古典概型和几何概型练习题

合集下载

17.2 古典概型与几何概型

17.2  古典概型与几何概型

17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X的概率为()A .61 B .365 C .121 D .21(3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S ”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1.某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是()A.15B.524C.1081D.5122.盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P1,第8个人摸出红球的概率是P8,则()A.P8=18P1 B.P8=45P1 C.P8=P1 D.P8=03.如图,A、B、C、D、E、F是圆O的六个等分点,则转盘指针不落在阴影部分的概率为()A.12B.13C.23D.14C4. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交 AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆. (1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,倍的概率.10.正面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“V P -ABC ≥14V ”的事件为X ,求概率P (X );②设“V P -ABC ≥14V 且V P -BCD ≥14V ”的事件为Y ,求概率P (Y ).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为()A .2πB .2ππ- C .πD .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ()A .12B .13C .14D .163.已知椭圆22221x ya b+=(a>b>0)及内部面积为S=πab,A1,A2是长轴的两个顶点,B1,B2是短轴的两个顶点,点P是椭圆及内部的点,下列命题正确的个数是()①△PA1A2为钝角三角形的概率为1;②△PB1B2为直角三角形的概率为0;③△PB1B2为钝角三角形的概率为ba;④△PA1A2为钝角三角形的概率为ba;⑤△PB1B2为锐角三角形的概率为a ba-。

(完整word版)(古典概型几何概型)

(完整word版)(古典概型几何概型)

古典概型和几何概型练习卷1(本小题满分12分)一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类型分层抽样的方法在这个月生产的轿车中 抽取50辆,其中有A 类轿车10辆.(1) 求z 的值.(2) 用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2,9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解: (1).设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,所以n=2000.z=2000-100-300-150-450-600=400(2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以40010005m=,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2),(B 2 ,B 3) ,(B 1 ,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S 1, B 1), (S 1, B 2) , (S 1,B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (3)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=,那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=. 2(本小题满分12分)设集合{},1P x ={},1,2,,Q y P Q =⊆其中,x y 是先后随机投掷2枚正方体骰子出现的点数,(1)求x y =的概率(2)求点(),x y 正好落在区域10025x y x y +-<⎧⎪≥⎨⎪≤⎩上的概率。

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。

古典概型与几何概型

古典概型与几何概型

古典概型与几何概型基础训练:1.甲乙两人从{0,1,2,3,4,5}中各取一个数a,b,则“恰有a+b 3”的概率等于______________2.箱子中有形状、大小都相同的3只红球和2只白球,先摸出1只球,记下颜色后放回箱子,然后再摸出1只球,则摸到两只不同颜色的球的概率为_____3.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为4.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是5.已知甲、乙、丙三人在3天节日中值班,每人值班1天,那么甲排在乙前面值班的概率为_________6.一只口袋装有形状大小都相同的6只球,其中有2只白球,2只红球,2只黄球,从中一次随机摸出2只球,则2只球都是红色的概率为_______,2只球同色的概率为________,恰有一只球是白球的概率为_________典型例题:袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球,(I)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率.9.当A ,B ∈{1,2,3}时,在构成的不同直线Ax -By =0中,任取一条,其倾斜角小于45︒的概率是 .检测与反馈:1.已知集合{}21503x A x |x ,B x |x -⎧⎫=-<<=>⎨⎬-⎩⎭,在集合A 任取一个元素x ,则事件“x A B ∈⋂”的概率是 ________ .2.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未被击毁的概率为_______3.已知米粒等可能地落入如图所示的四边形内,如果通过大量的实验发现米粒落入△BCD 内的频率稳定在附近,那么点和点到直线的距离之比约为 .4.如图所示,墙上挂有一边长为a 的正方形木板,它的四个角的 空白部分都是以正方形的顶点为圆心,半径为2a 的圆弧,某人向此 板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是__ ___.5.分别在区间[1,6]和[2,4]内任取一实数,依次记为m 和n ,则m n >的概率为 ABCD 49A C BD D6.(2010江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _ _。

古典概型与几何概型专题训练(答案版)

古典概型与几何概型专题训练(答案版)

古典轮廓与几何轮廓专题训练1.在集合{}04M x x =<≤中随机选取一个元素,2log y x =函数大于1的概率为( ) A. 1 湾。

14 C 。

12 D. 34答案与分析: 1. C2. 考虑一元二次方程20x mx n ++=,其,m n 值等于掷骰子两次后连续出现的点数,则方程有实根的概率为 ( ) 一个。

3619 湾。

187 C 。

94 D.3617 答案与分析: 2. A3.如图,大正方形的面积为34,四个全等直角三角形组成一个小正方形, 直角三角形短边的长度3是一朵小花落在一个小方块上的概率是A .117 B .217 C .317 D .417答案与分析: 3 B .因为大正方形的面积343落在5小3正方形4上2的概率是423417P ==。

所以选择B 。

【解题与探索】本题考查几何概率的计算。

求解几何概率问题的关键是求两个区间的长度(面积或体积),然后用几何概率的概率计算公式()=A P A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)求解。

所以在这道题中求小花落在小方块上的概率,关键是求小方块的面积和大方块的面积。

4 、如图所示,在3个地方有一只迷失方向的小青蛙。

每次跳跃都可以进入任意相邻格子(如果跳跃5个地方只能进入3个地方,3个可以等待一次跳跃后进入1、2、4、5的机会),然后在第三跳,第一次进5的概率是( ) A.316B. 14C 。

16D.12答案与分析: 4. A一个盒子6里有好的晶体管和4坏的晶体管。

取两次,每次取一个,每次取后不要放回去。

知道第一个是好晶体管,第二个也是好晶体管的概率是 ( ) 一个。

13 湾。

512 C 。

59 D.925答案与分析: (1) C一个盒子6里有好的晶体管和4坏的晶体管。

服用任意两次,每次服用一次,每次服用拿走不放回去后,第一次和第二次都是好晶体管的概率是 ( ) 一个。

13 湾。

专题28古典概型与几何概型(原卷版)

专题28古典概型与几何概型(原卷版)

专题28古典概型与几何概型(原卷版)易错点1:混淆古典概型与几何概型;易错点2:混淆几何概型中的测度(长度、面积、体积);易错点3:科学设计变量,数形结合解决问题.题组一1.(2013新课标1)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.162.(2014新课标2)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.3.(2014新课标)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.4.(2011新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.345.(2013新课标)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.6.(2019全国I理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11167.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.1188.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.18B.38C.58D.781 42 49.(2016年全国II)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4m nD .2mn题组二15.(2018全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .∆ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12=p pB .13=p pC .23=p pD .123=+p p p16.(2017新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .8π C .12 D .4π 17.(2016年全国I)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13 B .12 C .23 D .34题组三10.(2019全国I理15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.12.(2019全国II理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.13.(2016年全国II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.14.(2012新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

(完整版)古典概型与几何概型专题训练(答案版)

(完整版)古典概型与几何概型专题训练(答案版)

古典概型与几何概型专题训练1.在集合{}04M x x =<≤中随机取一个元素,恰使函数2log y x =大于1的概率为( ) A .1 B.14 C. 12 D. 34答案及解析:1.C2.考虑一元二次方程20x mx n ++=,其中,m n 的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为( ) A.3619 B.187 C.94 D.3617答案及解析:2.A3.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形, 直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则 小花朵落在小正方形内的概率为A .117 B .217 C .317 D .417答案及解析:3.B .因为大正方形的面积是34,所以大正方形的边长是34,由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4.所以小花朵落在小正方形内的概率为423417P ==.故选B . 【解题探究】本题考查几何概型的计算. 几何概型的解题关键是求出两个区间的长度(面积或体积),然后再利用几何概型的概率计算公式()=A P A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)求解.所以本题求小花朵落在小正方形内的概率,关键是求出小正方形的面积和大正方形的面积.4.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )A .316 B .14 C . 16 D .12答案及解析:4.A5.(1)一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为 ( ) A.13 B.512 C.59 D.925答案及解析:(1)C(2)一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,则第一次和第二次取到的都是好晶体管的概率为 ( ) A.13 B.512 C.59 D. 925答案及解析:(2)A(3)一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次 取后再放回,则第一次和第二次取到的都是好晶体管的概率为( ) A.13 B.512 C.59 D. 925答案及解析: (3)D6.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是( ) A .49 B .13 C .29D .19答案及解析:6.D7.一个袋子里装有编号为1,2,3,,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球,若从中任意透出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( ) A .316 B .14 C .716 D .34答案及解析:7.A8.已知点(,)P a b ,,a b 满足221a b +≤,则关于x 的二次方程224430x bx a ++=有实数根的概率为( )A .16B .13C .23D .56答案及解析:8.B9. 4名学生从3个体育项目中每人选择1个项目参加,而每个项目都有学生参加的概率为( ) A .B .C .D .答案及解析:10.C10.小赵和小王约定在早上7:00至7:30之间到某公交站搭乘公交车去上学.已知在这段时间内,共有3班公交车到达该站,到站的时间分别为7:10,7:20,7:30,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.13B.12C.14D.16答案及解析:9.A考点:几何概型11.三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生都排在一起的概率是(A)130(B)115(C)110(D)15答案及解析:11.C12.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.答案及解析:12.D13.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为()A .41004901C C -B .4100390110490010C C C C C + C .4100110C C D .4100390110C C C答案及解析:13.D14.如图1所示的是甲、乙两人在5次综合测评中成绩的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )答案及解析:14.C15.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为t ,在区间[1,3t]和[2,4]分别各取一个数,记为m 和n ,则方程表示焦点在x 轴上的椭圆的概率是 ( )A .31 B. 43 C. 32D. 12答案及解析:15. D16.执行右图的程序框图,任意输入一次()()0101x x y y ≤≤≤≤与,则能输出数对(),x y 的概率为________答案及解析:16. 14π-17.甲和乙等五名志愿者被随机地分到A 、B 、C 、D 四个不同的岗位服务,每个岗位至少 有一名志愿者,则甲和乙不在同一岗位服务的概率为 (A )110(B )910 (C ) 14 (D ) 48625答案及解析:17.B18.下列对古典概型的说法中正确的个数是 ( ) ①试验中所有可能出现的基本事件只有有限个; ②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A 包含k 个基本事件,则()k P A n=; ④每个基本事件出现的可能性相等; A. 1 B. 2 C. 3 D. 4答案及解析:18.C19.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是( ☆ )A. 12π-B.13π-C.16π-D.112π-答案及解析:19.C20.一次实验:向下图所示的正方形中随机撒一大把豆子,经查数,落在正方形中的豆子的总数为N 粒,其中)(N m m <粒豆子落在该正方形的内切圆内,以此估计圆周率π为 (A)N m (B)N m 2 (C)N m 3 (D)Nm 4答案及解析:20.D 【知识点】几何概型K3设圆的半径为1.则正方形的边长为2,根据几何概型的概率公式可以得到2122π⨯⨯=Nm,即π=4mN. 【思路点拨】根据几何概型的概率公式,即可以进行估计,得到结论.21.已知P 是△ABC 所在平面内一点,20PB PC PA ++=,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B.13 C.23 D.12答案及解析:21.【知识点】几何概型K3 D 由得,设BC 边中点为D ,则,P 为AD 中点,所以黄豆落在内的概率是,故选D.【思路点拨】:由得P 为BC 边中线AD 的中点,由此可得黄豆落在PBC ∆内的概率.22.设A 是半径为1的圆周上一定点,P 是圆周上一动点,则弦PA <1的概率是 A.13 B. 23 C. 16 D. 12答案及解析:22.A23.甲、乙两人约定某天晚上7:00~8:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .B .C .D .答案及解析:23.C24.已知不等式015<+-x x 的解集为P 。

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。

古典概型与几何概型(基础+复习+习题+练习)

古典概型与几何概型(基础+复习+习题+练习)

课题:古典概型与几何概率考纲要求:① 理解古典概型及其概率计算公式;② 会计算一些随机事件所含的基本事件数及事件 发生的概率;③了解随机数的意义,能运用模拟方法估计概率;④了解几何概型的意义.教材复习1.古典概型:把同时具有:“()1每一次试验中所有可能出现的结果都是有限的,每次试验只出现其中一个结果;()2每一个结果出现的可能性相同”的两个特征的随机试验的数学模型称为古典概型: 基本步骤:①计算一次试验中基本事件的总数n ;②事件A 包含的基本事件的个数m ;③由公式nmA P =)(计算. 注:必须在解题过程中指出等可能的..2.几何概型:如果每个事件发生的概率只与构成事件的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.特性:每一次试验中所有可能出现的结果都是无限的,每一个结果出现的可能性都是相等的.基本步骤:(1)构设变量(2)集合表示(3)作出区域(4)计算求解.几何概型的计算:()P A = 积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A3.随机数:是在一定范围内随机产生的数,并且在这个范围内得到每一个数的机会相等.随机数的一个重要应用就是用计算机产生随机数来模拟设计实验.模拟是利用模型来研究某些现象的性质的一种有效方法,可以节约大量的人力、物力.典例分析:考点一 古典概型的概念问题1.判断下列命题正确与否:()1 掷两枚硬币,可能出现“两个正面”,“两个反面”,“一正一反”3种结果;()2某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能行相同;()3从4,3,2,1,0,1,2----中任取一数,取到的数小于0和不小于0的可能性相同;()4分别从3名男同学,4名女同学中各选一名做代表,那么每个同学当选的可能性相同;()55人抽签,甲先抽,乙后抽,那么乙与甲抽到某中奖签的可能性肯定不同.考点二古典概型的概率问题2.一个口袋中装有大小相同的1个白球和已经编有不同号码的3个黑球,从中摸出2个球,求:()1基本事件总数;()2事件:“摸出2个黑球”包含的基本事件是多少个?()3“摸出2个黑球”的概率是多少?;问题3.同时掷两个骰子,计算:()1一共有多少种不同的结果?()2其中向上的点数之和是5的结果又多少种?()3“向上的点数之和是5”的概率是多少?问题4.将一个骰子先后抛掷三次,求向上点数之和不是6的倍数的概率.问题5.(08山东文)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.()1求1A 被选中的概率;()2求1B 和1C 不全被选中的概率.考点三 与长度有关的几何概型问题6.()1(2013福建) 利用计算机产生01之间的均匀随机数a ,则时间“310a ->”发生的概率为()2在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 不大于AC 的概率.ABCM考点四 与面积有关的几何概型问题7.()1(2013陕西) 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 形区域CBF (该矩形区域内无其他信号来源,基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 .A 14π- .B 12π- .C 22π-.D 4π()2(2013四川)节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是.A 14 .B 12 .C 34 .D 7812问题8.(08枣庄三中模拟)甲乙两人约定上午7:00到8:00之间到某个汽车站乘车,在这段时间内有3班公共汽车,他们开车的时刻分别为7:20、7:40、8:00,如果他们约定,见车就乘,则甲乙两人同乘一班车的概率为 .A 21 .B 14 .C 31 .D 16考点五 与体积有关的几何概型问题9.已知正方体1111ABCD A B C D -内有一个内切球O ,则在正方体ABCD -1111A B C D 内任取一点M ,点M 在球O 内的概率是.A 4π .B 6π .C 8π.D 12π考点六 与角度有关的几何概型问题10:()1(2011湖南文) 已知圆C :2212x y +=,直线l :4325x y +=. ①圆C 的圆心到直线l 的距离为②圆C 上任意一点A 到直线l 的距离小于2的概率为()2在Rt ABC △中,30A =︒,过直角顶点C 作射线CM 交线段AB 于M ,求使AM AC >的概率.课后作业:1.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.2.(2013黄冈模拟)在区间[]0,1上任意取两个实数,a b ,则函数31()2f x x ax b =+- 在区间[]1,1-上有且仅有一个零点的概率为 .A 18 .B 14 .C 34 .D 78CABM走向高考:1.(07广东文)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的 数字外完全相同。

高中数学高考总复习----古典概型与几何概型巩固练习题(含答案解析)

高中数学高考总复习----古典概型与几何概型巩固练习题(含答案解析)

高中数学高考总复习----古典概型与几何概型巩固练习题(含答案解析)1.(2015广东高考)已知5件产品有两件次品,其余为合格品.现从5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.12.在由数字1、2、3、4、5所组成的没有重复数字的二位数中,得到的数不能被5和2整除的概率为()A.0.2B.O.4C.0.6D.0.83.已知三棱锥S­ABC,在三棱锥内任取一点P,使得V P-ABC<V S­ABC的概率是()A. B.C. D.4.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是()A. B.C. D.5.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平等线相碰的概率是()A. B.C. D.6.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是()A. B.C. D.7.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A. B.C. D.8.在区间(0,1)内任取两个实数,则这两个实数的和大于的概率为()A. B.C. D.9.以连续两次抛掷一枚骰子得到的点数、得点,则点在圆内的概率为.10.某大学有包括甲、乙两人在内的5名大学生,自愿参加2010年上海世博会的服务,这5名大学生中3人被分配到城市足迹馆,另2人被分配到沙特馆.如果这样的分配是随机的,则甲、乙两人被分配到同一馆的概率是________.11.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是________.12.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.13.(2015重庆高考)在区间上随机地选择一个数p,则方程有两个负根的概率为.14.若不等式组表示的平面区域为M,x2+y2≤1所表示的平面区域为N,现随机向区域M内抛一粒豆子,则豆子落在区域N内的概率为________.15.(2015菏泽一模)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.16.已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.【参考答案】1.【答案】B【解析】这是一个古典概型,从5件产品任取2件的取法为;基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为故选B.2.【答案】B【解析】总的事件数为,得到的数不能被5和2整除的个位数只能为1或3,有,故所求概率为0.4.3.【答案】A【解析】当P在三棱锥的中截面与下底面构成的三棱台内时符合要求,由几何概型知,4.【答案】A【解析】5.【答案】A【解析】∵硬币的半径为r,∴当硬币的中心到直线的距离d>r时,硬币与直线不相碰.∴6.【答案】A【解析】要使△ABC有两个解,需满足的条件是,因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是7.【答案】B【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此8.【答案】A【解析】设这两个实数分别为x,y,则,满足的部分如图中阴影部分所示.所以这两个实数的和大于的概率为9.【答案】【解析】连续两次抛掷一枚骰子得到的结果有种,点落在圆内的有,,,共4种,故所求的概率为.10.【答案】【解析】依题意得,甲、乙两人被分到同一馆的概率是.11.【答案】【解析】若用{1,2,3,4,5,6}代表6处景点,显然甲、乙两人在最后一个小时浏览的景点可能为{1,1}、{1,2}、{1,3}、…、{6,6},共36种;其中满足题意的“同一景点相遇”包括{1,1}、{2,2}、{3,3}、…、{6,6},共6个基本事件,所以所求的概率为.12.【答案】【解析】以A、B、C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求.∴13.【答案】【解析】方程有两个负根等价于解关于p的不等式组可得或所求概率为14.【答案】解析:如图,△AOB为区域M,扇形COD为区域M内的区域N,A(3,3),B(1,-1),S△AOB=,S扇形COD=,所以豆子落在区域N内的概率为15.【解析】(1)∵甲班学生的平均分是85,∴,∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2==40;(3)甲班成绩在90分以上的学生有两名,分别记为A,B,乙班成绩在90分以上的学生有三名,分别记为C,D,E,从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为.16.【解析】(1)a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),所以事件“a2≥4b”的概率为,即函数f(x)有零点的概率为.(2)a,b都是从区间[0,4]任取的一个数,f(1)=-1+a-b>0,即a-b>1,此为几何概型.所以事件“f(1)>0”的概率为【巩固练习】1.(2015鄂州三模)已知函数若a是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A. B. C. D.2.某公共汽车每15分钟一班,乘客甲随机的到达车站,则甲等待的事件不超过3分钟的概率为()A. B. C. D.3.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A. B.C. D.4.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是()A. B.C. D.5.在长为10的线段AB上任取一点M,以AM为半径作圆,则该圆的面积在和之间的概率为()A. B. C. D.6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A. B.C. D.7.已知P是△ABC所在平面内一点,++2=0,现将一粒黄豆随机撒在△PBC内,则黄豆落在△PBC内的概率是()A. B.C. D.8.在区间(0,1)内任取两个实数,则这两个实数的和大于的概率为()A. B.C. D.9.一个盒子内部有如图所示的六个小格子,现有桔子、苹果和香蕉各两个,将这六个水果随机地放入这六个格子里,每个格子放一个,放好之后每行、每列的水果种类各不相同的概率是()A. B.C. D.10.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π有零点的概率为()A. B.C. D.11.(2015江西二模)在区间内随机取两个数a,b,则使得函数有零点的概率为.12.若m∈(0,3),则直线(m+2)x+(3-m)y-3=0与x轴、y轴围成的三角形的面积小于的概率为________.13.(2015河东区一模)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现往袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和不大于4的概率.14.(14分)设有关于的一元二次方程.(Ⅰ)若是从1,2,3,4,5四个数中任取的一个数,是从1,2,3,4三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间[1,5]任取的一个数,是从区间[1,4]任取的一个数,求上述方程有实根的概率.15.已知复数z=x+y i(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【参考答案】1.【答案】D【解析】求导可得要满足题意需有两个不等实根即即,又a,b的取法共种,其中满足的有共6种故所求的概率为故选D.2.【答案】A【解析】甲等待的事件不超过3分钟的概率为.3.【答案】D【解析】在正六边形中,6个顶点选取4个,共有15种结果.选取的4点能构成矩形只有对边的4个顶点(例如AB与DE),共有3种,故所求概率为.4.【答案】A【解析】要使△ABC有两个解,需满足的条件是,因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是5.【答案】A【解析】以半径为准,概率为.6.【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P(A)=7.【答案】D【解析】由题意可知,点P位于BC边的中线的中点处.记黄豆落在△PBC内为事件D,则P(D)=8.【答案】A【解析】设这两个实数分别为x,y,则,满足的部分如图中阴影部分所示.所以这两个实数的和大于的概率为9.【答案】A【解析】依题意,将这六个不同的水果分别放入这六个格子里,每个格子放入一个,共有A66=720种不同的放法,其中满足放好之后每行、每列的水果种类各不相同的放法共有96种(此类放法进行分步计数:第一步,确定第一行的两个格子的水果放法,共有种放法;第二步,确定第二行的两个格子的水果放法,有种放法,剩余的两个水果放入第三行的两个格子),因此所求的概率等于10.【答案】B【解析】因为f(x)=x2+2ax-b2+π有零点,所以Δ=4a2-4(π-b2)≥0,即a2+b2-π≥0,由几何概型的概率计算公式可知所求概率为11.【答案】【解析】两个数a、b在区间内随机取,以a为横坐标、b为纵坐标建立如图所示直角坐标系,可得对应的点(a,b)在如图的正方形OABC及其内部任意取,其中A(0,4),B(4,4),C(4,0),O为坐标原点,若函数有零点,则解之得,满足条件的点(a,b)在直线a-2b=0的下方,且在正方形OABC内部的三角形,其面积为正方形OABC的面积为函数有零点的概率为12.【答案】【解析】直线与两个坐标轴的交点分别为(,0),(0,),又当m∈(0,3)时,,∴··<,解得0<m<2,∴P=三、解答题13.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝,1红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和不大于4的有10种情况,所以概率为.14.【解析】设事件为“方程有实根”.当,时,方程有实根的充要条件为.(Ⅰ)基本事件共20个:事件中包含个基本事件,所以事件发生的概率为.(Ⅱ)试验的全部结果构成的区域为,∴,构成事件的区域为,∴,所以所求的概率为.15.【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域内,属于几何概型,该平面区域的图形为下图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1==.∴所求事件的概率为。

8.5古典概型及几何概型(教师版)

8.5古典概型及几何概型(教师版)

科目数学年级高三备课人高三数学组第课时8.5古典概型及几何概型考纲定位掌握古典概型及其概率计算公式;了解几何概型的意义;一、基本事件:1、定义:;2、关于基本事件,下列说法错误的是()DA.一次试验中只能发生一个基本事件B.任何两个基本事件都是互斥的C.任何事件(除不可能事件)都可以表示成基本事件的和D.每个基本事件发生的概率相等3、(1)已知箱中有6个除了编号外完全相同的小球,若一次取两个小球,则共有个基本事件;(2)已知箱中有6个除了编号外完全相同的小球,若先后取两个小球,则共有个基本事件.二、古典概型:1、古典概型的特点:(1);(2) .2、古典概型的计算公式:例1、现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,确认产品等次后放回,然后再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率;(3)求有放回地连续取3次,3次中恰有2次取到次品的概率.变式训练:1、将一骰子连续抛掷两次,则向上点数之差的绝对值不大于3的概率是()BA.23B.56C.2936D.342、(2011 新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()AA.13B.12C.23D.343、(2012 安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率为()BA.15B.25C.35D.454、(2012 广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()DA.49B.13C.29D.195、(2012 重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率是3 56、(2012 江苏)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 357、(2011 江苏)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是 13小结:古典概型的概率求解步骤:(1) (2) (3) “一判、二列、三数”三、几何概型:1.几何概型的概念及特点: ;2.几何概型的概率计算公式:3.几何概型的常见类型:(1) (2) (3)例2、(1)在区间[1,3]上任取一个数,则这个数大于2的概率为( )BA.0.25B.0.5C.0.75D.1(2)取一个正方形,作它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为( )BA.2π B.2ππ- C.2πD.4π变式训练:1、已知一只蚂蚁在边长分别为3,4,5的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为 ;2、已知一只蚂蚁在边长分别为3,4,5的三角形的内部随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为 ;3、(2012 辽宁)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )CA.16 B.13 C.23 D.454、(2012 北京)设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )DA.4π B.22π- C.6π D.44π- 5、(2011 湖南)已知圆C:2212x y +=,直线:4325l x y +=,则圆C 上任意一点A 到直线l 的距离小于2的概率为 16【课后反思】。

17.2 古典概型与几何概型

17.2  古典概型与几何概型

17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。

【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ()A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15B .524C .1081D .5122. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1D .P 8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 .7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?第3题图C9.设A为圆周上一定点,在圆周上等可能的任取一点P与A连结,倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。

古典概型和几何概型例题12(带答案)

古典概型和几何概型例题12(带答案)

古典概型:例题1、随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为,点数之和大于5的概率为,点数之和为偶数的概率为,则( C ) A. B.C.D.例题2、位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(D )。

55% A: B: C: D:例题3、从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n= 8例题4、从,,,,,,,,,中任取七个不同的数,则这七个数的中位数是的概率为__61___ 。

例题5、甲、乙两名运动员各自等可能地从红、白、蓝种颜色的运动服中选择种,则他们选择相同颜色运动服的概率为__31___ 。

例题7、甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从到号景点中任选个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( D ) 23%A:B:C:D:几何概型:例题8、如图,在矩形区域的,两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域和扇形区域(该矩形区域内无其他信号来源,基站工作正常)。

若在该矩形区域内随机地选一地点,则该地点无信号的概率是( A )。

A:B:C:D:例题9、由不等式组,确定的平面区域为,不等式组确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为(D)。

48%A:B:C:D:解析:为图中的阴影部分,为图中两平行直线之间的部分,由题意可知所求概率。

例题10、如图,在边长为(为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_____ 。

例题11、正方形的四个顶点A(−1,−1),B(1,−1),C(1,1),D(−1,1)分别在抛物线y3例题12、某校早上开始上课,假设该校学生小张与小王在早上之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早分钟到校的概率为__329___ 。

(用数字做答) 解析:设小张与小王到校的时刻与的差值分别为,分钟,则,则有序数对的所有可能的点为下图所示边长为的正方形,因小张比小王至少早分钟,则,如下图所示阴影部分,则小张比小王至少早分钟的概率为。

古典概型与几何概型精选习题

古典概型与几何概型精选习题

古典概型和几何概型检测试题1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A .0.62B .0.38C .0.02D .0.682.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为( )A .310 B .15 C .25 D .45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A .116B .216 C .316 D .14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A .34B .38C .14D .18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( )A .13B .49C .59D .7106如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( )A .2π B .1π C .23 D .137.如图,有一圆盘其中的阴影部分的圆心角为45o ,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( )甲 乙 1 2 3 4 1 2 34A.18B.14C.12D.348.现有100ml的蒸馏水,假定里面有一个细菌,现从中抽取20ml的蒸馏水,则抽到细菌的概率为()A.1100 B.120C.110D.159.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是()A.14 B.18 C.110 D.11210.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是()A.15 B.25 C.35 D.2711.若过正三角形ABC的顶点A任作一条直线L,则L与线段BC相交的概率为()A.12 B.13 C.16 D.11212.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A.0.5 B.0.4 C.0.004 D.不能确定13.平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率()A.ra B.2ra C.ara-D.2a ra-14.已知地铁列车每10min一班,在车站停1min.则乘客到达站台立即乘上车的概率为.15.随机向边长为2的正方形ABCD中投一点P,则点P与A的距离不小于1且与CPD为锐角的概率是__________________.的概率是.16.在区间(0,1)中随机地取出两个数,则两数之和小于5617.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间为早上7:00~8:00之间,你父亲在离开家前能拿到报纸的概率为_______.18.飞镖随机地掷在下面的靶子上.(1)在靶子1中,飞镖投到区域A、B、C的概率是多少?(2)在靶子1中,飞镖投在区域A或B中的概率是多少?在靶子2中,飞镖没有投在区域C中的概率是多少?19.一只海豚在水池中游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.20.在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.21.已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.22.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.⑴、甲、乙按以上规则各摸一个球,求事件“甲赢且编号的和为6”发生的概率;⑵、这种游戏规则公平吗?试说明理由.23.某人有3枚钥匙,其中只有一枚房门钥匙,但忘记了开房门的是哪一枚,于是,他逐枚不重复地试开,问:(Ⅰ)恰好第三次打开房门锁的概率是多少?(Ⅱ)两次内打开房门的概率是多少?24. 图甲“根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.”2009年8月15日晚8时开始某市交警一队在该市共查出酒后驾车者60名,图甲是用酒精测试仪对这 出的频率分布直方图. (1)求这60名酒后驾车者中属醉酒驾车的人数;(图甲中每组包括左端点,不包括右端点) (2)统计方法中,同一组数据常用该组区间的中点值作为代表,图乙的程序框图是对这60名酒后驾车者血液的酒精浓度做进一步的统计,求出图乙输出的S 值, 并说明S 的统计意义;(图乙中数据i m 与i f 分别表示图图乙甲中各组的组中值及频率)(3)本次行动中,吴、李两位先生都被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上,但他俩坚称没喝那么多,是测试仪不准,交警大队陈队长决定在被酒精测试仪测得酒精浓度在70/100mg ml (含70)以上的酒后驾车者中随机抽出2人抽血检验,求吴、李两位先生至少有1人被抽中的概率.25.在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率..13.B; 14. 111;1.B;2.B;3.C;4.A;5.C;6.A;7.A;8.B;9.C; 10.C; 11.C; 12.B; 15. 4arcsin52π; 16. 2572; 17. 87.5%; 2.18.(1)都是13;(2)23;34。

古典概型和几何概型练习题

古典概型和几何概型练习题

古典概型和几何概型一选择题(每小题5分,共计60分。

请把选择答案填在答题卡上。

)1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是A.这100个铜板两面是一样的 B.这100个铜板两面是不同的 C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是 A .0.42 B .0.28 C .0.3 D .0.73.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是 A .至少有一个红球与都是黒球 B .至少有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是A .4030B .4012C .3012 D .以上都不对5.先后抛掷硬币三次,则至少一次正面朝上的概率是A .81B . 83C . 85D . 876.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P A .A 与B 互斥 B .A 与B 对立 C.B A ⊆ D. A 不包含B7.在第1、3、4、5、8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于A.21B. 32C.53D.52 8. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为A.157B.158C.539. 从全体3位数的正整数中任取一数,则此数以2为底的对数也是正整数的概率为A.2251B.3001C.4501 D.以上全不对 10. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是.A.21B.31C.41 D.不确定11. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是A.101 B.91 C.111 D.81 12. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是.A.2511B.2491C.2501D.2521二、填空题:请把答案填在题中横线上(每小题5分,共20分、13.在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.14.在20瓶墨水中,有5瓶已经变质不能使用,从这20瓶墨水中任意选出1瓶,取出的墨水是变质墨水的概率为_________.15. 从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,则三个数字完全不同的概率是_________.16. 从1,2,3,…,9这9个数字中任取2个数字.(1)2个数字都是奇数的概率为_____;(2)2个数字之和为偶数的概率为____.13) 49 14) 14 15) 1225 16) 518 49三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共2个大题,共20分) 17. 在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率. .18. 抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.17)解:在AB 上截取AC ′=AC ,于是 P (AM <AC )=P (AM <C A ')=22=='AB AC AB C A . 答:AM 的长小于AC 的长的概率为22.解:作图,从下图中容易看出基本事件空间与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x ≤6,1≤y ≤6}中的元素一一对应.因为S 中点的总数是6×6=36(个),所以基本事件总数n=36.(1)记“点数之和出现7点”的事件为A ,从图中可看到事题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A C DB D B D B B B A CAB C C'M件A 包含的基本事件数共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P (A )=61366 .(2)记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的基本事件数只有1个:(4,4).所以P (B )=361.。

(完整版)古典概念与几何概型(带答案).docx

(完整版)古典概念与几何概型(带答案).docx

古典概型与几何概型1.【 2018 年理新课标 I 卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的三边所围成的区域记为I ,黑色部分记为IIABC的斜边,其余部分记为BC,直角边AB, AC.△ ABCIII.在整个图形中随机取一点,此点取自I , II, III的概率分别记为p1, p2, p3,则A. p 1=p2B. p1=p3C. p 2=p3D. p1=p2+p3【答案】 A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2, p3的关系,从而求得结果 .详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选 A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果 .2.【 2018 年理新课标 I卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】 A详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为 0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以 A 项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以 B 项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选 A.3.【 2018 年理数全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30 的素数,再确定两个不同的数的和等于30 的取法,最后根据古典概型概率公式求概率.详解:不超过30 的素数有2,3, 5, 7, 11, 13, 17, 19, 23, 29,共10 个,随机选取两个不同的数,共有种方法,因为 ,所以随机选取两个不同的数,其和等于 30 的有 3 种方法,故概率为 ,选 C.4.【2017 课标 1,理】 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 .在正方形内随机取一点, 则此点取自黑色部分的概率是1π A .B .48 C .1π D .24【答案】 B【解析】【考点】几何概型5. 【 2017 山东,理8】从分别标有 1, 2 , , 9 的 9 张卡片中不放回地随机抽取2 次,每次抽取 1 张.则抽到的 2 张卡片上的数奇偶性不同 的概率是(A )5( B )4(C )5(D )18997 9【答案】 C【考点】古典概型6.【2017 江, 7】函数 f ( x)6 x x2的定域 D .在区[ 4,5]上随机取一个数x ,x D 的概率是▲.【答案】59【考点】几何概型概率7.( 2016 年全国 I 高考)某公司的班在7:30, 8:00, 8:30 ,小明在7:50至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是( A )1123 3(B)2( C)3( D)4【答案】 B8、( 2016 年全国 II 高考)从区0,1随机抽取2n 个数x1,x2,⋯,x n,y1,y2,⋯,y n,构成 n 个数x1 , y1, x2 , y2,⋯, x n , y n,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似( A)4n( B)2n(C)4m( D)2m m m n n【答案】 C9.( 2016 年山高考)在[-1,1]上随机的取一个数k,事件“直y = kx 与( x-5)2 + y2 = 9 相交” 生的概率3【答案】.410.【2015 高考广东,理 4】袋中共有 15 个除了颜色外完全相同的球,其中有 10 个白球, 5个红球。

古典概型与几何概型 练习题

古典概型与几何概型 练习题

古典概型与几何概型1.(2019·长沙长郡中学选拔性考试)长郡中学要从师生推荐的参加讲课比赛的3名男教师和2名女教师中,任选2人参加讲课比赛,则选取的2人恰为一男一女的概率为( )A.25 B.35 C.13D.23解析:选B 从3名男教师和2名女教师中任选2人参加讲课比赛,基本事件总数为10,选取的2人恰为一男一女包含的基本事件个数为6,故选取的2人恰为一男一女的概率为P =m n =610=35.故选B. 2.(2019·贵阳模拟)某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这三个项目都有人参加的概率为( )A.89B.49C.29D.827解析:选B 基本事件总数n =34=81,这三个项目都有人参加所包含的基本事件个数m =C 24A 33=36,故这三个项目都有人参加的概率为P =m n =3681=49. 3.(2019·广东五校联考)从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为( )A.23B.13C.19D.18解析:选C 从1~9这9个自然数中任取7个不同的数的取法共有C 79=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C 34=4种选法,故这7个数的平均数是5的概率为436=19,选C.4.(2019·成都外国语学校月考)《九章算术》中有如下问题:今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:已知直角三角形的两直角边长分别为8步和15步,问其内切圆的直径为多少步.现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A.3π10B.3π20C .1-3π10D .1-3π20解析:选D 直角三角形的斜边长为82+152=17, 设内切圆的半径为r ,则8-r +15-r =17,解得r =3. ∴内切圆的面积为πr 2=9π,∴豆子落在内切圆外的概率P =1-9π12×8×15=1-3π20.5.(2019·长春质检)如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为( )A.14B.13C.27D.38解析:选A 设OA =3,则AB =33,AP =3,由余弦定理可求得OP =3,则∠AOP =30°,所以扇形AOC 的面积为3π4,又扇形AOB 的面积为3π,从而所求概率为3π43π=14. 6.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB .4-63πC .413-32πD .423解析:选B 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24×⎝ ⎛⎭⎪⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B. 7.已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.79B.13C.59D.23解析:选D f ′(x )=x 2+2ax +b 2,要使函数f (x )有两个极值点,则有Δ=(2a )2-4b 2>0,即a 2>b 2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.满足a 2>b 2的有6个基本事件,即(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),所以所求事件的概率为69=23.8.(2019·安阳模拟)在边长为a 的正三角形内任取一点P ,则点P 到三个顶点的距离均大于a2的概率是( )A .1112-36π B .1-36π C .13D .14解析:选B 如图,正△ABC 的边长为a ,分别以它的三个顶点为圆心,a2为半径,在△ABC 内部画圆弧,得到三个扇形,则点P在这三个扇形外,因此所求概率为34a 2-12×π×⎝ ⎛⎭⎪⎫a 2234a 2=1-36π,故选B.9.(2019·石家庄毕业班摸底)一个三位数,个位、十位、百位上的数字依次为x ,y ,z ,当且仅当y >x ,y >z 时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为( )A.23B.13C.16D.112解析:选B 从集合{1,2,3,4}中取出三个不相同的数组成一个三位数共有24个结果:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432,其中是“凸数”的是132,142,143,231,241,243,341,342,共8个结果,所以这个三位数是“凸数”的概率为824=13,故选B.10.(2018·全国卷Ⅰ)如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3解析:选A 法一:∵S △ABC =12AB ·AC ,以AB 为直径的半圆的面积为12π·⎝ ⎛⎭⎪⎫AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·⎝ ⎛⎭⎪⎫AC 22=π8AC 2,以BC 为直径的半圆的面积为12π·⎝ ⎛⎭⎪⎫BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC ,S Ⅱ=⎝ ⎛⎭⎪⎫π8AB 2+π8AC 2-⎝ ⎛⎭⎪⎫π8BC 2-12AB ·AC=12AB ·AC . ∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=S ⅠS 总,p 2=S ⅡS 总, ∴p 1=p 2.故选A.法二:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×222-2=2,区域Ⅲ的面积S 3=π×222-2=π-2.根据几何概型的概率计算公式, 得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.11.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x -甲,x -乙,则x -甲>x -乙的概率是________.解析:设污损处的数字为m ,由15(84+85+87+90+m +99)=15(86+87+91+92+94),得m =5,即当m =5时,甲、乙两人的平均成绩相等.m 的取值有0,1,2,3,…,9,共10种可能,其中,当m =6,7,8,9时,x -甲>x -乙,故所求概率为410=25.答案:2512.(2018·湖北武汉模拟)某路公交车在6:30,7:00,7:30准时发车,小明同学在6:50至7:30之间到达该车站乘车,且到达该站的时刻是随机的,则他等车时间不超过10分钟的概率为________.解析:小明同学在6:50至7:30之间到达该车站乘车,总时长为40分钟,公交车在6:30,7:00,7:30准时发车,他等车时间不超过10分钟,则必须在6:50至7:00或7:20至7:30之间到达,时长为20分钟,则他等车时间不超过10分钟的概率P =2040=12. 答案:1213.(2019·南京模拟)口袋中有形状、大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________.解析:从袋中一次随机摸出2个球,共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6个基本事件,其中摸出的2个球的编号之和大于4包含的基本事件有{1,4},{2,3},{2,4},{3,4},共4个,因此摸出的2个球的编号之和大于4的概率为46=23.答案:2314.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12.(1)求n 的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“2≤a +b ≤3”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率. 解:(1)依题意共有小球n +2个,标号为2的小球n 个,从袋子中随机抽取1个小球,取到标号为2的小球概率为nn +2=12,得n =2. (2)①从袋子中不放回地随机抽取2个小球,(a ,b )所有可能的结果为(0,1),(0,2),(0,2),(1,2),(1,2),(2,2),(1,0),(2,0),(2,0),(2,1),(2,1),(2,2),共有12种,而满足2≤a +b ≤3的结果有8种,故P (A )=812=23. ②由①可知,(a -b )2≤4,故x 2+y 2>4,(x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={}x ,y |0≤x ≤2,0≤y ≤2,x ,y ∈R ,由几何概型得概率为P =22-14π·2222=1-π4.15.(2019·昆明适应性检测)某校为了解高一学生周末的阅读时间,从高一年级中随机抽取了100名学生进行调查,获得了每人的周末阅读时间(单位:h),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.(1)求图中a 的值;(2)估计该校高一学生周末阅读时间的中位数;(3)在[1,1.5),[1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2人恰好都在同一个组的概率.解:(1)由频率分布直方图可知,周末阅读时间在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4, 4.5]的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由1-(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5×a +0.5×a .解得a =0.30.(2)设中位数为m h.因为前5组的频率之和为0.04+0.08+0.15+0.20+0.25=0.72>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.20=0.47<0.5,所以2≤m <2.5. 由0.50×(m -2)=0.5-0.47,解得m =2.06.故可估计该校高一学生周末阅读时间的中位数为2.06 h.(3)由题意得周末阅读时间在[1,1.5),[1.5,2)中的学生分别有15人、20人,按分层抽样的方法应分别抽取3人、4人,故抽取的两人恰好都在同一个组的概率为C 23+C 24C 27=37.。

古典概型与几何概型基础复习习题练习

古典概型与几何概型基础复习习题练习

古典概型与几何概型(基础+复)练习+习题+习.课题:古典概型与几何概率考纲要求:会计算理解古典概型及其概率计算公式;②①一些随机事件所含的基本事件数及事件发生的概率;③了解随机数的意义,能运用模.拟方法估计概率;④了解几何概型的意义教材复习每一次试验中所有可能“把同时具有: 古典概型:11.出现的结果都是有限的,每次试验只出现其中每一个结果出现的可能性相同”的一个结果;??2两个特征的随机试验的数学模型称为古典概型:基本步骤:①计算一次试验中基本事件的总数;;②事件包含的基本事件的个数mn A m. ③由公式计算?P(A)n.. 等可能的注:必须在解题过程中指出:如果每个事件发生的概率只与构成事几何概型2.件的长度(面积或体积)成比例,则称这样的概率模型为简称.,几何概型几何概率模型每一次试验中所有可能出现的结果特性:都是无限的,每一个结果出现的可能性都是相等的.)3)集合表示(构设变量基本步骤:(1)(2. )计算求解作出区域(4:计算的几何概型???PA积)的区域长度(面积或体构成事件A积)的区域长度(面积或体试验的全部结果所构成467 )《汉书》.(谬以千里,差以毫厘 . 不会学会,会的做对.是在一定范围内随机产生的数,并且在这:随机数3.个范围内得到每一个数的机会相等.随机数的一个重要应用就是用计算机产生随机数来模拟设计实验.模拟是利用模型来研究某些现象的性质的一种有效方法,可以节约大量的人力、物力.典例分析:考点一古典概型的概念判断下列命题正确与否:.1问题掷两枚硬币,可能出现“两个正面”,“两个反??1某袋中装有大小均匀“一正一反”种结果;面”,??23的三个红球、两个黑球、一个白球,那么每种从颜色的球被摸到的可能行相同;??31,0,1,2??4,?3,?2,的可能和不小于中任取一数,取到的数小于00性相同;名男同学,名女同学中各选一名做代分别从??434表,那么每个同学当选的可能性相同;人抽签,甲先抽,乙后抽,那么乙与甲抽到??55.某中奖签的可能性肯定不同古典概型的概率考点二一个口袋中装有大小相同的个白球和已.问题21经编有不同号码的个黑球,从中摸出个球,32468 )《汉书》.(谬以千里,差以毫厘. 不会学会,会的做对.求:基本事件总数;事件:“摸出个黑球”????212包含的基本事件是多少个?“摸出个黑球”的??32概率是多少?;同时掷两个骰子,计算:一共有多少种.3问题??1不同的结果?其中向上的点数之和是的结果??25又多少种?“向上的点数之和是”的概率是多??35少?将一个骰子先后抛掷三次,求向上点数之.问题4和不是的倍数的概率.6469 )《汉书》.(谬以千里,差以毫厘 . 不会学会,会的做对.名奥运会志愿者,其中山东文)现有(.问题5808通通晓日语,志愿者通晓俄语,BB,B,A,A,AC,C32311221晓韩语.从中选出通晓日语、俄语和韩语的志被选中的概率;组成一个小组.求愿者各名,??1A11不全被选中的概率.求和??BC211与长度有关的几何概型考点三之间的均利用计算机产生(福建).问题6??1102013匀随机数,则时间“”发生的概率为0?a3?1a470 )《汉书》.(谬以千里,差以毫厘 . 不会学会,会的做对.在等腰直角三角形中,在斜边上任取一??2ABCAB.,求点不大于的概率ACAM A BM471 )《汉书》.(谬以千里,差以毫厘. 不会学会,会的做对.考点四与面积有关的几何概型, 在矩形区域的(陕西) 如图, 7.问题??1CABCD2013A假设其信号覆盖范两点处各有一个通信基站, 该矩形区域(形区域围分别是扇形区域CBFADE若在该矩). 内无其他信号来源, 基站工作正常信号的则该地点无形区域内随机地选一地点, .概率是D????.B.CD.A.?2??111422EA2(四川)节日里某家前的树上挂了两串彩22013灯,这两串彩灯的第一次闪亮相互独立,若接秒内任一时刻等可能发生,然后每串通电后的4秒为间隔闪亮,那么这两串彩灯同时彩灯在内4秒通电后,它们第一次闪亮的时刻相差不超过2的概率是311.CB.A.4427.D8472 )《汉书》.(谬以千里,差以毫厘 . 不会学会,会的做对.到甲乙两人约定上午(枣庄三中模拟)8.问题00088::700班公共之间到某个汽车站乘车,在这段时间内有3如果,、汽车,他们开车的时刻分别为、008:407:7:20他们约定,见车就乘,则甲乙两人同乘一班车的概1111率为.DCB..A.6423考点五与体积有关的几何概型473 )《汉书》.(谬以千里,差以毫厘 . 不会学会,会的做对.,内有一个内切球已知正方体9.问题DBCABCD A O1111在球则在正方体,点内任取一点DCAB?ABCDMM1111????内的概率.D.BAOC..12684与角度有关的几何概型考点六)(湖南文:问题10??22. :,直线12?xy?25y?x4?3l1:已知圆C2011的圆心到直线①圆的距离为Cl的距离小于到直线的概率为上任意一点②圆ClA2交中,,过直角顶点作射线在??2CMC?30?Rt△ABCA,线段于MAB.求使的概率CACAM?474 . 不会学会,会的做对谬以千里,差以毫厘.()《汉书》BA M.课后作业:的线段内任取两点将线段分为三在长度为101..段,求这三段可以构成三角形的概率上任意取两个实数(黄冈模拟)在区间??0,120132.1,则函数3b?axx??f(x)ba,2在区间上有且仅有一个零点的概率为??1,1?731.DCA.B..8448走向高考:475 )《汉书》.(谬以千里,差以毫厘 . 不会学会,会的做对.广东文)在一个袋子中装有分别标注数字(071.数字外完这些小球除标注的的五个小球,1,2,3,4,5个小球,则取出的全相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
古典概型和几何概型
一选择题(每小题5分,共计60分。

请把选择答案填在答题卡上。


1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是
A.这100个铜板两面是一样的 B.这100个铜板两面是不同的 C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的
2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是 A .0.42 B .0.28 C .0.3 D .0.7
3.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是 A .至少有一个红球与都是黒球 B .至少有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球
4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是
A .4030
B .4012
C .30
12 D .以上都不对
5.先后抛掷硬币三次,则至少一次正面朝上的概率是
A .81
B . 83
C . 85
D . 8
7
6.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P A .A 与B 互斥 B .A 与B 对立 C.B A ⊆ D. A 不包含B
7.在第1、3、4、5、8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于
A.21
B. 32
C.53
D.5
2 8. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为
A.157
B.158
C.5
3
D.1 9. 从全体3位数的正整数中任取一数,则此数以2为底的对数也是正整数的概率为
A.2251
B.3001
C.450
1 D.以上全不对
10. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是.
A.21
B.31
C.4
1 D.不确定
11. 已知地铁列车每10 min 一班,在车站停1 min.则乘客到达站台立即乘上车的概率是
A.
101 B.91 C.111 D.8
1 12. 在1万 km 2的海域中有40 km 2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是.
A.251
1 B.2491 C.2501 D.2521
2
二、填空题:请把答
案填在题中横线上(每小题5分,共20分、
13.在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是________.
14.在20瓶墨水中,有5瓶已经变质不能使用,从这20瓶墨水中任意选出1瓶,取出的墨水是变质墨水的概率为_________.
15. 从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,则三个数字完全不同
的概率是_________.
16. 从1,2,3,…,9这9个数字中任取2个数字.(1)2个数字都是奇数的概率为_____;(2)2个数字之和为偶数的概率为____.
13) 49 14) 14 15) 1225
16) 518 49
三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共2个大题,共20分) 17. 在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率. .
18. 抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.
17)解:在AB 上截取AC ′=AC ,于是 P (AM <AC )=P (AM <C A ')
=22
=='AB AC AB C A . 答:AM 的长小于AC 的长的概率为
2
.
解:作图,从下图中容易看出基本事件空间与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x ≤6,1≤y ≤6}中的元
素一一对应.
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
A C D
B D B D B B B A C
A B
C C 'M
3
因为S 中点的总数是6×6=36(个),所以基本事件总数n=36.
(1)记“点数之和出现7点”的事件为A ,从图中可看到事件A 包含的基本事件数共6个:
(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P (A )=6
1
366 .
(2)记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的
基本事件数只有1个:(4,4).所以P (B )=36
1
.。

相关文档
最新文档