概率(上):古典概型与几何概型
1-3古典概型与几何概型
例(会面问题)甲、乙两人相约8点到9点在某 地会面,先到者等候另一人20分钟,过时就可 离去,试求这两人能会面的概率. 解: 以x,y分别表示甲、乙两人的到达时刻,则两人能
y
60
会面的充要条件为 x y 20
y x 20
x y 20
{( x , y ) | 0 x 60, 0 y 60} A {( x , y ) | ( x , y ) ,| x y | 20}
事件分别为A,B,C,D.
(1)第i次取到的是黑球;
…
1 2 i
…
a+b
a ab
P ( A)
a [(a b 1)!] ( a b )!
----------抽签的公平性
(2)第i次才取到黑球;
…
1
P( B)
…
i-1
2
a Pb
i 1
3
i
a Pb
i i 1
a+b
r
2( n r 1) n( n 1)
n!
练习:
P30 : 12
(2)袋中取球问题(有无放回取球,取球是否考虑顺序) 例:一个袋子中装有10个大小相同的球,其中 3个黑球,7个白球。每次随机地从袋中取一 球,连续取两次。 取球方式 (1)无放回 (2)有放回
分别求下列事件的概率:
(1)取到的两球刚好一个白球一个黑球 (2)两个球全是黑球 (3)两个球中至少有一个黑球
P ( A) 1 P ( A) 1 C 9995 C10000
10 10
0.00499
2.《学习指导与习题解析》:P21:6, P23:9
§14.4 古典概型与几何概型
“围棋”社团被抽取的同学中有 2 名女生,求至少有 1 名女同学被选担任监督职务
的概率.
解析
【解析】(1)设抽样比为 x,则由分层抽样可知,从“街舞”“围棋”“武术”三个社团 抽取的人数分别为 320x,240x,200x,则由题意得 320x-240x=2,解得 x=410,
故从“街舞”“围棋”“武术”三个社团抽取的人数分别为 320×410=8,240×410=6, 200×410=5.
.
答案
ቤተ መጻሕፍቲ ባይዱ
三、几何概型 1.定义:若每个事件发生的概率只与构成该事件区域的 长度 (面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有 无限多个 . (2)等可能性:每个结果的发生具有 等可能性 .
构成事件������的区域长度(面积或体积) 3.几何概型的概率公式 P(A)= 试验的全部结果所构成的区域长度(面积. 或体积)
������
2.利用古典概型求概率的关键是要正确求出基本事件的总数和随机事件包 含的基本事件的个数,对于较复杂的题目,计数时要正确分类,分类时应不重不漏, 要正确选择列举法、列表法、树状图法等.
【追踪训练 1】(2020 届天津高考模拟)根据调查,某学校开设了“街舞”“围
棋”“武术”三个社团,三个社团参加的人数如下表所示:
(2)从抽出的 6 人中,任选 2 人参加一对一的对抗比赛,基本事件总数为 n=C62=15, 这 2 人来自同一年龄组包含的基本事件个数为 m=C32+C22=4, ∴这 2 人来自同一年龄组的概率 P=������������=145.
解析
点拨:1.求古典概型概率的步骤 (1)判断本试验的结果是否为等可能事件,设出所求事件 A; (2)分别求出基本事件的总数 n 与所求事件 A 中所包含的基本事件个数 m; (3)利用公式 P(A)=������,求出事件 A 的概率.
1.3古典概型与几何概型
解 在N件产品中抽取n件的所有可能取法共有 N 种, n
在 N 件产品中抽取n件,其中恰有k 件次品的取法
D N D 种, k n k D N D N . 于是所求的概率为 p k n k n
河南理工大学精品课程 概率论与数理统计
19
2005
. (1) 设事件 A1 为“恰有一 练习1 将一枚硬币抛掷三次 次出现正面” , 求 P ( A1 ). ( 2) 设事件 A2 为 “至少有一 次出现正面” , 求 P ( A2 ).
解 (1) 设 H 为出现正面, T 为出现反面.
则 S { HHH , HHT , HTH , THH , HTT , THT , TTH , TTT }.
S {HH, HT, TT}
他计算得
P( A) 1 3
3
这不是 等可能概型!
2005
河南理工大学精品课程 概率论与数理统计
袋中有 a 只白球, b只红球. 从袋中任取 n 只球, 求取到 k ( min(n, a) ) 只白球的概率. 从 a b 只球中任取 n 只,样本点总数为
nk k C C 取到 k 只白球的有利场合数为 a b
概率非常小的事件,称为小概率事件
小概率事件在大量重复试验中几乎是必然 发生的.
下面的例题是利用统计推断原理对某种假设作
出判断(接受或拒绝),这在数理统计的假设检验 中是非常有用的。
例:某接待站在某一周内接待了12次来访者,已知
所有这些来访都是在星期二与星期四进行的,问能否由此 推断该接待站的接待时间是有规定的? 〖解〗若接待时间没有规定,且来 抽象:模型化 人=“球”
1.3_古典概型与几何概型
种取法.
摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从 袋中无放回地依次摸出2只球,求这2只球都 是白球的概率. 解 设 A = {摸得 2 只球都是白球}, 基本事件总数为 6×5 A 所包含基本事件的个数为 4 × 3 4×3 2 故 P( A) = = . 6×5 5
5 8 1 4 6 9 3 10 7
设 随机试验E 具有下列特点: 概率的 基本事件的个数有限 古典定义 每个基本事件等可能性发生 则称 E 为 古典(等可能)概型
古典概型中事件概率的计算
摸到2号球 记 A={摸到 号球 摸到 号球} P(A)=?
2
P(A)=1/10
摸到红球} 记 B={摸到红球 摸到红球 P(B)=?
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 某城市每周发生7次车祸, 某城市每周发生 次车祸,假设每天发生 次车ห้องสมุดไป่ตู้ 车祸的概率相同. 车祸的概率相同. 求每天恰好发生一次车祸 的概率. 的概率 车祸 天
几何概型 (等可能概型的推广)
如果一个随机试验的样本空间 Ω 是一个大小 可以度量的几何区域。向区域内任意投一点, 落在区域内任意点处都是“等可能的”,则 称这类随机试验为几何概型。
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 个人, 有n个人,设每个人的生日是任一天的概 个人 率为1/365. 求这n (n ≤365)个人的生日互不相 率为 求这 个人的生日互不相 同的概率. 同的概率 人 任一天
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 个旅客, 个车站 有n个旅客,乘火车途经 个车站,设每 个旅客 乘火车途经N个车 个人在每站下车的概率为1/ 个人在每站下车的概率为 N(N ≥ n) ,求指 定的n个站各有一人下车的概率 定的 个站各有一人下车的概率. 个站各有一人下车的概率 旅客 车站
第13章第2讲 古典概型与几何概型
1 3
������
3)ቚ1 −1
=43,故所求概率P=
4 3
2
=23.故选B.
考法4 随机模拟的应用
考法指导 利用随机模拟试验可以近似计算不规则图形A的面积,解题的依 据是根据随机模拟估计概率P(A)=随机随取机的取点点落的在总������中次的数频数,然后根据 P(A)=随机取点构的成全事部件结������的果区构域成面的积区域面积列等式求A的面积.为了方便解题, 我们常常设计出一个规则的图形(面积为定值)来表示随机取点的全部结果 构成的区域.
C方法帮∙素养大提升 易错 几何概型中“区域”选取不准致误
理科数学 第十三章:概率
理科数学 第十三章:概率
考情精解读
考纲解读 命题规律 命题分析预测
考纲解读
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解随机数的意义,能运用模拟方法估计概率. 4.了解几何概型的意义.
∠∠������������������������������������′=π−π22 π4 =34.
( 利用角度比求概率 )
理科数学 第十三章:概率
拓展变式2 在区间[0,π]上随机取一个数x,使cos x的值介于- 23与 23之间的 概率为( )
A.13 B.23 C.38 D.58 答案 B
思路分析 先写出“6元分成3份”所含的基本事件数,然后求出乙获得“手气 最佳”所含的基本事件数,最后利用古典概型的概率公式即可得结果.
理科数学 第十三章:概率
解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元. 乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为 (1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)( 按顺 序列举,不重不漏) 乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1), (2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=140=25. 答案 D
高考数学总复习第十二章概率12.2古典概型与几何概型市赛课公开课一等奖省名师优质课获奖PPT课件
2.直线与圆有公共点,即圆心到直线距离小于或等于半径,由此得
出a≤b,则满足a≤b基本事件个数就能求出来,从而转化成与概率
基本事件相关问题.
3.f(x)在区间(-∞,-1]上是减函数可转化成开口向上二次函数f(x)图
象对称轴与x轴交点横坐标大于或等于-1,从而得出b≤a,从而不难
得出b≤a包含基本事件数.所以也转化成了与概率基本事件相关问
②等可能性:每个结果发生含有等可能性.
(3)公式:
构成事件的区域长度(面积或体积)
P(A)= 试验的全部结果所构成的区域长度(面积或体积)
.
4.随机模拟方法
使用计算机或者其它方式进行模拟试验,方便经过这个试验求出
随机事件概率近似值方法就是随机模拟方法.
3/36
-4知识梳理
考点自测
1.任一随机事件概率都等于组成它每一个基本事件概率和.
C 35 C 13 C 25 C 23
3 (C 1 C 3 A(2)B
2
1 2 2
C(1)D
5 3 5 2 +C 3 C 5 C 3 )
C 25 C 23
C 23
5
D.7
关闭
3
= C 3 A 2 +C 2 C 2 = A 2 +C 2 = 5.
5 2
5 3
2
3
解析
答案
12/36
-13考点1
考点2
考点3
与圆(x-2)2+y2=2有公共点概率为
.
思索怎样把直线与圆有公共点问题转化成与概率基本事件相关
问题?
关闭
依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有
(1,1),(1,2),(1,3),…,(6,6),共 36 种,其中满足直线 ax+by=0 与圆
古典概率与几何概率的区别
古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。
几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。
一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。
三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。
1.3古典概型、几何概型
P(
A)
=
m( A) m( S )
几何概率显然满足:
(1)对任何事件 A,P( A) ³ 0;
(2)P( S) = 1;
(3)若事件 A1, A2,L , An,L 两两互不相容,则
+?
?
( ) P( U n=1
An )
=
?P
n=1
An
古典概型、几何概型
例 5(约会问题)甲乙二人相约在 0 到T 这段时间内,在预定地 点会面.到达时刻是等可能的,先到的人等候另一人,经过时间
(1)有放回抽样;(2)无放回抽样两种情形下,
第k (k = 1, 2,L , m + n) 次取到红球的概率.
解 设事件 A表示第k次取到红球,
(1)有放回抽样: P( A) = m . m+n
(2)无放回抽样:
P( A)
=
m×Amm++nn--11 Am+n
m+n
=
m(m+ n - 1)! (m+ n)!
概率论与数理统计
Probability and Statistics
— 概率论与数理统计教学组—
第1章 随机事件及其概率
1.3 古典概型、几何概型
学习 要点
古典概型 古典概型的概率计算方法 几何概型 几何概型的概率计算方法
古典概型、几何概型
一、古典概型的引入
掷一颗骰子,问“出现偶数点”“点数大于 4”的概率分别是
针与最近的一条平行线相交的充分必要条件是 x £ l sinq .
l
2a
x •
M
古典概型、几何概型
例 6(比丰投针问题)在平面上画有等距离的平行线,平行线间
古典概型与几何概型
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
古典概型与几何概型
古典概型与几何概型【知识点梳理】一、古典概型1.基本事件:一次试验连同其中可能出现的每一个结果,称为一个基本事件。
基本事件是试验中不能再分的最简单的随机事件。
基本事件有以下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,这种事件叫等可能性事件3.古典概型:具有以下两个特征的随机试验的概率模型称为古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
4.古典概型的概率计算公式: 对于古典概型,若试验的所有基本事件数为n ,随机事件A包含的基本事件数为m ,那么事件A 的概率定义为()m P A n=。
二、几何概型1. 几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比,则称这样的概率模型为几何概型。
2. 几何概型试验的两个基本特征:(1)无限性:指在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性。
3. 几何概型事件的概率计算公式:积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(【典型例题分析】题型一、古典概型的概率求法例1.单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。
如果考生掌握了考查的内容,他可以选择唯一正确的答案。
假设考生不会做,他随机地选择一个答案,问他答对的概率是_________.例2.在6瓶饮料中,有2瓶已过了保质期。
从中任取2瓶,取到已过保质期的饮料的概率是_______.例3. 将一枚质地均匀的硬币连掷三次,观察落地后的情形(1)写出这个试验的所有的基本事件;(2)“出现一枚正面朝上,两枚反面朝上”这一事件包含了哪几个基本事件?(3)求事件“出现一枚正面朝上,两枚反面朝上”的概率。
古典概型和几何概型
一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。
②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。
5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。
古典概型注意:①列举法:适合于较简单得试验。
②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。
2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。
概率论中几种概率模型方法总结
概率论中几种概率模型方法总结绪论:概率论中几种常用的概率模型是古典概型、几何概型、贝努里概型.本文对概率论中几种概率模型方法进行了总结。
1 古典概型古典概型及其概率是概率论的基础知识,它既是进一步学习概率的基础,下面就一些典型事件的分析来说明古典概型的概率计算方法。
古典概型的概率计算可以分为三个步骤:确定所研究的对象为古典概型;计算样本点数;利用公式计算概率。
即如果随机试验只有有限个可能结果,而且每一个可能结果出现的可能性相同,那么这样的随机试验就是古典概型问题。
若设Ω是一个古典概型样本空间, 则对任意事件A 有: A m P ( A ) ==Q n中的样本点数中的样本点数。
在计算m 和n 时,经常使用排列与组合计算公式。
在确定一个试验的每个基本事件发生的可能性相同时,经常根据问题本身所具有的某种“对称性”,即利用人们长期积累的关于“对称性”的实际经验,认为某些基本事件发生的可能性没有理由偏大或偏小。
关于古典概型的数学模型如下:1.1 袋中取球问题1.1.1 随机地同时从袋中取若干球问题随机地同时从袋中取若干球问题是古典概型中的一类最基本问题,其特点是所考虑的事件中只涉及球的结构而不涉及取球的先后顺序,计算样本点数时只需考虑组合数即可。
概率中的很多问题常常可以归结为此类问题来解决。
事件1 一袋中有m + n 个球,其中m 个黑球, n 个白球,现随机地从袋中取出k 个球( k ≤m + n) ,求其中恰好有l 个白球( l ≤n)的概率。
分析:随机地从袋中取出k 个球有km+n C 种可能的结果,其中“恰好有l 个白球”这一事件包含了l k-l n mC C 种结果,因此所求概率为lk - ln m k m + n C C P =C 这个结论可以作为一个公式来应用。
用它可以解决一些类似的问题。
1.1.2 随机地从袋中不放回地取球若干次随机地从袋中不放回地取球若干次就是指随机地从袋中每次只取一个球,取后不再放回袋中,连续进行若干次。
概率_古典概型与几何概型.板块一.古典概型.学生版
版块一:古典概型1.古典概型:如果一个试验有以下两个特征:⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的. 称这样的试验为古典概型. 2.概率的古典定义:随机事件A 的概率定义为()P A =A 事件包含的基本事件数试验的基本事件总数.版块二:几何概型几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量.题型一 基础题型【例1】 在第136816,,,,路公共汽车都要依靠的一个站(假设这个站只能停靠一辆汽车),有一位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性都是相等,则首先到站正好是这位乘客所需求的汽车的概率等于____【例2】 (2010崇文一模)从52张扑克牌(没有大小王)中随机的抽一张牌,这张牌是J 或Q 或K 的概率为_______.【例3】 (2010上海卷高考)从一副混合后的扑克牌(52张)中随机抽取1张,,事件A 为“抽得红桃K”,事件B 为“抽得为黑桃”,则概率()P A B = (结果用最简分数表示).知识内容典例分析板块一.古典概型【例4】 (2010湖北高考)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是A .512B .12C .712D .34【例5】 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( )A .12B .13C .14D .16【例6】 甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙后面值班的概率是( )A .16B . 14C .13 D .12【例7】 今后三天每一天下雨的概率都为50%,这三天恰有两天下雨的概率为多少?【例8】 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 .【例9】 现有8名奥运会志愿者,其中志愿者123,,A A A 通晓日语,123,,B B B 通晓俄语,12,C C 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.⑴求1A 被选中的概率; ⑵求1B 和1C 全被选中的概率.【例10】 (2009江西10)甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A .16B .14C .13D .12【例11】 一个各面都涂有色彩的正方体,被锯成1000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:⑴有一面涂有色彩的概率;⑵有两面涂有色彩的概率;⑶有三面涂有色彩的概率.题型二 中档题的常见载体模型扔骰子硬币 【例12】 将一枚硬币连续投掷三次,连续三次都得正面朝上的概率是多少?【例13】 将一枚硬币连续投掷三次,恰有两次正面朝上的概率是多少?【例14】 先后抛掷两颗骰子,设出现的点数之和是121110,,的概率依次是123P P P ,,,则( )A .123P P P =<B .123P P P <<C .123P P P <=D .123P P P >=【例15】 (08江苏)若将一颗质地均匀的骰子先后抛掷2次,则出现向上的点数之和为4的概率为 .【例16】 (05广东)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数123456,,,,,),骰子朝上的面的点数分别为X Y ,,则2log 1X Y =的概率为( )A .16B .536C .112D .12【例17】 若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆2216x y +=内的概率是 .【例18】 同时抛掷两枚骰子,⑴求得到的两个点数成两倍关系的概率; ⑵求点数之和为8的概率;⑶求至少出现一个5点或6点的概率.【例19】 某中学高一年级有12个班,要从中选两个班代表学校参加某项活动,由于某种原因,一班必须参加,另外再从二到十二班中选一个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?并说明理由.摸球【例20】(2009重庆6)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.891B.2591C.4891D.6091【例21】口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,⑴写出基本事件空间,并求共有多少个基本事件?⑵摸出来的两只球都是白球的概率是多少?⑶摸出来的两只球颜色不同的概率为多少?【例22】(2010朝阳一模)袋子中装有编号为,a b的2个黑球和编号为,,c d e的3个红球,从中任意摸出2个球.⑴写出所有不同的结果;⑵求恰好摸出1个黑球和1个红球的概率;⑶求至少摸出1个黑球的概率.【例23】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.⑴取到的2只都是次品;⑵取到的2只中恰有一只次品.【例24】有4个红球,3个黄球,3个白球装在袋中,小球的形状、大小相同,从中任取两个小球,求取出两个同色球的概率是多少?【例25】袋中装有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:⑴3只全是红球的概率,⑵3只颜色全相同的概率,⑶3只颜色不全相同的概率,⑷3只颜色全不相同的概率.【例26】袋里装有30个球,每个球上都记有1到30的一个号码,设号码为n的球的重量为244433nn-+(克).这些球以等可能性(不受重量,号码的影响)从袋里取出.⑴如果任意取出1球,求其号码是3的倍数的概率.⑵如果任意取出1球,求重量不大于号其码的概率;⑶如果同时任意取出2球,试求它们重量相同的概率.【例27】在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是()A.35B.23C.59D.13【例28】一个袋子中装有m个红球和n个白球(4m n>≥),它们除颜色不同外,其余都相同,现从中任取两个球.⑴若取出两个红球的概率等于取出一红一白两个球的概率的整数倍,求证:m必为奇数;⑵若取出两个球颜色相同的概率等于取出两个球颜色不同的概率,求满足20m n+≤的所有数组()m n,.【例29】(2006年浙江卷)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.由甲,乙两袋中各任取2个球.⑴若3n ,求取到的4个球全是红球的概率;⑵若取到的4个球中至少有2个红球的概率为34,求n.数字计算【例30】用2、3、4组成无重复数字的三位数,这些数被4整除的概率是()A.12B.13C.14D.15【例31】任意写一个无重复数字的三位数,其中十位上的数字最小的概率是()A.1027B.13C.16D.754【例32】(08辽宁)4张卡片上分别写有数字1234,,,,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.13B.12C.23D.34【例33】(2006年北京卷理)在12345,,,,这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个【例34】(2007年上海卷文)在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).【例35】(04全国)从数字12345,,,,中,随机抽取3个数字(允许重复),组成一个三位数,其各位数字之和等于9的概率为()A.13125B.16125C.18125D.19125【例36】从02468,,,,这五个数字中任取2个偶数,从13579,,,,这五个数字中任取1个奇数,组成没有重复数字的三位数,求其中恰好能被5整除的概率.【例37】电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.1180B.1288C.1360D.1480【例38】在某地的奥运火炬传递活动中,有编号为1218,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为()A.151B.168C.1306D.1408【例39】(2009浙江17)有20张卡片,每张卡片上分别标有两个连续的自然数k,1k ,其中0,1,2,,19k=.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14”为A,则()P A=_____________.【例40】在900张奖券(奖券号是100999-)的三位自然数中抽一张奖券,若中奖的号码是仅有两个数字的相同的奖券,求中奖面是多少?【例41】某城市开展体育彩票有奖销售活动,号码从000001到999999,购买时揭号对奖,若规定从个位起,第一、三、五位是不同的奇数,第二、四、六位均为偶数(可以相同)时为中奖号码,求中奖面所占的百分比.【例42】袋中装有2个5分硬币,3个二分硬币,5个一分硬币,任意抓取3个,则总面值超过1角的概率是()A.115B.215C.1315D.1415【例43】(2009江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为________.【例44】任取一正整数,求该数的平方的末位数是1的概率.【例45】摇奖器摇出的一组中奖号码为825371,,,,,,对奖票上的六个数字是从0129,,,,这十个数字中任意选出六个不同数字组成的.如果对奖票上的六个数字中至少有五个与摇奖器摇出的号码相同(不计顺序)就可以得奖,则中奖的概率为()A.17B.130C.435D.542【例46】甲乙两人各有相同的小球10个,在每人的10个小球中都有5个标有数字1,3个标有数字2,2个标有数字3.两人同时分别从自己的小球中任意抽取1个,规定:若抽取的两个小球上的数字相同,则甲获胜,否则乙获胜,求乙获胜的概率.【例47】(2010西城一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4.现从盒子中随机抽取卡片.⑴若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;⑵若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.排列组合相关【例48】一只猴子随机敲击只有26个小写英文字母的练习键盘.若每敲1次在屏幕上出现一个字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey”的概率为______.【例49】已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:⑴A、B两组中有一组恰有两支弱队的概率;⑵A组中至少有两支弱队的概率.【例50】某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求:⑴恰有一名参赛学生是男生的概率;⑵至少有一名参赛学生是男生的概率;⑶至多有一名参赛学生是男生的概率.【例51】(2009上海文)若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是(结果用最简分数表示).【例52】有十张卡片,分别写有A、B、C、D、E和a、b、c、d、e,⑴从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是A或a的概率;⑵若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率;【例53】某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为.(结果用分数表示)【例54】(06江西)将7个人(含甲、乙)分成三个组,一组3人,另两组2人,不同的分组数为a,甲、乙分到同一组的概率为p,则a p,的值分别为()A.5 10521a p==,B.4 10521a p==,C.5 21021a p==,D.4 21021a p==,【例55】(2009江西10)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为()A.3181B.3381C.4881D.5081【例56】(2006上海)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是______(结果用分数表示).【例57】(2008四川延8)在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为()A.15B.12C.23D.45【例58】停车场有10个排成一排的车位,当有7辆车随意停放好后,恰好剩下三个空位连在一起的概率为_______;【例59】6个人坐到9个座位的一排位置上,则3个空位互不相邻的概率为.【例60】右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是()A.445B.136C.415D.815【例61】(2009四川文)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡),某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客,在省外游客中有13持金卡,在省内游客中有23持银卡.⑴ 在该团中随即采访2名游客,求恰有1人持银卡的概率;⑵ 在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.【例62】 (08湖南)对有(4)n n ≥个元素的总体{}12n ,,,进行抽样,先将总体分成两个子总{}12m ,,,和{}12m m n ++,,, (m 是给定的正整数,且22m n -≤≤),再从每个子总体中各随机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率,则1n P = ;所有(1)ij P i j n <≤≤的和等于 .题型三 结合其他知识的综合题及杂题【例63】 已知ABC ∆的三边是10以内(不包含10)的三个连续的正整数,求ABC ∆是锐角三角形的概率.【例64】 (07湖北)连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则(0]2θ∈π,的概率是( )A .512B .12C .712D .56【例65】 考虑一元二次方程20x mx n ++=,其中m n ,的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率.【例66】 (07四川)已知一组抛物线2112y ax bx =++,其中a 为2468,,,中任取的一个数,b 为1357,,,中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )A .112B .760C .625D .516【例67】(2009安徽)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()A.175B.275C.375D.475【例68】从正二十边形的对角线中任取一条,则其与此正二十边形的所有边都不平行的概率为_____.杂题【例69】某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.⑴共有多少个基本事件?⑵小曹能乘上上等车的概率为多少?【例70】李明手中有五把钥匙,但忘记了开门的是哪一把,只好逐把试开,⑴李明恰在第三次打开房门的概率是多大?⑵李明三次内打开房门的概率是多大?【例71】张三和李四玩“棒子、老虎、鸡、虫子”的游戏(棒子打老虎,老虎吃鸡,鸡吃虫子,虫蛀棒子),他们同时报其中一个的名字,如果出现的不是以上相邻的两个(比如出现老虎与虫子),则算平局,求⑴出现平局的概率;⑵张三赢的概率.【例72】某单位一辆交通车载有8个职工从单位出发送他们下班回家,途中共有甲、乙、丙3个停车点,如果某停车点无人下车,那么该车在这个点就不停车.假设每个职工在每个停车点下车的可能性都是相等的,求下列事件的概率:⑴该车在某停车点停车;⑵停车的次数不少于2次;⑶恰好停车2次.【例73】(2010石景山一模)为援助汶川灾后重建,对某项工程进行竞标,共有6家企业参与竞标.其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.⑴企业E中标的概率是多少?⑵在中标的企业中,至少有一家来自河南省的概率是多少?。
古典概型与几何概型
古典概型与几何概型一、古典概型 1、定义(1)样本空间的元素只有有限个; (2)每个基本事件发生的可能性相同。
比如:抛掷一枚均匀硬币的试验,抛掷一枚均匀骰子的试验,从一副扑克牌中随机抽取一张。
称具备条件(1)、(2)的实验称为等可能概型,考虑到它在概率论早期发展中的重要地位,又把它叫做古典概型。
2、古典概型中事件概率的计算设{}ωωωn ,,, 21=Ω ,由古典概型的等可能性,得}{}{}{21n P P P ωωω=== 又由于基本事件两两互不相容;所以},{}{}{}{121n P P P P ωωω ++=Ω=.,,2,1,1}{n i n P i ==ω若事件A 包含m 个样本点,即{}ωωωi i i A m,,,21 =, 则有 :中元素个数中元素个数Ω=A P(A)基本事件总数发生的基本事件数使A =n m= 1.(2010佛山一模)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281 据此估计,该射击运动员射击4次至少击中3次的概率为 ( ) A .0.85 B .0.8192 C .0.8 D . 0.752.(2007·广东)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310B .15C .110D .1123.(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .4.(2009·安徽文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。
概率论第一章随机事件及其概率Ch1.3古典概型与几何概型
件数为3×5 ×P4(=A6)0, 故60 1 120 2
(2)设B表示事件“所得三位数不小于200”,只要百位数取
2,3,4,5,6其中之一,所组成的三位数必定不小于200,
所以,B包含的基本事件数为5×5 ×4 =100 ,故
P(B) 100 5 120 6
n
+ 0 1 2 3 4 …… m-5 m-4 m-3 m-2 m-1
1 2 3 5 6 ……n+m-6 n+m-5 n+m-4 n+m-2 n+m-1
所有摸取方法总数为:C
m n
m
1
例如:从1,2,3中有放回不计序地摸取2
个数,共有 C3221C426种:
11 12 13 22 23 33 + 01 01 01 01 01 01
高等院校经济管理类专业 经济数学基础系列教材
概率论与数理统计
第一章 随机事件及其概率
§1.1 随机事件 §1.2 频率与概率 §1.3 古典概型与几何概型 §1.4 条件概率与事件的独立性 §1.5 全概率公式与贝叶斯公式
§1.3 古典概型与几何概型
一、古典概型 1. 定义 古典概型是指满足下列两个条件的概率模型:
来证明
(3) C n 0 C n 1 C n 2 L C n n 2 n
(4) ( C n 0 ) 2 ( C n 1 ) 2 ( C n 2 ) 2 L ( C n n ) 2 C 2 n n
k
(5) C C C i ki n1 n2
k 3!!1 3
P (A 1 A 2)P (A 1 A 3 )P (A 2A 3 )3 1 !1 6
“古典概型”和“几何概型”意义和区别的理解
“古典概型”和“几何概型”意义和区别的理解作者:穆高岭来源:《中学数学杂志(初中版)》2009年第06期1 两种概型的特点和意义1.1 古典概型在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的. 例如:掷一次硬币的实验,只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的. 又如对有限件外形相同的产品进行抽样检验,也属于这个模型. 它是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的.古典概型特点:1.实验的样本空间只包括有限个元素(有限性);2.实验中每个基本事件发生的可能性相同(等可能性).同时具有以上两个特点的实验叫等可能概型,也叫古典概型. 这是判断古典概型的一个依据.古典概型概率求法的基本步骤:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;2.2 几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图1),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“ 向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.几何概型的概率公式:几何概型的意义事件A理解为区域的某一子区域A,事件A发生的概率只与构成该事件的子区域的几何度量(长度、面积、体积)成正比,而与A的位置和形状无关.2 “古典概型”和“几何概型区别几何概型是无限个等可能事件的情况,而古典概型等可能事件只有有限个.“古典概型”和“几何概型”与初中教学联系最密切的章节是“统计与概率”.“统计与概率”的教育价值主要是研究现实生活中的数据和客观世界中的随机事现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的决策. 随着社会的不断发展,统计与概率的思想方法将越来越重要. 如:奥地利遗传学家,孟德尔的“遗传定律”就是通过统计概率的知识得来的,为人类做出了伟大的贡献,孟德尔本人也成了遗传学的奠基人. 统计与初步所提供的“运用数据进行推断”的思考方法已经成为现代社会一种普遍使用的并且强有力的思维方式. 初中阶段要求学生熟悉统计与概率的基本思想方法,逐步形成统计概念,让学生了解随机现象,形成科学的世界观与方法论.初中的“统计与概率”中蕴含着极其丰富的“古典概型”和“几何概型”有关实际问题.例1 (淮安金湖实验区)为了调查淮安市今年有多少名考生参加中考,小华从全市所有家庭中抽查了200个家庭,发现了其中10个家庭有子女参加中考.(1)本次抽查的200个家庭中,有子女参加中考的家庭频率是多少?(2)如果你随机调查一个家庭,估计家庭有子女参加中考的概率是多少?(3)已知淮安市约有个家庭,假设有子女参加中考的每个家庭中只有一名考生,请你估计今年全市有多少名考生参加中考?例2 (河南课改实验区)若从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上,分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面的数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.解可用列举法列出所有的可能得到的牌面数字之和:从上表可知,共有m=16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共有n=4次. 记牌面数字之和等于5为事件A,则评注计数的常用方法是列表或画树状图.例3 (扬州课改实验区)某商场进行有奖促销活动. 活动规则:购买500元商品就可以获得一次转盘的机会(转盘分为5个扇形区域,分别是特等奖彩电一台,一等奖自行车一辆,二等奖圆珠笔一枝,三等奖卡通画一张及不获奖)转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件. 商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:(2)可采用“抓阄”或“抽签”等方法代替,规则如下:在一个不透明的箱子里放进360个除标号不同外,其他均一样的乒乓球,其中一个标“特”,10个标“1”,30个标“2”,90个标“3”,其余的不标数字,摸出标有哪个奖次的乒乓球,则获相应等次的奖品.评注从例1、例2看学生脑海中虽没有“古典概型”的概念,但此概念即将呼之欲出!从例3看学生已经潜意识的,在使用“几何概型”.无论是从统计与概率的教育价值,还是新课标的教学内容,以及对学生的思维能力培养来看,作为我们初中教师就更应该理解“古典概型”和“几何概型”的意义和区别,以便更好的有的放矢的进行潜移默化的教学,便于使学生在丰富的生活素材实验中去归纳、分析、总结,使学生逐渐形成对“古典概型”和“几何概型”的潜意识. 有助于学生向高中阶段学习的顺利过渡,有助于培养学生对数学思维方法的情感体验,更有助于学生健康发展.作者简介穆高岭,男,1965年9月生,中学数学一级教师,中国尝试教学会会员.主要研究中学数学课堂教学改革,发表论文数篇.。
古典概型和几何概型
3. 你能够将这个例子一般化吗?
例2 从一个装有a个白球b个红球的袋中不放回地取球 ,
求 (1)第i次取到红球的概率;(2)第i次才取到红球的概率; (3)前i次取到红球的概率. (为简化讨论 , 设1 i a b )
(3) 因为C 有( N 1)n 种放法 , 所以C有N n ( N 1)n 种放法 , 故 P (C ) [ N n ( N 1)n ]/ N n .
例1 从一个装有2个白球 1个红球的袋中不放回地取球 ,
求第2次取到红球的概率.
说明 1. 利用古典概型求记录前i次的取球结果 , 则 P ( B ) . i Pa b
(3) 仅记录前i次的取球结果 , 则 P (C )
C
i ab
C
i ab
i a
C
.
二、几何概型
引例2 某人午觉醒来,发觉表停了.于是,他打开收 音机想听电台报时.已知电台是整点报时的,求他等待 时间短于十分钟的概率.
解: 记 A “等待时间短于10分钟”.
以分钟为单位, 令上一次报时时刻为0, 则下一次报时 时刻为60. 于是 , 可取样本空间 (0, 60), 且 A (50, 60).
根据题意, 可合理地认为 : 该人醒来的时刻具有等可 能性, 即 内的点具有等可能性, 所以
A 的几何长度 60 50 1 . P ( A) 60 0 6 的几何长度
简要回顾
1. 给定条件下, 不能预知结果的现象称为随机现 象. 对随机现象的任何形式的观察都统称为随机试验, 简称试验. 2. 随机现象或试验中任一可观察的结果称为随机事 件 , 简称事件, 记作 A, B, C… 3. 随机试验的所有基本结果组成的集合称为样本空 间. 随机事件均可表为适当选定的样本空间的子集. 4. 随机事件的运算(和 积 差)和关系(包含 相等 互 斥 对立).
古典概型与几何概型
(3,1),(4,0)五种情形。
显然后者比前者发生的可能性大。
正确的解法为:n=10×10=100
取出的两数之和等于5由 (0,5),(1,4),(2,
3),(3,2),(4,1),(5,0)这6个基本事件组成,
k=6,则
PA 6 3
100 50
排列组合有关知识复习
加法原理:完成一件事情有n 类方法,第 i 类
n
n2
C
证:如图
SABP
1 2
AB x
x
SABC 1 AB h h
2
M
A
SABP n1即xn1 即x n1h
SABC n h n
n
P PE N F DB
若CE 1 h n
当点P落入 CMN中时,
AB与 PAB的 C 面积之n比 1 大于
则PASCMN1nh2 1
n
SABC
h2
n2
例7.在线段AB上任取三点x1,x2,x3,求:
可能的确切意义是这样的:设在区域 中有任意一个小区域A,如果它的面积为 ,则点
落入A中的可能性大小与 成正比,而与A的位置及形状无关,如果“点落入小区域A”这
个随机事件仍然记作A,则由
可得
这一类概率通 常称作几何概 率
定义:一个试验具有下列两个特征: (1)每次试验的结果是无限多个,且全体结果可用一个 有度量的几何区域来表示
设B=“第三卷恰好 在中央”,
设C=“各卷自左向 右或自右向左恰成 12345的顺序”,
设D=“某三卷放在 一起”,
4
A 1 4
则P(D)
A33A33 A55
3 10
则P(B) 5 A 5 5
则P(A)