(完整版)空间向量与立体几何知识点,推荐文档
立体几何与空间向量知识点归纳总结
立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征(1)棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的性质:侧面都是平行四边形;侧棱都平行,侧棱长都相等。
直棱柱:侧棱垂直底面的棱柱叫直棱柱。
正棱柱:底面是正多边形的直棱柱叫正棱柱。
(2)棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
棱柱的性质:平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
(3)棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
棱台的性质:①上下底面平行且是相似的多边形;②侧面是梯形;③侧棱交于原棱锥的顶点。
(4)圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
圆柱的性质:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
圆锥的性质:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
圆台的性质:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环形。
(7)球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的性质:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积之和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积rhS π2=圆柱侧'21ch S =正棱锥侧面积 rlS π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V S h r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =+台 '2211()()33V S S h r rR R h π=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ3、平面及基本性质公理1 ααα⊂⇒∈∈∈∈l B A l B l A ,,, 公理2 若βα∈∈P P ,,则a =⋂βα且α∈P公理3 不共线三点确定一个平面(推论1直线和直线外一点,2两相交直线,3两平行直线)4、空间两直线的位置关系共面直线:相交、平行(公理4) 异面直线 5、异面直线(1)对定义的理解:不存在平面α,使得α⊂a 且α⊂b (2)判定:反证法(否定相交和平行即共面) 判定定理:15P★(3)求异面直线所成的角:①平移法 即平移一条或两条直线作出夹角,再解三角形.②向量法 |||||,cos |cos b a =><=θ (注意异面直线所成角的范围]2,0(π(4)证明异面直线垂直,①通常采用三垂线定理及逆定理或线面垂直关系来证明;②向量法 0=⋅⇔⊥(5)求异面直线间的距离:大纲仅要求掌握已给出公垂线或易找出公垂线的有关问题计算.6、 直线与平面的位置关系1、直线与平面的位置关系A a a a =⋂⊂ααα,//,2、直线与平面平行的判定(1)判定定理: ααα////b a a b b ⇒⎪⎭⎪⎬⎫⊂⊄ (线线平行,则线面平行17P )(2)面面平行的性质:βαβα////a a ⇒⎭⎬⎫⊂ (面面平行,则线面平行) 3、直线与平面平行的性质b a b a a //,//⇒⎭⎬⎫=⋂⊂βαβα (线面平行,则线线平行18P )★4、直线与平面垂直的判定 (1)直线与平面垂直的定义的逆用a l a l ⊥⇒⎭⎬⎫⊂⊥αα, (2)判定定理:αα⊥⇒⎪⎭⎪⎬⎫=⋂⊂⊥⊥l A n m n m n l m l ,, (线线垂直,则线面垂直23P )(3)αα⊥⇒⎭⎬⎫⊥a b b a // (25P 练习 第6题) (4)面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )(5)面面平行是性质:βαβα⊥⇒⎭⎬⎫⊥l l // 5、射影长定理★6、三垂线定理及逆定理 线垂影⇔线垂斜7、 两个平面的位置关系:空间两个平面的位置关系 相交和平行8、两个平面平行的判定 (1)判定定理:βαβαα//,,//,//⇒⎭⎬⎫=⋂P b a b a b a (线线平行,则面面平行19P )(2)βαβα//⇒⎭⎬⎫⊥⊥l l 垂直于同一平面的两个平面平行 (3)βαγβγα////,//⇒ 平行于同一平面的两个平面平行 (21P 练习 第2题) 9、两个平面平行的性质(1)性质1:βαβα//,//a a ⇒⊂(2)面面平行的性质定理: b a b a //,//⇒⎭⎬⎫=⋂=⋂γβγαβα (面面平行,则线线平行20P )(3)性质2:βαβα⊥⇒⊥l l ,// 10、两个平面垂直的判定与性质(1)判定定理:βααβ⊥⇒⊂⊥a a , (线面垂直,则面面垂直50P )(2)性质定理:面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )12、 空间角:异面直线所成角(9.1);斜线与平面所成的角 )2,0(π(1)求作法(即射影转化法):找出斜线在平面上的射影,关键是作垂线,找垂足. (2)向量法:设平面α的法向量为,则直线AB 与平面α所成的角为θ,则|||||,cos |sin n AB =><=θ )2,0(πθ∈(3)两个重要结论最小角定理48P :21cos cos cos θθθ= ,,26P 例4 28P 第6题 13、空间距离:求距离的一般方法和步骤 (1)找出或作出有关的距离; (2)证明它符合定义;(3)在平面图形内计算(通常是解三角形) 求点到面的距离常用的两种方法 (1)等体积法——构造恰当的三棱锥;(2)向量法——求平面的斜线段,在平面的法向量上的射影的长度:d =直线到平面的距离,两个平行平面的距离通常都可以转化为点到面的距离求解 异面直线的距离① 定义:和两异面直线都垂直相交且夹在异面直线间的部分(公垂线段) ② 求法:法1 找出两异面直线的公垂线段并计算,法2 转化为点面距离向量法 d =(A ,B 分别为两异面直线上任意一点,为垂直于两异面直线的向量) 注意理解应用:θcos 22222mn d n m l ±++=二、空间向量知识点 1、空间向量的加法和减法:()1求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.()2求两个向量和的运算称为向量的加法:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则. 2、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.3、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.4、向量共线充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.5、平行于同一个平面的向量称为共面向量.6、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C A P =A B +A ;或对空间任一定点O ,有x y C O P =O A +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z O P =O A +O B +O ++=. 7、已知两个非零向量a 和b ,在空间任取一点O ,作a O A=,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.8、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.9、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0. 10、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 11、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=; ()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4c o s ,ab a b a b⋅〈〉=;()5a b a b ⋅≤.12、空间向量基本定理: 若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.13、空间任意三个不共面的向量都可以构成空间的一个基底. 14、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O重合,得到向量p O P =.存在有序实数组{},,x y z ,使得123p x e y e z e =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .15、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=.()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.()6若b ≠,则12//,,a b a b xλλλλ⇔=⇔==.()721a a a x =⋅=+ ()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =16、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y 使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.17、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量.18、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.19.0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.20、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.21、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.22、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.23、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.24、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.25、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.26、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=。
立体几何与空间向量知识点归纳总结
立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征(1)棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的性质:侧面都是平行四边形;侧棱都平行,侧棱长都相等。
直棱柱:侧棱垂直底面的棱柱叫直棱柱。
正棱柱:底面是正多边形的直棱柱叫正棱柱。
(2)棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
棱柱的性质:平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
(3)棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
棱台的性质:①上下底面平行且是相似的多边形;②侧面是梯形;③侧棱交于原棱锥的顶点。
(4)圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
圆柱的性质:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
圆锥的性质:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
圆台的性质:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环形。
(7)球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的性质:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积之和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积rhS π2=圆柱侧'21ch S =正棱锥侧面积 rlS π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台 '2211()()33V S S h r rR R h π=++=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ3、平面及基本性质公理1 ααα⊂⇒∈∈∈∈l B A l B l A ,,, 公理2 若βα∈∈P P ,,则a =⋂βα且α∈P公理3 不共线三点确定一个平面(推论1直线和直线外一点,2两相交直线,3两平行直线)4、空间两直线的位置关系共面直线:相交、平行(公理4) 异面直线 5、异面直线(1)对定义的理解:不存在平面α,使得α⊂a 且α⊂b (2)判定:反证法(否定相交和平行即共面) 判定定理:15P★(3)求异面直线所成的角:①平移法 即平移一条或两条直线作出夹角,再解三角形.②向量法 |||||,cos |cos b a b a =><=θ (注意异面直线所成角的范围]2,0(π(4)证明异面直线垂直,①通常采用三垂线定理及逆定理或线面垂直关系来证明;②向量法 0=⋅⇔⊥b a b a(5)求异面直线间的距离:大纲仅要求掌握已给出公垂线或易找出公垂线的有关问题计算.6、 直线与平面的位置关系1、直线与平面的位置关系A a a a =⋂⊂ααα,//,2、直线与平面平行的判定(1)判定定理: ααα////b a a b b ⇒⎪⎭⎪⎬⎫⊂⊄ (线线平行,则线面平行17P )(2)面面平行的性质:βαβα////a a ⇒⎭⎬⎫⊂ (面面平行,则线面平行) 3、直线与平面平行的性质b a b a a //,//⇒⎭⎬⎫=⋂⊂βαβα (线面平行,则线线平行18P )★4、直线与平面垂直的判定 (1)直线与平面垂直的定义的逆用a l a l ⊥⇒⎭⎬⎫⊂⊥αα, (2)判定定理:αα⊥⇒⎪⎭⎪⎬⎫=⋂⊂⊥⊥l A n m n m n l m l ,, (线线垂直,则线面垂直23P )(3)αα⊥⇒⎭⎬⎫⊥a b b a // (25P 练习 第6题) (4)面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )(5)面面平行是性质:βαβα⊥⇒⎭⎬⎫⊥l l // 5、射影长定理★6、三垂线定理及逆定理 线垂影⇔线垂斜7、 两个平面的位置关系:空间两个平面的位置关系 相交和平行8、两个平面平行的判定 (1)判定定理:βαβαα//,,//,//⇒⎭⎬⎫=⋂P b a b a b a (线线平行,则面面平行19P )(2)βαβα//⇒⎭⎬⎫⊥⊥l l 垂直于同一平面的两个平面平行 (3)βαγβγα////,//⇒ 平行于同一平面的两个平面平行 (21P 练习 第2题) 9、两个平面平行的性质(1)性质1:βαβα//,//a a ⇒⊂(2)面面平行的性质定理: b a b a //,//⇒⎭⎬⎫=⋂=⋂γβγαβα (面面平行,则线线平行20P )(3)性质2:βαβα⊥⇒⊥l l ,// 10、两个平面垂直的判定与性质(1)判定定理:βααβ⊥⇒⊂⊥a a , (线面垂直,则面面垂直50P )(2)性质定理:面面垂直的性质定理:βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l , (面面垂直,则线面垂直51P )12、 空间角:异面直线所成角(9.1);斜线与平面所成的角 )2,0(π(1)求作法(即射影转化法):找出斜线在平面上的射影,关键是作垂线,找垂足. (2)向量法:设平面α的法向量为n ,则直线AB 与平面α所成的角为θ,则|||||,cos |sin n AB n AB =><=θ )2,0(πθ∈(3)两个重要结论最小角定理48P :21cos cos cos θθθ= ,,26P 例4 28P 第6题 13、空间距离:求距离的一般方法和步骤 (1)找出或作出有关的距离; (2)证明它符合定义;(3)在平面图形内计算(通常是解三角形) 求点到面的距离常用的两种方法 (1)等体积法——构造恰当的三棱锥;(2)向量法——求平面的斜线段,在平面的法向量上的射影的长度:||n d =直线到平面的距离,两个平行平面的距离通常都可以转化为点到面的距离求解 异面直线的距离① 定义:和两异面直线都垂直相交且夹在异面直线间的部分(公垂线段) ② 求法:法1 找出两异面直线的公垂线段并计算,法2 转化为点面距离向量法 ||n n AB d =(A ,B 分别为两异面直线上任意一点,n 为垂直于两异面直线的向量) 注意理解应用:θcos 22222mn d n m l ±++=二、空间向量知识点 1、空间向量的加法和减法:()1求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.()2求两个向量和的运算称为向量的加法:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则. 2、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.3、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.4、向量共线充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.5、平行于同一个平面的向量称为共面向量.6、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.7、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.8、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.9、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0. 10、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 11、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=; ()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,ab a b a b⋅〈〉=;()5a b a b ⋅≤.12、空间向量基本定理: 若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.13、空间任意三个不共面的向量都可以构成空间的一个基底. 14、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .15、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=.()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.()6若b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.()721a a a x =⋅=+()821cos ,x a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB = 16、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y 使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.17、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量.18、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.19.0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.20、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.21、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.22、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.23、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.24、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.25、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.26、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=。
数学空间向量与立体几何知识点(一)
数学空间向量与立体几何知识点(一)数学空间向量与立体几何向量的定义和运算•向量的定义:向量是有方向和大小的量,用箭头表示,箭头的长度代表向量的大小,箭头的方向代表向量的方向。
•向量的加法:向量的加法满足两个向量之和的大小等于这两个向量的大小之和,方向等于两个向量的方向的夹角的平分线。
•向量的减法:向量的减法等于用被减向量的终点连接减向量的起点形成的向量。
•数量积:也叫点积或内积,表示两个向量相乘后再与它们的夹角的余弦值相乘得到的数值。
•向量积:也叫叉积或外积,表示两个向量相乘后得到的向量。
空间几何的基本概念•点:空间中没有长度、宽度和高度的位置。
•线段:两个点之间的部分,具有长度。
•直线:由无数个点构成的路径,长度没有限制,无法计算。
•射线:由一条直线上的一个点出发,沿着该直线的一个方向一直延伸的部分。
•平面:由无数个点构成的一个平面区域,具有长度和宽度。
•立体:具有长度、宽度和高度的空间。
空间几何的常用定理•调和平行四边形定理:对于平行四边形ABCD,有AC/BD=AB/CD。
•平行线分线段定理:如果两条直线L1和L2平行,分别与两条交线交于点A和点B,那么由A和B引两条平行于交线的直线,得到的两个线段AB和CD互相平行且等于。
•空间三角形重心定理:在空间三角形ABC中,过A点引AD // BC,过B点引BE // AC,过C点引CF // AB,交DE和FC于点K,则有AK:KD=3:1,BK:KE=3:1和CK:KF=3:1。
•垂直平分线定理:在空间三角形ABC中,对于任意平行于BC的平面O,其交线与BC所在平面的交线为垂直平分线。
空间几何的常见应用•判断点的位置关系:通过线段的长度关系判断点是否在线段上。
•计算线段的长度:根据两个端点的坐标计算线段的长度。
•计算角的度数:通过向量的运算计算出角度的大小。
•判断线段的位置关系:通过向量的运算判断线段是否平行、垂直等。
•计算平面和曲面的面积和体积:通过向量的运算计算平面和曲面的面积和体积。
空间向量与立体几何知识点和知识题(含答案解析)
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
(完整)空间向量与立体几何知识点和习题(含答案),推荐文档
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。
(完整)空间向量与立体几何知识总结(高考必备),推荐文档
为平面ABCD外一点,且PA⊥平面分成定,求满足的实数
结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,
,则。
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本
求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。
有分解才有组合,组合是分解的表现形式。
空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向
)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
【用空间向量求空间角】
—中,分别是,的中点,求:
)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
—中,,,
热点。
现列出几类问题的解决方法。
)平面的法向量的求法:设,利用
是平面的一个法向量,是平面的斜线的一个方向向量,则直线与平面所
(3)二面角的求法:①分别是二面角的两个面内与棱。
②设分别是二面角的两个平面的法向量,则就是二面角的平
)异面直线间距离的求法:是两条异面直线,是的公垂线段
上的任意两点,则。
是平面的法向量,AB是平面的一条斜线,则点到平面的距离为。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:a b b a⑵加法结合律:(a b ) c a (b c)⑶数乘分配律:(a b )a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作a//b 。
(2) 共线向量定理:空间任意两个向量 a 、b ( b 丰0 ), a//b 存在实数入,使a =A b 。
(3) 三点共线:A 、B 、C 三点共线<=>ABACi i■.1<=> OC xOA yOB (其中( y 1)—*■一a (4)与a共线的单位向量为 —a4. 共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2) 共面向量定理:如果两个向量 a,b 不共线,p 与向量a,b 共面的条件是存在实数 x, y 使uOw A go购Bgorarap xa yba- r b r b rb •7d3a d 3a3a2aR(3)四点共面:若A 、B 、c 、P 四点共面<=> AP xAB yAC<=>OP xOA yOB zOC (其中 x y z 1)r ,r r r5. 空间向量基本定理:如果三个向量 a,b,C 不共面,那么对空间任一向量 P ,存在一个唯一的有r i r r 1 r r 1 r若三向量a,b,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。
立体几何和空间向量综合知识点(高中数学)
立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。
2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。
3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。
(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。
(3)长方体外接球的直径是长方体的体对角线长222c b a ++。
《空间向量与立体几何》知识点
《空间向量与立体几何》知识点1.空间向量的概念:⑴在空间,具有大小和方向的量称为空间向量.⑵向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.⑶向量AB 的大小称为向量的模(或长度),记作||AB .⑷模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.⑸与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.⑹方向相同且模相等的向量称为相等向量.2.空间向量的加法和减法:⑴求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形OACB ,则以O 起点的对角线OC 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.特别地,在ABC ∆中,D 为BC 的中点,则1()2AD AB AC =+. ⑵求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作OA a =,OB b =,则BA a b =-.3.实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4.设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律. 分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5.如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6.向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7.平行于同一个平面的向量称为共面向量.8.向量共面定理:空间一点P 位于平面ABC 内的充要条件是存在有序实数对x ,y ,使AP xAB yAC =+;或对空间任一定点O ,有O P O A x A B y A C =++;或若四点P ,A ,B ,C 共面,则()1OP xOA yOB zOC x y z =++++=.9.已知两个非零向量a 和b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠称为向量a ,b 的夹角,记作a 〈,b 〉.两个向量夹角的取值范围是:a 〈,[0b 〉∈,]π. 10.对于两个非零向量a 和b ,若a 〈,2b π〉=,则向量a ,b 互相垂直,记作a b ⊥.11.已知两个非零向量a 和b ,则cos a b a 〈,b 〉称为a ,b 的数量积,记作a b ⋅.即cos a b a b a ⋅=〈,b 〉.零向量与任何向量的数量积为0. 12.a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos b a 〈,b 〉的乘积.13.若a ,b 为非零向量,e 为单位向量,则有:⑴cos e a a e a a ⋅=⋅=〈,e 〉;⑵0a b a b ⊥⇔⋅=;⑶()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ⑷cos a 〈,a b b a b ⋅〉=;⑸a b a b ⋅≤. 14.向量数乘积的运算律:⑴a b b a ⋅=⋅;⑵()()()a b a b a b λλλ⋅=⋅=⋅; ⑶()a b c a c b c +⋅=⋅+⋅.15.若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{x ,y ,}z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16.空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{x ,y ,}z ,使得p xa yb zc =++.17.若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{p p xa yb zc =++,x ,y ,}z R ∈.这个集合可看作是由向量a ,b ,c 生成的, {a ,b ,}c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18.设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量OP p =.存在有序实数组{x ,y ,}z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(p x =,y ,)z .此时,向量p 的坐标是点P 在空间直角坐标系Oxyz 中的坐标(x ,y ,)z .19.设1(a x =,1y ,1)z ,2(b x =,2y ,2)z ,则⑴12(a b x x +=+,12y y +,12)z z +. ⑵12(a b x x -=-,12y y -,12)z z -.⑶1(a x λλ=,1y λ,1)z λ.⑷121212a b x x y y z z ⋅=++.⑸若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.⑹若0b ≠,则12//a b a b x x λλ⇔=⇔=,12y y λ=,12z z λ=.⑺222111a a a x y z =⋅=++.⑻cos a 〈,121212222222111222x x y y z z a bb a b x y z x y z ++⋅〉==++⋅++. ⑼1(A x ,1y ,1)z ,2(B x ,2y ,2)z ,则 ()()()222212121AB d AB x x y y z z ==-+-+-.20.在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.在空间直角坐标系中,点P 的坐标就是向量OP 的坐标.21.若点1(A x ,1y ,1)z ,2(B x ,2y ,2)z ,则:⑴线段AB 的中点C 的坐标为12(2x x +,122y y +,12)2z z +; ⑵点P 在直线AB 上,且AP AB λ=,则点P 的坐标为: 121(()OP OA AB x x x λλ=+=+-,121()y y y λ+-,121())z z z λ+-.22.直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量.空间中不共线三点A 、B 、C 确定的平面ABC 的法向量有无数条,我们可以这样来求出它的一个法向量:设平面ABC 的法向量(n x =,y ,)z ,则n AB ⊥,n AC ⊥,进而可以得到关于x 、y 、z 的两个三元一次方程,对其中一个变量赋值就可以得到一个法向量n .23.若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔ ()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.24.若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=. 25.若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔ a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.26.设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a ba b θϕ⋅==.27.设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l nl n θϕ⋅==.28.设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.29.点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.30.在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为|cos d PA PA =〈,|PA nn n ⋅〉=.31.点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为|cos d PA PA =〈,|PA nn n ⋅〉=.。
空间向量与立体几何知识点
空间向量与立体几何知识点空间向量与立体几何知识点导言:空间向量与立体几何是数学中的两个重要分支,它们既有相互联系的地方,又有各自的独立性。
在几何学中,通过运用向量的概念可以方便地解决一些立体几何的问题,而立体几何知识则为空间向量的研究提供了丰富的实例。
本篇文章将以2000字的篇幅,给出空间向量与立体几何的一些重要知识点,并通过举例说明它们在解决实际问题中的应用。
一、空间向量的基本概念空间向量可理解为带有大小和方向的有向线段,它在三维坐标系中可以由三个分量表示,即一个有序三元组。
空间向量有以下重要性质:1. 向量的加法:向量的加法满足交换律和结合律,即a + b = b + a 以及 (a + b) + c = a + (b + c)。
2. 向量的数量乘法:向量与一个实数的乘积是一个新的向量,它具有与原向量相同的方向,但长度变化了。
3. 向量的模:向量的模即它的长度,用两点间的距离计算得到,即|a| = √(x^2 + y^2 + z^2)。
二、空间向量的坐标表示在直角坐标系中,向量的坐标表示为(a, b, c),其中a、b、c分别表示向量在X、Y、Z轴上的投影长度。
可以利用向量的坐标表示来计算向量的模、向量之间的夹角、向量之间的数量积和叉积等。
三、立体几何中的直线与平面在三维空间中,直线可以由两个点或者一个点和一个方向向量来确定,即直线的参数方程可以写为l: P = P0 + td,其中P为直线上一点的坐标,P0为直线上已知点的坐标,d为直线的方向向量,t为参数。
利用参数方程,可以方便地求解直线和直线之间的距离、直线与平面的交点等问题。
平面可以由一个点和两个方向向量来确定,也可以由一个点和法向量确定。
平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C为法向量的分量。
利用平面的方程,可以方便地求解平面与平面之间的夹角、直线与平面之间的夹角等问题。
四、立体几何中的体积计算在立体几何中,体积是一个重要的概念,通常用来描述物体所占据的空间大小。
((完整版))空间向量知识点归纳总结(经典),推荐文档
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
;;OB OA AB a b =+=+ BA OA OB a b =-=- ()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:ba b a λλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。
a b b a //(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λa bb 0 a b a 。
b (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x y x 其中(4)与共线的单位向量为a 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实,ab p ,a b 数使。
,x y p xa yb =+ (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP+= <=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存,,a b cp 在一个唯一的有序实数组,使。
,,x y z p xa yb zc =++若三向量不共面,我们把叫做空间的一个基底,叫做基向量,,,a b c {,,}a b c ,,a b c 空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点推荐文档
立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形 法则以及相关的运算律仍然成立.空间向量的数量积运算、 共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.量研究线线、线面、 面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决 垂直的论证问题.r r r ra b cos a, br r3、 公式3 b是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别), 再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、 直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念, 通过研究方向向量与法向量之间的关系, 可以确定直线与直线、 直线与平面、平面与平面等 的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法(1) 线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2) 线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即2、当a 、b 为非零向量时.0 a b 是数形结合的纽带之一,这是运用空间向r br ao rb r空间向tt与立悔几柯(3) 线面平行用向量证明线面平行的方法主要有:① 证明直线的方向向量与平面的法向量垂直;② 证明可在平面内找到一个向量与直线方向向量是共线向量;③ 利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向 量. (4) 线面垂直用向量证明线面垂直的方法主要有: ① 证明直线方向向量与平面法向量平行; ② 利用线面垂直的判定定理转化为线线垂直问题. (5) 面面平行① 证明两个平面的法向量平行(即是共线向量); ② 转化为线面平行、线线平行问题. (6) 面面垂直① 证明两个平面的法向量互相垂直; ② 转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角(1) 求两异面直线所成角(2) 求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量, 通过数量积求出直线与平面所成角; 另一种方法是借助平面的法向量, 先求出直线方向向量与平面法向量的夹角0,即可求出直线与平面所成的角其关系是sin | cos ©(3) 求二面角用向量法求二面角也有两种方法: 一种方法是利用平面角的定义, 在两个面内先求出与 棱垂直的两条直线对应的方向向量, 然后求出这两个方向向量的夹角, 由此可求出二面角的 大小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1) 点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2) 点与面的距离 点面距离的求解步骤是: ① 求出该平面的一个法向量;② 求出从该点出发的平面的任一条斜线段对应的向量;③ 求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距cos a,b利用公式但务必注意两异面直线所成角B 的范围是0,—2故实质上应有: cos cos a,b离.备考建议:1、 空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平 面位置关系的问题,应体会向量方法在研究几何图形中的作用, 进一步发展空间想像能力和几何直观能力.2、 灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、 在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用, 它的特点是用代数方法解决立体几何问题, 无需进行繁、 难的几何作图和推理论证,起着从抽象到具体、化难为易的作用. 因此,应熟练掌握平面法 向量的求法和用法.4、 加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念 1、 空间向量的定义在空间中,既有大小又有方向的量叫做空间向量. 注意空间向量和数量的区别.数量是只有大小而没有方向的量. 2、 空间向量的表示方法空间向量与平面向量一样, 也可以用有向线段来表示, 用有向线段的长度表示向量的大r小,用有向线段的方向表示向量的方向.若向量a 对应的有向线段的起点是 A ,终点是B ,3、零向量r长度为零的向量称为零向量,记为° •零向量的方向不确定,是任意的•由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、 单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学 习中还要经常用到. 5、 相等向量r rr r长度相等且方向相同的空间向量叫做相等向量•若向量a与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示, 并且与有向线段的起点无关. 6、 相反向量rr长度相等但方向相反的两个向量叫做相反向量. a的相反向量记为一a二、共面向量 1、 定义平行于同一平面的向量叫做共面向量. 2、 共面向量定理r r u r r若两个向量a 、b 不共线,则向量 P 与向量a 、b 共面的充要条件是存在实数对x 、y,ruuu则向量a 可以记为AB ,其模长为ur r r 使得 P = xa yb 。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
空间向量与立体几何知识点
空间向量与立体几何知识点第一篇:空间向量1. 空间向量的表示方法空间向量可以用有向线段、坐标和向量分量等多种方式进行表示。
其中,有向线段表示空间向量的长度、方向和起点,坐标表示空间向量的左端点和右端点的坐标,向量分量表示空间向量在三个坐标轴上的投影。
2. 空间向量的加减法空间向量的加减法与二维向量的加减法类似,可以通过将两个向量的分量逐一相加或相减得到结果向量的分量。
也可以通过平移法、三角法、正交分解等方法进行计算。
3. 空间向量的数量积和向量积空间向量的数量积和向量积都具有几何意义和物理意义。
数量积表示两个向量之间的夹角余弦值和向量长度的乘积,通常用于计算向量的投影和求解平面或直线的方程。
向量积表示两个向量所在平行四边形的面积和法向量,通常用于计算向量的叉积、平面或直线的法向量以及计算空间中两个平面的夹角。
4. 空间向量的共线、垂直和平行空间向量的共线、垂直和平行是三种基本关系。
当两个向量共线时,它们所在直线相交或重合;当两个向量垂直时,它们的数量积为0,而向量积为一个与它们垂直的向量;当两个向量平行时,它们的向量积为0,而数量积为它们长度的乘积。
5. 应用举例空间向量广泛应用于物理、工程、计算机图形学等领域。
例如,通过计算物体的重心和质量分布情况,可以求解物体的转动惯量和稳定性问题;通过计算矢量场中的散度和旋度,可以分析流体的运动状态和变化规律;通过计算三维空间中的距离和夹角,可以在计算机图形学中进行三维模型的建模和渲染。
第二篇:立体几何1. 立体几何的基本概念立体几何是研究三维空间中的基本几何对象和它们的性质、关系的数学分支。
它包括点、线、面、体和空间角等多个基本概念,用于描述和分析三维物体的形状、大小和位置关系。
2. 立体几何的基本公理立体几何的基本公理是欧几里得几何的扩展,是指空间中的点、线、面、体和空间角等基本几何对象应满足的性质和约束。
这些公理包括点的唯一性、直线的唯一性、平面的唯一性、线段长度的可加性、平面的无限性、等角推移原理等。
空间向量与立体几何知识点
空间向量与立体几何知识点空间向量与立体几何是数学中的重要分支,它们在解决三维空间问题中发挥着关键作用。
以下是该领域的一些核心知识点:1. 空间向量的概念:空间向量是具有大小和方向的几何对象,可以表示为有序数对或有序数组。
2. 空间向量的表示:空间向量通常用箭头表示,箭头的起点和终点分别代表向量的起点和终点。
3. 空间向量的坐标:空间向量可以通过三个坐标值来表示,这些值分别对应于向量在三个正交坐标轴上的投影。
4. 向量的加法:两个空间向量可以通过平移和连接的方式相加,结果向量的方向和大小由这两个向量决定。
5. 向量的数乘:一个向量可以通过与一个标量相乘来缩放,结果向量的方向保持不变,但大小会按比例变化。
6. 向量的点积(内积):两个向量的点积是一个标量,它反映了这两个向量的夹角和大小的关系。
7. 向量的叉积(外积):两个向量的叉积是一个向量,它垂直于原来的两个向量,并且其大小等于原来两个向量构成的平行四边形的面积。
8. 向量的模:一个向量的模是其长度,可以通过勾股定理计算得到。
9. 向量的单位化:将一个向量除以其模,可以得到一个方向相同但长度为1的单位向量。
10. 空间中的点、线、面:在空间中,点由坐标确定,线由两个点确定,面由三个不共线的点确定。
11. 空间直线的参数方程:空间直线可以通过参数方程来表示,其中参数表示直线上点的位置。
12. 空间平面的方程:空间平面可以通过一个方程来表示,该方程描述了平面上所有点的坐标关系。
13. 点到直线的距离:可以通过向量的点积和叉积来计算点到直线的最短距离。
14. 直线与平面的关系:直线可以与平面相交、平行或在平面内。
15. 立体几何体:空间中的几何体如多面体、圆柱、圆锥等,可以通过空间向量来描述其顶点、边和面。
16. 体积和表面积:空间几何体的体积和表面积可以通过积分或向量方法来计算。
17. 空间几何的对称性:空间几何体的对称性可以通过向量和坐标变换来分析。
空间向量与立体几何知识点
空间向量知识要点1. 空间向量的概念:在空间中,我们把具有大小和方向的量叫做向量。
注:(1)向量是既有大小,又有方向的量。
(2)向量具有平移不变性 2. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.注:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
相等向量:长度相等且方向相同的向量. 3. 空间向量的运算。
<向量加法运算>定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()()a b c a b c ++=++ ; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y = ,则()1212,a b x x y y +=++<向量减法运算>⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y = ,则()1212,a b x x y y -=-- .设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.<向量数乘运算>⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ= .⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==baCB Aa b C C -=A -AB =B<向量的数量积>⑴ 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,O A a O B b == ,则A O B ∠叫做向量a与b 的夹角,记作,a b <> ;且规定0,a b π≤<>≤ ,显然有,,a b b a <>=<>;若,2a b π<>= ,则称a 与b 互相垂直,记作:a b ⊥。
(完整版)空间向量与立体几何知识点归纳总结(2),推荐文档
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
;;OB OA AB a b =+=+ BA OA OB a b =-=- ()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:ba b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。
ab b a//(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λa bb 0 a b a。
b (3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与共线的单位向量为a a 4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实,a b p ,a b数使。
,x y p xa yb =+(3)四点共面:若A 、B 、C 、P 四点共面<=>ACy AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在,,a b cp 一个唯一的有序实数组,使。
,,x y z p xa yb zc =++若三向量不共面,我们把叫做空间的一个基底,叫做基向量,,,a b c {,,}a b c,,a b c 空间任意三个不共面的向量都可以构成空间的一个基底。
(word版)高中数学知识点大全:空间向量与立体几何,文档
高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求两异面直线所成角
cos a,b
a b
ab
利用公式
,
但务必注意两异面直线所成角
θ
的范围是
0,
2
,
cos cos a,b
故实质上应有:
.
(2)求线面角
求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积
ห้องสมุดไป่ตู้
求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法
③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距
3
离. 备考建议:
1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平 面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力 和几何直观能力.
2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的 法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行 繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握 平面法向量的求法和用法. 4、加强运算能力的培养,提高运算的速度和准确性.
学习中还要经常用到.
5、相等向量
长度相等且方向相同的空间向量叫做相等向量.若向量 a 与向量 b 相等,记为 a = b .零
向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,
并且与有向线段的起点无关.
6、相反向量
长度相等但方向相反的两个向量叫做相反向量. a 的相反向量记为- a
1
知识网络:
立体几何空间向量知识点总结
知识点拨:
1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形
法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理
都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.
2、当 a 、 b 为非零向量时. a b 0 a b 是数形结合的纽带之一,这是运用空间向
二、共面向量
1、定义
平行于同一平面的向量叫做共面向量.
2、共面向量定理
若两个向量 a 、 b 不共线,则向量 p 与向量 a 、 b 共面的充要条件是存在实数对 x、y,
4
使得 p = xa yb 。
3、空间平面的表达式 空间一点 P 位于平面 MAB 内的充要条件是存在有序实数对 x、y 使
4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,
通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面
等的位置关系以及有关的计算问题.
5、用空间向量判断空间中的位置关系的常用方法
(1)线线平行
证明两条直线平行,只需证明两条直线的方向向量是共线向量.
MP xMA yMB 或对空间任一定点 O,有
或 OP xOA yOB zOM (其中 x y z 1 )这几
个式子是 M,A,B,P 四点共面的充要条件.
三、空间向量基本定理
1、定理
如果三个向量 a 、 b 、 c 不共面,那么对空间任一向量 p ,存在唯一的有序实数组
x、y、z,使 p = xa yb zc
2、注意以下问题
(1)空间任意三个不共面的向量都可以作为空间向量的一个基底.
(2)由于 0 可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个
B,则向量 a 可以记为 AB
,其模长为
a
或
AB
.
3、零向量
长度为零的向量称为零向量,记为 0 .零向量的方向不确定,是任意的.由于零向量
的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”.
4、单位向量
模长为 1 的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的
(2)线线垂直
证明两条直线垂直,只需证明两条直线的方向向量垂直,即 a b 0 a b .
2
(3)线面平行
用向量证明线面平行的方法主要有:
①证明直线的方向向量与平面的法向量垂直;
②证明可在平面内找到一个向量与直线方向向量是共线向量;
③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向
量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解
决垂直的论证问题.
cos a,b
a b
ab
3、公式
是应用空间向量求空间中各种角的基础,用这个公式可以求
两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),
再结合平面的法向量,可以求直线与平面所成的角和二面角等.
等或互补.
7、运用空间向量求空间距离
空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.
(1)点与点的距离
点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.
(2)点与面的距离
点面距离的求解步骤是:
①求出该平面的一个法向量;
②求出从该点出发的平面的任一条斜线段对应的向量;
量.
(4)线面垂直
用向量证明线面垂直的方法主要有:
①证明直线方向向量与平面法向量平行;
②利用线面垂直的判定定理转化为线线垂直问题.
(5)面面平行
①证明两个平面的法向量平行(即是共线向量);
②转化为线面平行、线线平行问题.
(6)面面垂直
①证明两个平面的法向量互相垂直;
②转化为线面垂直、线线垂直问题.
6、运用空间向量求空间角
向量的夹角 φ,即可求出直线与平面所成的角 θ,其关系是 sinθ=| cosφ|. (3)求二面角
用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出
与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面
角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相
第一讲 空间向量及运算
一、空间向量的有关概念
1、空间向量的定义
在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量
是只有大小而没有方向的量.
2、空间向量的表示方法
空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的
大小,用有向线段的方向表示向量的方向.若向量 a 对应的有向线段的起点是 A,终点是