2019-2020学年度高中高二数学11月月考试题:03 Word版含答案
2019-2020年高三11月月考 理科数学 含答案
2019-2020年高三11月月考 理科数学 含答案xx 年11月一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,.则( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知等比数列的公比,且成等差数列,则的前8项和为( ) A. 127B. 255C. 511D. 10233. 在中,,,是边上的高,则的值等于( )A .0B .C .4D .4.对于任意两个正整数,定义某种运算“※”如下:当都为正偶数或正奇数时,※=;当中一个为正偶数,另一个为正奇数时,※=.则在此定义下,集合※中的元素个数是( ) A .10个 B .15个 C .16个 D .18个5.n ∈N *,“数列{a n }是等差数列”是“点P n ⎝⎛⎭⎪⎫n ,S n n 在一条直线上”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.函数的零点个数为( )A. 1B.2C. 3D.47. 已知图1是函数的图象,则图2中的图象对应的函数可能是 ( ) A .B .C .D .8.若函数,则下列结论正确的是( )①,在上是增函数②,在上是减函数③,是偶函数④,是奇函数以上说法正确的有几个()A.0个B. 1个 C. 2个 D. 3个9、曲线与直线及所围成的封闭图形的面积为()A. B. C. D.10、若函数在区间内为减函数,在区间为增函数,则实数a的取值范围是()A. B. C. D. .11.在△ABC所在平面上有三点P、Q、R,满足→→→→→→→→RABCQBRBQA,,则△PQR的面积与△ABC的面积之比为QC+CARC=+++=()A.1:2 B.1:3 C.1:4 D.1:5二、填空题:本大题共4小题,每小题4分,共16分.将答案填写在题中横线上.13.已知sinθ+cosθ= (0<θ<π,则cos2θ的值为_______.14.在中,已知、、成等比数列,且,则______.15.在等比数列中,若,则.16. 关于函数,下列命题:①、存在,且时,成立;②、在区间上是单调递增;③、函数的图像关于点成中心对称图像;④、将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤。
2019-2020年高二上学期第三次月考数学试卷(理科) 含解析
2019-2020年高二上学期第三次月考数学试卷(理科)含解析一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为()A.x﹣2y+7=0 B.2x﹣y+5=0 C.x﹣2y﹣5=0 D.2x+y﹣5=02.双曲线﹣=1的焦点到其渐近线距离为()A.1 B. C. D.23.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”C.当a<0时,幂函数y=x a在(0,+∞)上单调递减D.“φ=”是“y=sin(2x+φ)为偶函数”的充要条件4.在空间四边形OABC中,,,,点M在线段OA上,且OM=2MA,N为BC的中点,则等于()A.﹣+B.﹣++C. D.5.下列命题中正确命题的个数是()①过空间任意一点有且仅有一个平面与已知平面垂直;②过空间任意一条直线有且仅有一个平面与已知平面垂直;③过空间任意一点有且仅有一个平面与已知的两条异面直线平行;④过空间任意一点有且仅有一条直线与已知平面垂直.A.1 B.2 C.3 D.46.P为抛物线y2=﹣4x上一点,A(0,1),则P到此抛物线的准线的距离与P 到点A的距离之和的最小值为()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积是()A.2π+B.4π+C.4π+4 D.2π+48.已知圆C:x2+y2=12,直线l:4x+3y=25,圆C上任意一点A到直线l的距离小于2的概率为()A. B. C. D.9.正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为()A. B. C. D.10.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.12.已知点P为椭圆+=1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求最大值和最小值是()A.16,12﹣4 B.17,13﹣4 C.19,12﹣4 D.20,13﹣4二、填空题(每小题5分,共20分,把答案填在答题卡的相应位置.)13.长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,则这个球的表面积为.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=.15.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|=.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p:“+=1是焦点在x轴上的椭圆的标准方程”,命题q:∃x1∈R,8x12﹣8mx1+7m﹣6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.18.如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA ⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(1)证明:直线MN∥平面OCD.(2)求三棱锥N﹣CDM的体积.19.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.(1)当|PF|=2时,求点P的坐标;(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB 面积的最大值.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.21.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′﹣BC﹣E的余弦值.22.已知椭圆G的中心是原点O,对称轴是坐标轴,抛物线的焦点是G的一个焦点,且离心率.(Ⅰ)求椭圆G的方程;(Ⅱ)已知圆M的方程是x2+y2=R2(1<R<2),设直线l与圆M和椭圆G都相切,且切点分别为A,B.求当R为何值时,|AB|取得最大值?并求出最大值.xx重庆市杨家坪中学高二(上)第三次月考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为()A.x﹣2y+7=0 B.2x﹣y+5=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0【考点】待定系数法求直线方程.【分析】过点(m,n)且与直线Ax+By+C=0垂直的直线方程为B(x﹣m)﹣A (y﹣n)=0,代入可得答案.【解答】解:过点(﹣1,3)且与直线2x+y+3=0垂直的直线方程为(x+1)﹣2(y﹣3)=0,即x﹣2y+7=0,故选:A.2.双曲线﹣=1的焦点到其渐近线距离为()A.1 B. C. D.2【考点】双曲线的简单性质.【分析】由双曲线方程求出焦点坐标及一条渐近线方程,在由点到直线的距离公式求得答案.【解答】解:由双曲线﹣=1,得a2=2,b2=3,c2=a2+b2=5,∴双曲线的右焦点F(,0),一条渐近线方程为y=x=x,即2y﹣x=0.由点到直线的距离公式得,焦点到其渐近线的距离d==.故选C.3.下列说法不正确的是()A.若“p且q”为假,则p,q至少有一个是假命题B.命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”C.当a<0时,幂函数y=x a在(0,+∞)上单调递减D.“φ=”是“y=sin(2x+φ)为偶函数”的充要条件【考点】特称命题.【分析】A根据复合命题的真假性,即可判断命题是否正确;B根据特称命题的否定是全称命,写出它的全称命题即可;C根据幂函数的图象与性质即可得出正确的结论;D说明充分性与必要性是否成立即可.【解答】解:对于A,当“p且q”为假时,p、q至少有一个是假命题,是正确的;对于B,命题“∃x∈R,x2﹣x﹣1<0”的否定是““∀x∈R,x2﹣x﹣1≥0”,是正确的;对于C,a<0时,幂函数y=x a在(0,+∞)上是减函数,命题正确;对于D,φ=时,y=sin(2x+φ)=cos2x是偶函数,充分性成立,y=sin(2x+φ)为偶函数时,φ=kπ+,k∈Z,必要性不成立;∴是充分不必要条件,命题错误.故选:D.4.在空间四边形OABC中,,,,点M在线段OA上,且OM=2MA,N为BC的中点,则等于()A.﹣+B.﹣++C. D.【考点】向量加减混合运算及其几何意义.【分析】由题意结合图形,直接利用,求出,然后即可解答.【解答】解:因为空间四边形OABC如图,,,,点M在线段OA上,且OM=2MA,N为BC的中点,所以=.所以=.故选B.5.下列命题中正确命题的个数是()①过空间任意一点有且仅有一个平面与已知平面垂直;②过空间任意一条直线有且仅有一个平面与已知平面垂直;③过空间任意一点有且仅有一个平面与已知的两条异面直线平行;④过空间任意一点有且仅有一条直线与已知平面垂直.A.1 B.2 C.3 D.4【考点】平面的基本性质及推论.【分析】为了对各个选项进行甄别,不必每个选项分别构造一个图形,只须考查正方体中的线面即可.【解答】解:考察正方体中互相垂直的线和平面.对于①:过空间任意一点不是有且仅有一个平面与已知平面垂直;如图中平面A1D和平面A1B与平面AC垂直;故错;对于②:过空间任意一条直线有且仅有一个平面与已知平面垂直;这是正确的,如图中,已知平面A1D和平面A1B与平面AC垂直;故正确;对于③:过空间任意一点不是有且仅有一个平面与已知的两条异面直线平行;如图中:过C1的与A1B1与AD都平行的平面就不存在;故错;对于④:过空间任意一点有且仅有一条直线与已知平面垂直是正确的.故选B.6.P为抛物线y2=﹣4x上一点,A(0,1),则P到此抛物线的准线的距离与P 到点A的距离之和的最小值为()A. B. C. D.【考点】抛物线的简单性质.【分析】通过抛物线方程可知焦点F(﹣1,0),利用两点间距离公式可知|AF|=,通过抛物线定义可知点P到准线的距离d与|PF|相等,P到此抛物线的准线的距离与P到点A的距离之和的最小值.【解答】解:∵抛物线方程为y2=﹣4x,∴焦点F(﹣1,0),又∵A(0,1),∴|AF|==,由抛物线定义可知点P到准线的距离d与|PF|相等,∴d+|PA|=|PF|+|PA|≥|AF|=,故选:D.7.某几何体的三视图如图所示,则该几何体的体积是()A.2π+B.4π+C.4π+4 D.2π+4【考点】由三视图求面积、体积.【分析】由题意,几何体的直观图是三棱锥与圆柱的的组合体,三棱锥的底面是直角边长为2的等腰三角形,高为2,圆柱的底面半径是2,高为2,即可求出几何体的体积.【解答】解:由题意,几何体的直观图是三棱锥与圆柱的的组合体,三棱锥的底面是直角边长为2的等腰三角形,高为2,圆柱的底面半径是2,高为2,所以体积为+=2π+,故选:A.8.已知圆C:x2+y2=12,直线l:4x+3y=25,圆C上任意一点A到直线l的距离小于2的概率为()A. B. C. D.【考点】几何概型.【分析】试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是60°,根据几何概型概率公式得到结果.【解答】解:由题意知本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点,∵圆心到直线的距离是=5,∴在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60°根据几何概型的概率公式得到P==故选A.9.正四棱锥S﹣ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为()A. B. C. D.【考点】异面直线及其所成的角.【分析】以O为原点建立空间直角坐标系O﹣xyz,利用向量法能求出直线BC与AP所成的角的余弦值.【解答】如图所示,以O为原点建立空间直角坐标系O﹣xyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),S(0,0,a),C(﹣a,0,0),P(0,,).则=(﹣a,﹣a,0),=(﹣a,,),C=(a,a,0).设直线BC与AP所成的角为θ,则cosθ===.∴直线BC与AP所成的角的余弦值为.故选:C.10.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.【考点】椭圆的简单性质.【分析】求出A的对称点的坐标,然后求解椭圆长轴长的最小值,然后求解离心率即可.【解答】解:A(﹣1,0)关于直线l:y=x+3的对称点为A′(﹣3,2),连接A′B 交直线l于点P,则椭圆C的长轴长的最小值为|A′B|=2,所以椭圆C的离心率的最大值为:==.故选:A.11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.【考点】棱柱的结构特征;函数的图象与图象变化.【分析】球面与正方体的表面都相交,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.其中①③两种情形所得弧长相等且为函数f(x)的最大值,根据图形的相似,②中弧长为①中弧长的一半.对照选项,即可得出答案.【解答】解:如图,球面与正方体的表面都相交,根据选项的特点,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.①当x=1时,以A为球心,1为半径作一个球,该球面与正方体表面的交线分别是图中的红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;②当x=时,以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的兰色的弧线,根据图形的相似,其弧长为①中弧长的一半;③当x=.以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的粉红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;对照选项,B正确.故选B.12.已知点P为椭圆+=1上的动点,EF为圆N:x2+(y﹣1)2=1的任一直径,求最大值和最小值是()A.16,12﹣4 B.17,13﹣4 C.19,12﹣4 D.20,13﹣4【考点】椭圆的简单性质.【分析】根据题意,得|NE|=|NF|=1且,由此化简得=﹣1,根据椭圆方程与两点的距离公式,求出当P的纵坐标为﹣3时,取得最大值20,由此即得=﹣1的最大值,当P的纵坐标为时,取得最小值,由此即得=﹣1的最小值.【解答】解:∵EF为圆N的直径,∴|NE|=|NF|=1,且,则=(+)•(+)=(+)•()==﹣1,设P(x0,y0),则有即x02=16﹣y02又N(0,1),∴=,而y0∈[﹣2,2],∴当y0=﹣3时,取得最大值20,则=﹣1=20﹣1=19,当y0=时,取得最小值,则=﹣1=﹣1=.∴最大值和最小值是:19,.故选:C.二、填空题(每小题5分,共20分,把答案填在答题卡的相应位置.)13.长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,则这个球的表面积为50π.【考点】球内接多面体.【分析】设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.【解答】解:设球的半径为R,由题意,球的直径即为长方体的体对角线的长,则(2R)2=32+42+52=50,∴R=.R2=50π.∴S球=4π×故答案为:50π.14.直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则a=﹣7.【考点】直线的一般式方程与直线的平行关系.【分析】根据两直线平行的条件可知,(3+a)(5+a)﹣4×2=0,且5﹣3a≠8.进而可求出a的值.【解答】解:直线l1:(3+a)x+4y=5﹣3a和直线l2:2x+(5+a)y=8平行,则(3+a)(5+a)﹣4×2=0,即a2+8a+7=0.解得,a=﹣1或a=﹣7.又∵5﹣3a≠8,∴a≠﹣1.∴a=﹣7.故答案为:﹣7.15.已知正四面体ABCD,则直线BC与平面ACD所成角的正弦值为.【考点】直线与平面所成的角.【分析】取AD中点E,连结CE,过B作BO⊥CE,交CE于点O,则∠BCO就是线BC与平面ACD所成角,由此能求出结果.【解答】解:如图,取AD中点E,连结CE,过B作BO⊥CE,交CE于点O,则∠BCO就是线BC与平面ACD所成角,设正四面体ABCD的棱长为2,则CO===,∴cos∠BCO==,∴sin∠BCO==.故答案为:.16.圆x2+y2=9的切线MT过双曲线﹣=1的左焦点F,其中T为切点,M为切线与双曲线右支的交点,P为MF的中点,则|PO|﹣|PT|=2﹣3.【考点】圆与圆锥曲线的综合;双曲线的简单性质.【分析】由双曲线方程,求得c=,根据三角形中位线定理和圆的切线的性质,可知|PO|=|PF′|,|PT|=|MF|﹣|FT|,并结合双曲线的定义可得|PO|﹣|PT|=|FT|﹣(|PF|﹣|PF′|)=2﹣3.【解答】解:设双曲线的右焦点为F′,则PO是△PFF′的中位线,∴|PO|=|PF′|,|PT|=|MF|﹣|FT|,根据双曲线的方程得:a=3,b=2,c=,∴|OF|=,∵MF是圆x2+y2=9的切线,|OT|=3,∴Rt△OTF中,|FT|==2,∴|PO|﹣|PT|=|PF′|﹣(|MF|﹣|FT|)=|FT|﹣(|PF|﹣|PF′|)=2﹣3,故答案为:2﹣3.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知命题p:“+=1是焦点在x轴上的椭圆的标准方程”,命题q:∃x1∈R,8x12﹣8mx1+7m﹣6=0.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.【考点】命题的真假判断与应用;复合命题的真假.【分析】若p∨q为真命题,p∧q为假命题,则p,q一真一假,进而可得实数m的取值范围.【解答】解:如果p为真命题,则有,即1<m<2;若果q为真命题,则64m2﹣32(7m﹣6)≥0,解得m≤或m≥2.因为p∨q为真命题,p∧q为假命题,所以p和q一真一假,若p真q假,则<m<2,若p假q真,则m≤1或m≥2.所以实数m的取值范围为(∞,1]∪(,+∞).18.如图,在四棱锥O ﹣ABCD 中,底面ABCD 是边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点.(1)证明:直线MN ∥平面OCD .(2)求三棱锥N ﹣CDM 的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AD 中点E ,连结ME ,NE ,推导出平面MNE ∥平面CDO ,由此能证明直线MN ∥平面OCD .(2)三棱锥N ﹣CDM 的体积V N ﹣CDM =V M ﹣CDN ,由此能求出结果.【解答】证明:(1)取AD 中点E ,连结ME ,NE ,∵M 为OA 的中点,N 为BC 的中点,∴ME ∥OD ,NE ∥CD ,∵ME ∩NE=E ,OD ∩CD=D ,ME ,NE ⊂平面MNE ,OD ,CD ⊂平面CDO , ∴平面MNE ∥平面CDO ,∵MN ⊂平面MNE ,∴直线MN ∥平面OCD .解:(2)∵OA ⊥底面ABCD ,OA=2,M 为OA 的中点,∴AM ⊥平面CDN ,且AM=1,∵底面ABCD 是边长为1的菱形,∠ABC=,∴=,∴三棱锥N ﹣CDM 的体积V N ﹣CDM =V M ﹣CDN ===.19.已知抛物线x2=4y的焦点为F,P为该抛物线上的一个动点.(1)当|PF|=2时,求点P的坐标;(2)过F且斜率为1的直线与抛物线交与两点AB,若P在弧AB上,求△PAB 面积的最大值.【考点】抛物线的简单性质.【分析】(1)当|PF|=2时,利用抛物线的定义,即可求点P的坐标;(2)先求出|AB|,再计算抛物线上点到直线的最大距离,即可求出△PAB的面积的最大值.【解答】解:(1)设P(x,y),则y+1=2,∴y=1,∴x=±2,∴P(±2,1);(2)过F的直线方程为y=x+1,代入抛物线方程,可得y2﹣6y+1=0,可得A(2﹣2,3﹣2),B(2+2,3+2),∴|AB|=•|2+2﹣2+2|=8.平行于直线l:x﹣y+1=0的直线设为x﹣y+c=0,与抛物线C:x2=4y联立,可得x2﹣4x﹣4c=0,∴△=16+16c=0,∴c=﹣1,两条平行线间的距离为=,∴△PAB的面积的最大值为=4.20.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.【考点】直线与圆相交的性质.【分析】(1)分类讨论,利用待定系数法给出切线方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.【解答】解:(1)将圆C配方得(x+1)2+(y﹣2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得=,即k=2±,从而切线方程为y=(2±)x.…②当直线在两坐标轴上的截距不为零时,设直线方程为x+y﹣a=0,由直线与圆相切得x+y+1=0,或x+y﹣3=0.∴所求切线的方程为y=(2±)xx+y+1=0或x+y﹣3=0.…(2)由|PO|=|PM|得,x12+y12=(x1+1)2+(y1﹣2)2﹣2⇒2x1﹣4y1+3=0..…即点P在直线l:2x﹣4y+3=0上,|PM|取最小值时即|OP|取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.…解方程组得P点坐标为(﹣,).…21.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′﹣BC﹣E的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)由已知得BE⊥EC.从而BE⊥面D'EC,由此能证明BE⊥CD'.(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,则∠D'FM是二面角D'﹣BC﹣E的平面角.由此能求出二面角D'﹣BC﹣E的余弦值.法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z 轴,建立空间直角坐标系.利用向量法能求出二面角D'﹣BC﹣E的余弦值.【解答】证明:(1)∵AD=2,AB=1,E是AD的中点,∴△BAE,△CDE是等腰直角三角形,∵AB=AE=DE=CD,∠BAE=∠CDE=90°,∴∠BEC=90°,∴BE⊥EC.又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC,∴BE⊥面D'EC,又CD'⊂面D'EC,∴BE⊥CD'.…解:(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,连接D'M,D'F,则D'M⊥EC,∵平面D'EC⊥平面BEC,∴D'M⊥平面BEC,∴D'M⊥BC,∴BC⊥平面D′MF,∴D'F⊥BC,∴∠D'FM是二面角D'﹣BC﹣E的平面角.在Rt△D'MF中,D'M=,,∴,∴二面角D'﹣BC﹣E的余弦值为.…法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z 轴,建立如图空间直角坐标系.则,,,.设平面BEC的法向量为,平面D'BC的法向量为,则,取x2=1,得=(1,1,1),cos<>==,∴二面角D'﹣BC﹣E的余弦值为.…22.已知椭圆G的中心是原点O,对称轴是坐标轴,抛物线的焦点是G的一个焦点,且离心率.(Ⅰ)求椭圆G的方程;(Ⅱ)已知圆M的方程是x2+y2=R2(1<R<2),设直线l与圆M和椭圆G都相切,且切点分别为A,B.求当R为何值时,|AB|取得最大值?并求出最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)依题意可设椭圆G的方程,利用抛物线的焦点是G的一个焦点,且离心率,求得几何量,即可求椭圆G的方程;(II)直线方程与椭圆方程联立,利用直线与圆、椭圆相切,确定参数之间的关系,表示出|AB|,利用基本不等式,可求|AB|最大值.【解答】解:(I)依题意可设椭圆G的方程为,则因为抛物线的焦点坐标为,所以,又因为,所以,所以,故椭圆G的方程为.…(II)由题意知直线l的斜率存在,所以可设直线l:y=kx+m,即kx﹣y+m=0∵直线l和圆M相切,∴,即m2=R2(k2+1)①联立方程组消去y整理可得(1+4k2)x2+8kmx+4m2﹣4=0,∵直线l和椭圆G相切,∴△=64k2m2﹣4(1+4k2)(4m2﹣4)=0,即m2=4k2+1②由①②可得设点B的坐标为(x0,y0),则有,,所以,所以等号仅当,即取得故当时,|AB|取得最大值,最大值为1.…xx2月7日。
2019_2020学年高二数学11月月考试题理
2019-2020学年高二数学11月月考试题 理第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的,请将符合题意的答案填写在答题卡的相应位置上。
1.过点(1,3),斜率为1的直线方程是( )A.x -y +2=0B.x -y -2=0C.x +y -4=0D.x -y +4=02.若方程x 2+y 2+x -y +m 2=0表示圆,则实数m 的取值范围是( ) A.m <22 B.-22<m <22 C.m <-22D.m >22 3.如果空间两条直线互相垂直,那么它们( )A.一定不平行B.是异面直线C.是共面直线D.一定相交4.设l 是直线,α,β是两个不同的平面( )A.若l ∥α,l ∥β,则α∥βB.若l ∥α,l ⊥β,则α⊥βC.若α⊥β,l ⊥α,则l ⊥βD.若α⊥β,l ∥α,则l ⊥β5.不论m 为何值,直线(m -1)x -y +2m +1=0恒过定点( )A. (-2,3)B.(-2,0)C. (1,-21) D.( 2,3)6.直线ax +2y +1=0与直线3x -y -2=0垂直,则a 的值为( )A.-3B.3C.-23D.237.已知两圆分别为圆C 1:x 2+y 2=81和圆C 2:x 2+y 2-6x -8y +9=0,这两圆的位置关系是( ) A.相离 B.相交 C.内切 D.外切 8.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为( )A.(3,0,0)B.(0,3,0)C.(0,0,3)D.(0,0,-3)9.圆(x -1)2+(y -1)2=1上的点到直线x -y =2的距离的最小值是( )A.2B.2-1C.2+1D.1+2 210.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≤+-2,03,052y x y x 则z =x +2y 的最大值是( ) A.-3 B.-1 C.1 D.3 11.已知x 2+y 2=1,则2+x y的取值范围是( ) A.(-3,3) B.(-∞,3) C.[-33,+∞) D.[-33,33]12.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则切线AB 的长为( )A.2B.42C.6D.210第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.若直线过点(1,2),(4,2+3),则此直线的倾斜角是_______.14.若不等式组⎪⎩⎪⎨⎧≤≤≥≥+-20,,05x a y y x 表示的平面区域是一个三角形,则a 的取值范围是 . 15.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,若OP ⊥OQ (O 为坐标原点),则m 的值为___________.16.如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,AE ⊥PB 于E , AF ⊥PC 于F ,给出下列结论: ①AF ⊥PB ; ②EF ⊥PB ; ③AF ⊥BC ; ④AE ⊥平面PBC .其中正确结论的序号有___________.CBAOFEP.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知直线l 经过点P (-2,5),且斜率为-34.(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.18.(本小题满分12分)设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交所得的弦长为22,求圆的方程.19.(本小题满分12分)已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A相交于M,N两点,Q是MN的中点.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程.20.(本小题满分12分)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
2019-2020学年高二数学上学期11月月考试题(含解析)_2
2019-2020学年高二数学上学期11月月考试题(含解析)一、选择题1.不等式的解集是A. B.C. D.【答案】B【解析】试题分析:,所以不等式解集为:,故选B.考点:一元二次不等式2.设为等差数列,若,则A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据求出,进而求得.【详解】设等差数列公差为则本题正确选项:【点睛】本题考查等差数列基本量的计算,属于基础题.3.已知各项为正数的等比数列中,,,则公比q=A. 4B. 3C. 2D.【答案】C【解析】【分析】由,利用等比数列的性质,结合各项为正数求出,从而可得结果.【详解】,,,,故选C.【点睛】本题主要考查等比数列的性质,以及等比数列基本量运算,意在考查灵活运用所学知识解决问题的能力,属于简单题.4.若等比数列首项为,末项为,公比为,则这个数列的项数为()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:根据题意,由于等比数列的首项为,末项为,公比为,则根据其通项公式得到为,故可知项数为4,选B.考点:等比数列的通项公式点评:解决的关键是利用等比数列的通项公式,以及首项和公比来得到数列的项数,属于基础题。
5.已知为等差数列的前n项和,若,则()A. 18B. 99C. 198D. 297【答案】B【解析】【分析】由等差数列的性质得,再根据等差数列的前n项和公式,即可求出结果.【详解】由等差数列性质知,,又,得,则,.故选B .【点睛】本题考查等差数列性质和前n项和的计算,通过合理的转化,建立已知条件和求解问题之间的联系是解题关键.6.已知是等差数列,公差,且成等比数列,则等于A. B. C. D.【答案】B【解析】∵成等比数列,∴,∴整理得,又∴∴选B.7.已知,,,且,则的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由,,得,,当且仅当时等号成立。
选B。
8.关于的不等式对一切实数都成立,则的取值范围是( )A. B. C. D.【答案】D【解析】【分析】特值,利用排除法求解即可.【详解】因为当时,满足题意,所以可排除选项B、C、A,故选D【点睛】不等式恒成立问题有两个思路:求最值,说明恒成立参变分离,再求最值。
2019-2020学年度最新高中高二数学11月月考试题:04 Word版含答案
2019-2020学年度最新高中高二数学11月月考试题:04Word 版含答案一、选择题:本大题共10个小题,每小题5分,共50分手多日,近况如何? 1.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 2则原梯形的面积为 A. 2 B. 2 C. D. 43.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为 1cm,2cm,3cm 的长方体木块的顶点A 处沿表面达到顶点B 处 (如图所示),这只蚂蚁走的路程是( )A .cm 14B .cm 23C .cm 26D .1+cm 135.直线l 与直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M (1,-1),则直线l 的斜率为 ( ) A .23B .32 C .-23D . -326.设集合)}0()1()1(|),{(},4|),{(22222>≤-+-=≤+=r r y x y x N y x y x M 当N N M =⋂时,r 的取值范围是 ( )A 、]12,0[-B 、]1,0[C 、]22,0(-D 、)2,0(7.连掷两次骰子得到的点数分别为m 和n ,记向量),(n m a =与向量)1,1(-=b 的夹角为θ,则]2,0(πθ∈的概率是 ( )A.125B.21C.127D.65AB8.以下给出的是计算111124620+++⋅⋅⋅+的值的一个程序框图,如下左图所示,其中判断框内应填入的条件是 ( )A .10i >B .10i <C .20i >D .20i <9.为了解某校高二学生的视力情况,随机地抽查了该校100名高二学生的视力情况,得到频率分布直方图,如上右图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则,a b 的值分别为 A .2.7,78 B .2.7,83 C .0.27,78 D .0.27,8310.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与该圆的位置关系是 ( ) A 、相切 B 、相交 C 、相离 D 、相切或相交二、填空题:本大题共5小题,每小题5分,共25分.把答案写在横线上. 11.在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率分布直方图,[)cm cm 165,160组的小矩形的高为a ,[)cm cm 170,165组小矩形的高为b,试估计该高一年集学生身高在[160cm ,170cm]范围内的人数12. 将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为 . 13.已知M (-2,0), N (4,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是估计当使用年限为10年时,维修费用是15.已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为2正方形.若,则球O 的体积为_________.三、解答题。
2019-2020年高二上学期11月月考数学(理)试题含答案
绝密★启用前2019-2020年高二上学期11月月考数学(理)试题含答案A .公差0d <;B .在所有0<n S 中,13S 最大;C .满足0>n S 的n 的个数有11个;D .76a a >;4. 已知数列{n a },若点(,)n n a (*n N ∈)在经过点(5,3)的定直l l 上,则数列{n a }的前9项和9S =( )A. 9B. 10C. 18D.275. 在等差数列{}n a 中a 3+a 4+a 5=12,n S 为数列{}n a 的前n 项和,则S 7 =( ) A.14 B.21 C.28 D.356. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 667. 若四个正数d c b a ,,,成等差数列,x 是a 和d 的等差中项,y 是b 和c 的等比中项,则x 和y 的大小关系是( ) A .y x < B .y x >C .y x ≤D .y x ≥8. 设0.70.45 1.512314,8,()2y y y -===,则 ( ) A .312y y y >> (B )213y y y >> C .123y y y >> D .132y y y >> 9. 设等差数列{}n a 的前n 项和为n S ,若,则9S 的值等于( )A .54B .45C .36D .27 10. 设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A.3B.4C.5D.6第II 卷(非选择题)请修改第II 卷的文字说明二、填空题11. 不等式321515>+-xx 的解集为_______12. 已知等差数列{n a }共有12项,其中奇数项之和为10,偶数项之和为22,则公差为13. 在等差数列3,7,11…中,第5项为14. 已知等差数列{n a }的前2006项的和20062008S =,其中所有的偶数项的和是2,则1003a 的值为三、解答题15. 在数列{}n a 中,已知)(log 32,41,41*4111N n a b a a a n n n n ∈=+==+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求证:数列{}n b 是等差数列;(Ⅲ)设数列{}n c 满足n n n b a c ⋅=,求{}n c 的前n 项和n S . 16. 已知数列{}n a 的各项均为正数,前n 项和为n S ,且*(1)()2n n n a a S n N +=∈ (1)求数列{}n a 的通项公式; (2)设121,...2n n n nb T b b b S ==+++,求n T . 17. 已知正项数列{}n a 的前n 项和为n S ,且(2)4n n n a a S +=*()n ∈N .(1)求1a 的值及数列{}n a 的通项公式; (2)求证:33331231111532n a a a a ++++<*()n ∈N ; (3)是否存在非零整数λ,使不等式112111(1)(1)(1)cos 2n n a a a a πλ+--⋅⋅-<对一切*n ∈N 都成立?若存在,求出λ的值;若不存在,说明理由. 18. 已知数列{}12n n a -⋅的前n 项和96n S n =-. (1)求数列{}n a 的通项公式; (2)设2(3log )3n n a b n =⋅-,设数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求使6n mT <恒成立的m 的最小整数值.19. 设{}n a 是一个公差为)0(≠d d 的等差数列,它的前10项和11010=S 且1a ,2a ,4a 成等比数列.(Ⅰ)证明d a =1; (Ⅱ)求公差d 的值和数列{}n a 的通项公式。
高二数学11月份月考试题(文)含答案 精校打印版
密学校 班级姓名 学号密 封 线 内 不 得 答 题2019-2020学年度第二学期阶段性检测高 二 数 学(文)命题、校对人:一、选择题(本大题共10小题,每 小题4分,共40分,每小题有且只有一个正确选项) 1.直线053=-+y x 的倾斜角为( )A. 30ºB. 60 ºC. 120 ºD. 150 º2.已知直线1l :022=-+y x ,2l :014=++y ax ,若1l ⊥2l ,则实数a 的值为( ) A.8 B. 2 C. -21D. - 2 3. 已知条件p :21>+x ,条件a x q >:,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( )A. ),1[+∞B. ),1-[+∞C. ]1,(-∞D. ]3-,(-∞4.已知直线l 过点(1,2),且在x 轴上的截距是y 轴上截距的2倍,则直线l 的方程是( ) A.052=-+y x B. 02=-y x 或 052=-+y x C.02=-y x D. 02=-y x 或 042=-+y x5.圆01422=-++x y x 关于原点对称的圆的方程为( ) A. 5)2(22=-+y x B. 5)2(22=+-y x C. 5)2()2(22=+++y x D. 5)2(22=++y x6.直线l :1+=x y 上的点到圆C :044222=++++y x y x 上点的最近距离为( ) A.2 B.2-2 C.1-2 D. 17.直线1l :03=++ay x 和直线2l :03)2(=++-a y x a 互相平行,则a 的值为( ) A. 1- B. 3 C. 3或1- D. 3-8.已知直线01=-+ay x 是圆C :012422=+--+y x y x 的一条对称轴,过点),4(a A -作圆C 的一条切线,切点为B ,则AB 等于( )A. 2B. 6C. 24D. 102 9.直线l :1=+nym x 过点)2,1(A ,则直线l 与x 轴正半轴、y 轴正半轴围成三角形面积的最小值为( )A. 22B. 3C.225 D. 4 10. 已知直线1l :01=-+y x 截圆C :222r y x =+(0>r )所得弦长为14,点N M ,在圆C 上,且直线:2l 03)1()21(=--++m y m x m 过定点P ,若PN PM ⊥,则MN 的取值范围是( )A. ]32,22[+-B. ]22,22[+-C. ]36,26[+-D. ]26,26[+- 二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 11. 直线b x y +=与圆022822=-+-+y x y x 相离,则b 的取值范围为 . 12. 在直角坐标系xoy 中,已知两点)1,2(A ,)5,4(B ,点C 满足OB OA OC μλ+=,其中R ∈μλ,,且1=+μλ,则点C 的轨迹方程为 .13.已知点P 是直线l :04=++y kx )0(>k 上一动点,PA 、PB 是圆C :0222=-+y y x 的两条切线,A 、B 是切点,若四边形PACB 的最小面积为2,则实数k 的值为 .14.已知点)2,0(A 和圆C :8)4()6(22=-+-y x ,M 和P 分别是x 轴和圆C 上的动点,则MP AM +的最小值为 .三、解答题(本大题4小题,共44分,解答应写出文字说明、证明过程或演算步骤) 15. (本题满分10分)已知直线l 过点)3,2-(P ,根据下列条件分别求出直线l 的方程.(1)直线l 的倾斜角为43π; (2)直线l 与直线012=+-y x 垂直.16.(本题满分10分)已知关于y x ,的二元方程04222=+--+m y x y x 表示曲线C . (1)若曲线C 表示圆,求实数m 的取值范围;(2)在(1)的条件下曲线C 与直线l :042=-+y x 相交于N M ,两点,且554=MN ,求m 的值.17. (本题满分12分)已知圆C 过点P (1 , 1 ),且圆C 与圆M :222)2()2(r y x =+++ (0>r )关于直线02=++y x 对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求MQ PQ ⋅的最小值.18. (本题满分12分)在平面直角坐标系xOy 中,圆O :224x y += 与圆C :22(3)(1)8x y -+-= 相交与P ,Q 两点.(1)求线段PQ 的长;(2)记圆O 与x 轴正半轴交于点M ,点N 在圆C 上滑动,求△MNC 面积最大时的直线NM 的方程.密学校 班级姓名学号密 封 线内 不 得 答 题答案 选择题DDABB CABDD 填空题11. (,5)5,)-∞⋃+∞ 12. 23y x =- 13.214. 解答题15(1) 10x y +-= (2) 210x y ++= 16.17..18.解:(Ⅰ)由圆O :x 2+y 2=4,圆C :(x -3)2+(y -1)2=8, 两式作差可得:3x +y -3=0,即PQ 的方程为3x +y -3=0, 点O 到直线PQ 的距离d =,则|PQ |=;(Ⅱ)由已知可得,M (2,0),|MC |=,|NC |=,∴,当∠MCN =90°时,S △MCN 取得最大值, 此时MC ⊥NC ,又k CM =1, ∴直线CN :y =-x +4. 由,解得N (1,3)或N (5,-1).当N (1,3)时,k MN =-3,此时MN 的方程为:3x +y -6=0;∴MN的方程为3x+y-6=0或x+3y-2=0.。
2020高中高二数学11月月考试题:01 Word版含答案
20xx 最新20xx 高中高二数学11月月考试题:01 Word 版含答案时间120分钟 分数150分第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知全集( ) A .{3} B .{5} C .{1,2,4,5} D .{1,2,3,4} 2.“m .n 〉0”是“方程表示焦点在x 轴上的双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.已知命题:,.则是( )p 0x ∃∈R 021x =p ⌝A.,B.,0x ∀∈R 021x ≠0x ∀∉R C., D.,4.若是和的等比中项,则圆锥曲线的离心率为( )A.B. C.或 D.或5.已知函数,下列四个命题:①将的图像向右平移个单位可得到的图像;②是偶函数;③上单调递增;④的最小正周期为.其中真命题的个数是( )A.1B.2C.3D.46.若是等差数列的前项和,且,则的值为 ( ) n S {}n a n 8320S S -=11SA.44B.22C.D.8822037.已知点是椭圆的两个焦点,点是该椭圆上的一个动点,12,F F 2222x y +=P那么的最小值是( )12PF PF +u u u r u u u u rA. B. C. D.012228.已知直线、、不重合,平面、不重合,下列命题正确的是( )A.若,,,则B.若,,则C.若,则;D. 若,则9.从(其中)所表示的椭圆或双曲线方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为( ) A . B .C .D .233410.若不论为何值,直线与曲线总有公共点,则的取值范围是k(2)y k x b =-+221x y -=bA. B. C. D.(3,3)-3,3⎡⎤-⎣⎦(2,2)-[]2,2-11.设F 为抛物线的焦点,A 、B 、C 为该抛物线上三点,)0(22>=p px y当++=,且||+||+||=3时,此抛物线的方程为( )0A .B .C .D .x y 22=12.已知椭圆C :的左、右焦点为,过的直线与圆相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,若A 为线段PQ 的靠近P 的三等分点,则椭圆的离心率为 222b y x =+A .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.将答案填写在答题纸上)13.过点A(1,2)且与原点距离最大的直线方程是14.直线与圆相交所截的弦长为_________3430x y -+=221x y += 15.若为抛物线上的动点,则点到直线的距离的最小值为 .P 210y x =P 50x y ++=16.已知椭圆C :的离心率为,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 )0(12222>>=+b a b y a x三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知命题,若是的充分不必要条件,求实数的取值范围.q m18.(本小题满分12分)已知函数f(x)=2sinxcosx +cos2x.(Ⅰ)求的值;()4f π(Ⅱ)设,求的值.19.(本小题满分12分)等比数列的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列的通项公式.{}n a(Ⅱ)设 ,求数列{}的前n 项和.n n a nb =n b Sn20.(本题满分12分)甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹).(1)如果甲只射击次,求在这一枪出现空弹的概率; (2)如果甲共射击次,求在这三枪中出现空弹的概率;(3)如果在靶上画一个边长为的等边,甲射手用实弹瞄准了三角形区域随机射击,且弹孔都落在三角形内。
学2019-2020学年高二数学下学期月考试题(含解析)
学2019-2020学年高二数学下学期月考试题(含解析)1. 已知为虚数单位,,若为纯虚数,则()A. B. C. 2 D. -2【答案】B【解析】分析:根据复数的四则运算化简得到复数的基本形式,在根据复数为纯虚数,即可求解的值.详解:由题意,又由为纯虚数,所以,解得,故选B.点睛:本题主要考查了复数的运算和复数的分类,利用复数的四则运算正确作出运算是解答的关键,着重考查了推理与运算能力.2. 设D为△ABC所在平面内一点,=-4,则=()A. -B. +C. -D. +【答案】B【解析】【分析】设=x+y,由=-4可得,+=-4-4,化简即可.【详解】设=x+y,由=-4可得,+=-4-4,即--3=-4x-4y,则,解得,即=+,故选B.【点晴】此题考平面向量线性运算,要注意使用三角形法则时首位顺次连接,向量的方向.3. 设向量满足,则=( )A. 2B.C. 4D.【答案】B【解析】试题分析:不妨设,所以,解得,所以.考点:向量运算.4. 设函数,则不等式成立的的取值范围是A. B.C. D.【答案】B【解析】【分析】先判断出为偶函数,并且可得在上单调递减,从而由得到,进而得到,解该绝对值不等式即可求出的取值范围.【详解】易得f(x)为偶函数,且x≥0时,单调递减;∴由f(2x−3)<f(1)得:f(|2x−3|)<f(1),∴|2x−3|>1,解得x<1,或x>2.∴x的取值范围是(−∞,1)∪(2,+∞).故选B.【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.5. 函数f(x)=在[—π,π]的图像大致为A. B.C. D.【答案】D【解析】【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.【详解】由,得是奇函数,其图象关于原点对称.又.故选D.【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6. 若是函数的极值点,则的极小值为().A. B. C. D.【答案】A【解析】由题可得,因为,所以,,故,令,解得或,所以在上单调递增,在上单调递减,所以的极小值为,故选A.【名师点睛】(1)可导函数y=f(x)在点x0处取得极值的充要条件是f ′(x0)=0,且在x0左侧与右侧f ′(x)的符号不同;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.7. 若函数在区间上单调递减,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】转化条件得在区间上恒成立,则,解不等式组即可得解.【详解】,,函数在区间上单调递减,在区间上恒成立,即,解得.故选:B.【点睛】本题考查了导数的应用,考查了已知函数单调性求参数的取值范围,属于中档题.8. 已知非零向量、满足且则、的夹角为()A. B. C. D.【答案】D【解析】【分析】设向量、的夹角为,将转化为,利用平面向量数量积的定义和运算律求出的值,可得出、的夹角.【详解】由于,且,则,即,得.,,因此,、的夹角为,故选D.【点睛】本题考查利用平面向量数量积计算平面向量的夹角,解题的关键在于将向量垂直转化为平面向量的数量积为零,考查化归与转化数学思想,属于中等题.9. 设在中,角所对的边分别为, 若, 则的形状为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定【答案】B【解析】【分析】利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题. 弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.10. 设函数f(x)=cos(x+),则下列结论错误的是A. f(x)的一个周期为−2πB. y=f(x)的图像关于直线x=对称C. f(x+π)的一个零点为x=D. f(x)在(,π)单调递减【答案】D【解析】f(x)的最小正周期为2π,易知A正确;f=cos=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.故选D11. 已知,函数在上单调递减,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由题意可得,且,由此求得的取值范围.【详解】因为函数在上单调递减。
2019-2020学年高二数学上学期11月月考试题(含解析)_1
2019-2020学年高二数学上学期11月月考试题(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知命题对任意,都有,则命题的否定为( )A. 存在,使得B. 对任意,都有C. 存在,使得D. 存在,使得【答案】C【解析】【分析】根据全称命题的否定是特称命题的知识选出正确选项.【详解】由于原命题是全称命题,所以其否定是特称命题,注意到要否定结论,所以C选项正确.故选:C.【点睛】本小题主要考查全称命题与特称命题,考查全称命题与特称命题的否定,属于基础题.2.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:由“φ=0”可以推出“f(x)=cos(x+φ)=cosx (x∈R)为偶函数”,所以是充分,再由“f(x)=cos(x+φ)(x∈R)为偶函数”可以推出,并不一定有φ=0,所以不必要;因此“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件;故选A.考点:充要条件.【此处有视频,请去附件查看】3.若,且则实数的值是()A. B. 0 C. 1 D.【答案】D【解析】【分析】先求得的坐标,根据得,根据向量数量积的坐标运算列方程,解方程求得的值.【详解】依题意,由于,故,即,,故选D.【点睛】本小题主要考查空间向量坐标的线性运算,考查两个向量垂直的坐标运算,考查方程的思想,属于基础题.4.若ab≠0,则ax-y+b=0和bx2+ay2=ab所表示的曲线只可能是下图中的( )A. B. C. D.【答案】C【解析】方程化为y=ax+b和.从B,D中的两椭圆看a,b∈(0,+∞),但B中直线有a<0,b<0矛盾,应排除;D中直线有a<0,b>0矛盾,应排除;再看A中双曲线的a<0,b>0,但直线有a>0,b>0,也矛盾,应排除;C中双曲线的a>0,b<0和直线中a,b一致.选C.5.曲线在点处的切线斜率是( )A. B.C. D.【答案】A【解析】【分析】先求得函数的导数,令求得切线的斜率.【详解】依题意,当时,.故选:A.【点睛】本小题主要考查基本初等函数的导数,考查曲线上某点切线的斜率的求法,属于基础题.6.设斜率为2的直线过抛物线的焦点F,且和y轴交于点A. 若为坐标原点)的面积为,则抛物线的方程为()A. y2=4xB. y2=8xC. y2=±4xD. y2=±8x【答案】D【解析】试题分析:的焦点是,直线的方程为,令得,所以由的面积为得,,故选.考点:1.抛物线的几何性质;2.直线方程.7.某物体运动规律是,若此物体的瞬时速度为,则 ( )A. B. C. D.【答案】C【解析】【分析】求得函数的导数,然后令导数等于零,求得对应的的值.【详解】依题意,令,解得.故选:C.【点睛】本小题主要考查位移的导数是速度,考查导数在物理上的运用,属于基础题.8.椭圆的离心率为,则的值为()A. -21B. 21C. 或21D. 或21【答案】C【解析】试题分析:当焦点在轴时,当焦点在轴时,故选C考点:椭圆方程及性质9.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)【答案】C【解析】试题分析:函数的定义域为,所以,解得.考点:导数与不等式.10.若函数在内单调递减,则实数的取值范围是()A. B. C. D.【答案】A【解析】若函数在内单调递减,即当时,,,如图所示,函数是一个开口向上的二次函数,设其两个零点分别为,0)、(,0),其中,则有且,易见有,既有解得,故选A。
2019-2020学年高二数学11月月考试题 文 第Ⅰ卷
2019-2020学年高二数学11月月考试题 文第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的,请将符合题意的答案填写在答题卡的相应位置上。
1.过点(1,3),斜率为1的直线方程是( )A.x -y +2=0B.x -y -2=0C.x +y -4=0D.x -y +4=02.若方程x 2+y 2+x -y +m 2=0表示圆,则实数m 的取值范围是( ) A.m <22 B.-22<m <22 C.m <-22 D.m >22 3.如果空间两条直线互相垂直,那么它们( )A.一定不平行B.是异面直线C.是共面直线D.一定相交4.设l 是直线,α,β是两个不同的平面( )A.若l ∥α,l ∥β,则α∥βB.若l ∥α,l ⊥β,则α⊥βC.若α⊥β,l ⊥α,则l ⊥βD.若α⊥β,l ∥α,则l ⊥β 5.不论m 为何值,直线(m -1)x -y +2m +1=0恒过定点( )A. (-2,3)B.(-2,0)C. (1,-21) D.( 2,3)6.直线ax +2y +1=0与直线3x -y -2=0垂直,则a 的值为( ) A.-3 B.3 C.-23D.237.已知两圆分别为圆C 1:x 2+y 2=81和圆C 2:x 2+y 2-6x -8y +9=0,这两圆的位置关系是( )A.相离B.相交C.内切D.外切8.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为( )A.(3,0,0)B.(0,3,0)C.(0,0,3)D.(0,0,-3)9.圆(x -1)2+(y -1)2=1上的点到直线x -y =2的距离的最小值是( )A.2B.2-1C.2+1D.1+2210.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≤+-2,03,052y x y x 则z =x +2y 的最大值是( ) A.-3 B.-1 C.1 D.311.已知x 2+y 2=1,则2+x y的取值范围是( ) A.(-3,3) B.(-∞,3) C.[-33,+∞)D.[-33,33]12.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则切线AB 的长为( )A.2B.42C.6D.210第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.若直线过点(1,2),(4,2+3),则此直线的倾斜角是_______.14.若不等式组⎪⎩⎪⎨⎧≤≤≥≥+-20,,05x a y y x 表示的平面区域是一个三角形,则a 的取值范围是 .15.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,若OP ⊥OQ (O 为坐标原点),则m 的值为___________.16.如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O上的一点,AE ⊥PB 于E , AF ⊥PC 于F ,给出下列结论:①AF ⊥PB ; ②EF ⊥PB ;③AF ⊥BC ; ④AE ⊥平面PBC .其中正确结论的序号有___________.CBAOFE P.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知直线l 经过点P (-2,5),且斜率为-34.(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.18.(本小题满分12分)设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交所得的弦长为22,求圆的方程.19.(本小题满分12分)已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l 与圆A相交于M,N两点,Q是MN的中点.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程.20.(本小题满分12分)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
2019-2020学年度最新高中高二数学11月月考试题:06 Word版含答案
2019-2020学年度最新高中高二数学11月月考试题:06Word 版含答案第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分1. 对于实数a 、b 、c ,“b a >”是“2ac >2bc ”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.数列{n a }中,5,2,2121==-=++a a a a a n n n ,则5a 为( )A .-3B .-11C .-5D .193.若不等式022>++bx ax 解集是{x | -21< x <31},则b a +的值为( )A .-10 B. -14 C. 10 D.14 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是( ) A .一解B .无解C .二解D .无法确定5.设x 、y 满足24,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则z x y =+( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最大值D .既无最小值,也无最大值6. 短轴长为52,离心率为32的椭圆的两个焦点分别是21,F F ,过1F 作直线交椭圆于A,B 两点,则2ABF ∆的周长为( )A.24B.12C.6D.37.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .可能是锐角三角形,也可能是钝角三角形.8.等比数列{n a }中,已知对任意自然数n ,1-2.......21n na a a =+++,则 22221.......na a a +++等于 ( )A.2)12(-nB.)12(31-nC.14-nD. )14(31-n9.下列命题:高二文科数学 共4页 第1页①若p ,q 为两个命题,则“p 且q 为真”是“p 或q 为真”的必要不充分条件。
2019-2020学年高二数学11月月考试题_2
2019-2020学年高二数学11月月考试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第1页,第Ⅱ卷第1页至第2页。
试卷满分120分。
考试时间100分钟。
第Ⅰ卷一、选择题(共10题;每题4分,共40分)1. 在等比数列中,,,则A. B. C. D.2. 不等式的解集为A. B.C. D.3. 双曲线的焦距是A. B. C. D. 与有关4. 集合,,则A. B. C. D.5. 命题“,”的否定是A. ,B. ,C. ,D. ,6. 设抛物线上一点到轴的距离是,则点到该抛物线焦点的距离是A. B. C. D.7. 设等差数列的公差不为,.若是与的等比中项,则A. B. C. D.8. “成立”是“成立”的A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件9. 已知等比数列的首项为,若,,成等差数列,则数列的前项和为A. B. C. D.10. 已知椭圆的中心在原点,左焦点,右焦点均在轴上,为椭圆的右顶点,为椭圆的上端点,是椭圆上一点,且轴,,则此椭圆的离心率等于A. B. C. D.第Ⅱ卷二、填空题(共5题;每题4分,共20分)11. 抛物线的焦点坐标是.12. 已知,则函数的最小值为.13. 若双曲线的一个焦点为,则.已知,,且,若恒成立,则实数的取值范围是.已知椭圆与轴交于,两点,点为该椭圆的一个焦点,则面积的最大值为.三、解答题(共5题;每题12分,共60分)16. 已知不等式.(1)当时,解不等式;(2)当时,解不等式.17. 求适合下列条件的双曲线的标准方程.(1)焦点在轴上,虚轴长为,离心率为;(2)顶点间的距离为,渐近线方程为.18. 已知数列的前项和为,且,正项等比数列满足,.(1)求数列与的通项公式;(2)设,求数列前项和.19. 已知在公差不为的等差数列中,,,成等比数列.(1)证明:;(2)若,求证:.20. 在直角坐标系中,曲线上的点到两定点,的距离之和等于,(1)求曲线的方程;(2)直线与交于两点,若,求的值.2019-2020学年高二数学11月月考试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第1页,第Ⅱ卷第1页至第2页。
重庆市2019-2020学年高二上学期11月月考数学试卷 Word版含答案
22.如图,在四棱锥 P ABCD 中,底面 ABCD 为正方形,平面 PAD 平面 ABCD ,点 M 在线段 PB 上, PD / / 平面 MAC, PA PD 6, AB 4 .
1.求证: M 为 PB 的中点; 2.求二面角 B PD A 的大小; 3.求直线 MC 与平面 BDP 所成角的正弦值.
1.证明 A1C 平面 BED ; 2.求二面角 A1 DE B 的余弦值.
19.已知直线 l 平行于直线 3x 4 y 7 0 ,并且与两坐标轴围成的三角形的面积为 24 ,求 直线 l 的方程.
20.对于直线 2m2 m 3 x m2 m y 4m 1 .
1.求直线的倾斜角为 45 时 m 的值; 2.求直线在 x 轴上的截距为 1 时 m 的值.
C.
3
3
D.
6
3.如图所示,△ ABC 是水平放置的△ ABC 的直观图,则在△ ABC 的三边及中线 AD 中,
最长的线段是( )
A. AB
B. AD
C. BC
4.在下列四个命题中 , 正确的命题共有( )
D. AC
① 坐标平面内的任何条直线均有倾斜角与斜率 ;
② 直线的倾斜角 的取值范围为 0 180 ; ③ 若一直线的斜率为 tan ,则此直线的倾斜角为 ;
16.求函数 y x2 1 x2 4x 8 的最小值_________·
三、解答题
17.已知正方形的中心为 G(2, 0) , 一边所在直线的方程为 x 3y 4 0 ,求其他三边所在
直线的方程.
高考资源网版权所有,侵权必究!
高考资源网()
您身边的高考专家
18. A1B1C1D1 中, AA1 2 AB 4 ,点 E 在 C1C 上,且 C1E 3EC .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——教学资料参考参考范本——2019-2020学年度高中高二数学11月月考试题:03Word版含答案______年______月______日____________________部门一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线的倾斜角是 ( )3+10x y-=A.150º B.135º C.120º D.30º答案:C解析:直线斜率,则倾斜角为120º.3k=-2.下列说法中正确的有()A.一组数据的平均数一定大于这组数据中的每个数据B.一组数据不可能有两个众数C.一组数据的中位数一定是这组数据中的某个数据D.一组数据的方差越大,说明这组数据的波动越大答案:D解析:一组数据的平均数介于这组数据中的最大数据与最小数据之间,所以A错;众数是一组数据中出现最多的数据,所以可以不止一个,B错;若一组数据的个数有偶数个,则其中中位数是中间两个数的平均值,所以不一定是这组数据中的某个数据,C错;一组数据的方差越大,说明这组数据的波动越大,D对.3.抛掷一颗骰子,则事件“点数为奇数”与事件“点数大于5”是()A.对立事件B.互斥事件但不是对立事件C .不是互斥事件D .以上答案都不对 答案:B解析:事件“点数为奇数”即出现1点,3点,5点,事件“点数大于5”即出现6点,则两事件是互斥事件但不是对立事件.4. 把化为十进制数为( )(2)1010A .20B .12C .10D .11答案:C5. 某程序框图如图1所示,现输入如下四个函数:2()f x x =,,,,()sin f x x =1()f x x=()x f x e = 则可以输出的函数是( ) A . B . 2()f x x =()sin f x x =C .D .1()f x x=()x f x e = 答案:B解析:有程序框图可知可以输出的函数既是奇函数,又要存在零点.满足条件的函数是B .6. 设不等式组表示的平面区域为,在区域内随机取一个点,则此点到坐标原点的距离小于等于2的概率是( )0202x y ≤≤⎧⎨≤≤⎩D DA .B .C .D .4π22π-6π44π-答案:A解析:平面区域的面积为4,到坐标原点的距离小于等于2的点所到区域为,有几何概型的概率公式可知区域内一个点到坐标原点的距离小于等于2的概率为.D πD4π7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为( )[]1,450A []451,750B C BA .7B .9C .10D .15答案:C解析:方法一:从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为,由,即,所以,共有人.2130)1(309-=-+=n n a n 7502130451≤-≤n 302125302215≤≤n 25,17,16 =n 1011625=+- 方法二:总体中做问卷有450人,做问卷有300人,做问卷有210人,则其比例为15:10:7.抽到的32人中,做问卷有人.A B CB 10321032=⨯8.如图2是某几何体的正视图、侧视图和俯视图分别是等边三角形, 等腰三角形和菱形,则该几何体体积为( ) A . B . C .4 D .2 2343答案:A解析:有三视图可知几何体是底面为菱形,对角线分别为2和,顶点在底面的射影为底面菱形对角线的交点,高为3,所以体积为.2311V=2233=2332⨯⨯⨯⨯9.如图3是某算法的程序框图,则程序运行后输入的结果是( )A .1B .2C .3D .4 答案:C解析:当 当当1,1,1;k a T ===2,0,1;k a T ===3,0,1;k a T ===当当,则此时,所以输出.4,1,2;k a T ===5,1,3k a T ====16k k +=T=310.函数的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为该等比数列的公比的数是( )29(5)y x =--A .B .C .D .34235答案:D解析:函数等价为,表示为圆心在半径为3的上半圆,圆上点到原点的最短距离为2,最大距离为8,若存在三点成等比数列,则最大的公比应有,即,最小的公比应满足,所以,所以公比的取值范围为,所以不可能成为该等比数列的公比.0,9)5(22≥=+-y y x )0,5(q 228q =2,42==q q 282q =21,412==q q 221≤≤q 5二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.)11.点B 是点A (1,2,3)在坐标面内的射影,其中O 为坐标原点,则等于 ________. xOy OB答案:5解析:点B 是点A (1,2,3)在坐标面内的射影,可知B (1,2,0),有空间两点的距离公式可知.xOy=5OB12.从一堆苹果中任取10只,称得它们的质量如下(单位:克):125 120 122 105 130 114 116 95 120 134,则样本数据落在内的频率为________.[)114124, 答案:0.7解析:样本数据落在内有7个,所以频率为0.7.[)114124, 13.在平面直角坐标系中,设直线与圆:20l kx y -+=22:4C x y +=相交于A 、B 两点,为弦AB 的中点,且,则实数________. MC 1M =k =答案:1±解析:有圆的性质可知,又,有点到直线距离公式可得.CM AB⊥C 1M =1k =±14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量 分别为 (单位:吨).根据如图4所示的程序框图,1234,,,x x x x 若分别为1, 2,3, 4,则输出的结果S 为________.1234,,,x x x x 答案:52解析:有算法的程序框图的流程图可知输出的结果S 为的平均值,1234,,,x x x x即为.1+2+3+45=4215.设,为不同的两点,直线,,以下命题中正确的序号为 .11(,)M x y 22(,)N x y :0l ax by c ++=1122ax by cax by cδ++=++①不论为何值,点N 都不在直线上;δl②若,则过M ,N 的直线与直线平行;1δ=l ③若,则直线经过MN 的中点;1δ=-l④若,则点M 、N 在直线的同侧且直线与线段MN 的延长线相交.1δ>l l 答案:①②③④解析:不论为何值,,点N 都不在直线上,①对;若,则,即,过M ,N 的直线与直线平行, ②对;若则,直线经过MN 的中点, ③对;点M 、N 到直线的距离分别为,若,则,且,即点M 、N 在直线的同侧且直线与线段MN 的延长.δ220ax by c ++≠l 1δ=1212)()0a x xb y y -+-=(1212=MN l y y ak k x x b-==--l 1δ=-12121212+)(+)+)(+)+20+022x x y y a x x b y y c a b c +=⇒+=((l l 1122122222++,ax by c ax by cd d a b a b++==++1δ>112212++ax by c ax by c d d +>+⇒>1122+(+ax by c ax by c ++())>0l l三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本题满分12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费元,运行程序如图5所示:x y(Ⅰ)写出与的函数关系;y x(Ⅱ)求排放污水150吨的污水处理费用.16解:(Ⅰ)与的函数关系为:y x…………8分(Ⅱ)因为150100,m=>所以,15025(150100)1400y=+-=故该厂应缴纳污水处理费1400元. (12)分17.(本题满分12分)已知向量,,其中随机选自集合,随机选自集合.(,1)b y=x{1,1,3}=-(3,)a x,-y{1,39}(Ⅰ)求的概率;//a b(Ⅱ)求的概率.a b⊥17解析:则基本事件空间包含的基本事件有:(-1,1),(-1,3),(-1,9),(1,1),(1,3),(1,9),(3,1),(3,3),(3,9),共9种.…2分(Ⅰ)设“”事件为,则.//a b A3xy=-事件包含的基本事件有(-1,3), 共1种.A∴的概率为.…7分//a b()1P A=9(Ⅱ)设“” 事件为,则.a b⊥B3=y x事件包含的基本事件有(1,3), (3,9),共2种.A∴的概率为.………12分a b⊥()2P B=918.(本题满分12分)如图6是歌手大奖赛中,七位评委给甲、乙两名选手打出的分数的茎叶图.(Ⅰ)现将甲、乙所得的一个最高分和一个最低分均去掉后,分别求甲、乙两名选手得分的众数,中位数,平均数;(Ⅱ)在(Ⅰ)的条件下用方差说明甲、乙成绩的稳定性. (注:方差,其中,为数据的平均数)2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-x 12,,,n x x x ⋅⋅⋅18.解析:将甲、乙所得的一个最高分和一个最低分均去掉后,甲的分数为85,84,85,85,86;乙的分数为84,84,86,84,87. ……2分 (Ⅰ)甲的众数,中位数,平均数分别为85,85,85; 乙的众数,中位数,平均数分别为84,84,85. ………6分(Ⅱ)在(Ⅰ)的条件下,甲的方差为,2222212[(8585)(8485)(8585)+(8585)+(8685)]=55-+-+---乙的方差为.……10分2222218[(8485)(8485)(8685)+(8485)+(8785)]=55-+-+--- 甲的方差比乙的方差小,则甲的成绩稳定些. ………12分19.(本题满分12分)某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,,…, 后得到如下频率分布直方7.[)40,50[)50,60[]90,100(Ⅰ)求分数在内的频率;[)70,80(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分;(Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.19解析:(Ⅰ)分数在内的频率为:[)80,70-++++⨯=-=…1(0.0100.0150.0150.0250.005)1010.70.33分(Ⅱ)平均分为:……7分(Ⅲ)由题意,分数段的人数为:人[)90,80⨯=0.256015[],90分数段的人数为:人;……9分100⨯=0.05603∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,∴分数段抽取5人,分别记为A,B,C,D,E;分数段抽取1人,[)90,80[]90,100记为M. 因为从样本中任取2人,其中恰有1人的分数不低于90分,则另一人的分数一定是在分数段,所以只需在分数段抽取的5人中确定1人.[)90,80[)90,80设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件,A则基本事件空间包含的基本事件有:(A ,B),(A ,C),(A ,D),(A ,E),(B ,C),(B ,D),(B ,E),(C ,D),(C ,E),(D ,E),(A ,M),(B ,M),(C ,M),(D ,M), (E ,M)共15种.事件包含的基本事件有(A ,M),(B ,M),(C ,M),(D ,M),(E ,M)5种.A∴恰有1人的分数不低于90分的概率为. ……12分()51.153P A == 20.(本题满分13分)如图8,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB 是圆O 直径.1OO 111ABC A B C - (Ⅰ)证明:平面平面;11A ACC ⊥11B BCC(Ⅱ)设,在圆柱内随机选取一点,记该点取自于三12AB AA ==1OO棱柱内的概率为.111ABC A B C -p(i )当点C 在圆周上运动时,求的最大值;p(ii )当取最大值时,求直线与平面所成的角的正弦值.p 1CB 11C COO20解析:(Ⅰ)因为平面ABC ,平面ABC ,所以,1AA ⊥BC ⊂1AA ⊥BC因为AB 是圆O 直径,所以,又,BC ⊥AC AC ⋂1AA A = 所以平面,BC ⊥11A ACC而,所以平面平面. ……3分11BC B BCC ⊂11A ACC ⊥11B BCC(Ⅱ)(i )有AB=AA1=2,知圆柱的半径,其体积=1r 2V=22r r ππ⋅=三棱柱的体积为,111ABC-A B C 11V =BC AC 2BC AC 2r ⋅⋅=⋅又因为,所以,222BC +AC =AB =422BC +AC BC AC =22⋅≤当且仅当时等号成立,从而,BC=AC=21V 2≤故当且仅当,即时等号成立,11V p Vπ=≤BC=AC=2OC AB ⊥所以的最大值是. (8)分p1π(ii )由(i )可知,取最大值时,,即 , pOC AB⊥1111O C O B ⊥111O O O B ⊥则平面,连,则为直线与平面所成的角,11O B ⊥11C COO 1O C11O CB ∠1CB 11C COO则 …………13分111122116sin O CB ==62+2O B CB ∠=21.(本题满分14分)在平面直角坐标系中,xOy已知圆,圆.221:(1)1C x y ++=222:(3)(4)1C x y -+-= (Ⅰ)若过点的直线被圆截得的弦长为,1(1,0)C -l 2C 65求直线的方程;l(Ⅱ)设动圆同时平分圆的周长、圆的周长,如图9所示.C 1C 2C (i )证明:动圆圆心C 在一条定直线上运动;(ii )动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.C21 解析:(Ⅰ)设直线的方程为,即.l(1)y k x =+0kx y k -+=因为直线被圆截得的弦长为,而圆的半径为1,l 2C 652C所以圆心到:的距离为.2(3 4)C ,lkx y k -+=244451k k -=+ 化简,得,解得或.21225120k k -+=43k =34k = 所以直线的方程为或. ……4分l4340x y -+=3430x y -+=(Ⅱ)(i )证明:设圆心,由题意,得,( )C x y ,12CC CC =即.2222(1)(3)(4)x y x y ++=-+-化简得 即动圆圆心C 在定直线上运动. …………8分 30x y +-=30x y +-=(ii )圆过定点,设,C (3)C m m -,则动圆C 的半径为.222111(1)(3)CC m m +=+++-于是动圆C 的方程为.2222()(3)1(1)(3)x m y m m m -+-+=+++- 整理,得.22622(1)0x y y m x y +----+=由得或2210 620x y x y y -+=⎧⎨+--=⎩,,31223 222x y ⎧=+⎪⎨⎪=+⎩,;31223 2 2.2x y ⎧=-⎪⎨⎪=-⎩,所以定点的坐标为,. ……14分()3312 2222--,()3312 2222++,。