数值微分 计算的方法共24页

合集下载

数 值 微 分

数 值 微 分
ቤተ መጻሕፍቲ ባይዱ
2!
3!
4!
5!
代入(6.17)得
G(h) f (a) h2 f (a) h4 f (5) (a) (6.18)
3!
5!
由此可知,从截断误差的角度来看,步长越小,计算结果
越准确。但从舍入误差角度, h越小, f (a h) 与 f (a h)
越接近,直接相减会造成有效数字的严重损失。就舍
(n 1)!
(n 1)! dx
式中
(x)
n
(x
xk
)。在这一余项公式中,由于
k 0
ξ和x是未知函数,因此无法对它的第二项作出
估计,但在插值节点xk处,由于上式右端的第二 项因式 (xk ) 等于零,因而在插值节点处的导数 余项为
f (x) P(x) f (n1) ( ) (x)
(n 1)!
平均值。上述三种方法的截断误差分别为 O(h) 、
O(h2) 和 O(h2 )
如右图所示,前述三种导数
A
T
的近似值分别表示弦线 AB, C
B
AC和BC的斜率,将这三条
通过A点的弦的斜率与切线
x0-h
x0
x0+h
AT的斜率进行比较后,可见弦BC的斜率更接近于切
线AT的斜率 f (x,0 )因此从精度方面看,用中心差商 近似代替导数值更可取,则称
f
( x0
)
G(
h 2
)
1 3
G(
h) 2
G(h)
由此可以看出,只要当二分前后的2个近似值G(h)和
G( h ) 2
很接近,就可以保证 G( h ) 的截断误差很小,大
2
致等于
1 3

数值微分方法

数值微分方法

数值微分方法是一种用于求解函数微分问题的数值计算方法。

它通过在给定区间内选择一些离散点,并对这些点进行插值和逼近,来近似地求解函数的微分。

最常见的数值微分方法是差分法。

这种方法将函数的定义域划分为一系列小区间,并在这每个小区间上选择一个点,然后使用这些点的差分来近似函数的微分。

差分法的精度取决于选取的点数和区间的大小。

另一种常见的数值微分方法是中心差分法,它使用两个相邻的点之间的差的平均值来近似函数的微分。

这种方法比单纯的差分法更精确,但计算成本也更高。

除了差分法,还有其他一些数值微分方法,如样条插值法、最小二乘法、高斯积分法等。

这些方法各有优缺点,应根据具体的问题和要求选择合适的方法。

数值微分方法在科学计算、工程设计、经济学、生物学等领域都有广泛的应用。

例如,在物理学中,数值微分方法被用于模拟物体的运动和力学的相互作用;在经济学中,数值微分方法被用于预测市场的变化和制定经济政策;在生物学中,数值微分方法被用于研究生物系统的动态变化和演化。

微积分的数值计算方法

微积分的数值计算方法

第七章 微积分的数值计算方法7.1 微积分计算存在的问题/数值积分的基本概念 1. 微分计算问题求函数的导数(微分),原则上没有问题。

当然,这是指所求函数为连续形式且导数存在的情形。

但如果函数一表格形式给出,要求函数在某点的导数值;或者是希望某点的导数值只用其附近离散点上的函数值近似地表示,这就是新问题了,它称为微分的数值计算,或称为数值微分。

2.定积分计算问题计算函数f 在],[b a 上的定积分 dx x f I ba⎰=)(当被积函数f 的原函数能用有限形式)(x F 给出时,可用积分基本公式来计算:)()()(a F b F dx x f I ba -==⎰然而,问题在于:① f 的原函数或者很难找到,或者根本不存在;②f 可能给出一个函数表;③仅仅知道f 是某个无穷级数的和或某个微分方程的解等等。

这就迫使人们不得不寻求定积分的近似计算,也称数值积分。

3.数值积分的基本形式数值积分的基本做法是构造形式如下的近似公式∑⎰=≈nk kkbax f A dx x f 0)()( (7.1.1)或记成∑⎰=+=nk nkkbaf R x f A dx x f 0][)()( (7.1.2)∑==nk k k x f A I 0*)( 和 ][f R n 分别成为],[b a 上的f 的数值求积公式及其余项(截断误差),k x 和k A ),,1,0(n k =分别称为求积节点和求积系数(求积系数与被积函数无关)。

这种求积公式的特点是把求积过(极限过程)程转化为乘法与加法的代数运算。

构造这种求积公式需要做的工作是:确定节点k x 及系数k A ),,1,0(n k =,估计余项][f R n 以及讨论*I 的算法设计及其数值稳定性。

4.插值型求积公式如何构造求积公式呢?基本的技术是用被积函数f 的Lagrange 插值多项式)(x L n 近似代替f ,也即对],[b a 上指定的1+n 个节点bx n ≤<⋯⋯<<≤10x x a 及相应的函数值)(,),(),(10n x f x f x f ,作)()()!1(1)()()()()()1()1(0x fn x f x l x R x L x f n n k nk k n n ++=++=+=∑ωξ代入(7.1.2)式等号左边有⎰⎰⎰+=banb anb adx x R dx x L dx x f )()()(⎰∑⎰++=++=ba n n k nk ba k dx x x fn x f dx x l )())(()!1(1)(])([)1()1(0ωξ或写成形如(7.1.2)式的一般形式: ∑⎰=+=nk nkkbaf R x f A dx x f 0][)()( (7.1.4)其中 ⎰=bakk dx x l A )( ),,1,0(n k = (7.1.5)⎰+++=ba n n n dx x x fn f R )())(()!1(1][)1()1(ωξ (7.1.6)称(7.1.4)为插值型求积公式。

数学的数值微分

数学的数值微分

数学的数值微分数值微分是数学中研究函数变化率的一部分,它主要通过近似计算来确定函数在某一点的导数值。

数值微分在实际问题中具有重要的应用价值,特别是在科学计算、工程技术和金融领域。

本文将介绍数学的数值微分的概念、计算方法及其应用。

一、概念数值微分是利用数值方法来计算一个函数在给定点的导数值。

导数描述了函数在特定点的变化率,它的计算可以帮助我们理解函数的性质和行为。

然而,有些函数很难通过解析方法直接计算出导数,这时就需要使用数值微分的方法来进行近似计算。

二、计算方法常见的数值微分方法包括有限差分法和插值法。

有限差分法是通过计算函数在给定点的前后两个点上的函数值来近似计算导数值。

其中,向前差分法使用函数在当前点和下一个点的差值来计算导数;向后差分法使用函数在当前点和上一个点的差值来计算导数;中心差分法使用函数在当前点前后两个点的差值来计算导数。

插值法通过将函数的曲线与一条或多条插值曲线拟合,然后计算插值曲线在给定点的导数值。

常用的插值方法有拉格朗日插值和牛顿插值。

三、应用数值微分在实际问题中有广泛的应用。

以下是一些实际应用场景:1. 科学计算:数值微分在科学计算中具有重要作用,如物理学、化学和生物学等领域。

在物理学中,数值微分可以帮助计算物体在某一时刻的速度和加速度;在化学中,可以用来计算反应速率;在生物学中,可以用来研究细胞生长速率等。

2. 工程技术:数值微分在工程领域中有广泛的应用,如电路设计、信号处理和计算机图形学等。

在电路设计中,可以用来分析电路中的电流和电压变化;在信号处理中,可以用来计算信号的频率和相位;在计算机图形学中,可以用来计算图像的变化率。

3. 金融领域:数值微分在金融领域中也有重要的应用,如金融衍生品定价和风险管理等。

在金融衍生品定价中,可以使用数值微分来计算期权的Delta值和Gamma值;在风险管理中,可以用来计算投资组合的价值变动率。

四、总结数值微分是数学中研究函数变化率的一部分,通过近似计算来确定函数在某一点的导数值。

微分方程的数值解法

微分方程的数值解法

微分方程的数值解法微分方程是描述自然界中众多现象和规律的重要数学工具。

然而,许多微分方程是很难或者无法直接求解的,因此需要使用数值解法来近似求解。

本文将介绍几种常见的微分方程数值解法。

1. 欧拉方法欧拉方法是最简单的数值解法之一。

它将微分方程转化为差分方程,通过计算离散点上的导数来逼近原方程的解。

欧拉方法的基本思想是利用当前点的导数值来估计下一个点的函数值。

具体步骤如下:首先,将自变量区间等分为一系列的小区间。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,根据导数的定义,计算每个小区间上函数值的斜率。

最后,根据初始函数值和斜率,递推计算得到每个小区间上的函数值。

2. 龙格-库塔方法龙格-库塔方法是一种常用的高阶精度数值解法。

它通过进行多次逼近和修正来提高近似解的准确性。

相比于欧拉方法,龙格-库塔方法在同样的步长下可以获得更精确的解。

具体步骤如下:首先,确定在每个小区间上的步长。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,根据当前点的导数值,使用权重系数计算多个中间点的函数值。

最后,根据所有中间点的函数值,计算出当前点的函数值。

3. 改进欧拉方法(改进的欧拉-克罗默法)改进欧拉方法是一种中阶精度数值解法,介于欧拉方法和龙格-库塔方法之间。

它通过使用两公式递推来提高精度,并减少计算量。

改进欧拉方法相对于欧拉方法而言,增加了一个估计项,从而减小了局部截断误差。

具体步骤如下:首先,确定在每个小区间上的步长。

然后,根据微分方程的初始条件,在起始点确定初始函数值。

接下来,利用欧拉方法计算出中间点的函数值。

最后,利用中间点的函数值和斜率,计算出当前点的函数值。

总结:微分方程的数值解法为我们研究和解决实际问题提供了有力的工具。

本文介绍了欧拉方法、龙格-库塔方法和改进欧拉方法这几种常见的数值解法。

选择合适的数值解法取决于微分方程的性质以及对解的精确性要求。

在实际应用中,我们应该根据具体情况选择最合适的数值解法,并注意控制步长以尽可能减小误差。

数值微分的计算方法

数值微分的计算方法

数值微分的计算方法内容摘要 求解数值微分问题,就是通过测量函数在一些离散点上的值,求得函数的近似导数。

本文就所学知识,归纳性地介绍了几种常用的数值微分计算方法。

并举例说明计算,实验结果表明了方法的有效性。

关键词 数值微分 Taylor 展开式 Lagrange 插值 三对角矩阵引言:数值微分即根据函数在一些离散点的函数值,推算它在某点的导数或高阶导数的近似值的方法。

常见的可以用一个能够近似代替该函数的较简单的可微函数(如多项式或样条函数等)的相应导数作为能求导数的近似值,由此也可导出多点数值微分计算公式。

当函数可微性不太好时,利用样条插值进行数值微分要比多项式插值更适宜。

1.Taylor 展开式方法理论基础:Taylor 展开式()()()()()()()()()000000022!!nnx x x x f x f x x x f x f x f x n --'''=+-++++我们借助Taylor 展开式,可以构造函数f x 在点0x x 的一阶导数和二阶导数的数值微分公式。

取步长0h则),()(2)()()(0011''20'00h x x f h x hf x f h x f +∈++=+ξξ (1)所以),()(2)()()(0011''000'h x x f h h x f h x f x f +∈--+=ξξ (2)同理),()(2)()()(0022''20'00x h x f h x hf x f h x f -∈+-=-ξξ (3) ),()(2)()()(0022''000'x h x f h h h x f x f x f -∈+--=ξξ (4)式(2)和式(4)是计算'0f x 的数值微分公式,其截断误差为O h ,为提高精度,将Taylor 展开式多写几项),()(24)(6)(2)()()(0011)4(40'''30''20'00h x x f h x f h x f h x hf x f h x f +∈++++=+ξξ ),()(24)(6)(2)()()(0022)4(40'''30''20'00x h x f h x f h x f h x hf x f h x f -∈+-+-=-ξξ两式相减得)()(62)()()(40'''2000'h O x f h h h x f h x f x f +---+= (5)上式为计算)(0'x f 的微分公式,其截断误差为O(h 2),比式(2)和(4)精度高。

微分方程数值计算方法

微分方程数值计算方法

dx
x
O(x) O(x)
(3)中心差分
df f (x x) f (x x)
dx
2x
O(x2 )
x x
同理,对于二阶差商有:
d 2 f f (x x) 2 f (x) f (x x)
dx2
(x)2
对于偏微分方程也是同样处理。
差分格式 差分问题是将包括所研究对象的所占空间的全部内部区域和
e

n2
F0
如何用计算机来计算这一关系(温度场)?常用的方法 是有限差分法和有限单元法。
有限差分方法是将求解域划分为差分网格,用有限个网格 节点代替连续的求解域,以级数展开等方法,把目标方程中的 导数用网格节点上的函数值的差商(差分)代替进行离散,从 而建立以网格节点上的值为未知数的代数方程组,是一种直接 将微分问题变为代数问题的近似数值解法,数学概念直观,表 达简单。
Temperature(oC)
Temperature(oC)
for i=2:M-1 100
for j=2:M-1

fTi,n j1
举个例子:
热源B: Tw2=50 oC
热源A: Tw1=100oC
热源A: Tw1=100oC
热源B: Tw2=50 oC
TTii,,0njj1T0fT(in1i,j
fTi,n j 1,2...;
1 (1 4 f)Ti,n j j 1, 2,...)
TT0mnn

Tw1 Tw2
(n 0,1,2,nmax)
可得完整的差商格式
TTTii00nn1TT0wf1(( Tiinn1
(1 2 f) Tin f 1,2,3,,m 1) 0,12,3,nmax)

数值计算中的微分方程数值求解方法

数值计算中的微分方程数值求解方法

数值计算中的微分方程数值求解方法近年来,随着计算机技术的飞速发展,数值计算已成为解决实际问题的有效手段之一。

而微分方程在自然科学和工程技术中应用广泛,因此微分方程的数值求解方法备受关注。

本文将介绍数值计算中的微分方程数值求解方法。

一、常微分方程数值求解方法常微分方程(ODE)的求解是微分方程数值求解的主要内容之一。

常微分方程数值求解方法可以分为两大类,即直接法和间接法。

直接法是通过求解微分方程的逐步近似值来得到所需解的,其中最基本的直接法是欧拉法。

欧拉法通过逐步逼近微分方程的解,通过将微分方程的解变成几个离散的点,将问题转化为已知点之间的线性问题,最终求得近似解。

但是,在解决实际问题时,欧拉法的收敛速度太慢,求解误差大,难以应用。

间接法是通过将微分方程转化为一个非线性代数方程,然后通过迭代求解非线性代数方程的解得到微分方程的解。

其中最基本的间接法是牛顿迭代法。

牛顿迭代法通过不断地线性化微分方程以求得解的近似值,由复杂问题简化为简单问题,从而提高了解的精度和求解速度。

二、偏微分方程数值求解方法在实际问题中,有许多问题需要通过偏微分方程来描述,如电磁场问题、热传导问题和流体力学问题等。

因此,偏微分方程数值求解方法显得尤为重要。

对于偏微分方程,最常见的数值求解方法是有限差分法。

有限差分法将要求解的偏微分方程进行一个离散化处理,将偏微分方程转化为离散化的代数方程,并通过代数方程的求解得到原偏微分方程的近似解。

有限元法也是解决偏微分方程问题的一种常见方法。

有限元法通过引入分段多项式逼近,将物理量分割成小区域,并在每一个小区域内,通过选用合适的基函数,将要求解的问题描述为在小区域内基函数的线性组合,从而构建出离散化的方程组,并通过求解离散化的方程组得到微分方程的近似解。

总之,微分方程在工程、自然科学和经济金融等领域都有着广泛的应用。

数字计算中的微分方程数值求解方法对于解决这些问题至关重要。

本文简单介绍了常微分方程数值求解的直接法和间接法,以及偏微分方程数值求解的有限差分法和有限元法,但这些求解方法也只是微分方程数值求解的冰山一角,未来的数值计算方法必将随着技术的革新而不断改进和完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档