电动机的启动控制线路
第8讲 单向全压启动控制线路
工作原理:
起动:
QS+
SB2± KM+
M+
(自锁)
n↗n0
停止: SB1±
KM -
M-
n0↘0
欠压、失压保护的优点 1、防止电压严重下降时电动机低压运行; 2、避免电动机同时起动造成的电压严重下
降; 3、防止电源电压恢复时,电动机突然起动
运转造成设备和人身事故。
2、点动控制线路
L1 L2 L3
第 5 章
继 电 接 触 控 制 系 统 设
计 主讲人:崔治
盐城工学院机械优集学院
第
5 章
5.2异步电动机的启动控制线路(1)
继
电
接
触
控
制
系
统
设
计
掌握定子串电阻降压启动控制线路
工作原理;
熟悉线路设计方法。
2
5.2异步电动机的启动控制线路(1)
特点——结构简单、价格便宜、坚固耐用。 组成——控制线路——继电器、接触器、按钮等;
L1 L2 L3 QS FU1 KM FR
n M
3~
FU2
FR
SB1
KM
SB2
自锁
KM
L1 L2 L3
QS FU1 KM FR
FU2
FR SB1
按下
SB2
KM 自锁
n M
3~
KM
L1 L2 L3
FU2
QS
FR FU1
KM
SB1
KM
FR
SB2
M
3~
KM
动画
概念: 自锁——依靠接触器(继电器)自身辅助 常开触头而使其线圈保持通电的现 象。 互锁——依靠两个接触器(继电器)的辅 助常闭触头起相互控制作用,即 一个接通时,利用其常闭辅助触 头的断开来锁住对方线圈的电 路。这种利用两个接触器(继电 器)的常闭触点互相控制的方法 叫互锁。
电动机单向启动控制电路原理
电动机单向启动控制电路原理一、电源开关电源开关是控制电路的电源入口,用于接通或断开电源。
在电动机单向启动控制电路中,电源开关通常与接触器、热继电器等元件配合使用,实现对电动机的控制。
二、接触器接触器是一种控制电器,用于接通或断开电动机的主电路。
在电动机单向启动控制电路中,接触器通常与电源开关、启动按钮等元件配合使用,实现对电动机的启动和停止控制。
三、热继电器热继电器是一种过载保护电器,用于保护电动机免受过载电流的损害。
在电动机单向启动控制电路中,热继电器通常与接触器配合使用,当电动机过载时自动断开电路,保护电动机免受损害。
四、启动按钮启动按钮是用于启动电动机的控制元件。
在电动机单向启动控制电路中,启动按钮通常与接触器、电源开关等元件配合使用,实现电动机的启动控制。
五、停止按钮停止按钮是用于停止电动机的控制元件。
在电动机单向启动控制电路中,停止按钮通常与接触器等元件配合使用,实现电动机的停止控制。
六、故障指示装置故障指示装置用于指示电路中的故障情况。
在电动机单向启动控制电路中,故障指示装置通常与热继电器等元件配合使用,当电路出现故障时自动点亮故障指示灯,提醒操作人员及时处理故障。
七、运行状态指示装置运行状态指示装置用于指示电动机的运行状态。
在电动机单向启动控制电路中,运行状态指示装置通常与接触器等元件配合使用,当电动机处于运行状态时点亮运行指示灯,便于操作人员随时了解电动机的运行情况。
八、连锁保护装置连锁保护装置是一种安全保护装置,用于确保电动机在正常运行时不会出现误操作或意外事故。
在电动机单向启动控制电路中,连锁保护装置通常与启动按钮、停止按钮等元件配合使用,确保操作人员按照正确的顺序进行操作,避免误操作或意外事故的发生。
同时,连锁保护装置还可以与其他安全保护装置配合使用,如过流保护装置、欠压保护装置等,进一步提高电动机的安全性能。
同步电动机的基本控制线路
KM4 TA
A
M 3~
KM4
KV
KT2
KM2
G KM2 KM4 R2
R
R4 R5
A
KM1 KM2 KM3 KM4
R3
HL2 KM2
KT2
二、制动控制线路
三相同步电动机的制动采用能耗制动。制动时,
首先切断运转中的同步电动机定子绕组的交流电源, 然后将定子绕组接入一组外接电阻R(或频敏变阻器) 上,并保持转子励磁绕组的直流励磁不变。此时,同 步电动机就成为电枢被R短接的同步发电机,将转动
KT1线圈得电, KT1动作, KT2线圈得电动作
KM1 R1
KM3 QF2
I>
SB2 KM3 KM1
KT1
KA KM1 SB1
KM4 KT1 KA HL1 KT1 KT2
KM4 TA
A
M 3~
KM4
KV
KT2
KM2
G KM2 KM4 R2
R
R4 R5
A
KM1 KM2 KM3 KM4
R3
HL2 KM2
R
R4 R5
A
KM1 KM2 KM3 KM4
R3
HL2 KM2
KT2
QF1 L1 L2 L3
KV
U<
2.启动控制线路
KT2经延时后复位,KM4线圈 得电后动作。指示灯HL1熄灭, 启动过程结束。电动机全速运 行。
KM3 KM1
KM1 R1
KM3 QF2
I>
SB2 KM1
KT1
KA SB1
KM4 KT1 KA HL1 KT1 KT2
R1
KM
KT
KM
1. 异步启动法
降压起动控制电路
精品课件
时间继电器
时间控制通常是利用时间继电器来实现的。 从得到动作信号起至触头动作或输出电路产生跳跃式改变有一 定延时时间,该延时时间又符合其准确度要求的继电器称为时间继 电器。 常用的时间继电器主要有电磁式、电动式、空气阻尼式、晶体 管式等。
精品课件
图3‐1 JZ7—A系列空气阻尼式时间继电器的外形和结构 a) 外形 b) 结构
1)电磁系统 由线圈、铁心和衔铁组成。 2)触头系统 包括两对瞬时触头(一常开、一常闭)和两对延时触头 (一常开、一常闭),瞬时触头和延时触头分别是两个微动开关的触头。 3)空气室 空气室为一空腔,由橡皮膜、活塞等组成。橡皮膜可随空 气的增减而移动,顶部的调节螺钉可调节延时时间。
精品课件
a)
b)
图3‐4 JS20系列时间继电器的外形与接线
精品课件
1结构及工作原理
出气孔 橡皮膜
通电延时型空气式时间继电器
进气孔 调节螺钉
微动开关2
释放弹簧 恢复弹簧
动铁心
静铁心
活塞
线 圈
精品课件
杠杆 微动开关1
1结构及工作原理 时间继电器线圈通电后
出气孔
进气孔 调节螺钉
橡皮膜
释放弹簧
活塞
恢复弹簧 动铁心
杠杆
静铁心
i
精品课件
瞬时动作的触点
1结构及工作原理
图23-5 串电阻降压启动手动控 制电路
精品课件
三相异步电动机降压启动控制线路
1.串电阻降压启动的工作原理 图23-5为三相异步电动机定子绕组串电阻降压启动的手动
切换控制电路。启动时,在电动机定子绕组中串入降压电阻R,
当电动机转速达到一定数值时,切除串入的电阻,实现降压 启动,额定运行。这。
星三角降压启动控制线路
KM2
KM2
KM3
M 3~
KT KT
KM2
KM3
KM1 KM3 KT KM2
KT延时断开 触点断开
星三角降压启动控制线路
星
L1 L2
L3
三
角
降
压
起
动
控
制
线
路
图
QF FU1
FU2
KM1
M 3~
KM3主触 点断开
FR
SB1
SB2 KM1
KM3常闭 触点闭合
KM2
KM2
KM3
KT KT
KM2
KM3
KM1 KM3 KT KM2
KM3线 圈失电
星三角降压启动控制线路
QF FU1
FU2
星
L1 L2
L3
三
FR
角
KM1
SB1
降
SB2 KM1
压
起
KM2
KM2
KM3
动
M
控
3~
KT KT
KM2
KM2线
制
KM3
圈得电
KM1 KM3 KT KM2
线
路
图
星三角降压启动控制线路
星
L1 L2
L3
三
角
QF FU1
FU2 KM1
降
压
起
KM2主触
三
FR
角
KM1
SB1
降
SB2 KM1
压 电机以星形 起 连接启动
动
M
控
3~
制
线
KM2
KM2 KT
KM3 KT KM2
KM3
直流电动机启动控制线路研究
在实际理论教学和实践教学中基本控制线路的教学都是以交流电动机基本控制线路为主没有单独针对直流电动机控制线路的教材可借鉴本文针对这个问题研究了直流电动机的点动控制连续转动控制和电枢回路串电阻控制问题给出了的基本控制线路供广大读者参考
山 西 青 年
理 论 研 究
直流 电动机启动控 制线路研究
F一
Q F
KH
s S B 2 — K ± K M 1 + 甲K
K T
^
启动
n l 低 速
—
短路R
K M 2 — — — — >n I( 全 速 运 行 )
K T 一( 延 时 到 )
工作过程是 :
究
( 1 ) 开始先放一段录像 :运动员游泳和潜水员潜入水 中 不同深度的水 中,运动员 为什 么要穿不 同的衣服?这样 引入 , 联 理就在身边。
水。学生很 自然 的想到 ,液体压 强还与液体密度有关 .也能进一 ( 6) 液体 压强公 式推 导。将蒙有橡 皮膜的玻璃 管放入水槽
点评 :播放视频 ,目的是抛给学生一个值得思考 的问题 :在 步得 出,液体 密度越大 ,压强越大 。
题 ,桌面 受到茶杯对 它的压强 吗? 接着在茶杯 中倒 入水 ,再 问杯
底受 到水对它 的压 强吗?杯 壁受到水 对它的压强 吗? 基于 前面固 度 , 符 合初 中生感性思维较 强 .理性思维尚不完善的思维特征。
体压强的学 习,学生容易 回答第 一个 问题 。后 两个问题 ,要通过 三 、总 结反思
刘胜 长
杨 永庄
薛福 林
电动机常见启动控制回路讲解
第四页,共56页。
电器控制原理图的绘制规则(续前)
⑤ 所有电器的图形符号,都按没有通电、无外力作用下的 开闭状态绘制。(例如,继电器、接触器的触点,按吸 引线圈不通电状态画;万能转换开关按手柄处于零位时 的状态画;按钮、行程开关的触点按不受外力作用时的 状态画等)。
KT通电 常开延时闭合 KM1通电 常闭断开 绕组Y接
KM2
松开SB2,
电机仍处于Y
接起动状态。 第三十八页,共56页。
. .
SB1
KM接通电源 KM1—绕组Y连接 KM2—绕组 连接
KT 延时时间到:
SB2 FR
KM2 KM
KM1
KM
通
电
KT
KM1
通断 电电
通断 KT
电电
KT
通
电
KM2 KM2
KT 常闭触点延时断开,常开触点延时闭合:
⑥ 电气元件应按功能布置,并尽可能按水平顺序排列, 其布局顺序应该是从上到下,从左到右。电路垂直布 置时,类似项目宜横向对齐;水平布置时,类似项目 应纵向对齐。
⑦ 电气原理图中,有直接联系的交叉导线连接点,要用 黑圆点表示;无直接联系的交叉导线连接点不画黑圆 点。
第五页,共56页。
分析和设计控制电路时应注意以下几点:
即可使电动机反转。
需要用两个接触器来实现这一要求。
当正转接触器工作时,电动机正转; 当反转接触器工作时,将电动机接到电源的任
意两根联线对调一下,电动机反转。
第二十九页,共56页。
(1)正反转的控制线路: SBF和SBR决不允许同时按下, 否则造成电源两相短路。
电动机Y—△降压启动的控制图
图 1 异步电动机Y/△降压起动控制电路它是根据起动过程中的时间变化,利用时间继电器来控制Y/ △的换接的。
由(a)图知,工作时,首先合上刀开关QS,当接触器KM 1 及KM 3 接通时,电动机Y形起动。
当接触器KM 1 及KM 2 接通时,电动机△形运行。
图(b)为控制电路,其工作过程分析如下:线路中KM 2 和KM 3 的常闭触点构成电气互锁,保证电动机绕组只能接成一种形式,即Y形或△形,以防止同时连接成Y形及△形而造成电源短路。
二、硬件配置本模块所需的硬件及输入/输出端口分配如图2所示。
由图可见:本模块除可编程控制器之外,还增添了部分器件,其中,SB 1 为停止按钮,SB 2 为起动按钮,FR为热继电器的常开触点,KM 1 为主电源接触器,KM 2 为△形运行接触器,KM 3 为Y形起动接触器。
图 2 输入/输出接线图三、软件设计本模块的软件设计除应用前述的部分基本指令及软元件之外,还新增软元件辅助继电器M100及定时器T 0 ,新增主控触点指令MC、MCR。
可编程控制的梯形图及指令表如图3所示。
工作过程分析如下:按下启动按钮SB 2 时,输入继电器X0的常开触点闭合,并通过主控触点(M100常开触点)自锁,输出继电器Y1接通,接触器KM 3 得电吸合,接着Y0接通,接触器KM1得电吸合,电动机在Y形接线方式下起动;同时定时器T 0 开始计时,延时8秒后T 0 动作,使Y1断开,Y1断开后,KM 3 失电,互锁解除,使输出继电器Y2接通,接触器KM2得电,电动机在△形接线方式下运行。
图 3 Y/ △起动控制的梯形图及指令表若要使电动机停止,按下SB 1 按钮或过载保护(FR)动作,不论电动机是起动或运行情况下都可使主控接点断开,电动机停止运行。
电动机启动控制电路图
1.基本的直接启动控制线路
按下启动按钮,KM线圈得电,KM常开辅助触点自锁,绿灯亮,电机运行;
按下停止按钮,KM线圈失点,辅助触点复位,红灯亮,电机停止。
2 直接启动,延时停止
通过时间继电器作用,延时使回路断开。
3 控制电机正反转
使用双重互锁,采用复合按钮和2个接触器。
将2个接触器的常闭辅助触点相互串联在对方回路中,安全方便,避免了短路的发生~
4 顺停、逆停循环
5 电机轮流循环启动
6 三台电机轮流循环
7 单按钮控制电机启动停止
8 时间继电器控制双速电机
9 定子串电阻降压启动
这个不太常用!
10 延边三角形降压启动
这个知道就行!!!
11 星三角降压启动
照片名称:星三角降压启动实物接线图
照片名称:星三角
照片名称:星三角启动控制线路图
照片名称:星三角
(这个很重要,也和简单,也很实用的降压启动,一般电机大于7.5千瓦,为了保护电压网就应
该采取降压的方式。
)
12 自耦降压
这也是很使用的降压启动控制线路。
一般大于40千瓦的电机使用。
常用电气控制线路
常用电气控制线路电气控制线路是用来控制电力设备的电路系统。
在现代化的工业自动化生产中,常用的电气控制线路有很多种,它们可以根据不同的应用场合来选择。
在此,我们将介绍一些常见的电气控制线路。
1. 单相电动机控制线路单相电动机是应用最广泛的一种电动机,它们能够满足许多需求。
在单相电动机中,常见的控制线路有以下四种:(1)正反转控制线路在正反转控制线路中,我们可以用一个双极开关来控制电动机的正、反转。
当开关接通时,电动机正转;断开时,电动机反转。
(2)带热保护控制线路在带热保护控制线路中,我们可以在正反转控制线路的基础上增加一个热保护器来保护电动机的安全运行。
当电动机过载或者温度过高时,热保护器将自动断开电路,停止电动机的运行。
(3)带磁性启动器的控制线路带磁性启动器的控制线路包括一个磁性启动器、一个热保护器和正反转控制开关。
当电动机的电流过大时,磁性启动器可以通过热保护器自动断开电路,从而保护电动机的运行。
(4)带变频器的控制线路带变频器的控制线路可以实现对电动机转速的无极调节。
我们可以通过调节变频器的输出频率和电压,来控制电动机的转速。
2. 三相电动机控制线路三相电动机由于功率较大,通常需要用到控制器,常见的三相电动机控制线路有以下几种:(1)直接起动控制线路直接起动控制线路简单可靠,是最常用的一种控制方式。
在该控制线路中,电动机直接接在三相交流电源上,可以实现电动机的起动、停止和正转、反转等控制。
(2)变频器控制线路变频器控制线路可以实现对电动机的无级调速,并且可以保存电机运行数据。
我们可以通过调节变频器的输出频率和电压,来控制电动机的转速和供电。
(3)星形-三角启动控制线路星形-三角启动控制线路可以减小电动机起动时的冲击电流,从而保护电动机。
在该控制线路中,电动机起始时先以星型连接供电,然后通过接触器转换成三角型连接供电。
(4)直接编程控制线路直接编程控制线路可以实现电动机的复杂控制功能。
在该控制线路中,我们可以通过编程控制器(如PLC)来控制电动机的运行状态和参数,从而实现工业自动化生产。
电动机顺序启动的自动控制线路原理
电动机顺序启动的自动控制线路原理电动机顺序启动的自动控制线路是一种常见的电气控制系统,用于控制多台电动机依次启动,以避免过载和损坏。
该系统由多个元件组成,包括接触器、继电器、过载保护器、按钮和指示灯等。
下面将详细介绍该系统的工作原理。
1.主接线路主接线路是整个系统的核心部分,包括主电源、起始按钮、停止按钮和各个电动机的接线。
主电源通过接触器连接到各个电动机的主回路中,起始按钮和停止按钮则用于控制整个系统的启停。
2.接触器接触器是一种常开或常闭开关装置,通常由一个电磁铁驱动。
当电磁铁通电时,它会吸引可移动触点与固定触点相连,从而使回路闭合或断开。
在顺序启动系统中,每个电动机都配备有一个接触器,在一定条件下自动切换。
3.继电器继电器是一种将低功率信号转换为高功率信号的装置。
它由一个激励线圈和若干组可控开关组成。
当激励线圈通电时,它会产生一个磁场,吸引可控开关闭合或断开。
在顺序启动系统中,继电器通常用于控制接触器的动作。
4.过载保护器过载保护器是一种用于保护电动机的装置,可以检测电动机的负载情况并在超载时切断电源。
它通常由一个热继电器和一个电流互感器组成。
当电流超过额定值时,热继电器会发出信号,切断回路。
在顺序启动系统中,每个电动机都需要安装一个过载保护器。
5.按钮和指示灯按钮和指示灯是用于手动控制和监视系统状态的设备。
起始按钮和停止按钮可以手动启停整个系统;指示灯则可以显示系统状态、故障等信息。
工作原理:当起始按钮按下时,主接线路上的第一个接触器(也称为“1号接触器”)被激活,使第一台电动机启动。
同时,1号接触器也激活了继电器1,并将其输出连接到下一个接触器(2号接触器)的激励线圈上。
当第一台电动机达到额定转速后,2号接触器被激活,使第二台电动机启动。
与此同时,2号接触器也激活了继电器2,并将其输出连接到下一个接触器(3号接触器)的激励线圈上。
以此类推,每当一个电动机启动后,它都会激活下一个接触器和继电器,直到所有电动机都启动完成。
电动机的基本控制线路
KM3通电 常闭触点断开,KT3断电,经延时,常闭触点闭合 常开触点闭合,短接R2 KM4通电 常闭触点断开,KT1断电,经延时, 常开触点断开,KM2断电,切除R3
这时电动机转速已很低或停转
2.反接制动控制线路
按SB1,KM1断电→常闭触点闭合→
☆ 手动控制时,将SA扳向“手动”,进入起动
起动完,按SB3,KA及KM2动作,将频敏变阻器短接, 电动机进入正常运行
六、电机软起动器
• 结构:电源与电动机之间串接晶闸管调压电路
• 每一相由反并联的两个晶闸管构成
• 利用晶闸管移相控制原理,控制三相反并联 晶闸管的导通角,使被控电动机的输入电压 按不同的要求而变化
闭合,短接电阻R1→再延时后KT1常闭触点闭合
→ KM3通电,常开触点闭合,短接电阻R2 →电机正常工作
按SB1→电机停转
2、并励直流电动机起动控制线路
按SB2→ KM1通电常开触点闭合,电机串电阻起动 当KV电压升至动作电压,KV常开触点闭合 →KM2通电常开触点闭合 →电机正常工作
3、串励直流电动机起动控制线路
按SB2→KM1通电→常开触点闭合,电机正转 按SB3→KM1断电→KM2通电→常开触点闭合,电机反转 按SB1→电机停转
三、直流电动机制动控制线路
1、能耗制动
他励电动机能耗制动控制线路
制动时,按SB1,接触器KM1断电释放,电动机脱离电源 同时,KM2通过已经闭合的KT1常开触点而通电
常开触点闭合,串全部制动电阻进入能耗制动
联锁:先起动主轴电机,后起动进给电机
主轴起动:合SA3→按SB1或SB2→KM1通电吸合
主轴制动:按SB5 或SB6 →KM1断电释放→ YC1通电吸合 主轴变速冲动:行程开关SQ1控制,KM1线圈通电
电动机直接启动电路
•
• (3)欠压保护
• 当电源电压由于某种原因而下降时,电动机的转矩将显著下 降,将使电动机无法正常运转,甚至引起电动机堵转而烧毁, 采用具有自锁的控制线路可避免出现这种事故。因为当电源 电压低于接触器线圈额定电压的75%左右时,接触器就会释 放,自锁触点断开,同时动合主触点也断开,使电动机断电, 起到保护作用。
L1 L2--- L3 L1 L2--- L3
L1L2---L3 L3 L2--- L1
3 、试分析电路能否正常工作
SB3
SB1
SB2
KM1
KM2
KM1
KM2 KM2
KM1
Thank you
二、接触器控制的直接起动控制电路
• 接触器是一种自动控制电器,电流通断能力大,操作 频率高且可实现远距离控制,接触器和按钮组成的控 制电路是目前广泛采用的电动机控制方式。
2、控制过程:
L1 L2 L3
合QS,接通电源
起动过程:
QS
SBst±— KM自+— M+(起动 FU
停止过程:
) KM1
SBstp±— KM-—M-(停止)
SBST
注意:
FR
接触器辅助常开触点KM能使在
松开按钮SBST后,仍保持KM线圈得 电,这种作用称为自锁,
M 3~
FR
SBSTP KM
KM
提问:该控制电路能否实现电动机的连续运行
• 图中,使线圈得电,电机起动的按钮SB2称为起动按钮; 使线圈断电,电机失电、停止的按钮SB1称为停止按 钮,如图中接触器所示,通过自身动合辅助触点保证 线圈继续通电的电路称为自锁电路,起自锁作用的动 合辅助触点称为自锁触点。
直流电动机常见控制线路
按下启动按钮SB1,接触器KM1线圈通电吸合并自锁,电动机在串 入全部启动电阻情况下降压起动。同时,由于接触器KM1的常闭触点断 开,使时间继电器KT1和KT2线圈断电。经一段延时候,其中KT1的常 闭延时闭合触点首先闭合,接触器KM2线圈通电,其常开触点闭合,将 启动电阻R1短接,电动机继续加速。然后,KT2常闭延时闭合触点延时 闭合,接触器KM3通电吸合,将电阻R2短接,电动机启动完毕,投入正 常运行。
设备控制技术
直流电动机常见控制线路
直流电动机按励磁方式分为他励、并励、串励和复励四种。并励及 他励直流电动机的性能及控制线路相近,他们多用在机床等设备中。在 牵引设备中,则以串励支流电动机应用较多。
直流电动机的控制包括直流电动机的起动、正反转、调速及制动的 控制。
1-1直流电动机的起动控制线路
直流电动机在起动最初的一瞬间,因为电动机的转速等于零,则反 电动势为零,所以电源电压全部施加在电枢绕组的电阻及线路电阻上。 通常这些电阻都是极小的,所以这时流过电枢电流很大,启动电流可达 额定电流的10~20倍。这样大的起动电流将导致电动机转向器和电枢绕 组的损坏,同时大电流产生转矩和加速度对机械传动部件也将产生强烈 的冲击。因此,如外加的是恒定电压,则必须在电枢回路中篡改如附加 电阻来起动,以限制起动电流。
电动机顺序启动的自动控制线路原理
电动机顺序启动的自动控制线路原理引言电动机是工业生产中常用的动力装置之一,它的启动和停止是非常重要的控制过程。
在一些工业场所中,需要同时启动多个电动机,而同时启动时电网电压会瞬间下降,从而造成其他设备工作不正常。
为了解决这个问题,通常会使用电动机顺序启动的自动控制线路。
目的电动机顺序启动的自动控制线路的主要目的是按照设定的启动顺序逐个启动电动机,保证正常工作。
其工作原理是通过控制电动机的接线,使得电动机按照设定的时间间隔依次启动。
基本原理1. 接线原理电动机顺序启动的自动控制线路主要包括主电路和控制电路两个部分。
主电路主要是负责电动机的电源和起动设备的连接。
主电路的接线需要保证每个电动机的起动设备依次连接。
通常会使用接触器(也称为继电器)实现电动机的顺序启动。
接触器主要由线圈和触点组成,线圈连接于控制电路,触点负责控制电动机和起动设备的连接和断开。
控制电路主要负责控制接触器的通断,实现电动机的顺序启动。
控制电路由电路开关、按钮、限位开关等组成。
按钮用于手动控制电动机启停,电路开关用于选择自动控制或手动控制,限位开关用于检测电动机的运行状态和位置。
2. 控制原理电动机顺序启动的自动控制线路的控制原理是通过控制电路中的时间继电器来实现。
时间继电器是一种能在设定时间内自动切换电路的继电器,它具有一个可调节的时间延迟。
当控制电路的按钮按下时,电路上电,电源通过时间继电器的线圈,使得时间继电器吸合,控制电路闭合,接触器的线圈通电,接触器闭合,电动机启动。
同时,时间继电器开始计时。
一段时间后,时间继电器触发,断开控制电路,接触器的线圈断电,接触器断开,电动机停止运行。
同时,时间继电器复位,并等待下一次触发。
电动机的启动顺序可以通过连接多个时间继电器实现。
每个时间继电器的时间延迟可以根据需求来设定,从而实现电动机的顺序启动。
3. 安全保护电动机顺序启动的自动控制线路中通常还需要设置多种安全保护措施,以保证电动机和设备的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机的启动控制线路时间:2010-11-08 20:06 来源:未知作者:电气自动化技术网点击: 155次字体设置: 大中小三相异步电动机具有结构简单,运行可靠,坚固耐用,价格便宜,维修方便等一系列优点。
与同容量的直流电动机相比,异步电动机还具有体积小,重量轻,转动惯量小的特点。
因此,在工矿企业中异步电动机得到了广泛的应用。
三相异步电动机的控制线路大多由接触器、继电器、闸刀开关、按钮等有触点电器组合而成。
三相异步电动机分为鼠笼式异步电动机和绕线式异步电动机,二者的构造不同,启动方法也不同,其启动控制线路差别很大。
一、鼠笼式异步电动机全压启动控制线路在许多工矿企业中,鼠笼式异步电动机的数量占电力拖动设备总数的85%左右。
在变压器容量允许的情况下,鼠笼式异步电动机应该尽可能采用全电压直接起动,既可以提高控制线路的可靠性,又可以减少电器的维修工作量。
电动机单向起动控制线路常用于只需要单方向运转的小功率电动机的控制。
例如小型通风机、水泵以及皮带运输机等机械设备。
图1是电动机单向起动控制线路的电气原理图。
这是一种最常用、最简单的控制线路,能实现对电动机的起动、停止的自动控制、远距离控制、频繁操作等。
图1单向运行电气控制线路在图1中,主电路由隔离开关QS、熔断器FU、接触器KM的常开主触点,热继电器FR 的热元件和电动机M组成。
控制电路由起动按钮SB2、停止按钮SB1、接触器KM线圈和常开辅助触点、热继电器FR的常闭触头构成。
控制线路工作原理为:1、起动电动机合上三相隔离开关QS,按起动按钮SB2,按触器KM的吸引线圈得电,3对常开主触点闭合,将电动机M接入电源,电动机开始起动。
同时,与SB2并联的KM的常开辅助触点闭合,即使松手断开SB2,吸引线圈KM通过其辅助触点可以继续保持通电,维持吸合状态。
凡是接触器(或继电器)利用自己的辅助触点来保持其线圈带电的,称之为自锁(自保)。
这个触点称为自锁(自保)触点。
由于KM的自锁作用,当松开SB2后,电动机M仍能继续起动,最后达到稳定运转。
2、停止电动机按停止按钮SB1,接触器KM的线圈失电,其主触点和辅助触点均断开,电动机脱离电源,停止运转。
这时,即使松开停止按钮,由于自锁触点断开,接触器KM线圈不会再通电,电动机不会自行起动。
只有再次按下起动按钮SB2时,电动机方能再次起动运转。
也可以用下述方式描述:合上开关QS起动→KM主触点闭点→电动机M得电起动、运行按下SB2→KM线圈得电—→KM常开辅助触点闭合→实现自保停车→KM主触点复位→电动机M断电停车按下SB1→KM线圈失电—→ KM常开辅助触点复位→自保解除3、线路保护环节(1)短路保护短路时通过熔断器FU的熔体熔断切开主电路。
(2)过载保护通过热继电器FR实现。
由于热继电器的热惯性比较大,即使热元件上流过几倍额定电流的电流,热继电器也不会立即动作。
因此在电动机起动时间不太长的情况下,热继电器经得起电动机起动电流的冲击而不会动作。
只有在电动机长期过载下FR才动作,断开控制电路,接触器KM失电,切断电动机主电路,电动机停转,实现过载保护。
(3)欠压和失压保护当电动机正在运行时,如果电源电压由于某种原因消失,那么在电源电压恢复时,电动机就将自行起动,这就可能造成生产设备的损坏,甚至造成人身事故。
对电网来说,同时有许多电动机及其他用电设备自行起动也会引起不允许的过电流及瞬间网络电压下降。
为了防止电压恢复时电动机自行起动的保护叫失压保护或零压保护。
当电动机正常运转时,电源电压过分地降低将引起一些电器释放,造成控制线路不正常工作,可能产生事故;电源电压过分地降低也会引起电动机转速下降甚至停转。
因此需要在电源电压降到一定允许值以下时将电源切断,这就是欠电压保护。
欠压和失压保护是通过接触器KM的自锁触点来实现的。
在电动机正常运行中,由于某种原因使电网电压消失或降低,当电压低于接触器线圈的释放电压时,接触器释放,自锁触点断开,同时主触点断开,切断电动机电源,电动机停转。
如果电源电压恢复正常,由于自锁解除,电动机不会自行起动,避免了意外事故发生。
只有操作人员再次按下SB2后,电动机才能起动。
控制线路具备了欠压和失压的保护能力以后,有如下三个方面优点:防止电压严重下降时电动机在重负载情况下的低压运行;避免电动机同时起动而造成电压的严重下降;防止电源电压恢复时,电动机突然起动运转,造成设备和人身事故。
二、三相鼠笼式异步电动机降压起动线路鼠笼式异步电动机采用全压直接起动时,控制线路简单,维修工作量较少。
但是,并不是所有异步电动机在任何情况下都可以采用全压起动。
这是因为异步电动机的全压起动电流一般可达额定电流的4-7倍。
过大的起动电流会降低电动机寿命,致使变压器二次电压大幅度下降,减少电动机本身的起动转矩,甚至使电动机根本无法起动,还要影响同一供电网路中其它设备的正常工作。
如何判断一台电动机能否全压起动呢?一般规定,电动机容量在10kW 以下者,可直接起动。
10kW以上的异步电动机是否允许直接起动,要根据电动机容量和电源变压器容量的比值来确定。
对于给定容量的电动机,一般用下面的经验公式来估计。
Iq/Ie≤3/4+电源变压器容量(kV A)/[4×电动机容量(kV A)]式中Iq—电动机全电压起动电流(A);Ie—电动机额定电流(A)。
若计算结果满足上述经验公式,一般可以全压起动,否则不予全压起动,应考虑采用降压起动。
有时,为了限制和减少起动转矩对机械设备的冲击作用,允许全压起动的电动机,也多采用降压起动方式。
鼠笼式异步电动机降压起动的方法有以下几种:定子电路串电阻(或电抗)降压起动、自耦变压器降压起动、Y-△降压起动、△-△降压起动等.使用这些方法都是为了限制起动电流,(一般降低电压后的起动电流为电动机额定电流的2-3倍),减小供电干线的电压降落,保障各个用户的电气设备正常运行。
1、串电阻(或电抗)降压起动控制线路在电动机起动过程中,常在三相定子电路中串接电阻(或电抗)来降低定子绕组上的电压,使电动机在降低了的电压下起动,以达到限制起动电流的目的。
一旦电动机转速接近额定值时,切除串联电阻(或电抗),使电动机进入全电压正常运行。
这种线路的设计思想,通常都是采用时间原则按时切除起动时串入的电阻(或电抗)以完成起动过程。
在具体线路中可采用人工手动控制或时间继电器自动控制来加以实现。
图2定子串电阻降压起动控制线路图2是定子串电阻降压起动控制线路。
电动机起动时在三相定子电路中串接电阻,使电动机定子绕组电压降低,起动后再将电阻短路,电动机仍然在正常电压下运行。
这种起动方式由于不受电动机接线形式的限制,设备简单,因而在中小型机床中也有应用。
机床中也常用这种串接电阻的方法限制点动调整时的起动电流。
图2(A)控制线路的工作过程如下:按SB2 KM1得电(电动机串电阻启动)KT 得电(延时)KM2得电(短接电阻,电动机正常运行)按SB1,KM2断电,其主触点断开,电动机停车。
只要KM2得电就能使电动机正常运行。
但线路图(A)在电动机起动后KM1与KT一直得电动作,这是不必要的。
线路图(B)就解决了这个问题,接触器KM2得电后,其动断触点将KM1及KT断电,KM2自锁。
这样,在电动机起动后,只要KM2得电,电动机便能正常运行。
串电阻起动的优点是控制线路结构简单,成本低,动作可靠,提高了功率因数,有利于保证电网质量。
但是,由于定子串电阻降压起动,起动电流随定子电压成正比下降,而起动转矩则按电压下降比例的平方倍下降。
同时,每次起动都要消耗大量的电能。
因此,三相鼠笼式异步电动机采用电阻降压的起动方法,仅适用于要求起动平稳的中小容量电动机以及起动不频繁的场合。
大容量电动机多采用串电抗降压起动。
2、串自耦变压器降压起动控制线路(1)线路设计思想在自耦变压器降压起动的控制线路中,限制电动机起动电流是依靠自耦变压器的降压作用来实现的。
自耦变压器的初级和电源相接,自耦变压器的次级与电动机相联。
自耦变压器的次级一般有3个抽头,可得到3种数值不等的电压。
使用时,可根据起动电流和起动转矩的要求灵活选择。
电动机起动时,定子绕组得到的电压是自耦变压器的二次电压,一旦起动完毕,自耦变压器便被切除,电动机直接接至电源,即得到自耦变压器的一次电压,电动机进入全电压运行。
通常称这种自耦变压器为起动补偿器。
这一线路的设计思想和串电阻起动线路基本相同,都是按时间原则来完成电动机起动过程的。
图3定子串自耦变压器降压起动控制线路线路工作原理:闭合开关QS。
起动按下按钮SB2,KM1和时间继电器KT同时得电,KM1常开主触点闭合,电动机经星形连接的自耦变压器接至电源降压起动。
时间继电器KT经一定时间到达延时值,其常开延时触点闭合,中间继电器KA得电并自锁,KA的常闭触点断开,使接触器KM1线圈失电,KM1主触点断开,将自耦变压器从电网切除,KM1常开辅助触点断开,KT线圈失电,KM1常闭触点恢复闭合,在KM1失电后,使接触器KM2线圈得电,KM2的主触点闭合,将电动机直接接入电源,使之在全电压下正常运行。
停止按下按钮SB1,KM2线圈失电,电动机停止转动。
在自耦变压器降压起动过程中,起动电流与起动转矩的比值按变比平方倍降低。
在获得同样起动转矩的情况下,采用自耦变压器降压起动从电网获取的电流,比采用电阻降压起动要小得多,对电网电流冲击小,功率损耗小。
所以自耦变压器被称之为起动补偿器。
换句话说,若从电网取得同样大小的起动电流,采用自耦变压器降压起动会产生较大的起动转矩。
这种起动方法常用于容量较大、正常运行为星形接法的电动机。
其缺点是自耦变压器价格较贵,相对电阻结构复杂,体积庞大,且是按照非连续工作制设计制造的,故不允许频繁操作。
3、Y—△降压起动控制线路(1)线路设计思想Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。
这一线路的设计思想仍是按时间原则控制起动过程。
所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。
而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。
凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。
(2)典型线路介绍定子绕组接成Y—△降压起动的自动控制线路如图4所示。
图4 Y—△降压起动控制线路工作原理:按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。
同时,时间继电器KT 及接触器KM2线圈得电。
接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。
KM2的常闭辅助触点断开,保证了接触器KM3不得电。
时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。