一元二次方程利润问题
一元二次方程解利润问题
一元二次方程解利润问题举例:某百货大楼服装柜在销售者发现:“某”牌童装平均每天可售出20件,每件利润40元为了迎接国庆节市场决定采取适当的降价措施,扩大销售量,增加利润。
条件:如果每件降价4元,那么平均每天多售出8件。
求:要想平均每天销售这种童装盈利1200元那么每件童装应降价多少?解:设每件童装应降价x元,则每件的利润为(40-x)元,平均每天多售出8×x/4=2x件,实际平均每天售出(2x+20)件,平均每天利润为(40-x)(2x+20)元;根据题意,可列方程:(40-x)(2x+20)=1200(40-x)(x+10)=60040x+400-x²-10x=600x²-30x+200=0(x-10)(x-20)=0x-10=0 或x-20=0x1=10 , x2=20答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或降价20元。
一元二次方程的应用:一、百分率变化问题增长率的问题在实际生活普遍存在,有一定的模式,若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b。
在解题过程需要注意总量和增长后达到的量的区别,需要注意“增长了”和“增长到”的区别。
二、传播问题“传播问题”的基本特征是:以相同速度逐轮传播。
解决此类问题的关键步骤是明确每轮传播中的传染源个数,以及这一轮被传染的总数。
需要注意的是疾病传播问题和某种植物分支的区别和联系,疾病传播问题中传染源将参与下一轮传播,而树分支则是树干不参与下一次分支。
三、互送礼物和单循环比赛问题n(n≥2) 个人之间互送礼物,礼物总数=n(n-1);n(n≥2)支球队进行单循环比赛,共需要进行1/2n(n-1)场比赛。
四、商品销售利润与定价问题用一元二次方程解决的营销问题中,常用的关系式有:利润=售价-进价,单件利润×销售量=总利润。
一元二次方程应用 利润问题
一元二次方程应用利润问题(1)姓名____________ 班级___________【例1】:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存。
商场决定采取适当的降价措施:如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?【变式1】:某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元。
6月份该商品搞“减价促销”活动。
市场调查发现,售价每降低1元,每天销售量增加2件。
若某一天销售该商品共获利2590元,求该商品降价多少元?【例2】:今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。
已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元。
请解答以下问题:(1)填空:每天可售出书_______本(用含x的代数式表示)(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【变式1】:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?一元二次方程--利润问题(2)姓名____________ 班级____________【例1】:为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100 个。
若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?【变式1】:因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次。
一元二次方程与利润问题
一元二次方程的应用(利润问题)一、知识储备一、知识储备(1)利润=实际售价-成本;(2)总利润=单件利润×销售量.二、新授1. (1)某商品的进价是100元,售价是150元,则该商品的单件利润为50元.(2)某件商品的利润为5元/件,销售量为100件,则该商品总利润为500元.知识点1:直接给出单件(每斤)利润1、例:老板发现:如果每斤高档苹果盈利10元,每天可售出500斤;若每斤涨价1元,日销售量将减少20斤.若每天盈利6 000元,则每斤应涨价多少元?分析:设每斤涨价x元涨价后的单件利润涨价后的销售量涨价后的总利润列式:2、某商店热卖“好孩子”童装,平均每天可售20件,每件盈利40元.市场反馈每件童装每降价1元,平均每天就可多售出2件,要想每天在销售这种童装上盈利1 200元,同时又要使顾客得到实惠,那么每件童装应降价多少元?知识点2:间接给出单件利润或变化关系3、某商店经销一种商品,若按每件盈利2元销售,每天可售出200件,如果每件商品的售价涨价0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能使每天利润为640元?4.某商店将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,这种冰箱的售价每降低25元,平均每天就能多售出2台,商场要想在这种冰箱的销售中每天盈利4 800元,设每台冰箱降价x元,由题意列方程得课堂总结:(1)关系式:(售价-成本)×销售量=总利润;(2)一般都是设涨价(或降价)x元,然后间接求定价或进货量.三、过关检测A组1、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就减少10个,要实现每月10 000元的销售利润目标,且售价不能低于60元/个.(1)求这种台灯的定价;(2)商场应进货多少个?B组2、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,服装店希望一个月内销售该种T恤能获得利润3 360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?C组3.某单位组织职工到“万绿湖”观光旅游,下面是领队与旅行社就收费标准的一段对话:领队:“组团去‘万绿湖’旅行每人收费是多少?”旅行社:“如果人数不超过25人,人均费用为100元.”领队:“超过25人呢?”旅行社:“如果超过25人,每增加1人,人均费用降低2元,但人均旅行费用不得低于70元.”该单位组团旅游结束后,共支付2 700元,求该单位参加旅游的人数。
一元二次方程-利润问题
一元二次方程—销售问题◆营销中的利润问题:利润=售价-;利润率=%100进价利润;总利润=-总进价=(售价-进价)×例1.进价30元的衣服,以50元出售,平均每月能售出300件。
经试销发现每件衣服涨价1元,其月销售量就减少1件,物价部门规定,每件衣服售价不得高于80元,为实现每月利润8700元,应涨价多少元?变式1.某天猫店销售某种规格学生软式排球,成本为每个30元.以往销售大数据分析表明:当每只售价为40元时,平均每月售出600个;若售价每上涨1元,其月销售量就减少20个,若售价每下降1元,其月销售量就增加200个.(1)若售价上涨m元,每月能售出个排球(用m的代数式表示).(2)为迎接“双十一”,该天猫店在10月底备货1300个该规格的排球,并决定整个11月份进行降价促销,问售价定为多少元时,能使11月份这种规格排球获利恰好为8400元.2、某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件.为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量,增加利润.据测算,每件童装每降价1元,平均每天可多售出2件.设每件童装降价x元.(1)每天可销售件,每件盈利元?(用含x的代数式表示)(2)每件童装降价多少元时,平均每天盈利1200元.(3)平均每天盈利能否达到2000元,请说明理由.3、某店只销售某种进价为40元/kg的特产.已知该店按60元/kg出售时,平均每天可售出100kg,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10kg.若该店销售这种特产计划平均每天获利2240元.(1)每千克该特产应降价多少元?(2)为尽可能让利于顾客,则该店应按原售价的几折出售?4、某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?5、“绿化校园,书香开州”,今年三月份,开州区某校计划购买梧桐树苗和杉树苗共100棵,其中梧桐树苗每棵40元,杉树苗每棵35元,经预算,此次购买两种树苗一共至少需要3800元.(1)计划购买梧桐树苗最少是多少棵?(2)在实际购买中,因受树苗积压以及市场影响,为此商家降低了两种树苗的售价,且降价相同,但降价金额不得高于10元/棵,经统计发现,两种树苗的售价每降低1元,梧桐树苗的销售量会增加2棵,杉树苗的销售量会增加3棵.若该校实际购进这两种树苗一共所需费用比计划购买的最低费用多了300元,则两种树苗都降低多少元?。
解一元二次方程的实际应用利润问题(共6张PPT)
调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
经调查发现,设在降一定价范x围元内,衬衫的单价每降 1 元,商场平均每天可多日售利出润2件=. 单件利润×销售数量
日利润=单件利润×销售数量
单利润 调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
薄利多销是指低价低利扩大销售的策略.
ቤተ መጻሕፍቲ ባይዱ
设每台冰箱应降价x元
原来 现在
单台利润
400
400-x
日利润=单台利润×日销售台数
台数
日利润
8
3200
4800
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡” 的实施,商场决定采取合适的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少 元?
解一元二次方程的实际应用利润 问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是降价,降 价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量随之变化,根 据该数量关系通常可以列一元二次方程解决有关利润的问题.
解一元二次方程的实际应用利润问题
件数
总利润
原来 为了扩大销售,增加盈利,商场决定采取适当的降价措施.
解得x1=10,x2=20 日利润=单件利润×销售数量
40
20
800
经调查发现,在一定现范围在内,衬衫的单价每4降0-1 元x,商场平均每天可2多0售+出22x件.
1200
则(40-x)(20+2x)=1200
利润问题初中一元二次方程
利润问题初中一元二次方程咱来唠唠初中一元二次方程里的利润问题哈。
比如说,你去卖小玩意儿,进价是每个x元,你一开始打算每个卖y元。
那每个小玩意儿的利润就是卖价减去进价,也就是(y - x)元。
假如你总共进了m个这种小玩意儿,那总利润就是单个利润乘以数量,也就是m(y - x)元。
不过呢,有时候这个卖价不是固定不变的。
比如说,你发现如果每个小玩意儿的卖价提高a元,那销售量就会减少b个。
这时候,设提高后的卖价为z元,那销售量就变成了m - (z - y)/(a)×b个。
总利润就变成了[z - x](m - (z - y)/(a)×b)元。
这时候呢,就经常会出现一元二次方程啦。
因为这个式子展开后,z的最高次是二次的。
比如说,你进了100个小玩偶,进价每个10元,原本卖15元。
发现每提价1元,就少卖5个。
设提价后的卖价是z元。
那销售量就是100 - (z - 15)/(1)×5个,总利润就是(z - 10)(100 - (z - 15)/(1)×5)元。
把这个式子展开:begin{align}(z - 10)(100 - 5(z - 15)) =(z - 10)(100 - 5z + 75) =(z - 10)(175 - 5z) =175z - 5z^2 - 1750 + 50z =- 5z^2 + 225z - 1750end{align}这就是个一元二次方程啦。
如果告诉你总利润是多少,就可以通过解这个一元二次方程来求出提价后的卖价z啦。
总之呢,利润问题里的一元二次方程就是这么个情况,你只要把进价、卖价、销售量之间的关系搞清楚,列方程就不是难事啦。
利润问题一元二次方程含答案
利润问题_一元二次方程含答案利润问题是一个常见的经济问题,指的是企业在销售产品或提供服务后所获得的净利润。
利润问题可以通过一元二次方程来进行求解。
下面我将详细介绍利润问题及如何用一元二次方程求解。
假设某企业销售某种产品,每个产品的售价为x元,每个产品的成本为y元,该企业预计销售量为z个产品。
那么该企业的总收入R、总成本C和总利润P可以表示为以下方程:
R = xz (总收入等于售价乘以销售量) C = yz (总成本等于成本乘以销售量) P = R - C (总利润等于总收入减去总成本)
现在我们来具体解决一个利润问题。
假设某企业销售某种产品,每个产品的售价为20元,每个产品的成本为10元,该企业预计销售量为50个产品。
我们来计算该企业的总收入、总成本和总利润。
总收入R = 20 * 50 = 1000元总成本C = 10 * 50 = 500元总利润P = 1000 - 500 = 500元
通过上述计算可得,该企业的总收入为1000元,总成本为500元,总利润为500元。
利润问题在实际生活中非常常见,企业通常会根据产品的售价和成本来计算预期的利润。
利润问题的求解可以帮助企业了解其经营状况,并根据情况做出相应的调整。
同时,利润问题也可以帮助个人了解自己的收入和支出情况,从而做出理性的消费决策。
利润问题公式初中一元二次方程
利润问题公式初中一元二次方程
在初中数学中,利润问题是一种常见的应用题,涉及到成本、售价、利润、折扣等方面的概念和公式。
一般情况下,利润问题可以通过列一元二次方程来解决。
以下是一些常见的利润问题公式:
1. 利润=售出价 - 成本
2. 利润率=利润÷成本×100%
3. 折扣=实际售价÷原售价×100%
4. 涨跌金额=本金×涨跌百分比
5. 利息=本金×利率×时间
6. 税后利息=本金×利率×时间 (1-20%)
7. 营业利润=主营业务利润 + 其他业务利润 - 期间费用
对于利润问题,可以通过将成本设为未知数,列一元二次方程来解决。
例如,设应降价 x 元,此时可以多售出 2x 件衣服,售价为40-x 元,衣服数量为 202x 件。
可以列出方程:
(202x)(40-x)-1200=0
解方程可得,x 的值为 20 或 10,即应降价 20 元或 10 元。
一元二次方程应用--利润问题
【畅谈收获】:
1.解决一元二次方程应用题的 关键: 找等量关系。
2.
每件售价-每件进价 每件利润x件数
3.解:使实际问题有意义 符合题目条件
作业:
课本P65 7.14
!
排球进价30元/个, 卖价40元/个。
卖一个排球赚多少钱? 一箱排球60个,全部卖 完赚多少钱? (有时也叫成本价)
每件售价-每件进价
每件利润x件数
1、排球每个进价30元,售价40元,可得利润 10 元. • (1)若涨价2元,则售价 42 元,利润 12 元。 • (2)若涨价x元,则售价 (40+x) 元,利润(10+x) 元。 • (3)若降价x元,则售价 (40-x) 元,利 (10-x) 元
每件商品的利润= 售价
—
进价
.
2、排球原来每天可销售80个,后来进行价格调整。 (1)ቤተ መጻሕፍቲ ባይዱ场调查发现,该商品每降价3元,商场平均每天 可多销售2个。 ①如果降价3元,则多卖 2 个,每天销售量为 82 个
②如果降价9元,则多卖 6 个,每天销售量为 86 个。
③如果降价x元,则多卖
2 x) 每天销售量为 (80+ 3 个。
解:设涨价x元,由题意得 (40+x-30)(600-10x)=10000 x2-50x+400=0 x1=10 x2=40
答:应涨价10元或40元.
• 2、某商场礼品柜台春节期间购进大量贺 年卡,每张贺年卡进价0.5元,以0.8元 出售,平均每天可售出500张。为了尽 快减少库存,商场决定采取适当的降价 措施。调查发现,如果这种贺年卡的售 价每降价0.1元,那么商场平均每天可多 售出100张。商场要想平均每天盈利120 元,每张贺年卡应降价多少元?
一元二次方程 利润问题
一元二次方程利润问题引入:服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为______元。
解:标价:售价:折扣:利润:设这款服装每件的进价为x元。
等量关系:利润=若每天可卖出20件此商品,则可获利___________元。
等量关系:总利润=变式:服装店销售某款服装,一件服装的进价为180元,每件服装按240元销售时,每天可销售20件。
若销售单价每降低一元,每天可多售5件。
(1)如果降10元,利润=(2)如果降x元,利润=等量关系:总利润=例:某种服装,平均每天可销售20件,每件盈利44元.若每件降价1元,则每天可多售5件.如果每天盈利1600元,应降价多少元?解:每件利润:销量:设每件衣服应降价x元。
等量关系:总利润(1600元)=变式1:某种服装,平均每天可售出20件,每件盈利40元,若每件服装降价4元,那么平均每天就可多售出8件,如果平均每天在销售这种服装上盈利1200元,那么每件服装应降价多少元?解:每件利润:售价:销量:设每件玩具的销售单价为x元。
等量关系:总利润=迎接国庆节,决定釆取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
此时,每件服装应降价元。
变式2:某种服装,平均每天可售出20件,每件盈利40元,若每件服装涨价1元,那么平均每天就少售出2件,如果平均每天在销售这种服装上盈利720元,那么每件服装应涨价多少元?解:每件利润:销量:设每件服装应涨价x元。
等量关系:总利润(720元)=变式3:某种服装,平均每天可售出20件,每件盈利40元,若每件服装降价1元,那么平均每天就可多售出5件。
(1)试求出每天的销售量y(单位:件)与每件服装降价x(单位:元)之间的函数关系式(2)当每件服装降价定为多少元时,每天销售的利润w达到最大?最大利润为多少?习题练习:某种服装,购进时的单价为20元/件。
根据市场预测,在一段时间内,销售单价为40元时,销售量为200件;若每件服装降价1元,那么平均每天就可多售出20件。
(完整版)一元二次方程应用题之利润问题
(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。
该公司希望通过调整销售价格来最大化利润。
现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。
请求解这个问题。
解决方法:设销售价格为p元,销售商品的数量为q件。
由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。
设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。
由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。
根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。
方程的极值点对应的销售价格就是能够使利润最大化的价格。
因为a=0,所以只需要求二次项的系数b即可。
结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。
注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。
在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。
因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。
一元二次方程的应用利润问题
优化
使用求根公式解一元二次方 程,找到满足条件的最小利 润。
一元二次方程在利润问题中的局限性与 注意事项
局限性 注意事项
一元二次方程假设利润与销售量之间存在线性 关系,可能无法准确描述复杂的实际情况。
在应用一元二次方程解决利润问题时,需要严 谨地制定方程模型,考虑各种因素的影响。
总结与收尾
1 总结
一元二次方程的应用利润 问题
利润问题可以帮助我们了解如何最大化或最小化利润,通过一元二次方程来 解决这些问题。
利润问题的背景与定义
背景
利润是指企业在销售产品或提供服务后,获 得的收入与成本之间的差额。
定义
利润问题涉及计算和优化利润的数学模型和 方法。
一元二次方程的形式与解法
形式
一元二次方程的一般形式是ax²+ bx + c = 0,其 中a、b和c是常数。
1
分析现状
了解产品的成本和销售情况,找到利
建立方程
2
பைடு நூலகம்
润最大化的关键因素。
根据产品成本和销售量之间的关系,
建立一元二次方程。
3
解方程
使用求根公式解一元二次方程,得到 可能的最大利润。
实际案例2 :利润最小化
问题
我们希望在满足一定条件下, 找到能够最小化利润的解决 方案。
方案
根据特定的要求和限制条件, 建立一元二次方程。
2 收尾
利润问题涉及建立与利润相关的一元二次 方程,并使用求根公式解方程,找到最优 解。
掌握一元二次方程的应用技巧,可以帮助 我们在利润问题中做出明智的决策。
解法
使用一元二次方程的求根公式可以求得方程的解。
应用一元二次方程解决利润问题的步骤
一元二次方程的应用利润问题
总利润
销售量
60010(x 40)
x 3x03600060100x104x04010000
例2. 新华商场销售某种冰箱,每台进价为2500元. 市场调研表明:当销售价为2900元时,平均每天能售 出8台;而当销价每降低50元时,平均每天能多售4台. 商场要想使这种冰箱的销售利润平均每天达5000 元,每台冰箱的定价应为多少元?
减少多少个?此时销售量为多少个?
10x
600-10x
例1: 某商场将进货价为30元的台灯以40元售出, 平均每月能售出600个.市场调研表明:当销售价 为每上涨1元时,其销售量就将减少10个. 商场要想销售利润平均每月达到10000元,每个 台灯的定价应为多少元?这时应进台灯多少个?
每台利润=售价-进价
例1、某商场将进货价为30元的台灯以40元
售出,平均每月能售出600个.市场调研表
明:当销售价为每上涨1元时,则每月的销售
量就将减少10个.
⑴.那么当销售价上涨2元时,其销售量
就将减少多少个? 2×10=20
⑵.当销售价上涨2元时,其销售量为多
少个?
600-2×10=580
⑶.当销售价上涨x元时,其销售量将
涨价
总利润= 每台利润 ×销售量
x
定价
40 x 思考: 涨价改 每台利润 变了什么?
40 x 30
总利润
销售量
600 10x
(40 x 30)(600 10x)
例1: 某商场将进货价为30元的台灯以40元售出, 平均每月能售出600个.市场调研表明:当销售价 为每上涨1元时,其销售量就将减少10个.商场要 想销售利润平均每月达到10000元,每个台灯的 定价应为多少元?这时应进台灯多少个?
一元二次方程应用大全-利润问题
1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。
(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元:(1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?7王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本金利息共63元,求第一次存款时的年利率.8.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?(b)一个“+”一个“—”9.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程利润问题
1、商场每天要赚1200元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:20(y-x) = 1200
20(y-x+2x) = 1200
解得:x=2,每件衬衫应降价2元。
2、商场每天要赚2100元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:30(y-x) = 2100
30(y-x+2x) = 2100
解得:x=3,每件衬衫应降价3元。
3、商店要赚8000元利润,每卖出一个商品的利润为y-
40元,每涨价1元销售量减少10个。
设售价为y元,则有:y-40)×500 = 8000
y-40-x)×(500-10x) = 8000
解得:x=2,售价为46元。
4、商场每天要赚1600元利润,每件衣服降价x元,每天能多售出5件衣服。
设降价后每件衣服的售价为y元,则有:20(y-x) = 1600
20(y-x+5x) = 1600
解得:x=2,每件衣服应降价2元。
5、商场每天要赚6000元利润,每卖出一个商品的利润为y-10元,每涨价1元销售量减少20千克。
设售价为y元,则有:
500(y-10) = 6000
500-20x)(y-9+x) = 6000
解得:x=1,每千克应涨价1元。
6、商场每月要赚元销售利润,每台灯售价上涨x元,销售量减少10个。
设售价为y元,则有:
600(y-30) =
600-10x)(y-x) =
解得:x=1,售价为35元,应进货600个。
7、商场每天要赚1200元利润,每件童装降价x元,每天能多售出2件童装。
设降价后每件童装的售价为y元,则有:20(y-x) = 1200
20(y-x+2x) = 1200
解得:x=2,每件童装应降价2元。
可多售出50千克。
如果经营户希望每天仍能获利400元,每千克应该降价多少元?
8、某种服装每天能够销售20件,每件盈利44元。
如果
每件降价1元,每天可以多售出5件。
现在需要每天盈利
1600元,那么每件应该降价多少元?
9、某化工材料进货价格为每千克30元,市场调查发现单价每千克70元时日均销售60kg。
如果单价每千克降低1元,
每天可以多售出2kg。
在销售过程中,每天还需要支出其他费
用500元。
如果要每天获利1950元,销售单价应该是多少?
11、某品牌童装进价为60元,定价为100元时平均每天
可以售出20件。
现在商场决定采取适当的降价措施,经市场
调查发现每件童装每降价4元,平均每天就可以多售出8件。
如果要平均每天在销售这种童装上盈利1200元,那么每件童装应该降价多少元?
12、某商场礼品柜台购进一种贺卡,平均每天可以销售500张,每张盈利1元。
调查发现,如果每降价1元,商场平均每天可以多售出300张。
商场要想每天盈利160元,每张贺卡应该降价多少元?
13、某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10x)件。
但物价局规定每件商品加价不能超过进价的20%。
商店要想每天赚400元,需要卖出多少件商品?每件商品的售价应该是多少元?
14、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台。
调查表明,这种冰箱的售价每降低50元,平均每天就能多售出4台。
商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应该降价多少元?
15、西瓜经营户以2元/千克的价格购进一批小型西瓜,
以3元/千克的价格出售,每天可售出200千克。
经调查发现,这种小型西瓜每降价1元/千克,每天可多售出50千克。
如果
经营户希望每天仍能获利400元,每千克应该降价多少元?
剔除格式错误,删除有问题的段落,改写每段话:
该经营户每天售出60千克商品,但实际上每天可以售出100千克商品。
这意味着他们可以多售出40千克商品。
除此
之外,每天还有24元的固定成本,包括房租等费用。
为了每
天盈利200元,该经营户需要做出一些改变。
该经营户每天售出的商品只有60千克,实际上每天可以
售出100千克商品。
因此,他们可以多售出40千克商品。
除
此之外,每天还有24元的固定成本,包括房租等费用。
为了
每天盈利200元,该经营户需要做出一些改变。
该经营户可以考虑通过提高商品销售量来增加利润。
他们可以尝试增加库存并推广销售。
如果他们能够售出更多的商品,那么他们的利润也会随之增加。
该经营户可以通过提高商品销售量来增加利润。
他们可以尝试增加库存并推广销售。
如果他们能够售出更多的商品,那么他们的利润也会随之增加。
此外,该经营户还可以考虑降低成本。
他们可以寻找更便宜的供应商或者采购更实惠的商品。
这样可以减少他们的成本,提高利润。
此外,该经营户还可以考虑降低成本。
他们可以寻找更便宜的供应商或者采购更实惠的商品。
这样可以减少他们的成本,提高利润。
最后,该经营户还可以考虑提高商品的售价。
如果他们的商品质量和服务得到了客户的认可,那么他们可以考虑适当提高商品售价,从而增加利润。
最后,该经营户还可以考虑提高商品的售价。
如果他们的商品质量和服务得到了客户的认可,那么他们可以考虑适当提高商品售价,从而增加利润。