数学建模作业

合集下载

数学建模结课作业

数学建模结课作业

一. 某旅游景点从山脚到山顶有一缆车索道,全长约1471m,高度 差为380m 。

采用循环单线修建,从下站到上站行经8个铁塔,将缆绳分为九段,各段的水平距离用i d 表示,高差用i h 表示,其数据见下表:每一段缆绳垂下来的最低点不低于两端铁塔最低塔顶悬挂绳处1m 。

要求:(1)折线法;(2)抛物线法,估计整个索道工程所用的缆绳总长度。

解:(一)折线法思路:考虑到实际中工程架线不能过紧,但又为了节省原料,我们采取求出最大折线和最小折线,对两者求取平均值,以得到对缆线总长度的估测。

由于八个铁塔分九段,因此此题分两部分考虑:(1) 第一段:直接求出发点到第一个铁塔的距离,即21211h d l +=(2) 第二到九段:建立坐标系,运用距离公式求取l 的长度。

设A (x -,1),B(i d x -,1i h +)得:l =用此公式求最大最小值。

matlab 求解第一段syms h1 d1h1=50d1=220l1=sqrt(d1.^2+h1.^2)第二段求最小值clearl='sqrt((-x)^2+1)+sqrt((200-x)^2+(45+1)^2)' ezplot(l,[0,200]);[xmin,lmin]=fminbnd(l,0,200)得图形可得当x=4.2553时,取得最小值205.45由图形可得当x=200时取得最大值,即clearl='sqrt((-x)^2+1)+sqrt((200-x)^2+(45+1)^2)' ezplot(l,[0,200]);[xmin,lmin]=fminbnd(l,0,200)x=200;lmax=eval(l);l=(lmin+lmax)/2;得lmax=246.0025l=225.7254第三段到第九段算法与第二段相同,所以结果为第一段:l1 = 225.6103第二到九段分别为: 225.7254 ,163.5839 ,142.7476,120.6438,142.7476,163.5839,225.7254,248.5321总长为:1658.9m抛物线法思路:参照示意图,因为将绳的形状看做抛物线,为了方便研究,以抛物线的最低点为原点建立抛物线2y ax =,则每段绳的长度为l =,最后相加求总长。

大学生数学建模练习题

大学生数学建模练习题

大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。

生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。

公司每天有24小时的机器时间和40小时的人工时间可用。

如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。

每名顾客的平均服务时间是5分钟。

假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。

请计算银行的平均排队长度和顾客的平均等待时间。

三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。

产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。

如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。

水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。

每个水库的供水能力不同,每个城市的需求也不同。

如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。

请考虑季节性因素和趋势,并给出预测的置信区间。

六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。

如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。

如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。

希望这些练习题能够帮助学生在数学建模的道路上更进一步。

数学建模课后习题作业

数学建模课后习题作业

【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模一周作业题目

数学建模一周作业题目

对作业题目的说明1. 本次数学建模周一共提供十五道题目供大家选择。

每支队伍(2-3人/队)必须从以下题目中任意选取一题(只须选择一道),并完成一篇论文,对论文的具体要求参阅《论文格式规范》。

2. 题目标注为“A ”的为有一定难度的题目,指导老师会根据题目的难度对论文最后的评分进行调整。

(一)乒乓球赛问题 (A)A 、B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。

根据过去的比赛记录,可以预测出如果A 队以i α次序出场而B 队以j β次序出场,则打满5局A 队可胜ija 局。

由此得矩阵()ij R a =如下:123123214034531R βββααα⎛⎫=⎪ ⎪ ⎪⎝⎭(1) 根据矩阵R 能看出哪一队的实力较强吗?(2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序?(4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到的,这样的数据处理和预测方式有何优缺点?(二)野兔生长问题在某地区野兔的数量在连续十年的统计数量(单位十万)如下:分析该数据,得出野兔的生长规律。

并指出在哪些年内野兔的增长有异常现象,预测T=10 时野兔的数量。

(三)停车场的设计问题在New England的一个镇上,有一位于街角处面积100 200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。

容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。

为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

数学建模作业(1)

数学建模作业(1)

数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。

额按惯例分给小数部分较大者。

(2)用Q值方法。

值方法。

用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。

将2种方法两次分配种方法再分配名额。

种方法再分配名额种方法两次分配的结果列表比较。

的结果列表比较。

(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。

法分配上面的名额。

数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。

数学建模作业答案

数学建模作业答案

习题1第4题(1)(i )拟合得r=0.021194,误差平方和等于17418;(ii )拟合得0x =14.994,r=0.014223,误差平方和等于2263.9;(iii )拟合得0t =1743.6,0x =7.7507,r=0.014223,误差平方和等于2263.9,但是MA TLAB 给出警告信息,指出存在病态条件,参数未必能拟合得好,综上所述,(ii )是本问题的最佳拟合方案。

(2)对指数增长模型0()0()r t t x t x e -=两边求对数得00ln ()()ln x t r t t x =-+固定0t =1790,引进变量替换ln ()Y x t =,0X t t =-,1r β=,00ln x β=,则转化为一次多项式10Y X ββ=+,然后用MALAB 函数polyfit 拟合0β,1β,进而得到0x =6.045,r=0.020219,误差平方和等于34892.(3)指数增长模型线性化拟合得误差平方和比非线性拟合大得多。

用MALAB 函数plot 绘制拟合误差比较图可以发现:非线性拟合的误差比较比较均匀,线性化拟合的误差却随着人口的增加越来越大,原因是因为对于x(t)数值越大的数据,ln ()Y x t =由于求对数带来的损失越大,以至于线性化拟合得误差越大。

(4)(i )拟合得r=0.027353,N=342.44,误差平方和等于1224.9;(ii)拟合得0x =7.6981,r=0.021547,N=446.57,误差平方和等于457.74;(iii )拟合得0t =1771.3,0x =5.1752,r=0.021547,N=446.57,误差平方和等于457.74,但MALAB 给出警告信息,指出存在病态条件,参数未必能拟合得好。

综上所述,(ii )是本问题的最佳拟合方案。

习题2第1题“两秒准则”表明前后车距D 与车速v 成正比例关系2D K v =,其中2K =2s 。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模练习题作业

数学建模练习题作业

1、马青公式 π=16arctan1/5-4arctan1/239 这个公式由英国天文学教授约翰·马青于 1706 年发现。他利用这个公式计
算到了 100 位的圆周率。马青公式每计算一项可以得到 1.4 位的十进制精度。因 为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机 上编程实现。
练习题 6:兄弟三人戴帽子问题 解放前,在一个村子里住着聪明的三兄弟,他们除恶杀了财主的儿子,犯了人命案。县太爷有意想免他们
一死,决意出一个难题测测他们是否真的聪明,如果他们能在一个时辰内回答出来,就免他们一死,否则就被 处死。题目如下:
兄弟三人站成一路纵队(老三选择了站在最前面,他后面是老二,老大站在了最后面 ),并分别被蒙住了眼 睛,县太爷说我这里有两顶黑帽子和三顶红帽子,接着分别给他们头上各带了一顶帽子,然后又分别把被蒙住 的眼睛解开。
还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是 最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不 从心了。
2、拉马努金公式 1914 年,印度天才数学家拉马努金在他的论文里发表了一系列共 14 条圆周
率的计算公式。这个公式每计算一项可以得到 8 位的十进制精度。1985 年 Gosper 用这个公式计算到了圆周率的 17,500,000 位。
此时,老大只可以看见老三和老二头上的帽子,老二只可以看见老三头上的帽子,老三看不见帽子。 只有一个时辰的时间,看谁能说出自己头上帽子的颜色,第一句声音有效。现在开始! (县太爷有多少种带帽子的方案,那一种最难?你能回答吗?)
解答:
县太爷一共有 7 种戴帽子方案:
1 黑黑红 2 黑红黑 3 黑红红 4 红红红 5 红红黑 6 红黑红 7 红黑黑

数学建模作业---优化模型

数学建模作业---优化模型

P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。

制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。

(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。

数学建模样题及答案

数学建模样题及答案

数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。

(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。

(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

(试解释其道理。

)(4) 试提出其他的方法。

数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+ t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

解:=r(x m -x),r 为比例系数,x(0)=x 0 解为:x(t)= x m -( x m - x 0),如下图粗线,当t →∞时,它与Logistic 模型相似。

数学建模作业三一容器内盛入盐水100L,含盐50g .然后将含有2g/L的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。

同时,此混合物又以2L/min的流量流出,试求在30min时,容器内所含的盐量。

若以同样流量放进的是淡水,则30min时,容器内还剩下多少盐?要求写出分析过程。

解:设x(t)为t时刻容器内剩余的盐的质量①x(t)=2(100+t)-1.5(100+t)-2X(t=30)=171.24② x(t)=(100+t)-2 X(t=30)=29.59数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i ,它们需要的货物量分别是25,10,20,30,15个单位质量。

大学生数学建模:作业-线性规划的实验

大学生数学建模:作业-线性规划的实验

实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。

工作效率(个/人、天)如下表。

如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。

现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。

4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。

在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。

南方农庄联盟的全部种植计划都由技术协调办公室制订。

当前,该办公室正在制订来年的农业生产计划。

南方农庄联盟的农业收成受到两种资源的制约。

一是可灌溉土地的面积,二是灌溉用水量。

这些数据由下表给出。

注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。

南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。

农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。

三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。

所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。

对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。

5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。

数学建模作业完整版

数学建模作业完整版

数学建模作业HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学建模》作业学号姓名工作量 100 %专业所属学院指导教师二〇一七年六月数学建模作业第一部分:请在以下两题中任选一题完成(20 分)。

1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于 1972 年 8 月发掘出土,其时测得出土的木炭标本中碳-14 平均原子蜕变数为次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为次/分钟. 又知碳-14 的半衰期为 5730 年,试推断该一号墓入葬的大致年代。

问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由:(1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的;(2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的;(3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。

模型建立设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型⎪⎩⎪⎨⎧=-=,)(,00x t x x dtdx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在死亡时刻t 0时的碳—14含量。

模型求解对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ??由于T t t =-0时,有 0021)()(x T t x t x =+=??代入上式,有 T e T 2ln ,212==-λ????? 所以得 ? T t t e x t x )(2ln 00)(--= ②这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 )()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以T=5730,37.380=x (新木炭标准中碳—14原子蜕变数),X(1972)=(出土的木炭标本中碳—14原子蜕变数) 代入到③式,得 ?209578.2937.38ln 2ln 57300≈=-t t 年 于是得??1232095197220950-=-=-≈t t 年结果表明,马王堆墓入葬年代大约在公元前123年左右的西汉中期,该结论与马王堆出土文物的考证结果相一致。

数学建模大作业题目

数学建模大作业题目

(1) 用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (10个数字自己选择,方法要一般)(2)有一个45⨯矩阵,编程求出其绝对值最大值及其所处的位置. (用abs 函数求绝对值)(3)编程求201!n n =∑ ( 分别用for 和while 循环)(4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高? (5)有一函数2(,)sin 2f x y x xy y =++,写一程序,输入自变量的值,输出函数值,并画出其图像,加上图例和注释. (区间自理) (6) 建立一个脚本M 文件将向量a,b 的值互换。

(7) 某商场对顾客所购买的商品实行打折销售,标准如下(商品价格用price 来表示): price<200 没有折扣; 200≤price<500 3%折扣; 500≤price<1000 5%折扣; 1000≤price<2500 8%折扣; 2500≤price<5000 10%折扣;5000≤price 14%折扣;输入所售商品的价格,求其实际销售价格。

(用input 函数) (8) 已知y ,22221111123y n=++++,当n=100时,求y 的值。

(9)画出分段函数2221y 1 122 1 2x x x x x x x ⎧<⎪=-≤<⎨⎪-+≥⎩的图像,并求分段函数在任意几点的函数值。

(用hold on 函数)(10) 给定5阶方阵,求方阵的行列式、特征值、迹、上三角元素的和。

(11) 输入40个数字,按照从小到大的顺序排列输出。

(12) 把当前窗口分成四个区域,在每个区域中分别用不同的颜色和线形画sin ;tan y x y x==,x y e =和31y x x =++的图像。

(区间自理)(13) 对于,AXB YA B==,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,,求解X,Y ;(14) 如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,242679836B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1122,*,.*,,,,T A B A B A B AB A B A A ---。

数学建模的作业

数学建模的作业

实验1 渡口模型仿真计算实验内容:(渡口模型仿真)渡船营运者如何规划,使得单次运送车辆最多、最合理,从而获得最大利润。

实验目的:对渡口问题进行仿真计算,与理论结果进行比较,验证模型的正确性。

实验步骤:1、对问题的变量进行合理定义,并指出合理存在区间;2、选取合适步长,通过C语言或者MATLAB软件编程,遍历寻优,得到单次运送所获利润的最大值,并同时求出最大值点;3、考虑随机到达的情况,进行随机优化;4、比较结论,对模型的合理性进行评估,或者进一步优化和重构模型。

【问题提出】一个渡口的渡船营运者拥有一只甲板长32米,可以并排停放两列车辆的渡船。

他在考虑怎样在甲板上安排过河车辆的位置,才能安全地运过最多数量的车辆。

【准备工作】他关心一次可以运多少辆车,其中有多少小汽车,多少卡车,多少摩托车。

他观察了数日,发现每次情况不尽相同,得到下列数据和情况:(1)车辆随机到达,形成一个等待上船的车列;(2)来到渡口的车辆中,轿车约占40%,卡车约占55%,摩托车越占5%;(3)轿车车身长为3.5~5.5米,卡车车身长为8~10米。

【问题分析】这是一个遵循“先到先服务”的随机排队问题,这里试图用模拟模型的方法来解决,故需分析以下几个问题需要考虑下面一些问题:(1)应该怎样安排摩托车?(2)下一辆到达的车是轿车还是卡车?(3)怎样描述一辆车的车身长度?(4)到达的车要加入甲板上两列车队的哪一列中去?【建立模型】其中我以函数获得的平均分布的随机数,然后假定车身长度也符合平均分布,并假定渡船甲板由两列组合成一列,长64米,每辆车辆来到渡口,遵循先到先服务的原则,依次进入,并假定两辆车之间相隔0.5米,因此得出模型1假定遵循左右均衡的原则。

尽可能使左右车辆的卡车数量相等,轿车数量相等,得出模型2模型1中,由于车辆为分两队摆放,每边都应有一定间隙,例如,若有8米空隙在模型1中,理论上还可停一辆车,但显然是不可能的.假定给出停放两列汽车的方式为采用先停一列再停一列的方式,得出模型3由于车辆的长度不可能特长或特短,因此车长该服从正态分布.将以上模型修改,得出模型4,5,6【模型求解】注意到甲板停放两队汽车,可供停车的总长度为32*2=64米。

数学建模作业

数学建模作业

数学建模作业姓名:李成靖班级:计科1403班1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m 混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队?如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57"5,组成接力队的方案是否应该调整?名队员4种泳姿的百米平均成绩解:(1).设c ij (秒)为队员i 第j 种泳姿的百米成绩,转化为0—1规划模型若参选择队员i 加泳姿j 的比赛,记x ij =1, 否则记x ij =0目标函数:即min=*x11+*x12+87*x13+*x14+*x21+66*x22+*x23+53*x24+78*x31+*x32+*x33+*x34+70*x41+*x42+*x43+*x44+*x51+71*x52+*x53+*x54;约束条件: x 11+x12+x13+x14<=1; x21+x22+x23+x24<=1; x31+x32+x33+x34<=1; x41+x42+x43+x44<=1;甲乙丙丁戊蝶泳 1′06"8 57"2 1′18" 1′10" 1′07"4 仰泳 1′15"6 1′06" 1′07"8 1′14"2 1′11" 蛙泳 1′27" 1′06"4 1′24"6 1′09"6 1′23"8 自由泳58"653"59"457"21′02"4∑∑===4151j iij ij x c Z Minx51+x52+x53+x54<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+x53=1;x14+x24+x34+x44+x54=1;lingo模型程序和运行结果因此,最优解为x14=1,x21=1,x32=1,x43=1,其余变量为0成绩为(秒)=4′13"2即:甲~ 自由泳、乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳.(2).若丁的蛙泳成绩退步为1′15"2=(秒),戊的自由泳成绩进步为57"5=(秒),则目标函数:min=*x11+*x12+87*x13+*x14+*x21+66*x22+*x23+53*x24+78*x31+*x32+*x33+*x34+70*x41+*x42+*x43+*x44+*x51+71*x 52+*x53+*x54;约束条件:x11+x12+x13+x14<=1;x21+x22+x23+x24<=1;x31+x32+x33+x34<=1;x41+x42+x43+x44<=1;x51+x52+x53+x54<=1;x11+x21+x31+x41+x51=1;x12+x22+x32+x42+x52=1;x13+x23+x33+x43+x53=1;x14+x24+x34+x44+x54=1lingo模型程序和运行结果因此,最优解为x21=1,x32=1,x43=1,x54=1 ,其余变量为0;成绩为(秒)= 4′17"7 ,新方案:乙~ 蝶泳、丙~ 仰泳、丁~ 蛙泳、戊~ 自由泳。

数学建模作业

数学建模作业

输油管的布置1问题的提出某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油;由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型与方法;1. 针对两炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出你的设计方案;在方案设计时,若有共用管线,应考虑共用管线费用与非共用管线费用相同或不同的情形;2. 设计院目前需对一更为复杂的情形进行具体的设计;两炼油厂的具体位置由附图所示,其中A厂位于郊区图中的I区域,B厂位于城区图中的II区域,两个区域的分界线用图中的虚线表示;图中各字母表示的距离单位:千米分别为a = 5,b = 8,c = 15,l = 20;若所有管线的铺设费用均为每千米万元; 铺设在城区的管线还需增加拆迁和工程补偿等附加费用,为对此项附加费用进行估计,聘请三家工程咨询公司其中公司一具有甲级资质,公司二和公司三具有乙级资质进行了估算;估算结果如下表所示:工程咨询公司公司一公司二公司三附加费用万元/千米21 24 20请为设计院给出管线布置方案及相应的费用;3. 在该实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相适应的油管;这时的管线铺设费用将分别降为输送A 厂成品油的每千米万元,输送B 厂成品油的每千米万元,共用管线费用为每千米万元,拆迁等附加费用同上;请给出管线最佳布置方案及相应的费用;2假设与分析假设A,B 两厂不共用的管道长分别为1f 、2f 千米,而A 、B 两厂共用管道长为3f ;路径如图所示:设A 点的坐标是a,0,B 点的坐标是l,b,车站的坐标是1x ,0,管道的交点坐标是11,y x ,假设B 路途中的一点的坐标是,c 2y ;而A 厂、B 厂、及A 、B 共用管道的价格分别为1p 、2p 、3p ;要使总费用最低,则目标函数 min Z=1f 1p +2f 2p +3f 3p 在满足:1f =2121)(y a x -+ 2f =21221)()(y y x c -+-+222)()(b b c l -+- 3f =1y 1x ,1y ,2y ≥0 的条件下有最优解;而题设的第二问中,A,B 两厂由于区域不同,B 厂额外加了附加费用;设附加费为4p ,由于公司一具有甲级资质,估算更近似,故4p =21.故可设途中E 点所在处的虚线为两区域交线;BE 路径设为22f ,EH 路径设为21f ,2f =21f +22f ;则由题意可知:a=5 ; b=8 ; c=15 ; l=20 ;1p =2p =3p =题二; 1p = , 2p =, 3p =题三 3模型的建立与求解 1题二的模型为: 目标函数:min Z=2121)5(y x -++21221)()15(y y x -+-++2122)8(25y -+ +1y.⎪⎩⎪⎨⎧≤≤≤≤≤≤8050150211y y x 利用matlab 优化工具向求解得: 1x = , 1y = , 2y = , 最优值为.见源程序1即H,,E15,即A 厂B 厂分别单独铺设到H,然后再共用管道,而B 厂单独铺设时先铺设到点E15,再从此点往H 点铺设,则最小费用为万元;源程序1::function f=funxf=sqrtx1^2+5-x2^2+sqrt15-x1^2+x3-x2^2+sqrt25+8-x3^2+x2;MATLAB 输入程序: x0=160/13;0;19/4; A=; B=; Aeq=; beq=; vlb=0 0 0; vub=15 5 8;x,fval=fmincon'tlxz',x0,A,B,Aeq,beq,vlb,vub2题三的模型为: 目标函数:min Z=2121)5(y x -++21221)()15(y y x -+-++2122)8(25y -+ +1y.⎪⎩⎪⎨⎧≤≤≤≤≤≤8050150211y y x 利用matlab 优化工具向求解得: 1x = , 1y = , 2y =. , 最优值为.见源程序2即H,E15,为即A 厂B 厂分别单独铺设到E,干后再共用管道,而B 厂单独铺设时先铺设到点E15,再从此点往H 点铺设,则最小费用为万元;源程序2:function f=funxf =sqrtx1^2+5-x2^2+sqrt15-x1^2+x3-x2^2+27sqrt25+8-x3^2+x2; MATLAB输入程序:x0=160/13;0;19/4;A=;B=;Aeq=;beq=;vlb=0 0 0;vub=15 5 8;x,fval=fmincon'tlxz',x0,A,B,Aeq,beq,vlb,vub。

数学建模作业

数学建模作业

习题一在节存储模型中的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。

证明在不允许缺货模型和允许缺货模型中结果都与原来一样。

一、不允许缺货的存储模型问题分析若生产周期短、产量少,会使存储费用小,准备费用大,货物价格不变;而周期长、产量多,会使存储费大,准备费小,货物价格不变。

所以必然存在一个最佳周期,使总费用最小。

显然,应建立一个优化模型。

模型假设为了处理的方便,考虑连续模型,即设生产周期T和产量Q为连续量。

根据问题性质作如下假设:(1)产品每天的需求量为常数r。

(2)每次生产费用为c1,每天每件产品存储费为c2,购买每件货物所需费用为c3.(3)生产能力为无限大(相对于需求量),当存储量降为零时,Q件产品立即生产出来供给需求,即不允许缺货。

模型建立将存储量表示为时间t的函数q(t),t=0生产Q件,存储量q(0)=Q,q(t)以需求速率r递减,直到q(T)=0,如图,显然有:Q=rT图(1)不允许缺货模型的存储量q(t)一个周期内的存储费是c2∫q(t)dt,其中积分恰好等于图中三角形面积QT/2,因为一个周期的准备费是c1,购买每件货物的费用为c3,得到一个周期的总费用为:C=c1+c2QT/2+r Tc3=c1+c2 r T2/2+ r T c3则每天的平均费用是C(T)=c1/T+r c3+c2 r T/2上式为这个优化模型的目标函数。

模型求解求T使上式的C最小。

容易得到T=√2c1/(c2r)则Q=√2c1r/c2二、允许缺货的存储模型(1) 模型假设产品每天的需求量为常数r。

(2) 每次生产费用为c1,每天每件产品存储费为c2,购买每件货物所需费用为c3.(3) 生产能力为无限大(相对于需求量),允许缺货,每天每件损失费为c4,但缺货数量需在下次生产(或订货)时补足。

,模型建立因存储量不足造成缺货时,可以认为存储量函数q(t)为负值,如图所示,周期仍记为T,Q是每周期初的存储量,当t=T1时q(t)=0,于是有 Q=r T1图(2)允许缺货模型的存储量q(t)在T1到T这段时间内需求率r不变,q(t)按原斜率继续下降。

数学建模作业(一)1

数学建模作业(一)1

第一题: 某班共45人,要去离校7.7千米的风景区旅游。

学校派了一辆可坐12人的校车接送。

为了尽快又同时到达目的地,校车分段分批接送学生。

已知校车速度为每小时70千米,学生步行的速度为每小时5千米。

如果上午七点出发,问最快什么时候全班同时到达目的地?(班长作为联系人要始终跟车)
第二题:某人为了锻炼身体,每天早晨坚持晨跑30分钟, 其中从A到B为800米上坡路,从B到C为1000米平路。

问在30分钟内跑完1800米,怎样安排跑步计划,才能使锻炼效果最佳?(即总疲劳程度伟为最低)
第三题:一辆小汽车与一辆大卡车在一段狭路上相遇,只有倒车才能继续通行。

如果小汽车的速度为大卡车的3倍,两车倒车的速度是各自正常速度的1/5,在这段狭路上,小汽车需倒车的路程是大卡车需倒车路程的4倍。

那么,为了使后通过狭路的那辆车尽早地通过这段狭路,问怎样倒车较为合理?
第四题:某人在一家公司工作,目前年薪为1万元。

老板说,现在有两种方案可供选择:第一种,每一年加1000元;第二种,每半年加300元。

试问:
(1)如果你在该公司工作5年,用哪一种方案收入高?
(2)如果你在该公司工作5年,将第二种方案中的每半年加300元改为a元时,那一种方案收入高?
(3)如果你在该公司工作n年,用哪一种方案收入高?
第五题:一个直角走廊宽为1.5米,有一辆转动灵活的平板水平推车,宽为1米,长为2.2米,问能否将其推过直角走廊?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析,我们仅利用1x 和2x 来建立y 的预测模型。

四、模型建立
(显示模型函数的构造过程)
(1)为了大致地分析y 与1x 和2x 的关系,首先利用表一的数据分别作出y 对1x 和2x 的散点图 y 与x1的关系 程序代码:
x1=[ 0 0 ]; y=[ ]; A=polyfit(x1,y,1) y1=polyval(A,x1); plot(x1,y1,x1,y,'go')
y 与x2的关系
x2=[ ]; y=[ ]; A=polyfit(x2,y,2) x3=::;
y2=polyval(A,x3); plot(x2,y,'go',x3,y2)
图1 y 对x1的散点图 图2 y 与x2的散点图
从图1 可以发现,随着1x 的增加,y 的值有比较明显的线性增长趋势,图中的直线是用线性模型 011y x ββε=++ (1)
拟合的(其中ε是随机误差),而在图2中,当2x 增大时,y 有向上弯曲增长的趋势,图中的曲
线是用二次函数模型 2
01122y x x βββε=+++ (2)
拟合的。

综合上面的分析,结合模型(1)和(2)建立如下的回归模型
2
0112232y x x x ββββε=++++ (3)
(3)式右端的1x 和2x 称为回归变量(自变量),2
0112232x x x ββββ+++是给定价格差1x ,广告费
用2x 时,牙膏销售量y 的平均值,其中的参数0123,,,ββββ称为回归系数,由表1的数据估计,影响y 的其他因素作用都包含在随机误差ε中,如果,模型选择的合适,ε应大致服从均值为0的正态分布。

五、模型求解
(2)确定回归模型系数,求解出教程中模型(3); 程序代码:
x4=[ones(30,1),x1,x2,x2.^2]; [b,bint,r,rint,stats]=regress(y,x4)
b = bint = stats =
得到模型(3)的回归系数估计值及其置信区间(置信区间α=)、检验统计量2
2
,,,R F p s 的结果见表2
参数
参数估计值
参数置信区间

[, ]
广告费用2x 的二次关系由回归系数2β,3β确定,而不依赖与价格差1x ,同样,y 的均值与1x 的线性关系由回归系数1β确定,不依赖于2x 。

根据经验可参想,1x 和2x 之间的交互作用会对y 有影响,简单的用1x ,2x 的乘积代表他们的交互作用,将模型(3)增加一项,得到:
2
0112232412y x x x x x βββββε=+++++ (5)
在这个模型中,y 的均值与2x 的二次关系为22232412x x x x βββ++,由系数2β,3β,4
β确定,并依赖与价格差1x 。

(3)对模型进行改进,确定回归模型系数,求解出教程中模型(5); 程序代码:
x5=[ones(30,1),x1,x2,x2.^2,x1.*x2]; [b,bint,r,rint,stats]=regress(y,x5)
b = bint =
如果取价格差1x =元,代入(6)可得

y
1x = = 2x +2x (7)
再取1x =元,代入(6)可得

y
1x = = 2x +2x (8)
它们均为2x 的二次函数,其图形见图7,且

y
1x = -

y
1x = = 2x (9)
由(9)式可得,当
2x < 时,总有

y
1x = >

y
1x =,即若广告费用不超过大约百万元,价格
差定在元时的销售量,比价格差定在元的大
,也就是说,这时的价格优势会使销售量增加。

完全二次多项式模型
y =β0 +β11x + β22x + β31x 2x + β41x 2 + β5 2x 2 + ε (10)
(4)对模型进一步改进,求解出教程中模型(10)。

程序代码:
x1=[;;;0;;;;;;;;;;;;;;;;;;;;;;;;0;;]; x2=[;;;;;;;;;;;;;;;;;;;;;;;;;;;;;]; xtu8=[x1,x2];
y=[;;;;;;;;;;;;;;;;;;;;;;;;;;;;;]; rstool(xtu8,y,'quadratic' )
从左下方的输出Export 可以得到模型(10)的回归系数的估计值为
∧β=(∧β0 ,∧β1 ,∧β2 ,∧β3,∧β4 ,∧
β5)
= ,,,,, 在图下方的窗口内输入,可改变1x 和2x 的数值,当1x =,2x =时,左边的窗口显示∧
y =,预测区间为±与模型(5)相差不大。

相关文档
最新文档