况,其中数字相同的结果有3种,∴P (两个指针指向区域的数字相同)=312=14.8. C 【解析】⎩⎪⎨⎪⎧2x -4<0 ①2-x ≤3 ②,解不等式①,得x <2,解不等式②,得x ≥-1,∴原不等式组的解集为-1≤x <2,∴不等式组的整数解的个数是3.9. B 【解析】如解图,过点A 作AF ⊥BC 于点F ,由作图可知,EB 平分∠ABC ,∴∠ABE =∠EBC ,∵AD ∥BC ,∴∠AEB =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∵AD =BC =3,ED =1,∴AB =AE =2,∵∠ABC =∠D =60°,∴AF =AB ·sin60°=3,∴S ▱ABCD =BC ·AF =3 3.第9题解图10. D 【解析】由题意可知,每旋转4次为一个循环,∵2021÷4=505……1,∴第2021次旋转后的图形与第1次旋转后的位置相同,∴A 2021的坐标与A 1的坐标相同,如解图所示,过点A 1作A 1D ⊥y 轴于点D ,由旋转可知∠A 1OC 1=60°,∴∠A 1OD =30°,在Rt △A 1OD 中,OA 1=OA =2,∴A 1D =OA 1·sin 30°=1,OD =OA 1·cos 30°=3,∵点A 1在第四象限,∴A 1(1,-3),∴A 2021(1,-3).第10题解图11. -212. 2 【解析】 在Rt △ABC 中,BC =2,∠A =30°,∴AB =2BC =4,∵D ,E 分别是直角边BC ,AC 的中点,∴DE =12AB =2.13. -1≤x ≤3 【解析】∵抛物线的对称轴为直线x =1,抛物线与x 轴的一个交点坐标为(-1,0),∴抛物线与x 轴的另一个交点坐标为(3,0),∵-1<0,∴抛物线开口向下,∴当函数值y ≥0时,自变量x 的取值范围为-1≤x ≤3.14.332-23π 【解析】如解图,连接OC 、AC ,由题意可知,AC =AO =OC ,∴△AOC 是等边三角形,∴∠AOC =60°,∠COB =60°,S 阴影=S △AOC +S △COD -S 扇形AOC ,∵OB =OC =OA =2,∴OD =1,DC =3,∴S 阴影=12×2×3+12×1×3-60π360×22=332-23π.第14题解图15. 3-3或3 【解析】①若A ′E ∥AC ,如解图①,连接AC ,∵四边形ABCD 是菱形,∴AC 平分∠BAD ,∴∠BAC =30°,∵A ′E ∥AC ,∴∠A ′EB =∠BAC =30°,由折叠的性质可知∠AEF =∠A ′EF ,∴∠AEF =75°,∴∠AFE =45°.∵点E 是AB 的中点,∴AE =12AB =2,过点E 作EG ⊥AF ,垂足为G ,∴AG =12AE =1,GE =3AG =3,在Rt △EFG 中,∠GEF =∠AFE =45°,∴GF =GE =3,∴AF =AG +GF =1+3,∴DF =AD -AF =4-(1+3)=3-3;②若A ′E ∥BD ,如解图②,连接BD ,∵四边形ABCD 是菱形,∴AB=AD ,又∵∠A =60°,△ABD 是等边三角形,∴∠ABD =60°.∵A ′E ∥BD ,∴∠AEA ′=60°.又∵AE =A ′E ,∴△AEA ′是等边三角形,点A ′落在AD 上,∴AA ′=AE =12AB =2,∴AF =12AA ′=1,∴DF =3.综上所述,DF 的长为3-3或3.第15题解图。

2021中考复习初中数学选择填空精选50题及解析

2021中考复习初中数学选择填空精选50题及解析

A. ﹣1
B.1
C.
D.
7.如图,锐角三角形 ABC 中,BC=6,BC 边上的高为 4,直线 MN 交边 AB 于点 M,交
AC 于点 N,且 MN∥BC,以 MN 为边向下作正方形 MNPQ,设其边长为 x,正方形 MNPQ
与△ABC 公共部分的面积为 y,则 y 与 x 的函数图象大致是( )
A.(1,1)
B.(0,1)
C.(﹣1,1)
D.(2,﹣1)
9.如图,在边长为 2 的正方形 ABCD 中,以点 D 为圆心,AD 为半径画 ,再以 BC 为直
径画半圆,若阴影部分①的面积为 S1,阴影部分②的面积为 S2,则图中 S2﹣S1 的值为 ()
第 3 页(共 56 页)
A. ﹣4
B. +4
所示:
鞋的尺码/cm
23
23.5
24
24.5
25
销售量/双
1
3
3
6
2
则这 15 双鞋的尺码组成的一组数据中,众数和中位数分别为( )
第 6 页(共 56 页)
A.24.5,24.5
B.24.5,24
C.24,24
D.23.5,24
20.如图,矩形 ABCD 中,E 是 AB 的中点,将△BCE 沿 CE 翻折,点 B 落在点 F 处,tan
2.5 秒时,PQ 的长度是
cm.
38.如图,在 Rt△ABC 中,∠C=90°,AC=6,BC=8,点 E,F 分别为 AB,AC 上一个
动点,连接 EF,以 EF 为轴将△AEF 折叠得到△DEF,使点 D 落在 BC 上,当△BDE 为
直角三角形时,BE 的值为

39.关于 x 的一元二次方程(2﹣a)x2﹣2x+1=0 有两个不相等的实数根,则整数 a 的最小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档