2014高教社杯全国大学生数学建模竞赛(嫦娥3号软着陆)

合集下载

2014高教社杯全国大学生数学建模竞赛A题论文答辩

2014高教社杯全国大学生数学建模竞赛A题论文答辩

70.9 48.8 29.9 91.3 2.588 1.056 2.498
75.7 37.4 33.3 90.8 1.838 1.168 1.702
总计
1.347 2.437 2.984 3.784 2.763
求解参数N与P的关系为
N (P 3) 3
P值太大,反而会影响计算效率,因此,取
P 30 为宜。
rpGM 1.6139 103 m / s ra a
沿运动轨迹切线方向
第2页,共15页。
1.问题一:着陆准备轨道近月点和远月点的位置
加速度为:
d 2Z dt 2
e i
d 2r dt 2
r d
dt
2
i
r
d 2
dt 2
2 dr dt
d
dt
对嫦娥三号进行受力分析,由牛顿第二定律得:
mMG ei
2014年高教社杯全国大学生数学建模竞赛
A题: 嫦娥三号软着陆轨道设计
与控制策略
第1页,共15页。
1. 问题一:嫦娥三号速度的大小和方向
vp
(1 e )
(1 e )a
(1 e )
va (1 e )a
联立上式可得近月点(近拱点),远月点(远拱点)的速度:
vp
va
raGM 1.6922 103 m / s rp a
当 rp 1752.013 103 m 时,解得 cos ,则-1 ; 180
当 ra 1837.013 103 m 时,解得 cos,则1 。 0
则在近月点的位置是 (180,1752.013 103 )
远月点的位置是 (0,1837.013 103 )
第4页,共15页。

2014高教社杯全国大学生数学建模竞赛A题

2014高教社杯全国大学生数学建模竞赛A题

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):07033001 所属学校(请填写完整的全名):吉林师范大学博达学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈密尔顿函数为理论基础进行了完整的建模工作。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞
赛历年赛题
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
全国大学生数学建模竞赛历年赛题
2009:AB
CD
2010:A储油罐的变位识别与罐容表标定
B2010年上海世博会影响力的定量评估
C输油管的布置
D对学生宿舍设计方案的评价
2011:A城市表层土壤重金属污染分析
B交巡警服务平台的设置与调度
C企业退休职工养老金制度的改革
D天然肠衣搭配问题
2012:A葡萄酒的评价
B太阳能小屋的设计
C脑卒中发病环境因素分析及干预
D机器人避障问题
2013:A车道被占用对城市道路通行能力的影响
B碎纸片的拼接复原
C古塔的变形
D公共自行车服务系统
2014:A嫦娥三号软着陆轨道设计与控制策略B创意平板折叠桌
C生猪养殖场的经营管理
D储药柜的设计
2015:A太阳影子定位
B“互联网+”时代的出租车资源配置
C月上柳梢头
D众筹筑屋规划方案设计。

嫦娥三号软着陆过程(数模竞赛附件2)

嫦娥三号软着陆过程(数模竞赛附件2)

附件2:嫦娥三号软着陆过程的六个阶段及其状态要求1. 嫦娥三号软着陆过程示意图附图4嫦娥三号软着陆过程示意图2.嫦娥三号软着陆过程分为6个阶段的要求(1)着陆准备轨道:着陆准备轨道的近月点是15KM,远月点是100KM。

近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置。

(2)主减速段:主减速段的区间是距离月面15km到3km。

该阶段的主要是减速,实现到距离月面3公里处嫦娥三号的速度降到57m/s。

(3)快速调整段:快速调整段的主要是调整探测器姿态,需要从距离月面3km到 2.4km处将水平速度减为0m/s,即使主减速发动机的推力竖直向下,之后进入粗避障阶段。

(4)粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是要求避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。

嫦娥三号在距离月面2.4km处对正下方月面2300×2300m的范围进行拍照,获得数字高程如附图5所示(相关数据文件见附件3),并嫦娥三号在月面的垂直投影位于预定着陆区域的中心位置。

附图5:距月面2400m处的数字高程图该高程图的水平分辨率是1m/像素,其数值的单位是1m。

例如数字高程图中第1行第1列的数值是102,则表示着陆区域最左上角的高程是102米。

(5)精避障段:精细避障段的区间是距离月面100m到30m。

要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。

分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。

附图6是在距离月面100m处悬停拍摄到的数字高程图(相关数据文件见附件4)。

附图6:距离月面100m处的数字高程图该数字高程的水平分辨率为0.1m/像素,高度数值的单位是0.1m。

(6)缓速下降阶段:缓速下降阶段的区间是距离月面30m到4m。

该阶段的主要任务控制着陆器在距离月面4m处的速度为0m/s(合速度),即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。

2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。

根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。

(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。

附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。

附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。

嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。

目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。

北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。

25-杨金仓(开题报告)作业

25-杨金仓(开题报告)作业

宁夏师范学院本科生毕业论文(设计)开题报告姓名杨金仓院、系数学与计算机科学学院专业数学与应用数学班级2012级数学与应用数学2班学号201204110225 论文(设计)题目月球探测器软着陆轨道最优设计与控制策略题目来源2014年高教社杯全国大学生数学建模竞赛本课题研究的现状、意义、拟研究的主要问题、重点和难点、研究方法和步骤、预期效果:现状:在美、苏进行激烈的探月竞争的五、六十年代,我国由于国力所限,没有进行探月实践活动,但许多学者致力于探月轨道设计。

如今,我国的综合国力大大增强,以举世瞩目的成就被世界公认为航天大国。

但 94 年以前,我国在实际的月球探测方面仍是空白。

94 年 7 月我国计划在 97、98 年间的"921 工程”运载器试验时,搭载月球探测器,实现登月探测,代号为“50 工程”。

95 年又提出了的“嫦娥工程”。

中国首个月球探测计划“嫦娥工程”于 2004 年 3 月 1 日启动,分三个阶段实施该月球卫星将携带 CCD 立体相机、成像光谱仪、太阳宇宙射线监测器、低能粒子探测器等科学探测仪器。

其工作轨道为极月的圆轨道,轨道高度 200 千米,它的基本构型利用中国已有的成熟的东方红三号卫星为平台,各分系统充分继承了现有的技术和设备,进行适应性改造。

月球卫星将采用中国已有的成熟的运载火箭长征三号甲进行发射。

运载火箭把卫星送入地球静止转移轨道后与卫星分离,其后的轨道机动、中途修正、近月点制动等均由星上推进系统完成。

意义:本文所研究的制导控制方法正是为满足上述要求,应用现代控制理论,结合我国航天发展的实际情况而进行的。

本文以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件建立的最优轨道设计上进行仿真分析,实施月球探测将是继发射人造地球卫星和突破载人航天技术之后,中国航天活动的第三个里程碑。

月球是离地球最近的天体,自然成为空间探测的首选目标。

嫦娥三号软着陆避障阶段的最优控制策略浅析

嫦娥三号软着陆避障阶段的最优控制策略浅析

嫦娥三号软着陆避障阶段的最优控制策略浅析引言嫦娥三号软着陆降落过程中要保证准确性与安全性,此阶段的精确控制尤为重要,本文结合粗避障和精避障两个阶段进行分析研究,在粗避障阶段采用合理化假设并逐步验证的方法,精避障阶段采用中心螺旋法,最终得出嫦娥三号在这两个避障阶段的最优控制策略,并进行误差分析。

1、粗避障阶段的最优控制策略为了使嫦娥三号在软着陆阶段高度可靠安全,着陆器需具备较强的自主障碍识别与规避能力,在粗避障阶段主要目的:在较大范围内去除明显危及嫦娥三号着陆安全的大尺度障碍,为精避障阶段提供较好的安全点选择区域,很大程度上减小出现软着陆过程中近距离无法规避障碍物的风险,提高安全着陆概率,考虑到其速度较大且要求成像快、计算快的情况,本文需要综合推进剂消耗来选择最优位置。

粗避障段的范围是距离月面2.4km到100m区间,要求避开大的陨石坑在设计着陆点上方100m处悬停,由此初步确定落月地点,同时成像敏感器能够持续大范围观测着陆区,此阶段飞行轨迹要尽可能满足特定姿态和下降轨迹要求,进一步接近到达目标着陆点的设计轨迹。

考虑到7500N主发动机羽流(从火箭发动机喷管喷射出来的羽毛状的高速高温燃气流)带来的半锥角约为的椎体,会导致一部分不可见区域,而成像敏感区视场角(以光学仪器的镜头为顶点,以被测目标的物象可通过镜头的最大范围的两条边缘构成的夹角)为,为了避免主发动机羽流对成像敏感器的影响且保证在粗避障阶段成像敏感器能够观测到月球表面着陆区,同时考虑到降落路径的不同会导致软着陆过程中耗时的不同,对推进剂的消耗也是不相同的,本文对嫦娥三号采用下降轨迹接近与水平面夹角的直线下降方式,且推力对嫦娥三号的作用力与其运动径向的方向夹角近似为,并对其进行验证。

以嫦娥三号为坐标原点,其水平和径向方向所在直线为X轴和Y轴,其运行速度方向与X轴夹角为,所受推力方向与Y轴夹角为,结合着陆器成像敏感区的视场角范围,根据嫦娥三号在坐标系中的具体位置,联系其所受推力的大致方向分析验证得到此时主发动机产生的椎体羽流对成像敏感区的影響是较小的,验证了假设的合理性。

2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2021 高教社杯全国大学生数学建模比赛A 题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。

对本问题应该给出合理的建模假定, 譬如: 惯性坐标、二体问题等, 并加以分析说明。

问题1: 在已知的条件下, 确定嫦娥三号在环月轨道上近月点与远月点的相对位置和速度(1) 建立合理适用的坐标系。

(2) 对嫦娥三号进行受力分析, 建立其运动学和准备轨道的数学模型(譬如: 微分方程等模型) 。

(3) 通过求解数学模型得. 到数值结果。

问题2: 确定软着陆轨道与6 阶段的控制策略由问题对着陆轨道 6 个阶段的要求, 每个阶段都应给出起止状态(速度和位置) 和最优控制策略(推力大小和方向) , 以满足各阶段起止状态的需求。

(1) 建立各阶段的最优控制模型, 明确给出控制变量、状态变量、状态方程、约束条件和目标函数。

(2) 在粗避障和精细避障阶段挑选落点时, 需要综合考虑月面的平整度、光照条件、着陆控制误差等因素, 确定最理想的着陆地点。

(3) 各阶段的控制问题是一个无穷维的优化问题, 可以通过合理的简化(譬如离散化为有限维的优化问题) 求解得. 到合理的数值结果, 即最优的控制策略。

(4) 若未按题目要求按6 阶段设计最优控制策略, 而照抄某些文献的两阶段或三阶段的处理方法, 不能视为较好的论文。

问题3: 着陆轨道设计和控制策略的误差分析与敏感度分析对问题的稳定性有影响的误差包括:(1) 着陆准备轨道参数(近月点位置和速度) 的误差;(2) 分阶段分析发动机推力(大小和方向) 的控制误差;(3) 模型的简化假定、模型的近似与求解过程等综合分析误差;加入能针对以上几个因素对问题结果的影响及程度做相应的敏感度分析, 应给予肯定。

2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。

本题主要考查学生对直纹面的描述、建模和计算功底。

2014年数学建模A题-省一等奖

2014年数学建模A题-省一等奖

关键词:软着陆、SQP算法、轨道优化、景象匹配
1

1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。

嫦娥三号巡视器-着陆器释放分离过程关键力学问题分析

嫦娥三号巡视器-着陆器释放分离过程关键力学问题分析

嫦娥三号巡视器-着陆器释放分离过程关键力学问题分析邹怀武;杨文淼;刘殿富;肖杰;胡震宇【摘要】针对嫦娥三号探测器两器释放分离过程几个关键力学问题,给出两器释放分离过程的主要风险点与影响参数,应用ADAMS建立两器释放分离全过程仿真模型,开展了全过程动力学仿真与相关试验.分析得到可适应安全释放分离要求的着陆器最大着陆姿态边界与关键性能参数,为两器释放分离提供了理论支撑与依据.%Several key mechanic problems during the release and separation of the Chang'E-3 probe are revealed.The main risk points and influentical parameters of the separation process are given.The simulation model of the whole process of the release and separation is established by using ADAMS.Then the dynamic simulation and related experiment are carried out.The main risk points and influentical parameters of the two devices are identified,and the maximal landing boundary condiftions of the lander is obtained,which provides basis and theoretical support for the release and separation of the two devices.【期刊名称】《宇航学报》【年(卷),期】2018(039)001【总页数】8页(P9-16)【关键词】巡视器;着陆器;释放分离;嫦娥三号探测器;试验验证【作者】邹怀武;杨文淼;刘殿富;肖杰;胡震宇【作者单位】上海宇航系统工程研究所,上海,201108;上海宇航系统工程研究所,上海,201108;上海宇航系统工程研究所,上海,201108;上海宇航系统工程研究所,上海,201108;上海宇航系统工程研究所,上海,201108【正文语种】中文【中图分类】TG1560 引言嫦娥三号探测器是我国首个在地球以外天体表面实施软着陆的航天器,实现了探月工程二期“落”的任务目标。

数学建模获奖论文A题-嫦娥三号软着陆轨道设计与控制策略

数学建模获奖论文A题-嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略摘要随着人类的进步和科技的发展,人类对太空和月球的探索已经取得了很大的进步。

我国的探月工程项目也一直走在世界前列。

嫦娥三号是我国首次实行外天体软着陆任务的飞行器,在世界上首先实现了地外天体软着陆自主避障。

对于嫦娥三号软着陆过程虽然有很多的研究成果,但这仍然是一个永远值得我们研究的问题。

本文首先分析了嫦娥三号运行轨道的近月点和远月点的速度,然后确定了近月点和远月点的位置。

在这基础上,对嫦娥三号软着陆轨道进行拟合确定,通过制导技术分析六个阶段最优控制策略。

最后,对确定的轨道和最优控制策略进行误差分析和敏感性分析。

在对问题一近月点和远月点位置确定和速度分析时,本文建立了动力学模型,通过万有引力定律求得在近月点的飞行速度为1.67km/s,在远月点的速度为1.63km/s,然后用微元迭代的方法,解得近月点的位置19.51W,32.67N,15km,远月点的位置160.49E,32.67S,100km。

在轨道的确定过程中,为了便于研究,将嫦娥三号软着陆的轨道划分为三个阶段。

第一个阶段是从近月点到距月球表面2400米的高空,在这一阶段的研究中,本文建立了基于软着陆二维动力学模型,然后根据所得到的数据确定轨道,进而用MATLAB拟合出轨道。

第二阶段是从距月球表面2400米到4米,考虑到要避开月球表面障碍物,所以,用MATLAB将附件 3中的图像进行平面和三维作图,从而根据所做出的图像确定出此阶段的运行轨道。

在第三阶段的划分是嫦娥三号从4米处开始做自由落体运动,这个阶段的轨迹是一条直线。

在六个阶段运动过程的最优控制策略研究中,首先运用显示制导法进行六个阶段燃料的最优控制,约束条件是嫦娥三号在每个阶段燃料的使用尽量少。

然后用模拟退火遗传算法对六个阶段的轨道最优化进行设计,得出嫦娥三号着陆过程每个阶段最优轨道控制,通过避障制导技术得出嫦娥三号软着陆六个阶段的最优控制策略。

关键词:二维动力学模型最优控制策略显示制导法一. 问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略引言嫦娥三号(Chang'e-3)是中国国家航天局(CNSA)于2013年发射的探月任务。

作为中国首个实现月面软着陆的任务,嫦娥三号的轨道设计与控制策略至关重要。

本文将探讨嫦娥三号的软着陆轨道设计以及相应的控制策略。

一、轨道设计1.1 软着陆的定义软着陆是指在着陆过程中,飞船的速度和加速度较小,从而减小着陆冲击力,降低着陆事故的风险。

嫦娥三号软着陆的主要目标是保证飞船及上面搭载的月球车的安全着陆。

1.2 轨道选择嫦娥三号选择了椭圆轨道进行软着陆。

这是因为椭圆轨道在进入月球表面前可以实现速度和加速度的逐渐减小,从而使得软着陆更加稳定和可控。

1.3 轨道参数设计在确定椭圆轨道之后,嫦娥三号需要确定相应的轨道参数。

这些参数包括轨道离心率、轨道倾角和轨道高度等。

通过科学计算和仿真分析,嫦娥三号确定了具体的轨道参数,以便使得软着陆能够满足任务要求。

二、控制策略2.1 控制模式嫦娥三号软着陆的控制策略采取了主动控制模式。

这意味着在着陆过程中,飞船将根据实时数据进行主动调整,以保证软着陆的稳定和安全。

2.2 触发条件在软着陆的控制策略中,触发条件是十分重要的。

嫦娥三号采取了多个触发条件,包括高度、速度和倾斜度等。

当这些条件满足一定的阈值时,控制系统将自动开始软着陆程序。

2.3 控制手段嫦娥三号软着陆采用了多种控制手段,以确保着陆过程的精确控制。

其中包括推力控制、姿态控制和舵控制等。

这些控制手段能够对飞船的速度、姿态和角度进行实时调整,以实现软着陆的最佳效果。

2.4 控制算法为了实现软着陆的精确控制,嫦娥三号采用了高级的控制算法。

这些算法包括PID控制、模糊控制和神经网络控制等。

通过这些算法,嫦娥三号能够根据实时数据进行精确的控制,并及时作出调整,以确保软着陆的成功。

结论嫦娥三号软着陆轨道设计与控制策略在实现月面软着陆任务中起到了重要的作用。

通过适当的轨道设计和精确的控制策略,嫦娥三号成功实现了月球表面的软着陆,并为未来的探月任务提供了宝贵的经验。

2014年全国数学建模大赛A题

2014年全国数学建模大赛A题

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

2014全国大学生数学建模a题

2014全国大学生数学建模a题

2014高教社杯全国大学生数学建模竞赛a题摘要2013年嫦娥三号成功发射,标志着我国航天事业上的又一个里程碑,针对嫦娥三号软着陆问题,分别建立着陆前轨道准备模型和软着陆轨道模型,建立动力学方程,以燃料最省为目标进行求解。

问题一:在软着陆前准备轨道上利用开普勒定律、能量守恒定律以及卫星轨道的相关知识,利用牛顿迭代法分别确定了近月点和远月点的速度分别为 1.6925km/s、1.6142km/s,位置分别为(19.91W,20.96N),(160.49E,69.31S)。

问题二:在较为复杂的软着陆阶段,因为相对于月球的半径,嫦娥三号到月球的表面的距离太小,如果以月球中心建立坐标系会造成比较大的误差,因此选择在月球表面建立直角坐标系,在主减速阶段的类平抛面上建立相应的动力学模型,求出关键点的状态和并设计出相应的轨道,接下来通过利用灰度值阀值分割方法和螺旋搜索法对粗避障阶段和精避障阶段的地面地形进行相应的分析,找出安全点,然后调整嫦娥三号的方向以便安全降落,最后在落地时通过姿态发动机调整探测器的姿态,使之可以平稳的落到安全点上,在以上的各个阶段都可以以燃料最省为最优指标,从而建立非线性的最优规划的动力学模型,并基于该动力学模型可以对各个阶段的制导率进行优化设计由此就可以得到各个阶段的最优控制策略,问题三:最后针对所设计的轨道和各个阶段的控制策略进行了误差分析和灵敏度分析。

对系统误差和偶然误差都做了解释;通过灵敏度分析发现,嫦娥三号在近月点的位置对结果的影响最大。

关键字牛顿迭代法,灰度值阀值分割,螺旋搜索法,灵敏度分析一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号软着陆轨道设计与控制策略的优化模型_杜剑平模板

嫦娥三号软着陆轨道设计与控制策略的优化模型_杜剑平模板

)的模型建立与求解 3 问题 1
3. 1 确定近月点和远月点的速度 由假设 2. 嫦娥三号从近月点开始下落 , 且与着陆准备轨道在同一个平面上 。 又由假设 2. 3, 1 和 2. 2
1] 。 知, 嫦娥三号的着陆准备轨道满足开普勒轨道定律 , 其着陆准备轨道如图 1 所示 [
远月点至月心的距离为 设近月 点 至 月 心 的 距 离 为 r A, 单位时间嫦娥三号扫过的面积为 r B, 1 1 r vA , S r vB , A B = B 2 2
竞赛论坛
檺檺殣
1 问题的提出
在高速飞行的情况下 , 嫦娥三号要保证准确地在月球预定区域实现软着陆 , 关键问题是着陆轨道与 远月点 1 控制策略的设计 。 基本要求是 : 着陆准备轨道为近月点 1 着陆轨道 m, m 的椭圆形轨道 ; 5k 0 0k 为从近月点至着陆点 , 其软着陆过程共分为 6 个阶段 , 要求满足每个阶 段 在 关 键 点 所 处 的 状 态 ; 尽量减 少软着陆过程的燃料消耗 。 根据上述基本要求 , 要研究以下 3 个问题 : )确定着陆准备轨道近月点和远月点的位置以及嫦娥三号的相应速度 ; 1 )确定嫦娥三号的着陆轨道和 6 个阶段的最优控制策略 ; 2 )针对建立的模型 , 对所设计的着陆轨道与控制策略做相应的误差分析和敏感性分析 。 3
6 - / , 嫦娥三号所受到的最大离心加速度为 由于月球自转速度为 ω = 2. 6 6 1 7×1 r a d s 0 2 2 5 - ( / ) 。 k s 2 3 9 6×1 0 α = ωr ≈ 1. g 2 5 - / 即 将非惯性坐标系近似为惯性坐标系 , 的加速度误差 , 最大可能产生1. 远小于月球引 k s 0 2 3 9 6×1 g
的引力加速度为

数学建模竞赛的心得体会

数学建模竞赛的心得体会

数学建模竞赛的心得体会9月16日早7点37分在我们三个人的注视下,滚烫的论文成功发送到了全国建模组委会邮箱,宣告着三天三夜的数学建模竞赛终于结束,我们终于可以长长的舒一口气了。

第一天,我们拿到题目,A题是嫦娥三号软着陆问题,B题是创意桌子的折叠问题,考虑到B题涉及较复杂和繁多的编程而我们学校的弱势便是编程,我和队长一致同意选A题,而杨彦云偏向于B题,因为对于专业为数学的我们,物理航天知识很欠缺,分析权衡后最终我们决定选A题。

选好题后我们开始仔细读题并查找相关资料,深入读题后才发现涉及的物理航天知识很多,我们的物理知识储备对于这个题来说完全是小学生水平,我们需要大量补充知识,因此,我们去图书馆借了10本左右的相关书籍。

我们把题干简化,分析要解决的问题,并不断翻阅资料,却发现有用的知识点很少。

经过一天大海捞针地找资料,补充知识,我们几乎毫无进展,明显感觉大家都很沮丧,每个人都在暗暗为自己加油打气。

因为是第一天,大家没有过多的紧张,而且也没有思路于是我们调好闹钟,凌晨1点左右就休息了。

第二天凌晨6点我们又打起精神继续奋战,把题目转化成数学问题的形式,简化问题要求,建立初等模型,为了避免一个人考虑不全面且思维有限,我们三个人各自发表自己的解题思路,然后进行综合、补充,但到第二天下午时,我们的若干想法被否定后,我们依然处在原地,而培训时老师强调过到建模第二天第二问要基本做完,开始写作,但我们还是一筹莫展,紧张与恐慌是必然的。

我们决定改变策略,我和杨彦云共同做第一问,吴珍(队长)做第二问。

到晚上2点左右第一小问基本做完,可是第一题的第二小问这个拦路石,任凭我们绞尽脑汁也没有撼动它分毫,我们三个人不得不一起攻克第一问,跌跌撞撞写完第一问,虽然感觉答案并不太令人满意,但由于只剩一天一夜了,我们必须开始做第二问。

吴珍一直负责第二问,杨彦云开始思考第三问,而我开始写作。

第三天,我们的几乎没合眼,到了晚上,第一问论文已经写完,但第二问的复杂程度远远超过了第一问,我们又开始共同完成第二问,毫无进展,主心骨吴珍再次发挥了队长风范,最终是她完成了第二问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号): 19005007 所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 14 日2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文主要研究在嫦娥三号高速飞行的情况下,准确降落在月球预定区域的软着陆轨道设计与控制策略问题:针对问题一,查资料可知嫦娥三号软着陆准备轨道是极月轨道,忽略月球自转公转的影响,则着陆准备轨道与软着陆轨道在一个平面上,近月点投影的经度为19.51W 。

然后根据问题二得出的结果求出水平位移X ,再列出微分方程方程并求其数值解,最终得到近月点投影的纬度,进而根据近月点投影的经纬度算出远月点投影的经纬度,至此便得到近月点与远月点的位置;对于二者的速度,应用开普勒定律和机械能守恒定律可求出。

最终得到近月点:59.07N , 19.51W , 距地高度15km ,31.69210m/s A V ≈⨯,方向为北极-虹湾-南极方向;远月点:59.07S , 160.49E ,距地高度100km ,31.61410/B V m s ≈⨯,方向为南极-北极-虹湾方向。

针对问题二,在安全着陆的前提下,确定着陆轨道和最优控制策略,即转化为燃料消耗最小,最终转化为飞行时间tf 最短,经计算最优时间为633s ,消耗燃料的最小值为645.9Kg 。

我们首先列出软着陆轨道动力学方程并做归一化处理,经过软着陆轨道的离散化,应用函数逼近方法拟合推力控制角β(t),拟合结果为7342(t)7.4710 6.14100.026 1.72;x x x β--=-⨯+⨯-+。

从而将轨道优化问题转化为参数优化问题,最后利用MATLAB 随机寻优,进而得出轨道优化设计方案;。

针对问题三,我们着重对主减速阶段进行相应的误差分析和敏感性分析。

建立月球软着陆主减速阶段的初始状态误差模型,敏感性大小S 是由f P -里面的每一个元素除以iP -里面对应的元素得到的值的集合,六个值分别对应v 、r 、θ、w 、m 、β,f P -为主减速阶段末状态总误差向量,iP -为初始状态偏差向量。

得到结果为( 3.862015.92000.1540582.0000 1.000065.6890)S =--,由这六个值大小分析可知w 最敏感,即w 有误差时会导致结果误差最大;其次是β,r ,v ,m ,θ。

于是我们应该尽力避免w 初始值有误差的情况。

关键词:软着陆 动力学方程 微分方程 随机寻优 寻优变量1 问题重述嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。

根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。

(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析2 模型假设1、假设嫦娥3号主减速阶段完成时的速度为57m/s且垂直于地面,并且不存在水平速度;2、假设近月点投影到月面的地区与虹湾之间的月面弧线可以看作一条直线;3、假设日月引力摄动、月球旋转和实际月球为非标准球导致引力不均匀对嫦娥3号的运动无影响;4、假设推力F=3000N的大小保持恒定;5、假设收集到的数据准确无误。

3 符号说明::v r r θβ着陆器沿半径方向的速度;月心距;:极角;w:角速度;m:质量;:制动发动机的推力方向角4 问题分析2.1问题一:月球自转和公转周期皆为27天7小时43分11.559秒,而嫦娥三号软着陆过程只有几百秒,所以我们可以忽略由于自转和公转造成软着陆轨道平面与着陆准备轨道平面的偏差,即可认为软着陆轨道平面与着陆准备轨道平面是在同一个平面上的。

已知着陆准备轨道为极月轨道,则近月点经度就可确定,如果得到近月点投影与虹湾水平距离X ,就可算出两地夹角,那么近月点纬度便随之确定,而X 的值可由问题二得出的各物理量算得。

远月点与近月点关于月心对称,由此可算出远月点位置。

对于速度,使用开普勒定律和机械能守恒定律则很容易算出。

2.2问题二:确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略,对于着陆轨道我们可以得出月心距随时间变化的图像,对于最优控制策略,我们可以得到其他参数(径向速度,角速度等)随时间变化的图像。

优化的指标是在保证安全和可控条件下使得燃料消耗最少(也即着陆时间tf 最短),于是我们把问题简化为求解两点边值问题中的最优解。

因此我们采用随机寻优的思想对待优参数进行优化,得到了各参数的最优解,再进行拟合函数。

对于避障问题,我们可以对处理后的数据划分成网格,用网格体现所有数据的特征,在经过坡度pn 和平移指数A(i)判断平移方向和距离。

2.3问题三:对设计的着陆轨道和控制策略做相应的误差分析和敏感性分析,易知在避障阶段及以后是无法进行误差和敏感性分析的,于是我们只需对主减速阶段分析。

参考资料可知误差源包括初始条件误差和导航与控制传感器误差等,为简化模型,我们只分析初始条件误差。

然后建立初始状态误差模型,通过将000000,,,,,v r w m θβ∆∆∆∆∆∆ 的值(其值均考虑为典型误差值)分别与00000,,,,v r w m θ和0β(即初始状态着陆器沿r 方向的速度、月心距、极角、角速度、质量和制动发电机推力方向角)相加,然后得到非标准末状态和标准末状态的差值f f f f f ,,,,,v r w m θβ∆∆∆∆∆∆,再让它们与000000,,,,,v r w m θβ∆∆∆∆∆∆对应相除得到S ,以S 中每个值的大小来描述其对应的变量初始状态对该变量的末状态的影响即敏感性分析与误差分析。

5 模型的建立与求解5.1问题一:求近月点与远月点的位置及嫦娥三号相应的速度大小和方向5.1.1、求近月点远月点位置:查资料可知嫦娥三号着陆准备轨道是极月轨道【3】,即通过月球南北极的轨道,其方向为北极-虹湾(着陆点)-南极,如图1所示:则我们可知近月点的经度和虹湾一样为19.51W ,近月点到虹湾的水平距离X 为(,,v x x r v a 分别是切向的速度、加速度和径向的速度,此处θ不是指极角): 00tan (t)f f r x r r t x x t x a a dv a dt v a dtX v dt β⎧=⎪⎪⎪=⎪⇒⎨⎪=⎪⎪⎪=⎩⎰⎰ 00((cot ))f f t t r dv X dt dt dt β=⎰⎰ 解得54.51810X =⨯m 然后我们由余弦定理公式:222cosA 2b c a bc+-=,其中22222,b ,a A c R X θ====,(虹湾(着陆点)海拔虽然为-2641m ,但与月球半径相比数值很小,所以我们可以忽略它,认为R 取月球平均半径1.737013×106m )可解得θ=14.95度,则得到近月点纬度Q=θ+44.12=59.07N ;远月点与近月点连线过月心,则其纬度大小与近月点纬度大小相等,但在南半球,所以其纬度为59.07S ,其经度与近日点经度相差180度,则可以算得为180-19.51=160.49E 。

5.1.2、求近月点A 距地15km 和远月点B 距地100km 的速度VA 和VB :开普勒定律适用于宇宙中一切绕心的天体运动,自然嫦娥三号在着陆准备轨道上的绕月运动也图1自转方向在此类,于是我们可以使用能量法[1]来计算V A 和V B :如图2所示,由开普勒第一定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

可知其中f 是月心即椭圆的焦距,月球质量M=7.3477×1022kg ,月球平均半径r=1.737013×106m ,A 到f 的距离L A =(1737.013+15)×103=1.752013×106(忽略虹湾与月平均半径的差2641m ),B 到f 的距离L B =1737.013+100=1.837013×106。

在A,B 两点分别取∆t →0,则嫦娥三号与月球的连线在这段时间内扫过的面积分别为: 11t ,t 22A A AB B B S V L S V L ∆=∆∆=∆ 根据开普勒第二定律:在相等时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的。

相关文档
最新文档