2020年浙教版九年级数学下册《第3章投影与三视图》单元测试卷(解析版)(可编辑修改word版)
2019-2020浙教版九年级数学下册第三章投影与三视图单元测试卷解析版
2019-2020浙教版九年级数学下册第三章投影与三视图单元测试卷一.选择题(共12小题)1.下列图形不是正方体展开图的是()A.B.C.D.2.一个正方体的侧面展开图有几个全等的正方形()A.2个B.3个C.4个D.6个3.下列平面图形中不能围成正方体的是()A.B.C.D.4.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.5.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习6.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色7.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.8.某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.9.一个几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是()A.πcm2B.πcm2C.2πcm2D.4πcm210.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②11.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”12.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长二.填空题(共8小题)13.将一个正方体的表面沿某些棱剪开,展开成一个平面图,至少需要剪条棱.14.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为.15.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.16.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.17.一个几何体的三视图完全相同,该几何体可以是.(写出一个即可).18.课桌上按照下图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是:,,,.19.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三.解答题(共8小题)21.我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)23.右面是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.24.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().25.在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?26.已知一个直三棱柱的三视图的有关尺寸如图所示,请计算这个几何体的表面积(侧面积+底面积).27.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)28.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)参考答案与试题解析一.选择题(共12小题)1.下列图形不是正方体展开图的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.一个正方体的侧面展开图有几个全等的正方形()A.2个B.3个C.4个D.6个【分析】可把一个正方体展开,观察侧面全等的正方形的个数即可.【解答】解:因为一个正方体的侧面展开会产生4个完全相等的正方形,所以有4个全等的正方形.故选:C.【点评】本题考查的是全等形的识别,属于较容易的基础题.3.下列平面图形中不能围成正方体的是()A.B.C.D.【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有A选项不能围成正方体.故选:A.【点评】本题考查了正方体展开图,熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”是解题的关键.4.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A,B,C经过折叠均能围成正方体;D、折叠后有重叠的面.故选:D.【点评】本题考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.5.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.【点评】本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.6.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色【分析】从图中可以看出涂有黄的邻面颜色是黑、白、蓝、红,所以黄的对面应是绿,涂有红的邻面颜色是绿、白、黄、蓝,所以红的对面应是黑,那么只剩下了白色和蓝色,涂有白色的对面只能是蓝色,可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.【解答】解:由图可得,涂有黄的邻面颜色是黑、白、蓝、红,所以黄的对面应是绿,涂有红的邻面颜色是绿、白、黄、蓝,所以红的对面应是黑,则只剩下了白色和蓝色,即涂有白色的对面只能是蓝色,故黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.故选:B.【点评】考查了正方体相对两个面上的文字,注意正方体的空间图形,此题关键是抓住图中出现了2次的颜色红和黄的邻面颜色的特点,推理得出它们的对面颜色分别是黑和绿.7.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.【分析】首先得出各几何体的主视图的形状,进而结合中心对称图形的定义得出答案.【解答】解:A、圆锥的主视图是等腰三角形,不是中心对称图形,此选项符合题意;B、正方体的主视图是正方形,是中心对称图形,此选项不符合题意;C、圆柱体的主视图是矩形,是中心对称图形,此选项不符合题意;D、球的主视图是中心对称图形,此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图以及中心对称图形的定义,正确得出各几何体的主视图是解题关键.8.某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9.一个几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是()A.πcm2B.πcm2C.2πcm2D.4πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为2×π×1×2÷2=2πcm2.故选:C.【点评】本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.10.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.11.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”【分析】可根据平行投影的特点分析求解,或根据常识直接确定答案.【解答】解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,可得应该是下午.故选C.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.12.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【解答】解:当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点评】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.二.填空题(共8小题)13.将一个正方体的表面沿某些棱剪开,展开成一个平面图,至少需要剪7条棱.【分析】本题考查了立方体的平面展开图,考查学生对立体图形展开图的认识.【解答】解:如果把一个正方体剪开展平的图画出来,发现有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,∴12﹣5=7条即为所剪的棱.故答案为:7.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.14.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为6cm2.【分析】根据立体图形的展开图即可解.【解答】解:圆柱的侧面展开图是矩形,根据题意知,此圆柱的侧面积为2×3=6cm2故答案为6cm2【点评】圆柱的侧面展开图是矩形,底面是圆,侧面积即圆柱的底面周长与高的积.15.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.16.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是圆柱.【分析】当截面的角度和方向不同时,圆柱体的截面不相同,无论什么方向截取圆柱都不会截得三角形.【解答】解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.17.一个几何体的三视图完全相同,该几何体可以是球、正方体等(写一个即可).(写出一个即可).【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:球的三视图都是圆,正方体的三视图都是正方形,∴几何体可以是球、正方体等.【点评】本题考查了三视图的知识,常见的三视图相同的几何体的名称要掌握.18.课桌上按照下图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是:乙,甲,丙,丁.【分析】选定一个物体,再按所经过的路径进行分析即可.【解答】解:根据给出的俯视图可以确定暖水瓶,水杯和乒乓球的位置,所以最早看到的是比较接近左视图的乙,然后到接近主视图的甲,再到接近右视图的丙,最后是丁,故填乙甲丙丁.故答案为:乙甲丙丁.【点评】本题考查了几何体的多种视图和学生的识图以及空间想象能力.19.某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆及圆心可判断出此几何体为圆柱.【解答】解:由三视图可得,此几何体为圆柱,所以圆柱的体积为,故答案为:3π【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体略.【分析】由左视图可以知道,左边应该为三个小立方体,且在正前方,添加即可.【解答】解:【点评】此题主要考查三视图的画图、学生的观察能力和空间想象能力.三.解答题(共8小题)21.我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【分析】结合圆柱和圆锥的侧面展开图的特征解题.【解答】解:(1)如右图.(2)OA=OB,(1分)CB=ED=,(2分)BE=CD,(3分)∠B=∠C=∠D=∠E=90°.【点评】对于此类问题,注意多动手操作,培养自己的空间想象能力.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【解答】解:答案不惟一,如图.【点评】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.23.右面是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.【分析】根据题意,找到相对的面,把数字填入即可.【解答】解:根据相反数的定义将﹣10,7,﹣2分别填到10,﹣7,2的对面(答案不唯一),如:【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.24.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(1,3,4);C(1,2,3,4);D(5);E(3,5,6).【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.25.在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放3个小正方体.【解答】解:(1)如图所示:(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个;(3)最多可以再添加4个小正方体.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.26.已知一个直三棱柱的三视图的有关尺寸如图所示,请计算这个几何体的表面积(侧面积+底面积).【分析】三棱柱的表面是有三个矩形和两个三角形组成的,分别计算相加即可.【解答】解:主视图为直角三角形,由直角边为4cm和3cm,根据勾股定理得:斜边为5cm,S=3×2+4×2+5×2=24cm2(3分)侧S=2××3×4+24=36cm2(6分)表【点评】此题的关键是熟悉三棱柱的组成,以及会正确读出图中的数据,再根据矩形、三角形的面积公式求解.27.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)【分析】几何体的主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为2,1;俯视图有,3列,每行小正方形数目分别为2,1,1【解答】解:如图所示:【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.28.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【解答】解:(1)AB=AC tan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB 的⊙A相切时影长最大)AC2=2AB2=;【点评】此题考查了平行投影;通过作高线转化为直角三角形的问题,当太阳光线与圆弧相切时树影最长,是解题的关键.。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)
第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A. B. C. D.2、如图是由5个相同的立方块所搭成的几何体,其俯视图是()A. B. C. D.3、如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A. B. C. D.4、仔细观察图所示的两个物体,则它的俯视图是()A. B. C. D.5、右图是由6个小正方体搭建而成的几何体,它的俯视图是()A. B. C. D.6、如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A.6cmB. cmC.8cmD. cm7、下列四个图形中是正方体的平面展开图的是()A. B. C. D.8、如图所示的几何体,其俯视图是()A. B. C. D.9、由七个大小相同的正方体组成的几何体如图所示,则它的左视图是()A. B. C. D.10、如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是()A. B. C. D.11、如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3B.4C.5D.612、正方形在太阳光的投影下得到的几何图形一定是()A.正方形B.平行四边形或线段C.矩形D.菱形13、由六个大小相同的正方体组成的几何体如图所示,它的俯视图是()A. B. C. D.14、乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm 的圆柱,则圆柱的高变成了()A.7.5cmB.6.25cm C.5cmD.4.75cm15、由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4B.5C.6D.9二、填空题(共10题,共计30分)16、用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,这个圆锥底面半径为________。
浙教版九年级下册第3章《投影与三视图》测试卷(含答案)
九年级下册第3章《投影与三视图》(3.4-综合)测试卷满分100分,考试时间90分钟一、选择题(每小题3分,共30分)1.下面四个图形中,是三棱柱的平面展开图的是()A B C D2.如图是一个不完整的正方体平面展开图,需再添上一个面,折叠后才能围成一个正方体.下面是四位同学补画的情况(图中阴影部分),其中正确的是()第2题图 A B C D3.已知圆柱的底面半径为2 cm,高为5 cm,则圆柱的侧面积是()A.20 cm2B.20π cm2C.10π cm2D.5π cm2A.15π cm2B.30π cm2C.60π cm2D.391 cm25.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3 C.66πcm3 D.68πcm3第5题图6.与如图所示的三视图对应的几何体是()第6题图7.如图,从左面看圆柱,则图中圆柱的投影是( ) A .圆 B .矩形 C .梯形D .圆柱第7题图8.将一个圆心角是90°的扇形围成圆锥的侧面,则该圆锥的侧面积侧S 和底面积底S 的关系为( )A .侧S =底SB .侧S =2底SC .侧S =3底SD .侧S =4底S 9.如图,如果从半径为9 cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A .6 cm B .3 5 cm C .8 cm D .5 3 cm第9题图10.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点且PC =23B C .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .⎝⎛⎭⎫4+6π cm B .5 cm C .3 5 cm D .7 cm第10题图二、填空题(每小题3分,共30分)11.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 .第11题图12.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为.第12题图13.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.4 43 2第13题图14.若圆柱的底面半径2cm,侧面积为12πcm2,则它的高是cm.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.16.已知圆锥底面圆的半径为6cm,它的侧面积为60πcm,则这个圆锥的高是cm.17.圆锥底面圆的半径为3 cm,母线长为9 cm,则这个圆锥的全面积为cm2.18.如图,把一个半径为12 cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.第18题图19.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是.第19题图20.四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|= .第20题图三、解答题(共40分)21.(6分)如图,画出该物体的三视图.22.(6分)下图是一个食品包装盒的表面展开图.(1)请写出包装盒的几何体名称;(2)根据图中所标尺寸,用a、b表示这个几何体的全面积S(侧面积与底面积之和),并计算当a=1,b=4时,S的值.23.(6分)已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?24.(6分)要在如图所示的一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.25.(6分)一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请画出此零件的左视图;(2)若此零件底面圆的半径r=2cm,高h=3cm,求此零件的表面积.26.(10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.九年级下册第3章《投影与三视图》(3.4-综合)测试卷1.A2.B3.B4.B5.B6.B7.B8.D9.B10.B11.着12.613.614.315.180°16.817.36π18.419.620.4π21.如图所示.22.(1)长方体;(2)S=2ab×2+2×2a×a+2×a×b=4ab+4a2+2ab=6ab+4a2.当a=1,b=4时,S=6×1×4+4×12=28.(2)将图2中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面.(3)将图3中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面.。
浙教版九年级下《第3章投影与三视图》检测题含答案试卷分析详解
九(下)第3章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下面四个立体图形中,主视图是三角形的是(C)2.某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是(D)3.有这样一个娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为(A)4.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为(D)A.上午12时B.上午10时C.上午9时30分D.上午8时5.右图是某个几何体的三视图,该几何体是(D)A.长方体B.正方体D.三棱柱B.三视图等价于投影C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上,得到的投影仍是矩形7.右图是一个由4个相同的正方体组成的立体图形,它的三视图是(A)8.如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数有( B )A .3个B .4个C .5个D .6个9.电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =5 m ,则点P 到CD 的距离是3 m ,则点P 到AB 的距离是( C )A.56 mB.67 mC.65 mD.103m 10.如图,夜晚,小亮从A 经过路灯C 的正下方沿直线走到点B ,他的影子y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间函数关系的图象大致为( A )二、填空题(每小题4分,共24分)12.为了在平面上表示空间物体,人们常用数学上的“投影”方法,即把物体从不同的方向投射到平面上,然后通过这些平面的投影图形去想象空间立体图形.这是人类征服空间所表现出的伟大智慧!如图是某一物体的三个方向的影像图.它相当于光线从正面、侧面和上面照射时,该物体留下的影子,那么这个几何体可能是__一个倒立的圆锥__.,第12题图) ,第13题图),第14题图) ,第15题图)13.如图是一个几何体的三视图,根据图示的数据可以计算出该几何体的表面积为__90π__.14.一个几何体的三视图如图所示(其中标注的a ,b ,c 为相应的边长),则这个几何体的体积是__abc __.15.直角坐标系内,一点光源位于A (0,5)处,线段CD ⊥x 轴,垂足为D ,C 点坐标为(3,1).则CD 在x 轴上的影长为__34__,点C 的影子B 的坐标为__(154,0)__.三、解答题(共66分)17.(6分)旗杆、树和竹竿都垂直于地面且一字排列,在路灯下树和竹竿的影子的方位和长短如图所示,请根据图上的信息标出灯泡的位置(用点P表示),再作出旗杆的影子(用字母表示).(不写作法,保留作图痕迹)解:略18.(6分)画出下面几何体的三视图:解:19.(9分)观察下图回答问题:(1)三个不同的时刻,同一棵树的影子长度不同,请按时间先后顺序排列;(2)请画出图②中的太阳光线;(3)一天中,物体在太阳光下的影子长短如何变化?解:(1)上午:①③②;下午:②③①;若三个时刻处于上午或下午不同,则无法判断(2)图略(3)影子长短变化为:长→短→长20.(7分)与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?解:先作出盆花及其影子关于镜面的对称图形,然后分别画出树顶及其影子对应点的连线和盆花顶及其影子关于镜面的对称图形的对应点的连结,交点处即为光源位置.图形略21.(8分)一位同学想利用有关知识测旗杆的高度,如图,他在某一时刻测得高为0.5 m 的小木棒的影子长为0.3 m ,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD =1.0 m ,又测地面部分的影长BC =3.0 m ,你能根据上述数据帮他测出旗杆的高度吗?解:作DE ⊥AB 于点E ,那么四边形BCDE 是矩形,∴BE =CD =1.0 m ,DE =BC =3.0 m ,∴AE DE =0.50.3,∴AE =5(m ),∴AB =AE +BE =6(m )22.(8分)如图,花丛中有一路灯灯杆AB ,在灯光下,小明在D 点处的影长DE =3 m ,沿BD 方向行走到达G 点,DG =5 m ,这时小明的影长GH =5 m .如果小明的身高为1.7 m ,求路灯灯杆AB 的高度. (精确到0.1 m)解:6.0 m23.(10分)如图是一粮仓,其顶部是一圆锥,底部是一圆柱.(1)画出粮仓的三视图;(2)若圆柱的底面圆的半径为1 m ,高为2 m ,求圆柱的侧面积;(3)假设粮食最多只能装到与圆柱同样高,则最多可以存放多少立方米的粮食?解:(1)粮仓的三视图如图所示:(2)S 圆柱侧=2π·1×2=4π m 2(3)V =π×12×2=2π(m 3),即最多可存放2π m 3的粮食24.(12分)如图,不透明圆锥体DEC 放在水平面上,在A 处灯光照射下形成影子.设BP 过圆锥底面的圆心,已知圆锥的高为2 3 m ,底面半径为2 m ,BE =4 m.(1)求∠B 的度数;(2)若∠ACP =2∠B ,求光源A 距水平面的高度.(答案用含根号的式子表示)解:(1)在Rt △DOB 中,OB =BE +OE =4+2=6(m ),∴tanB =DO BO =236=33.∴∠B =30° (2)过点A 作AF ⊥BP ,垂足为点F .∵∠B =30°,∴∠ACP =2∠B =60°.又∠ACP =∠B +∠BAC ,∴∠B =∠BAC.∴AC =BC =BE +CE =8(m ).在Rt △ACF 中,AF =AC·sin ∠ACF =8sin60°=43(m ).故光源离水平面的高度为4 3 m。
浙教版九年级下册数学第三章 投影与三视图含答案解析
浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A. B. C. D.2、用半圆围成一个几何体的侧面,则这个几何体的左视图是()A.钝角三角形B.等腰直角三角形C.等边三角形D.圆3、小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图B.左视图C.主视图D.都有可能4、如图,下面几何体的俯视图不是圆的是()A. B. C.D.5、如图所示,该几何体的俯视图为()A. B. C. D.6、一扇形的半径为24cm,若此扇形围成的圆锥的底面半径为10cm,那么这个扇形的面积是()A.120πcm 2B.240πcm 2C.260πcm 2D.480πcm 27、若干桶方便面放在桌面上,如图是从正面、左面、上面看到的结果,则这一堆方便面共有()A.7桶B.8桶C.9桶D.10桶8、圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().A.36πB.48πC.72πD.144π9、如图,是一个由5个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.10、如图1所示,一只封闭的圆柱形容器内盛了一半水(容器的厚度忽略不计),圆柱形容器底面直径为高的2倍,现将该容器竖起后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1=S211、下列图形中,能围成一个正方体的是()A. B. C. D.12、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A.1B.C.D.13、如图,从左面看该几何体得到的形状是()A. B. C. D.14、下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是()A. B. C.D.15、如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是()A.②④①③B.①④③②C.②④③①D.①③②④二、填空题(共10题,共计30分)16、某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料,(单位:).则此长方体包装盒的体积是________.17、如图所示,甲乙两建筑物在太阳光的照射下的影子的端点重合在C处,若BC=20m,CD=40m,乙的楼高BE=15m,则甲的楼高AD=________m.18、如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________.19、一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看它得到的平面图形如下:那么桌上共有________枚硬币.20、已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为________.21、有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,再将水全部倒入A容器,结果为________.(填“溢出”“刚好”或“未装满”)22、一个圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积为________cm2 .23、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.24、已知扇形AOB的半径为6cm,圆心角的度数为1200,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为________cm2 .25、几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有________种.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、如图所示,分别是两棵树及其影子的情形(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形.(2)请画出图中表示小丽影长的线段.(3)阳光下小丽影子长为1.20m树的影子长为2.40m,小丽身高1.88m,求树高.28、如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?29、学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH.30、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.参考答案一、单选题(共15题,共计45分)1、C2、C3、C5、C6、B7、C8、C9、B10、C11、C12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)
第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④2、下面的平面展开图与图下方的立体图形名称不相符的是()A. B. C. D.3、下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变右边的()A. B. C. D.4、如图是某几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.长方体5、在一间屋子里的屋顶上挂着一盏白炽灯,在它的正下方有一个球,如图所示,下列说法:(1)球在地面上的影子是圆;(2)当球向上移动时,它的影子会增大;(3)当球向下移动时,它的影子会增大;(4)当球向上或向下移动时,它的影子大小不变.其中正确的有()A.0个B.1个C.2个D.3个6、一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A.66B.48C.48 +36D.577、如图是一个正方体的展开图,把展开图折叠成小正方体后,有“祝”字一面的相对面上的字是()A.新B.年C.快D.乐8、如图是一个正方体纸盒的平面展开图,每个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式可能是A.bB.cC.dD.e9、如图是由若干个完全相同的小正方体组合而成的几何体,若将小正方体①移动到小正方体②的正上方,下列关于移动后几何体的三视图说法正确的是()A.左视图发生变化B.俯视图发生变化C.主视图发生改变D.左视图、俯视图和主视图都发生改变10、如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A. cm 2B. cm 2C.30cm 2D.7.5cm 211、如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同12、已知圆锥的底面半径为1cm,母线长为3cm,则全面积为 ( )A.πcm 2B.3πcm 2C.4πcm 2D.7πcm 213、如图是一个几何体的三视图,则这个几何体的表面积是()A.18cm 2B.20cm 2C.(18+ )cm 2D.(18+2 )cm 214、下列立体图形中俯视图是三角形的是()A. B. C. D.15、如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C. D.二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是________17、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.18、如图,请写出图,图,图是从哪个方向可到的:图________;图________;图 ________.19、用一个半径为3cm,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为________cm.20、主视图反映物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.因此,必须注意主视图与俯视图的长对正,主视图与________的高平齐,左视图与________的宽相等.21、如图是一个正方体的表面展开图,则原正方体中“喜”面所对面上的字是________.22、从正面看,从左面看,从上面看都一样的几何体可能是________。
2020年浙教版九年级数学下册第三章_投影与三视图单元测试题及答案
第三章投影与三视图单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.某几何体的三种视图分别如下图所示,那么这个几何体可能是()A.长方体B.圆台C.圆锥D.圆柱2.一个长方体的主视图和左视图如图所示(单位: ),则其俯视图的面积是 .A.B.C.D.3.在阳光下,小明和他爸爸在学校球场行走时,他们的影子一样长,晚上在该球场同一路灯下,关于他俩的影子以下说法正确的是() A.小明的影子比他爸爸的影子长B.小明的影子比他爸爸的影子短 C.小明的影子比他爸爸的影子一样长D.不能确定谁的影子长4.下列图形中,属于正方体平面展开图的是() A.B.C.D.5.某个长方体主视图是边长为 的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是()A.B.C.D.6.下面的图形都是由 个大小一样的正方形拼接而成的,这些图形中可折成正方体的是() A.B.C.D.7.一个圆锥和一个正方体摆放如图,其主视图是()A.B.C.D.8.如图是正方体的平面展开图,每个面上都标有一个汉字,与“涟”字对应的面上的字为()A.我B.爱C.中D.学9.如图,其左视图是矩形的几何体是() A.B.C.D.10.如图所示立体图形从上面看到的图形是()A.B.C.D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图是由若干个小立方块搭成的一个几何体的三视图,那么这个几何体中小立方块共有________个.12.一个几何体分别从上面看、从左面看、从正面看,得到的平面图形如图所示,则这个几何体是________.13.在圆柱的展开图中,圆柱的侧面展开图为________,棱柱的侧面展开图为________,圆锥的侧面展开图为________.14.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是 ,则该几何体俯视图的面积是________.15.一个几何体的表面能够展开成如图所示的平面图形,则这个几何体的名称是________.16.请将六棱柱的三视图名称依次填在横线上________.17.如图所示,这是一个正方体纸盒的展开图,在其中的三个正方形、、内分别填入适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则________,________.18.根据下列物体的三视图,填出几何体名称:该几何体是________.19.直棱柱中,底面为正方形,侧面展开图是边长为的正方形,则这个棱柱的表面积(底面面积与侧面面积的和)为________.20.如图,截去正方体一角变成的多面体有________条棱.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图是一个几何体,请画出它的三视图.22.从上面看由相同的小立方块搭成的几何体的形状图如图所示,小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面和左面看该几何体的形状图.23.如图是由若干个完全相同的小正方体堆成的几何体,画出该几何体的三视图;在该几何体的表面喷上红色的漆,则在所有的小正方体中,有几个正方体的三个面是红色?若现在你手头还有一个相同的小正方体.①在不考虑颜色的情况下,该正方体应放在何处才能使堆成的几何体的三视图不变?直接在图中添上该正方体;②若考虑颜色,要使三视图不变,则新添的正方体至少要在几个面上着色?24.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;若图中的正方形边长为,长方形的长为,宽为,请直接写出修正后所折叠而成的长方体的体积:________.25.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;若图中的正方形边长为,长方形的长为,请计算修正后所折叠而成的长方形的表面积.26.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.设原大正方体的表面积为,图②中几何体的表面积为,那么与的大小关系是________....无法确定小明说:“设图①中大正方体各棱的长度之和为,图②中几何体各棱的长度之和为,那么比正好多出大正方体条棱的长度.”你认为这句话对吗?为什么?如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.答案1.D2.C3.D4.D5.D6.C7.A8.C9.B10.C11.12.圆柱13.长方形长方形扇形14.15.圆柱16.主视图,俯视图,左视图17.18.六棱柱19.20.21.解:22.解:如图所示:.23.解:作图如右图.有个;图如,要使三视图不变,则新添的正方体至少要在个面上着色.24..25..26.解:设原大正方体的表面积为,图②中几何体的表面积为,那么与的大小关系是相等;故选:;设大正方体棱长为,小正方体棱长为,那么.只有当时,才有,所以小明的话是不对的;如图所示:.。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)
第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图所示的几何体的从上面看到的形状图是()A. B. C. D.2、太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状不可能是()A.等腰梯形B.平行四边形C.矩形D.正方形3、某几何体的三视图如图所示,则下列说法错误的是()A.该几何体是长方体B.该几何体的高是3C.底面有一边的长是1 D.该几何体的表面积为18平方单位4、下列几何体中,其主视图为三角形的是()A. B. C. D.5、如图是由5 个大小相同的正方体组成的几何体,从正面看到的形状图是()A. B. C. D.6、已知圆锥的底面半径为4,母线长为12,则圆锥的侧面展开图的圆心角为()A.60°B.90°C.120°D.216°7、如图,水杯的杯口与投影面平行,投影线的几方向如箭头所示,它的正投影是()A. B. C. D.8、如图,几何体由6个大小相同的正方体组成,其左视图是()A. B. C. D.9、如图是一个由5个相同的正方体组成的立体图形,它的左视图是( )A. B. C. D.10、一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π11、下列几何体中,从正面、左面、上面观察的几何体的形状相同的有()个A.1B.2C.3D.412、如图1所示,一只封闭的圆柱形容器内盛了一半水(容器的厚度忽略不计),圆柱形容器底面直径为高的2倍,现将该容器竖起后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1=S213、扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cmB.30cmC.40cmD.300cm14、如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是()A. B. C. D.15、一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D,面C在后面,则正方体的上面是( )A.面EB.面FC.面AD.面B二、填空题(共10题,共计30分)16、如图,要用纸板制作一个母线长为底面圆半径为的圆锥形漏斗,若不计损耗,则所需纸板的面积是________ .17、已知圆锥的侧面积为15π,母线长5,则圆锥的高为________.18、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.19、高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为________米.20、如图,是由一些大小相同的小正方体搭成的几何体分别从左面看和从上面看得到的平面图形,则搭成该几何体的小正方体最少是________个.21、将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“我”字相对的字是________.22、用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________cm.23、如图,若要使图中平面展开图折叠成正方体后,相对面上两个数字之和为6,则x﹣y=________ .24、如图是一个正方体的平面展开图,在这个正方体中相对的面上的数字之和相等,则m 所表示的数是________.25、n个单位小立方体叠放在桌面上,所得几何体的主视图和俯视图均如图所示.那么n 的最大值与最小值的和是________.三、解答题(共5题,共计25分)26、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.27、深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.28、如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的表面积及全面积(结果保留π)29、如图,是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)请根据图中所标的尺寸,计算这个几何体的侧面积.30、按要求完成下列视图问题(1)如图(一),它是由6个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图(二),请你借助图四虚线网格画出该几何体的俯视图.(3)如图(三),它是由几个小立方块组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助图四虚线网格画出该几何体的主视图.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、D5、C6、C7、D8、A9、D10、D11、C12、C13、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
浙教版九年级数学下册第三章【投影与三视图】单元综合检测试题及解析
九年级数学下册第三章【投影与三视图】单元综合检测试题一、单选题(共10题;共30分)1.如图,从左面观察这个立体图形,能得到的平面图形是()A. B. C. D.2.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.3.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )A. B. C. D.4.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A. 2πB. 6πC. 7πD. 8π5.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B. 15 C. 10 D.6.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A. B. C. D.7.在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A. 正方体B. 三棱柱C. 圆柱D. 圆锥8.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A. 祝B. 考C. 试D. 顺9.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C. D.10.如图,是一个正方体的平面展开图,且相对两个面表示的整式的和都相等,如果,则E所代表的整式是()A. B. C. D.二、填空题(共10题;共42分)11.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是________ .12.当你走向路灯时,你的影子在你的________,并且影子越来越________.13.如图是一个长方体的展开图,每个面上都标注了字母,如果F面在前面,B面在左面,(字母朝外),那么在上面的字母是________.14.一个几何体由12个大小相同的小立方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小立方块的个数,则从正面看,一共能看到________ 个小立方块(被遮挡的不计).15.如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.16.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.17.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(4,1),则CD在x 轴上的影长为________ ,点C的影子的坐标为________ .18.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是________cm319.(1)侧面可以展开成一长方形的几何体有________;(2)圆锥的侧面展开后是一个________;(3)各个面都是长方形的几何体是________;20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共48分)21.如图,这是一个由大小相等的正方体堆成的几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请你画出它的主视图和左视图.22.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.23.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6.小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?24.如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)25.用小立方块搭一个几何体,使它的从正面和从上面看到的这个几何体的形状图如图所示,从上面看到的形状图中的小正方形中的字母表示该位置小立方块的个数,试回答下列问题;(1)x、z各表示多少?(2)y可能是多少?这个几何体最少由几个小立块搭成?最多呢?26.如图分别是两根木棒及其影子的情形.(1)哪个图反映了太阳光下的情形?哪个图反映了路灯下的情形?(2)在太阳光下,已知小明的身高是1.8米,影长是1.2米,旗杆的影长是4米,求旗杆的高;(3)请在图中分别画出表示第三根木棒的影长的线段.27.如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.28.如图是无盖长方体盒子的表面展开图.(1)求表面展开图的周长(粗实线的长);(2)求盒子底面的面积.答案解析部分一、单选题1.【答案】A2.【答案】A3.【答案】A4.【答案】D5.【答案】B6.【答案】B7.【答案】B8.【答案】C9.【答案】A10.【答案】B二、填空题11.【答案】球12.【答案】后面;短13.【答案】C14.【答案】815.【答案】516.【答案】上午8时17.【答案】1;(5,0)18.【答案】1219.【答案】圆柱和棱柱;扇形;长方体20.【答案】54三、解答题21.【答案】22.【答案】23.【答案】解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.24.【答案】解:(1)符合这个零件的几何体是直三棱柱;(2)∵△ABC是正三角形,又∵CD⊥AB,CD=2,=4,∴AC=°∴S表面积=4×2×3+2×4××2,=24+8(cm2).25.【答案】解:(1)由图可知x=3,z=1;(2)y=1或2;最少由3+2+2+1+1+1+1=11块搭成;最多由3+2+2+2+1+1+1=12块搭成.26.【答案】解:(1)图2反映了太阳光下的情形,图1反映了路灯下的情形;(2)设旗杆的高为xm,根据题意得,解得x=6,所以旗杆的高为6m;(3)如图1中,FG为在路灯下的第三根木棒的影长;如图2,FG为在太阳光下的第三根木棒的影长.27.【答案】解:∵CD∥AB,∴△EAB∽△ECD,∴,即= ①,∵FG∥AB,∴△HFG∽△HAB,∴,即= ②,由①②得= ,解得BD=7.5,∴= ,解得:AB=7.答:路灯杆AB的高度为7m28.【答案】解:(1)如图所示:表面展开图的周长为:2a+2b+4c;(2)盒子的底面长为:a﹣(b﹣c)=a﹣b+c.浙教版九年级数学下册第三章【投影与三视图】单元综合检测试题及解析盒子底面的宽为:b﹣c.盒子底面的面积为:(a﹣b+c)(b﹣c)=ab﹣b2+2bc﹣ac﹣c2第11 页共11 页。
浙教版九年级下《第3章投影与三视图》单元测试含答案解析
《第3章投影与三视图》1.如图是一个正六棱柱,它的俯视图是()A.B.C.D.2.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.如图所示的物体是由四个相同的小长方体堆砌而成的,那么这个物体的左视图是()A.B.C.D.5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是()A. B. C. D.6.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.7.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由个小正方体搭成.8.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.9.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.10.画出下图中几何体的三种视图.11.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方体的个数是()A.4个 B.5个 C.6个 D.7个12.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm的正方体摆在课桌上成如图的形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33dm2B.24dm2C.21dm2D.42dm213.两个正方体形状的积木摆成如图所示的塔形平放于桌面上,上面正方体下底面的四个顶点恰好是下面相邻正方体的上底面各边的中点,并且下面正方体的棱长为1,则能够看到部分的面积是多少?14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.15.用小立方体搭成的几何体的主视图和左视图如图所示,则搭成这个几何体至少要多少个小立方体?最多要多少个小立方体?《第3章投影与三视图》参考答案与试题解析1.如图是一个正六棱柱,它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】几何图形问题.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看可得到一个正六边形.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【专题】几何图形问题.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.如图所示的物体是由四个相同的小长方体堆砌而成的,那么这个物体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据左视图,后排两层,前排一层,可得答案.【解答】解:后排两层,前排一层,故选:B.【点评】本题考查了简单组合体的三视图,注意左视图后排画在左边,前排画在右边.5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是()A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是3,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有3列,从左到右分别是3,3,2个正方形.故选C.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是12 cm2.【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图可得长方体的长与高,左视图可得长方体的宽与高,俯视图的面积=长×宽.【解答】解:易得长方体的长为4,宽为3,所以俯视图的面积=4×3=12cm2.【点评】解决本题的难点是根据所给视图得到长方体的长与宽,关键是理解俯视图的面积等于长方体的长×宽.7.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由4个小正方体搭成.【考点】由三视图判断几何体.【专题】压轴题.【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【解答】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成.故答案为:4.【点评】本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,考查了学生细心观察能力,属于基础题.8.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.【考点】作图﹣三视图.【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为一个有圆心的圆.【解答】解:正确的三视图如图所示:.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.【考点】作图﹣三视图;由三视图判断几何体.【专题】作图题.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为2,3,左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.【解答】解:如图所示:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.10.画出下图中几何体的三种视图.【考点】作图﹣三视图.【分析】①主视图从左往右2列正方形的个数依次为2,1;左视图正方形的个数为2;俯视图从左往右2列正方形的个数依次为1,1;依此画出图形即可.②观察实物图,主视图是圆环;左视图是矩形,内侧有两条横着的虚线;俯视图是矩形,内侧有两条竖着的虚线.【解答】解:①如图所示:②如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.11.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方体的个数是()A.4个 B.5个 C.6个 D.7个【考点】由三视图判断几何体.【专题】数形结合.【分析】由俯视图可得最底层几何体的个数,由主视图和左视图可得几何体第二层正方体的个数,相加即可.【解答】解:俯视图中有4个正方形,那么最底层有4个正方体,由主视图可得第二层最多有2个正方体,有左视图可得第二层只有1个正方体,所以共有4+1=5个正方体.故选B.【点评】考查对三视图的理解应用及空间想象能力.只要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.注意俯视图中正方形的个数即为最底层正方体的个数.12.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm的正方体摆在课桌上成如图的形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33dm2B.24dm2C.21dm2D.42dm2【考点】几何体的表面积.【分析】分三层,每一层再分侧面与上表面两部分求出表面积,然后相加即可得解.【解答】解:最上层,侧面积为4,上表面面积为1,总面积为4+1=5(dm2),中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11(dm2),最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17(dm2),5+11+17=33(dm2),所以被他涂上颜色部分的面积为33dm2.故选:A.【点评】本题考查了几何体的表面积,注意分三层,每一层再分侧面积与上表面两部分求解,注意求解的层次性.13.两个正方体形状的积木摆成如图所示的塔形平放于桌面上,上面正方体下底面的四个顶点恰好是下面相邻正方体的上底面各边的中点,并且下面正方体的棱长为1,则能够看到部分的面积是多少?【考点】简单组合体的三视图.【分析】根据正方形的性质求出小正方体的棱长,然后根据可看见的部分有小正方体的5个面,大正方体的四个面积再加一个大正方体减小正方体的面,然后计算即可得解.【解答】解:∵下面正方体的棱长为1,∴下面正方体的面的对角线为=,∴上面正方体的棱长为,可看见的部分有上面正方体的小正方形的5个面,面积为:5×()2=,下面正方体的大正方形的4个完整侧面,面积为:4×12=4,两正方体的重叠面部分可看见的部分,面积为12﹣()2=,所以,能够看到部分的面积为+4+=7.【点评】本题考查了几何体的表面积,正方体的性质,正方形的性质,求出上面小正方体的棱长是解题的关键.14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.【考点】由三视图判断几何体.【分析】有三视图可看出这个图形是个四棱柱,然后根据底面菱形的对角线求出菱形的边长,然后求出侧面积.【解答】解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm,∴菱形的边长==cm,棱柱的侧面积=×8×4=80(cm2).【点评】本题要先判断出几何体的形状,然后根据其侧面积的计算方法进行计算即可.15.用小立方体搭成的几何体的主视图和左视图如图所示,则搭成这个几何体至少要多少个小立方体?最多要多少个小立方体?【考点】由三视图判断几何体.【分析】根据图形,主视图的底层最多有9个小正方体,最少有3个小正方形.第二层最多有4个小正方形,最少有2个小正方形.【解答】解:综合主视图和左视图,这个几何体的底层最多有3×3=9个小正方体,最少有3个小正方体,第二层最多有4个小正方体,最少有2个小正方体,那么搭成这样的几何体至少需要3+2=5个小正方体,最多需要4+9=13个小正方体.【点评】本题要分别对最多和最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”来分析出小正方体的个数.。
浙教版九年级下《第3章投影与三视图》单元测试(有答案)-(数学)AKMUMP
《第3章投影与三视图》1.如图是一个正六棱柱,它的俯视图是()A.B.C.D.2.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.如图所示的物体是由四个相同的小长方体堆砌而成的,那么这个物体的左视图是()A.B.C.D.5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是()A. B. C. D.6.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.7.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由个小正方体搭成.8.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.9.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.10.画出下图中几何体的三种视图.11.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方体的个数是()A.4个 B.5个 C.6个 D.7个12.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm的正方体摆在课桌上成如图的形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33dm2B.24dm2C.21dm2D.42dm213.两个正方体形状的积木摆成如图所示的塔形平放于桌面上,上面正方体下底面的四个顶点恰好是下面相邻正方体的上底面各边的中点,并且下面正方体的棱长为1,则能够看到部分的面积是多少?14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.15.用小立方体搭成的几何体的主视图和左视图如图所示,则搭成这个几何体至少要多少个小立方体?最多要多少个小立方体?《第3章投影与三视图》参考答案与试题解析1.如图是一个正六棱柱,它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】几何图形问题.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看可得到一个正六边形.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【专题】几何图形问题.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.如图所示的几何体的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.如图所示的物体是由四个相同的小长方体堆砌而成的,那么这个物体的左视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据左视图,后排两层,前排一层,可得答案.【解答】解:后排两层,前排一层,故选:B .【点评】本题考查了简单组合体的三视图,注意左视图后排画在左边,前排画在右边.5.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是3,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有3列,从左到右分别是3,3,2个正方形.故选C.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是12cm2.【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图可得长方体的长与高,左视图可得长方体的宽与高,俯视图的面积=长×宽.【解答】解:易得长方体的长为4,宽为3,所以俯视图的面积=4×3=12cm2.【点评】解决本题的难点是根据所给视图得到长方体的长与宽,关键是理解俯视图的面积等于长方体的长×宽.7.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由4个小正方体搭成.【考点】由三视图判断几何体.【专题】压轴题.【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【解答】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成.故答案为:4.【点评】本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,考查了学生细心观察能力,属于基础题.8.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.【考点】作图﹣三视图.【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为一个有圆心的圆.【解答】解:正确的三视图如图所示:.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.【考点】作图﹣三视图;由三视图判断几何体.【专题】作图题.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为2,3,左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.【解答】解:如图所示:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.10.画出下图中几何体的三种视图.【考点】作图﹣三视图.【分析】①主视图从左往右2列正方形的个数依次为2,1;左视图正方形的个数为2;俯视图从左往右2列正方形的个数依次为1,1;依此画出图形即可.②观察实物图,主视图是圆环;左视图是矩形,内侧有两条横着的虚线;俯视图是矩形,内侧有两条竖着的虚线.【解答】解:①如图所示:②如图所示:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.11.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方体的个数是()A.4个 B.5个 C.6个 D.7个【考点】由三视图判断几何体.【专题】数形结合.【分析】由俯视图可得最底层几何体的个数,由主视图和左视图可得几何体第二层正方体的个数,相加即可.【解答】解:俯视图中有4个正方形,那么最底层有4个正方体,由主视图可得第二层最多有2个正方体,有左视图可得第二层只有1个正方体,所以共有4+1=5个正方体.故选B.【点评】考查对三视图的理解应用及空间想象能力.只要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.注意俯视图中正方形的个数即为最底层正方体的个数.12.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm的正方体摆在课桌上成如图的形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33dm2B.24dm2C.21dm2D.42dm2【考点】几何体的表面积.【分析】分三层,每一层再分侧面与上表面两部分求出表面积,然后相加即可得解.【解答】解:最上层,侧面积为4,上表面面积为1,总面积为4+1=5(dm2),中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11(dm2),最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17(dm2),5+11+17=33(dm2),所以被他涂上颜色部分的面积为33dm2.故选:A.【点评】本题考查了几何体的表面积,注意分三层,每一层再分侧面积与上表面两部分求解,注意求解的层次性.13.两个正方体形状的积木摆成如图所示的塔形平放于桌面上,上面正方体下底面的四个顶点恰好是下面相邻正方体的上底面各边的中点,并且下面正方体的棱长为1,则能够看到部分的面积是多少?【考点】简单组合体的三视图.【分析】根据正方形的性质求出小正方体的棱长,然后根据可看见的部分有小正方体的5个面,大正方体的四个面积再加一个大正方体减小正方体的面,然后计算即可得解.【解答】解:∵下面正方体的棱长为1,∴下面正方体的面的对角线为=,∴上面正方体的棱长为,可看见的部分有上面正方体的小正方形的5个面,面积为:5×()2=,下面正方体的大正方形的4个完整侧面,面积为:4×12=4,两正方体的重叠面部分可看见的部分,面积为12﹣()2=,所以,能够看到部分的面积为+4+=7.【点评】本题考查了几何体的表面积,正方体的性质,正方形的性质,求出上面小正方体的棱长是解题的关键.14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.【考点】由三视图判断几何体.【分析】有三视图可看出这个图形是个四棱柱,然后根据底面菱形的对角线求出菱形的边长,然后求出侧面积.【解答】解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm,∴菱形的边长==cm,棱柱的侧面积=×8×4=80(cm2).【点评】本题要先判断出几何体的形状,然后根据其侧面积的计算方法进行计算即可.15.用小立方体搭成的几何体的主视图和左视图如图所示,则搭成这个几何体至少要多少个小立方体?最多要多少个小立方体?【考点】由三视图判断几何体.【分析】根据图形,主视图的底层最多有9个小正方体,最少有3个小正方形.第二层最多有4个小正方形,最少有2个小正方形.【解答】解:综合主视图和左视图,这个几何体的底层最多有3×3=9个小正方体,最少有3个小正方体,第二层最多有4个小正方体,最少有2个小正方体,那么搭成这样的几何体至少需要3+2=5个小正方体,最多需要4+9=13个小正方体.【点评】本题要分别对最多和最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”来分析出小正方体的个数.。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)
第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知一个正棱柱的俯视图和左视图如图所示,则其主视图为( )A. B. C. D.2、如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A. B. C. D.3、如图所示的几何体的俯视图是()A. B. C. D.4、如图所示的几何体的主视图是()A. B. C. D.5、如图所示的几何体,从左面看是()A. B. C. D.6、一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A.6cm 2B.4πcm 2C.6πcm 2D.9πcm 27、如图所示的直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是()A. B. C. D.8、由若干个相同的小正方体,摆成几何体的主视图和左视图均为,则最少使用小正方体的个数为()A.9B.7C.5D.39、下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是A. B. C. D.10、如图是由5个相同的正方形组成的几何体的左视图和俯视图,则该几何体的主视图不可能是()A. B. C. D.11、如图是正方体的展开图,在定点处标有1~11的整数数字,将它折叠正方体时,数字6对应的顶点与哪些数字对应的顶点重合()A.7,8B.7,9C.7,2D.7,412、如图,将一个小球摆放在圆柱上,该几何体的俯视图是()A. B. C. D.13、如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是 ( )A.7个B.8个C.9个D.10个14、如图所示,下列几何体中主视图、左视图、府视图都相同的是()A.半球B.圆柱C.球D.六棱柱15、下列图形中,不是正方体表面展开图的图形的个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2.17、一个正方体的六个面上分别写着六个连续的整数,且相对面上的两个数之和相等,如图所示,能看到的数为7,10,11,则这六个整数的和为________.18、如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有1个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有________种拼接方法.19、两个底面积相等的圆柱和圆锥形杯子,其中圆柱形杯子的盛有水,将水倒入圆锥形的杯子中刚好倒满,则圆柱形杯子的高与圆锥形杯子的高的比是________。
2019-2020学年度浙教版九年级数学下册第三章_投影与三视图 单元检测试卷(含答案)
第三章投影和三视图单元检测试卷 考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(共 10 小题,每小题 3 分,共 30 分)1.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.() A.中心投影,平行投影 B.平行投影,中心投影 C.平行投影,平行投影D.中心投影,中心投影2.“皮影戏”作为我国一种民间艺术,对它的叙述错误的是() A.它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲 B.表演时,要用灯光把剪影照在银幕上 C.灯光下,做不同的手势可以形成不同的手影 D.表演时,也可用阳光把剪影照在银幕上3.下列图形中,不是正方体表面展开图的图形的个数()A. 个B. 个C. 个D. 个4.图中的三棱柱的三视图是()A.三个三角形,B.两个长方形和一个三角形C.三个长方形D.两个长方形,且长方形内有一条连接对边的点的线段和一个三角形5.如图所示的几何体,如果从正面观察它,得到的平面图形是()A.B.C.D.6.如图 ,是由五个边长都是 的正方形纸片拼接而成的,现将图 沿虚线折成一个无盖的正方体纸盒(图 )后,与线段 重合的线段是()A. B.C.D.7.如图几何体的主视图是()A.B.C.D.8.如图是由 个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.9.如图是一个正方体的展开图,每个面内都标注了字母,则在展开前与面 相对的是()A.面B.面C.面D.面10.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.用小立方体搭几何体,主视图和俯视图如图所示,这样的几何正方体最少需要________个正方体,最多用________个.12.为了测量操场中旗杆的高度,小明学习了“太阳光与影子”,设计了如图所示的测量方案,根据图中标示的数据可知旗杆的高度为________.13.如图是一个正方体的展开图,如果从前面看是 ,从左面看是 ,那么从上面看是________.14.如图是同一时刻两根木杆的影子,则它们是________的光线形成的影子.15.如图所示,要使图中平面展开图按虚线折叠成正方体后相对面上两个数之和相等,则________.16.图是一个水平摆放的小正方体木块,图、是由这样的小正方体木块按一定的规律叠放而成.其中图的主视图有个正方形,图的主视图有个正方形,图的主视图有个正方形,按照这样的规律继续叠放下去,则图的主视图有________个正方形.17.长方体的主视图与俯视图如图所示,根据图中所示标尺寸,这个长方体的表面积为________.18.如图所示的几何体是由一些小正方体组合而成的,若每个小正方体的棱长都是,则该几何体俯视图的面积是________.19.下图是由一些相同的小正方体塔成几何体的三种视图,在这个几何体中,小正方体的个数是________.20.如图,用小立方块搭一几何体,从正面看和从上面看得到的图形如图所示,这样的几何体最少要________个立方块,最多要________个立方块.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.已知如图,和是直立在地面上的两根立柱,,某一时刻在阳光下的投影.请你画出此时在阳光下的投影;在测量的投影时,同时测量出在阳光下的投影长为,请你计算的长.22.如图,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的正视图与左视图.23.如图,该图形由个完全相同的小正方形排列而成.它是哪一种几何体的表面展开图?将数,,,,,填入小正方形中,使得相对的面上数字互为相反数.24.张明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.共有________种弥补方法;任意画出一种成功的设计图(在图中补充);在你帮忙设计成功的图中,要把,,,,,这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得.(直接在图中填上)25.如图是一个由多个相同的小正方形堆积而成的几何体,从上面看得到平面图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出该几何体从正面看到和从左面看到所得的平面图形.26.如图,已知一个由小正方体组成的几何体的左视图和俯视图.该几何体最少需要几块小正方体?最多可以有几块小正方体?答案1.B2.D3.B4.D5.C6.A7.A8.B9.B10.B11.12.13.14.点光源15.16.17.18.19.20.21.解:如图,为此时在阳光下的投影;∵,∴,∴,∴,即,解得,即的长为.22.解:主视图和左视图依次如下图:…23.解:∵图形由个完全相同的小正方形排列而成,∴是正方体的表面展开图;如图所示:24.;如图所示:;如图所示:.25.解:所画图形如下所示:26.解:俯视图中有个正方形,那么组合几何体的最底层有个正方体,由左视图第二层有个正方形可得组合几何体的第二层最少有个正方体,所以该几何体最少需要块小正方体;俯视图从上边数第一行的第二层最多可有个正方体,所以该几何体最多需要块小正方体.。
(期末专题)九年级下《第三章投影与三视图》单元检测试卷有答案(浙教版数学)
【期末专题复习】浙教版九年级数学下册第三章投影与三视图单元检测试卷一、单选题(共10题;共30分)1.一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的().A. ①② B. ③④ C. ①④ D. ③②2.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C. D.3.如图的几何体,左视图是()A.B.C. D.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是45.如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C. D.6.如图,一个由6个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A. 主视图的面积为6B. 左视图的面积为2 C. 俯视图的面积为4 D. 俯视图的面积为3 7.若一个几何体的三视图如图所示,则这个几何体是()A. 三棱柱B. 四棱柱 C. 五棱柱 D. 长方体8.如图所示的平面图形能折叠成的长方体是()A.B.C. D.9.如图是一个正方体,则它的表面展开图可以是()A. B.C.D.10.一些完全相同的小正方形搭成一个几何体,这个几何体从正面和左面看所得的平面图形均如图所示,小正方体的块数可能有()A. 7种B. 8种C. 9种D. 10种二、填空题(共10题;共33分)11.如图是一个正方体纸盒的展开图,当折成纸盒时,与点1重合的点是________.12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________.13.如图,直三棱柱ABC-A1B1C1的侧棱长和底面各边长均为2,其主视图是边长为2的正方形,则此直三棱柱左视图的面积为 ________.14.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)15.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________ cm.16.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为 ________.17.如图所示的几何体的三视图,这三种视图中画图不符合规定的是________ .18.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.19.小明为自己是重庆一中的学子感到很自豪,他特制了一个写有“我爱重庆一中”的正方体盒子,其展开图如图所示,则原正方体中与“重”字所在的面相对的面上的字是________ .20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共9题;共57分)21.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?22.如图,这是一个由大小相等的正方体堆成的几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请你画出它的主视图和左视图.23.用若干个小立方块搭成一个几何体,使它从正面看与从左面看都是如图的同一个图.通过实际操作,并与同学们讨论,解决下列问题:(1)所需要的小立方块的个数是多少?你能找出几种?(2)画出所需个数最少和所需个数最多的几何体从上面看到的图,并在小正方形里注明在该位置上小立方块的个数.24.如图为7个正方体堆成的一个立体图形,分别画出从正面、左面、上面看这个几何体所看到的图形.25.如图是一个几何体的二视图,求该几何体的体积(л取3.14,单位:cm)26.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.27.如图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.(2)在图中画出表示大树高的线段.28.一个零件的主视图、左视图、俯视图如下图所示(尺寸单位:厘米),求一下这个零件的体积和表面积(写清计算过程)29.深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】C6.【答案】C7.【答案】A8.【答案】D9.【答案】B10.【答案】C二、填空题11.【答案】7和1112.【答案】313.【答案】214.【答案】圆锥、圆柱、球15.【答案】616.【答案】2或317.【答案】俯视图18.【答案】26;6619.【答案】中20.【答案】54三、解答题21.【答案】解:由图可知,其中一个物品的俯视图是圆,主视图和左视图都是长方体,由此可知该物品是圆柱;另一个物品的三个视图是大小不一样的长方形,由此可知该物品是长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年浙教版九年级数学下册《第3 章投影与三视图》单元测试卷一.选择题(共12 小题)1.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥2.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A.B.C.D.3.如图所示是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与13 重合的数字是()A.1 和9 B.1 和10 C.1 和12 D.1 和84.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.5.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A.B.C 分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A.B.C 的三个数依次为()A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,06.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A.祝B.考C.试D.顺7.如图几何体的主视图是()A.B. C.D.8.如图,由三个相同小正方体组成的立体图形的左视图是()A.B.C.D.9.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球10.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②11.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.12.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定二.填空题(共8 小题)13.如图是由6 个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表面展开图(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).14.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6 的小正方形中不能剪去的是(填编号).15.如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是.16.如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.17.如图,正方形ABCD 的边长为3cm,以直线AB 为轴,将正方形旋转一周,所得几何体的左视图的面积是.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是.19.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.20.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.三.解答题(共8 小题)21.下图是一个长方体纸盒的展开图,请把﹣5,3,5,﹣1,﹣3,1 分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:cm3.23.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1) 求 x 的值.(2) 求正方体的上面和底面的数字和.24. 用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如 A (1、5、6);则 B();C ();D ( );E ( ).25. 学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:(1) 当桌子上放有 x (个)碟子时,请写出此时碟子的高度(用含 x 的式子表示);(2) 分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.26. 已知一个几何体的三视图和有关的尺寸如图.碟子的个数碟子的高度(单位:cm )1 2 2 2+1.5 3 2+3 4 2+4.5 ……(1)写出这个几何体的名称;(2)求出这个几何体的表面积.27.如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和左视图.28.已知:如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻,AB 在阳光下的投影BC=4m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m,请你计算DE 的长.2020 年浙教版九年级数学下册《第3 章投影与三视图》单元测试卷参考答案与试题解析一.选择题(共12 小题)1.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.2.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D 折叠后都不符合题意,只有选项B 折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.3.如图所示是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与13 重合的数字是()A.1 和9 B.1 和10 C.1 和12 D.1 和8【分析】当把这个平面图形折成正方体时,左面五个正方形折成一个无盖的正方体,此时,1 与13 重合、2 与4 重合、5 与7 重合、10 与12 重合,右面一个正方形折成正方体的盖,此时8 与2、4 的重合点重合,9 与1、13 的重合点重合.【解答】解:当把这个平面图形折成正方体时,与13 重合的数字是1、9;故选:A.【点评】本题是考查正方体的展开图,训练学生观察和空间想象的能力.4.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A. B. C. D.【分析】将A、B、C、D 分别展开,能和原图相对应的即为正确答案.【解答】解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选:B.【点评】本题考查了展开图折叠成几何体,熟悉其侧面展开图是解题的关键.5.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A.B.C 分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A.B.C 的三个数依次为()A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,0【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相反数的定义解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣1”是相对面,“B”与“2”是相对面,“C”与“0”是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴填入正方形A.B.C 的三个数依次为1、﹣2、0.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是()A.祝B.考C.试D.顺【分析】用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“考”与面“利”相对,“顺”与“祝”相对,“试”与空白面相对.故选:C.【点评】本题考查了正方体展开图的知识,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图几何体的主视图是()A.B. C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:A.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8.如图,由三个相同小正方体组成的立体图形的左视图是()A.B. C. D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2 个正方形.故选:D.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中.9.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.10.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.11.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D 符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.12.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以白炽灯向上移时,阴影会逐渐变小.相反当乒乓球越接近灯泡时,它在地面上的影子变大.【解答】解:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选:A.【点评】此题主要考查了中心投影的特点和规律以及相似形性质的运用.解题的关键是利用中心投影的特点可知在这两组圆形相似,利用其相似比作为相等关系求出所需要的阴影的半径,从而求出面积.二.填空题(共8 小题)13.如图是由6 个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表面展开图(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).【分析】根据题意可知,结合展开图“1,4,1”格式作图,答案不唯一.【解答】解:或或等.【点评】主要考查了正方体的表面展开图.正方体的表面展开图的各种形式归类为“1,4,1”6 种,“1,3,2”3 种,“3,3”1 种,“2,2,2”1种,共有11 种..14.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6 的小正方形中不能剪去的是 3 (填编号).【分析】根据正方体的展开图中每个面都有唯一的一个对面进行判断,可得答案.【解答】解:由图可得,3 的唯一对面是5,而4 的对面是2 或6,7 的对面是1 或2,所以将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,编号为1、2、3、6 的小正方形中不能剪去的是3,故答案为:3.【点评】本题考查了展开图折叠成几何体,利用正方体的展开图中每个面都有唯一的一个对面是解题关键.15.如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是 8 .【分析】根据相对的面相隔一个面得到相对的2 个数,相加后比较即可得出答案.【解答】解:根据所给出的图形可得:2和6 是相对的两个面;3 和4 是相对两个面;1 和5 是相对的两个面,则原正方体相对两个面上的数字和最大值是8;故答案为:8.【点评】此题考查正方体相对两个面上的文字问题,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.16.如图所示,截去正方体一角变成一个新的多面体,这个多面体有 7 个面.【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.【点评】本题考查了正方体的截面.关键是明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数.17.如图,正方形ABCD 的边长为3cm,以直线AB 为轴,将正方形旋转一周,所得几何体的左视图的面积是18cm2 .【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:正方形ABCD 的边长为3cm,以直线AB 为轴,将正方形旋转一周,所得几何体为半径为3 圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm 和6cm,故矩形的面积为18cm2.故答案为:18cm2.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,考查了学生细心观察能力和计算能力,属于基础题.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是左视图.【分析】如图可知该几何体的正视图由5 个小正方形组成,左视图是由3 个小正方形组成,俯视图是由5 个小正方形组成,易得解.【解答】解:如图,该几何体正视图是由5 个小正方形组成,左视图是由3 个小正方形组成,俯视图是由5 个小正方形组成,故三种视图面积最小的是左视图.故答案为:左视图.【点评】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.19.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要 14 个小立方块.【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【解答】解:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14 个小正方体;故答案为:14.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.20.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有 11 块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2 列,每列小正方形数目分别为2,2;俯视图有4 列,每行小正方形数目分别为2,2,1,1.【解答】解:(1)根据如图所示即可数出有11 块小正方体;(2)如图所示;左视图,俯视图分别如下图:故答案为:(1)11.【点评】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.三.解答题(共8 小题)21.下图是一个长方体纸盒的展开图,请把﹣5,3,5,﹣1,﹣3,1 分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.【分析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.【解答】解:如图所示:【点评】本题考查灵活运用长方体的相对面解答问题,立意新颖,是一道不错的题.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积: 12 cm3.【分析】(1)由于长方体有6 个面,且相对的两个面全等,所以展开图是6 个长方形(包括正方形),而图中所拼图形共有7 个面,所以有多余块,应该去掉一个;又所拼图形中有3 个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3 厘米、2 厘米和2 厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.23.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x 的值.(2)求正方体的上面和底面的数字和.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3 和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A 字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字 3 和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B( 1,3,4 );C( 1,2,3,4 );D( 5 );E( 3,5,6 ).【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B 三棱锥,截面有可能是三角形,正方形,梯形C 正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D 球体,截面只可能是圆E 圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.25.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1.53 2+34 2+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x 的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.【分析】由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x 时,碟子的高度为2+1.5(x﹣1).【解答】解:由题意得:(1)2+1.5(x﹣1)=1.5x+0.5(2)由三视图可知共有12 个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)【点评】考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.26.已知一个几何体的三视图和有关的尺寸如图.(1)写出这个几何体的名称;(2)求出这个几何体的表面积.【分析】(1)由三视图的特征,可得这个几何体应该是直三棱柱;(2)这个几何体的表面积应该等于两个直角三角形的面积和三个矩形的面积和.【解答】解:(1)直三棱柱(2 分)(2)正视图是一个直角三角形,直角三角形斜边是10S=2(×6×8)+8×4+10×4+6×4(6 分)=144(7 分)即几何体的表面积为144cm2.(8 分)【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.27.如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和左视图.【分析】由已知条件可知,主视图有3 列,每列小正方数形数目分别为3,2,4;左视图有3 列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:如图,主视图及左视图如下:【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.28.已知:如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻,AB 在阳光下的投影BC=4m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m,请你计算DE 的长.【分析】(1)根据已知连接AC,过点D 作DF∥AC,即可得出EF 就是DE 的投影;(2)利用三角形△ABC∽△DEF.得出比例式求出DE 即可.【解答】解:(1)作法:连接AC,过点D 作DF∥AC,交直线BE 于F,则EF 就是DE 的投影.(画图(1 分),作法1 分).(2)∵太阳光线是平行的,∴AC∥DF.∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴=,∵AB=5m,BC=4m,EF=6m,∴,∴DE=7.5(m).【点评】此题主要考查了平行投影的画法以及相似三角形的应用,根据已知得出△ABC∽△DEF 是解题关键.。