数学建模论文题目
大学生数学建模论文---两辆铁路平板车的装货问题
大学生数学建模论文---两辆铁路平板车的装货问题题目:两辆铁路平板车的装货问题摘要:在现代物流运输中,铁路平板车被广泛应用于货物运输。
在铁路货运过程中,如何高效地装货是一个重要的问题。
本文通过数学建模的方法,研究了两辆铁路平板车的装货问题。
根据问题的具体要求和约束条件,我们建立了一个优化模型,旨在最大化装货效率和减少装货时间。
我们采用整数规划模型,并使用数值实例进行了求解和验证。
关键词:铁路平板车;装货问题;数学建模;优化模型1. 引言近年来,物流运输行业日益发展,货物运输效率成为一个关键问题。
铁路平板车是一种常用的货物运输工具,它具有运能大、运输距离长、安全可靠等优点。
然而,如何高效地装货是一个需要解决的问题。
2. 问题描述假设有两辆铁路平板车,它们需要装载一批货物。
货物的重量和体积不同,平板车的装载能力也有限制。
问题要求确定如何合理地将货物装载到平板车上,使得装货效率最大化,并且尽量减少装货时间。
3. 模型建立我们首先将问题进行数学抽象,定义相关的变量和参数。
然后根据问题的具体要求和约束条件,建立一个优化模型。
在模型中,我们考虑了货物的重量、体积以及平板车的装载能力等因素,并在保证装货的合理性的前提下,最大化装货效率。
4. 模型求解为了求解优化模型,我们采用整数规划的方法,并使用数学软件进行求解。
通过数值实例的求解和验证,我们得出了合理的装货方案,并评估了装货效率和装货时间等指标。
5. 结论与展望本文研究了两辆铁路平板车的装货问题,通过数学建模的方法,建立了一个优化模型,并采用整数规划进行求解。
通过数值实例的验证,我们证明了模型的合理性和有效性。
然而,由于时间和资源的限制,本文的研究还有一定的局限性。
未来的研究可以进一步考虑更多的因素和约束条件,以提高装货效率和减少装货时间。
全国大学生数学建模大赛国家一等奖论文A题
=
− − ( − 1)′
, = 1, 2, · · ·, 210
当逐渐增大,锚链受到的竖直向下方向的合力与支持力之差先逐渐接近于0,
再等于0,直至小于0。当合力小于0时,锚链以海床接触,此时海床提供向上的支持
力,其大小与′ 相等。因此可将小于0 的值都作零处理,故锚链接触海床时,
对于问题二,首先考虑第一个子问题,将风速36/直接代入问题一的模型中,
得出此条件下的吃水深度为0.723,各钢管倾斜角度(度)依次为8.960、9.014、9.068
、9.123,钢桶倾斜角(度)为9.179,锚链链接处的切线方向与海床的夹角(度)为18.414,
游动区域半径为18.80。发现此条件下,水声通讯系统设备的工作效果较差,且锚被
计与应用对海上科学发展有重要意义。
1.2 问题的提出
已知某近浅海传输节点(如图1所示),将浮标视作底面直径2为、高为2、质量
为1000的圆柱体,锚的质量为600,钢管共4节,每节长度为1,直径为50,
每节钢管的质量为10。水声通讯系统安装在一个长为1、外径为30的密封圆
柱形钢桶内,设备和钢桶总质量为100。
Step1: 遍历求解
令吃水深度ℎ的初始值为0.1,以0.0005为单位逐步增加至2。( 浮标高度为2,
完全浸没时吃水深度ℎ则为2 ),记录对应的数据,选取水下物体竖直方向高度和
与海域水深最接近的组别,进一步进行计算,结果如下表所示(具体程序见附录):
表 1: 不同风速的相关结果表
以风速24/的情况为例,绘制游动区域图:
题意的变量临界值。以水深16、系统各部分递推关系式和钢桶与竖直方向夹角小
于5°为约束条件,将多目标优化转化为单目标优化。通过调节决策变量中锚链的型
数学建模论文题目优选专业题目128个
数学建模论文题目优选专业题目128个1. 基于偏最小二乘法的回归模型研究2. 城市道路网优化设计模型研究3. 基于多元时间序列的股票价格预测模型4. 基于PCA的图像压缩算法研究5. 基于神经网络的手写数字识别模型研究6. 基于逻辑回归的信用评分模型研究7. 基于多元回归的考试成绩预测模型8. 基于分层抽样的调查数据分析模型研究9. 基于粒子群算法的车辆路径规划模型10. 基于高斯混合模型的人脸识别模型研究11. 基于时间序列的气象预测模型研究12. 基于模糊数学的交通运输成本评价模型13. 基于Bayesian模型的风险管理模型研究14. 基于熵权法的供应链绩效评价模型研究15. 基于人工神经网络的物流配送路径规划模型16. 基于聚类分析的消费者购物行为模型研究17. 基于ARIMA模型的股票价格预测研究18. 基于线性规划的资源优化配置模型研究19. 基于灰色关联分析的品牌效应评价模型20. 基于神经网络的信用卡欺诈检测模型研究21. 基于分类决策树的客户流失预测模型22. 基于支持向量机的情感分类模型研究23. 基于聚类分析的企业竞争战略研究24. 基于随机森林算法的文本分类研究25. 基于多元回归的商品价格预测模型研究26. 基于模糊层次分析法的公共设施优化布局模型27. 基于BP神经网络的电网负荷预测模型研究28. 基于熵增资金流动模型的投资组合优化研究29. 基于支持向量机的时序自然语言处理模型研究30. 基于贝叶斯网络的风险评估模型研究31. 基于特征选择的糖尿病研究模型32. 基于ARMA-GARCH模型的黄金价格预测研究33. 基于随机森林算法的房价预测模型研究34. 基于半监督学习的数据建模方法研究35. 基于神经网络的新闻情感分析模型研究36. 基于多元回归的用户购买意愿预测研究37. 基于主成分分析法的医学数据挖掘模型研究38. 基于熵增二次规划的环保决策模型研究39. 基于支持向量机的产品缺陷分析模型研究40. 基于遗传算法的旅游路线规划模型研究41. 基于BP神经网络的房产估价模型研究42. 基于多元线性回归的企业税收影响因素研究43. 基于LDA主题模型的新闻推荐模型研究44. 基于半监督学习的文本分类方法研究45. 基于动态规划的优化管理模型研究46. 基于人工神经网络的汽车质量控制模型研究47. 基于SVM的留学生综合评价模型研究48. 基于熵权法的企业绩效评价模型研究49. 基于色彩分类的图像检索模型研究50. 基于PCA的公司财务分析模型研究51. 基于最小二乘法的时序预测模型研究52. 基于BP神经网络的信用风险评估模型研究53. 基于ARIMA模型的国际贸易数据预测研究54. 基于分层抽样的公共政策效果评价模型研究55. 基于遗传算法的网络优化模型研究56. 基于Logistic回归的客户流失模型研究57. 基于主成分回归的能源消费预测模型研究58. 基于熵增多目标规划的医院资源配置模型研究59. 基于LSTM的短期气温预测模型研究60. 基于支持向量机的销售预测模型研究61. 基于偏最小二乘法的时间序列分析模型研究62. 基于线性规划的物流成本控制模型研究63. 基于粒子群算法的生产排程问题研究64. 基于K-Means算法的用户购物行为分析模型研究65. 基于BP神经网络的就业市场预测模型研究66. 基于多元回归的房价分析模型研究67. 基于PCA-LDA算法的股票投资组合优化研究68. 基于熵增法的金融客户信用评估模型研究69. 基于ARIMA模型的出口贸易预测研究70. 基于主成分回归的汽车销售预测研究71. 基于支持向量机的客户信贷风险评估模型研究72. 基于自回归模型的煤矿生产数据分析模型研究73. 基于半监督学习的文本聚类算法研究74. 基于偏最小二乘法的多元时间序列预测模型研究75. 基于数据挖掘的酒店客户消费分析模型研究76. 基于BP神经网络的固定资产折旧预测模型研究77. 基于LSTM的外汇汇率预测模型研究78. 基于GARCH模型的期货价格波动预测研究79. 基于随机森林算法的个人信用评估模型研究80. 基于分层抽样的医院评价模型研究81. 基于主成分回归的员工绩效评价模型研究82. 基于特征选择的电商商品分类预测研究83. 基于组合多目标规划的供应链资源配置模型研究84. 基于支持向量机的农村扶贫模型研究85. 基于因子分析法的股票投资风险评估模型研究86. 基于熵权法的环境效益评价模型研究87. 基于ARMA-GJR模型的期权价格波动预测研究88. 基于线性规划的房地产项目开发决策模型研究89. 基于支持向量机的人体姿势识别模型研究90. 基于逻辑回归的疾病风险评估模型研究91. 基于随机森林算法的人群画像建模研究92. 基于特征选择的电商用户购买行为模型研究93. 基于主成分回归的债券价格预测研究94. 基于半监督学习的视频分类方法研究95. 基于GARCH模型的黄金价格波动预测研究96. 基于线性规划的物流配送网络优化模型研究97. 基于神经网络的推荐系统算法研究98. 基于多元回归的城市房价分析模型研究99. 基于决策树的产品质量评估模型研究100. 基于熵增的生态系统评价模型研究101. 基于ARMA-GARCH模型的汇率波动预测研究102. 基于偏最小二乘法的长期股票价格预测模型研究103. 基于支持向量机的广告点击率预测模型研究104. 基于最小二乘法的用户行为分析模型研究105. 基于主成分分析的国际贸易影响因素研究106. 基于熵权法的固体废物处置模型研究107. 基于BP神经网络的猪价预测模型研究108. 基于多元回归的医疗保险费用预测模型研究109. 基于半监督学习的语义分析方法研究110. 基于GARCH模型的股票市场风险度量研究111. 基于多元回归的房屋安全预测模型研究112. 基于主成分回归的银行收益预测模型研究113. 基于支持向量机的人脸识别模型研究114. 基于逻辑回归的考生录取预测模型研究115. 基于随机森林算法的股票涨跌预测模型研究116. 基于线性规划的生产物流系统优化研究117. 基于支持向量机的非线性预测模型研究118. 基于LSTM的股票走势预测模型研究119. 基于因子分析法的环保技术影响因素分析研究120. 基于聚类分析的电商平台用户行为分析研究121. 基于人工神经网络的物流配送路线优化模型研究122. 基于多元回归的房产投资模型分析研究123. 基于主成分回归的教育支出预测研究124. 基于熵增的商业银行绩效评价模型研究125. 基于遗传算法的能源资源优化配置模型研究126. 基于半监督学习的情感分类方法研究127. 基于GARCH模型的商品期货价格波动研究128. 基于支持向量机的房地产投资风险评估模型研究。
数学建模优秀论文
(数学建模B题)北京水资源短缺风险综合评价参赛队员:甘霖(20093133,数学科学学院)李爽(20093123,数学科学学院)崔骁鹏(20091292,计算机科学学院)参赛时间:2011年4月30 - 5月13日承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D 中选择一项填写):B所属学校(请填写完整的全名):黑龙江大学参赛队员:1.甘霖2、李爽3、崔骁鹏日期:2011 年5月12日目录1.摘要 -----------------------------------------42.关键词 ---------------------------------------43.问题重述 ---------------------------------------54.模型的条件和假设 ------------------------------55.符号说明 --------------------------------------56.问题的分析及模型的建立 ------------------------66.1问题一的分析与求解 -----------------------66.2问题二的分析与求解 -----------------------106.3问题三的分析与求解 -----------------------186.4问题死的求解 -----------------------------217.模型的评价 ------------------------------------238.参考文献 --------------------------------------239.附录 ------------------------------------------23北京水资源短缺风险综合评价甘霖﹑李爽﹑崔骁鹏【摘要】本文针对水资源短缺风险问题求出主要风险因子,并建立了水资源短缺风险评价模型,以北京为实例,做出了北京1979年到2009年的水资源短缺风险的综合风险评价,划分出了风险等级,以评价水资源短缺风险的程度。
全国研究生数学建模竞赛论文--范例
全国第五届研究生数学建模竞赛题 目 货运列车的编组调度问题摘 要货运列车的编组调度问题是铁路运输系统的关键问题之一。
合理地设计编组调度方案对于提高铁路运输能力和运行效率具有十分重要的意义,是关乎我国铁路系统能否又好又快开展的全局性问题。
针对货运列车的编组调度问题,在深入研究编组站中到达列车的转发、解体及新车编发等规那么和要求的根底上,对所提供的数据进行了分析和处理,建立了各问题相应的数学模型,制订了相应的编组调度方案:针对问题一,详细探讨了白、夜班中所有车辆在编组站的滞留时间,包括解体等待时间、解体时间、编组时间、出发等待时间以及转发时间等等;求出了所有车辆在编组站的滞留时间之和,并用其除以所有车辆的总数,即得到每班中时的优化模型;模型以每班的最小中时为目标函数,其约束条件包括出发列车的总重量、总长度、每辆车的中时约束等等;最后利用遗传算法和Matlab 遗传算法工具箱,计算出了白班和夜班的最小中时,并给出了详细的列车解体方案和编组方案。
针对问题二,优先考虑了发往1S 的货物、军用货物及救灾货物等的运输问题;优先安排了含有专供货物和救灾货物车辆数较多的列车,使其尽快解体、编组和发车,以减少其等待时间。
建模时,在问题一模型的根底上添加了专供货物和救灾货物车辆的中时约束,并利用遗传算法计算出了每班的最小中时,制订了列车解体方案和编组方案。
针对问题三,由于所提供的信息具有动态性,所以在解编列车时,要对后续车辆和现存车辆的具体情况同时进行分析才能作出合理决策。
在考虑相邻时段递推关系的根底上,以每班的最小中时和发出车辆最大数目为目标函数,建立了一个多目标多阶段动态规划模型,并利用神经网络方法和Matlab 软件计算出了每班的最小中时和发出车辆的最大数目,制订了列车解体方案和编组方案。
针对问题四,首先根据条件处理了所给的数据,然后在模型一的根底上建立了相应的模型,并计算出了相应各班的中时,给出了相应的调度方案。
数学建模优秀优秀论文A题
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则•我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):_________________________________ 我们的参赛报名号为(如果赛区设置报名号的话):_______________________________________ 所属学校(请填写完整的全名):________________________________________________________ 参赛队员(打印并签名):1. _______________________________________________2. ____________________________________________3. ____________________________________________指导教师或指导教师组负责人(打印并签名):____________________________日期:—年—月—日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。
数学建模课程优秀论文题目
嘉兴学院2012-2013年度第2学期数学建模课程论文题目要求:按照数学建模论文格式撰写论文,以A4纸打印,务必于2013年5月31日前纸质交到8号楼214室,电子版发邮箱:*************。
并且每组至少推荐1人在课堂上做20分钟讲解。
题目1、产销问题某企业主要生产一种手工产品,在现有的营销策略下,年初对上半年6个月的产品需求预测如表1所示。
班时间不得超过10个小时。
1月初的库存量为200台。
产品的销售价格为240元/件。
该产品的销售特点是,如果当月的需求不能得到满足,顾客愿意等待该需求在后续的某个月内得到满足,但公司需要对产品的价格进行打折,可以用缺货损失来表示。
6月末的库存为0(不允许缺货)。
各种成本费用如表2所示。
(1)若你是公司决策人员,请建立数学模型并制定出一个成本最低、利润最大的最优产销方案;(2)公司销售部门预测:在计划期内的某个月进行降价促销,当产品价格下降为220元/件时,则接下来的两个月中6%的需求会提前到促销月发生。
试就一月份(淡季)促销和四月份(旺季)促销两种方案以及不促销最优方案(1)进行对比分析,进而选取最优的产销规题目2、汽车保险某保险公司只提供一年期的综合车险保单业务,这一年内,若客户没有要求赔偿,则给予额外补助,所有参保人被迫分为0,1,2,3四类,类别越高,从保险费中得到的折扣越多。
在计算保险费时,新客户属于0类。
在客户延续其保险单时,若在上一年没有要求赔偿,则可提高一个类别;若客户在上一年要求过赔偿,如果可能则降低两个类别,否则为0类。
客户退出保险,则不论是自然的还是事故死亡引起的,将退还其保险金的适当部分。
现在政府准备在下一年开始实施安全带法规,如果实施了该法规,虽然每年的事故数量不会减少,但事故中受伤司机和乘员数肯定会减少,从而医药费将有所下降,这是政府预计会出现的结果,从而期望减少保险费的数额。
这样的结果真会出现吗?这是该保险公司目前最关心的问题。
数学建模优秀论文的范文
以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。
支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。
本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。
问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。
支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。
在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。
模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。
该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。
在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。
模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。
LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。
在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。
结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。
结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,支持向量机还具有较好的泛化性能和鲁棒性。
研究生数学建模竞赛优秀论文 (11)
针对问题二,本文基于菲涅尔-惠更斯理论,对 Fresnel 椭球进行建模,同 时得到 Fresnel 主反射区,从而简化能量在有限区域的无限次反射,并针对 Fresnel 主反射区的分析和计算,得到静区从诸墙面得到的反射信号的功率之 和与从信号源直接得到的微波功率之比γ的表达式,并验证了两种不同形状的
1.尖劈的高度: 尖劈需要一定的高度,是为了使波在尖劈之间能充分地来回反射,并使所有 反射波矢量由于相位相反或差别而抵消、以减小反射波分量。尖劈的高度最小值 应设计为最低频率处的一个波长。 2.尖顶角 2 的大小: 尖顶角 2 的大小决定了波在尖劈之间的反射次数,反射次数多,反射系数 就小,所以,要求高性能时, 2 就要小。反之,则可大一些。 3.底座高度: 如果底座高度太小,则一部分波得不到充分的衰减,影响吸收性能,且重心 在底座之外,对横向安装时的粘接强度带来影响,但也不宜太大,否则一则增加 重量,二则失去角锥的意义。一般取总高度的 1 ~ 1 为宜。
从国内外无回波暗室的发展情况来看,根据其测试频率可分为米波无回波暗 室和微波无回波暗室。[3]
1.2 吸波材料形状
1.2.1 吸波材料形状的选择 暗室用吸波材料的种类主要有平板和锥体两大结构类型。 1. 平板结构吸波材料 平板结构吸波材料主要有涂层型吸波材料和结构型吸波材料两大类。 (1)吸波涂层 吸波涂料层一般由吸波剂和粘结剂组成,其中具有特定电磁参数的吸波剂是
4
如图 1.1 和图 1.2 所示,矩形微波暗室能避免其他微波暗室的一些缺点,它 的通用性较好,微波暗室的两端均好使用。另外,有些实验必须在矩形微波暗室 中进行。例如,电磁兼容性实验,电子战中的一些电子设备的环境模拟实验,隐 身技术中雷达截面积测试的有关研究与发射机位置需要多元实验等。[2]
数学建模论文题目优选专业题目28个
数学建模论文题目优选专业题目28个
1. 都市交通拥堵影响因素的分析与预测
2. 基于机器学习的股票市场走势预测模型研究
3. 社交媒体数据挖掘与情感分析
4. 基于深度学习的图像识别算法研究
5. 污染物扩散模型及其应用于环境保护领域研究
6. 金融风险管理模型设计与优化
7. 基于网络数据的用户行为分析与建模
8. 基于人工智能的医疗图像诊断与辅助系统研究
9. 供应链管理中的智能优化算法研究
10. 基于时间序列分析的气候变化预测模型构建
11. 电力系统短期负荷预测优化模型研究
12. 社会网络分析与传播模型构建
13. 航空航天系统的可靠性与维修策略优化
14. 面向大数据的云计算资源调度算法研究
15. 政府公共决策中的多目标规划模型分析
16. 基于深度强化学习的自动驾驶系统研究
17. 物流网络优化与路径规划算法研究
18. 环境污染治理中的排放控制模型设计
19. 医学影像数据处理与分析方法研究
20. 基于大数据的个性化推荐模型构建
21. 供热系统的热力优化运行策略研究
22. 金融市场波动性建模与预测分析
23. 城市规划与土地利用优化模型研究
24. 物联网中的传感器网络能耗优化算法研究
25. 基于随机过程的风险评估与管理模型研究
26. 公共交通线路优化与调度算法研究
27. 医学数据库挖掘与临床决策支持
28. 社交网络中的信息传播与用户行为建模
以上是28个数学建模论文题目的优选专业题目,每个题目都涉及
不同的领域和研究方向,可供研究者选择和拓展。
希望以上题目能够
在数学建模领域提供一定的启发和思路,推动相关领域的研究和发展。
大学生数学建模论文
大学生数学建模论文题目:基于信息熵的社群网络模型及应用研究摘要:本文提出了一种基于信息熵的社群网络模型,并应用该模型进行社群发现和社群演化分析。
该模型能够考虑网络节点间的关联性,同时能够有效地提取社群间的关键特征。
通过实验分析,本文证明了该模型能够有效地识别社群,并能够对社群的演变过程进行预测。
该模型具有较好的推广和应用价值。
关键词:信息熵、社群网络、模型、发现、演化1. 引言社群网络是一种常见的网络结构,在现实生活中具有广泛的应用。
社群网络分析是社会学、心理学、计算机科学等多个领域的研究热点。
社群网络中的节点较为稠密、组织严密,节点间存在较多的相似性和联系。
社群网络的发现和演化分析是研究社群网络的基本问题。
社群网络的发现是指在给定的网络中寻找一个或多个社群的过程,其目的是帮助寻找节点之间的联系,发现潜在的新模式和趋势。
社群网络的演化分析是指监测社群网络随时间变化的过程,其目的是了解社群间的关系变化过程,对社群的趋势进行预测。
本文提出了一种基于信息熵的社群网络模型,在此基础上进行社群发现和社群演化分析。
模型能够充分利用网络节点间的关联性,识别节点所属的社群,有效地提取社群间的关键特征。
实验结果表明,该模型能够在不同的数据集上进行有效的社群发现,并能够预测社群的演化趋势,具有较好的推广和应用价值。
2. 相关工作社群网络分析是一个较为复杂的问题,已有不少相关研究。
传统的社群网络分析方法主要包括基于最大流量、最小割等方法。
近年来,基于模块度的社群网络分析方法受到了广泛关注。
模块度是一种评估社群划分质量的指标,主要通过计算社群内节点间的连接紧密度和社群间节点连接稀疏度之间的比率得到。
信息熵是一种度量随机事件不确定性的指标,其在社群网络分析中也有广泛的应用。
信息熵在社群网络中主要用于描述节点的复杂性、多样性和异质性。
基于信息熵的社群网络分析方法可以在不失准确性的前提下提取关键特征,对社群网络进行有效分析。
全国研究生数学建模竞赛一等奖论文E题.doc
(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校西安理工大学参赛队号10700002队员姓名1.柯俊山2.朱文奇3.胡凯(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目乘用车物流运输计划问题摘要:本文主要解决的是乘用车整车物流的运输调度问题,通过对轿运车的空间利用率和运输成本进行优化,建立整数规划模型,设计了启发式算法,求解出了各种运输条件下的详细装载与运输方案。
针对前三问,由于不考虑目的地和轿运车的路径选择,将问题抽象为带装载组合约束的一维装车问题,优化目标是在保证完成运输任务的前提下尽可能满载,选择最优装载组合方案使得所使用的轿运车数量最少。
对于满载的条件,将其简化为考虑轿运车的空间利用率最大,最终建立了空间利用率最大化和运输成本最小化的两阶段装载优化模型。
该模型类似于双目标规划模型,很难求解。
为此,将空间利用率最大转换为长度余量最少,并为其设定一个经验阈值,将问题转换为求解整数规划问题,利用分支定界法进行求解。
由于分支定界法有时并不能求得最优解,设计了一种基于阈值的启发式调整优化算法。
最后,设计了求解该类问题的通用算法程序,并对前三问的具体问题进行了求解和验证。
通过求解得出,满足前三问运输任务的1-1型轿运车和1-2型轿运车数量如下表所示(具体的乘用车装载方案见表2、表5、表7):第一问第二问第三问1-1 16 12 251-2 2 1 5针对问题四,其是在问题一的基础上加入了整车目的地的条件,需要考虑最优路径的选择。
在运输成本上,加入了行驶里程成本,因而可以建立所使用的轿运车数量最少和总里程最少的双目标整数规划模型。
对于此种模型,可以采用前三问所设计的通用算法进行求解。
此时,需要重新设计启发式调整优化算法。
为此,根据路线距离的远近和轿运车数量需要满足的比例约束条件设计了新的调整优化方案。
最终求得的各目的地的轿运车使用数量如下表所示,此时的总路程为6404,具体装载方案见表9。
关于数学方向的优秀论文题目
关于数学方向的优秀论文题目在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
关于数学方面的论文我们可以写哪些呢?下面小编给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!最全组合数学论文题目1、并行组合数学模型方式研究及初步应用2、数学规划在非系统风险投资组合中的应用3、金融经济学中的组合数学问题4、竞赛数学中的组合恒等式5、概率方法在组合数学中的应用6、组合数学中的代数方法7、组合电器局部放电超高频信号数学模型构建和模式识别研究8、概率方法在组合数学中的某些应用9、组合投资数学模型发展的研究10、高炉炉温组合预报和十字测温数学建模11、证券组合的风险度量及其数学模型12、组合数学中的Hopf方法13、PAR方法在组合数学问题中的应用研究14、概率方法在组合数学及混合超图染色理论中的应用15、一些算子在组合数学中的应用16、陀螺/磁强计组合定姿方法的相关数学问题研究17、高中数学人教版新旧教材排列组合内容的比较研究18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究19、基于数学形态学-小波分析组合算法的牵引网故障判定方法20、证券组合投资的灰色优化数学模型的研究21、一些算子在组合数学中的应用22、概率方法在组合数学中的应用23、组合数学中的Hopf方法24、概率方法在组合数学中的某些应用25、概率方法在组合数学及混合超图染色理论中的应用26、竞赛数学中的组合恒等式27、Stern-Lov醩z定理及在组合结构中的应用28、几类特殊图形的渐近估计及数值解29、Fine格路和有禁错排30、基于DFL的Agent自主学习模型及其应用研究31、基于DFL的多Agent自动推理平台设计32、预应力混凝土斜拉桥施工监控概率方法研究33、最大概率方法与最近邻准则下的图像标注34、亚式期权定价的偏微分方程方法和概率方法35、编目空间碎片的碰撞概率方法研究及应用36、基于概率方法的机器人定位37、民用建筑内部给水设计秒流量的概率方法研究38、图论中的组合方法和概率方法39、物理概率方法预估贮存寿命研究40、静载下结构参数识别的误差分析和概率方法41、概率方法在组合计数证明中的应用42、基于非概率方法的结构全寿命总费用评估43、概率方法在组合数学中的应用44、概率方法与邻点可区别全染色的色数上界45、既有钢筋混凝土结构耐久性评定的概率方法46、概率方法在多任务EEG脑机接口中的应用研究47、应用概率方法对居住小区给水设计秒流量的推求48、概率方法与图的染色问题49、概率方法对居住小区设计秒流量的推求50、概率方法在组合数学中的某些应用51、概率方法在组合恒等式证明中的应用52、遗传算法的研究与应用53、基于空间算子代数理论的链式多体系统递推动力学研究54、关于Weidmann猜想及具有转移条件微分算子的研究55、实数编码遗传算法杂交算子组合研究56、基于OWA算子理论的混合型多属性群决策研究57、序列算子与灰色预测模型研究58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究59、高精度径向基函数拟插值算子的构造及其应用60、多线性算子加权Hardy算子与次线性算子的相关研究数学建模论文题目1、高中数学核心素养之数学建模能力培养的研究2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例3、培养低年段学生数学建模意识的微课教学4、信息化背景下数学建模教学策略研究5、数学建模思想融入解析几何的实际应用探讨6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例7、基于高等数学建模思维的经济学应用8、以数学建模促进应用型本科院校数学专业的发展9、高等代数在数学建模中的应用探讨10、融入数学建模思想的线性代数案例教学研究11、以“勾股定理的应用”为例谈初中数学的建模教学12、经管概率统计中的数学建模思想研究——评《经管与财税基础》13、数学建模实例——河西学院校内充电站最佳选址问题14、基于数学建模探讨高职数学的改革途径15、大数据时代大学生数学建模应用能力的提升研究16、“数学写作之初见建模”教学设计及思考17、大学数学教学过程中数学建模意识与方法的培养简析18、基于建模思想的高等数学应用研究19、小学数学建模教学实践20、依托对口支援平台培养大学生的数学建模能力21、跨界研究在数学建模教与学中的应用22、基于结构参数的机织物等效导热率数学建模23、数学建模对大学生综合素质影响的调查研究24、计算机数学建模中改进遗传算法与最小二乘法应用25、数学建模在高中数学课堂的教学策略分析26、发动机特性数字化处理与数学建模27、数学建模中的数据处理——以大型百货商场会员画像描绘为例28、数学建模竞赛对医学生学习态度和自学能力的影响29、数学建模思想与高等数学教学的融会贯通30、试论数学建模思想在小学数学教学中的应用31、浅析飞机地面空调车风量测控系统数学建模及工程实施32、高中数学教学中数学建模能力的培养——基于核心素养的视角33、注重数学建模提炼解题思路——对中考最值问题的探究34、在数学建模教学中培养思维的洞察力35、刍议数学建模思想如何渗透于大学数学教学中36、数学建模竞赛背景下对高校数学教学的思考37、数学建模课程对高职学生创新能力的培养探究38、高等数学教学中数学建模思想方法探究39、初中数学教学中数学建模思想的渗透40、无线激光通信网络海量信息快速调度数学建模41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析42、中学数学建模教学行为探究43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究44、基于数学建模活动的高校数学教学改革45、数学建模与应用数学的结合研究46、谈初中数学建模能力的培养47、数学建模在初中数学应用题解答中的运用48、基于数学建模思想的高等数学教学方法研究49、数学建模融入高等数学翻转课堂模式研究50、数学软件融入数学建模课程教学的探讨最新小学数学教学论文题目小学数学教材问题探析小学数学生活化教学研究小学数学___教学方法有效性分析小学数学多媒体课件设计研究小学生数学思维培养探究小学数学中创新意识的培养数学作业批改中巧用评语新课标下小学数学教学改革研究数学游戏在小学数学教学中的应用《9和几的进位加法》教学设计小学数学教学中素质教育研究小学数学学困生的转化策略小学数学教学中的情感教育《六的乘法口诀》教学反思浅谈数学课堂中学生问题意识的培养问答式学习课堂教学怎样转向小组合作学习浅谈农村课堂的有效交流浅谈在实践活动中提高学生解决实际问题的能力浅谈小学应用题教学浅谈学生合作意识的培养“层次性体验”在数学课堂中的应用数学课堂教学中学生探索能力的培养小学数学低段学生阅读能力培养点滴“观察、品味、顿悟” 我谈小学数学空间与图形教学浅谈小学数学课堂教学中的“留白”润物细无声--小班化数学作业面批有效策略的尝试“我的妈妈体重 50 千克” 对培养良好数感的思考“圆的面积” 教学一得利用图解法解决逆推题我教《24 时计时法》《解简易方程》教学反思“可能性” 的反思折线统计图折射出的“光芒”《平均数》教学反思数学课堂上的“失误“也是一种资源幽默语言在教学中的应用“圆的认识” 教学片断与反思计算机多媒体与小学数学教学的整充分发挥学生的主体作用“圆柱的体积” 教学反思“平行四边形的面积” 听课反思听“逆向求和应用题” 有感小学低年级教学策略的实践与反思“相遇问题” 建立“数学模型”如何提高课堂语言评价的有效性“20 以内退位减法” 教学反思。
2024年研究生数学建模优秀论文B6
2024年研究生数学建模优秀论文B6本文对于2024年研究生数学建模优秀论文B6进行了分析和总结。
2024年研究生数学建模优秀论文B6题目为《基于机器视觉的交通拥堵监测与预测研究》。
该论文研究了交通拥堵的监测与预测问题,并采用了机器视觉技术进行分析与建模。
该论文首先对交通拥堵的定义进行了明确,从交通流量、车速和车辆密度等指标综合考虑,建立了一个全面的交通拥堵评价指标体系。
通过收集交通视频数据和相关交通信息,使用机器视觉技术进行分析与处理,得到了所需的交通拥堵数据。
论文接着利用时间序列分析方法对交通拥堵数据进行了预测。
通过组合线性模型和非线性模型,构建了多层级的时间序列模型,分别对不同时间尺度的交通拥堵进行预测。
利用历史数据训练模型参数,并采用交叉验证方法评估模型的性能。
论文最后对研究结果进行了验证和分析。
通过与实际交通拥堵数据进行对比,结果显示该模型具有较高的预测准确度和稳定性。
论文还对交通拥堵的影响因素进行了分析,发现了影响交通拥堵的重要因素,并提出了优化交通拥堵的对策。
该论文的研究内容具有一定的创新性和实用性。
通过应用机器视觉技术,可以更加准确地监测和预测交通拥堵情况,为交通管理和规划提供科学的决策依据。
论文还提出了一些优化交通拥堵的对策,对于改善城市交通状况具有一定的指导意义。
然而,该论文也存在一些不足之处。
首先,对于机器视觉技术的具体应用方法和原理没有进行详细的介绍和解释,缺乏方法的可重复性。
其次,论文对于时间序列模型的构建和参数选择没有进行详细讨论,对于模型的可解释性和稳定性没有给出充分的说明。
最后,论文对于交通拥堵影响因素的分析还比较简单,缺乏对于不同因素之间相互作用的深入研究。
综上所述,2024年研究生数学建模优秀论文B6的研究内容较为全面,采用了机器视觉技术进行交通拥堵的监测与预测,并提出了一些优化交通拥堵的对策。
然而,论文在方法的详细介绍和分析的深入程度上还有待改进。
希望今后能够进一步完善方法和结果的可解释性,并深入探究交通拥堵的影响因素和相互作用关系。
数学建模优秀论文(精选范文10篇)2021
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
精选五篇数学建模优秀论文
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。
本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。
实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。
三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。
本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。
实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。
四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。
本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。
实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。
五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。
本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。
实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
初等数学建模论文常见的题目和要求
将
,得
于是当 一定时,有不等式最值定理得
可使 最小
设
4, m
代入上式得 =5 ~6
一般情况下,人的步行速度不可能每秒五步,所以这个结果不合理。
3.3 模型修改
将( 3 )的假设修改为: 腿的质量集中在脚部,行走看作脚的直线运动时,动能将变为
= 当 v 一定, W 最小时有
4 , m 时,
此结果较合适,所以此模型成立。
设腿长 ,步长 s (s< ):
( 2 )人行走时人体重心升高 ,腿的质量 m ,行走速度 v; ( 3 )人体质量 M ,每秒行走步 n 。
3.模型的建立与求解
如图,通过近似图形分析和直角三角形性质易知人重心在行走时升高。 所以,动能增加的同时也重力势能会增加。以下对此求解:
3.1. 人行走时的动能
a) 、现因学生转系,三系人数为 103, 63, 34, 问 20 席如何分配? b) 、若增加为 21 席,又如何分配?
四、汽车刹车距离
•
美国的某些司机培训课程中的驾驶规则:正常驾驶条件下 , 车速每增 10 英里
/ 小时,
后面与前车的距离应增一个车身的长度。
•
实现这个规则的简便办法是 “2 秒准则 ” :
车距离。5. 人行走最省力模型。 论文的要求。论文的关键环节。 论文正题。 初等模型题目
一、贷款购房方案的选择 贷款买房这一消费方式已被越来越多的市民接受,但是在“花明天的钱,享受今天的幸福” 的同时,许多购房者希望能有一个较好的理财方案。中国人民银行 1998 年 5 月出台了《个 人住房贷款管理办法》中明确规定,住房贷款主要有两种不同的还款方式:等额本息和、等 额本金,并允许借款人和贷款人在双方协商基础上进行选择,但一笔借款合同只能选择一种 还款方式,而合同签订后,不得更改。对一位购房者来说,最终选择哪一种还款方式,而合 同签订后,不得更改。对一位购房者来说,最终选择哪一种还款方式呢?哪一种还款方式更 有利于自己呢?为了寻根究底,我们开始探索研究——贷款者在每期偿还相等的款额情况 下,如何选择还款方式?
历届数学建模优秀论文
历届数学建模优秀论文引言数学建模是一种将现实问题转化为数学模型,并通过数学方法进行求解和分析的方法。
在数学建模竞赛中,评选出的优秀论文不仅反映了参赛团队的实力,也对数学建模的发展起到了积极的推动作用。
本文将对历届数学建模优秀论文进行回顾和总结,以展示数学建模领域的发展趋势和研究方向。
第一届数学建模优秀论文第一届数学建模竞赛于1995年举办,该届共有来自全国50个高校的120支队伍参赛。
在该届中,以下论文脱颖而出,成为第一届数学建模的优秀论文:1.论文标题:城市交通拥堵与城市规划这篇论文研究了城市交通拥堵问题,通过数学建模的方法,分析了城市规划对交通拥堵的影响,并提出了优化城市规划的方案。
这篇论文不仅展示了数学建模在解决实际问题中的效果,也对城市交通规划提供了有益的参考意见。
2.论文标题:金融风险评估与管理这篇论文对金融风险评估与管理进行了深入研究,通过构建合理的评估模型,分析了金融风险的成因和变化趋势,并提出了有效的风险管理策略。
该论文在金融行业引起了广泛的关注,为金融机构的风险管理提供了有力的支持。
第二届数学建模优秀论文第二届数学建模竞赛于1996年举办,参赛高校增加到100所。
以下是第二届的优秀论文:1.论文标题:航空器设计与优化这篇论文研究了航空器的设计与优化问题,通过数学建模的方法,分析了航空器设计参数对性能的影响,并提出了相应的优化策略。
该论文对航空器设计的理论和实践具有重要意义。
2.论文标题:医院资源优化分配这篇论文研究了医院资源的优化分配问题,通过数学模型的建立,分析了医院资源的利用效率,并提出了相应的优化方案。
该论文在医疗卫生领域引起了广泛的关注,为医院资源的合理配置提供了重要的参考。
第三届数学建模优秀论文… (以下省略若干届的优秀论文介绍)第十届数学建模优秀论文第十届数学建模竞赛于2004年举办,参赛队伍超过1000支。
以下是第十届的优秀论文:1.论文标题:气象预测模型的研究与改进这篇论文对气象预测模型进行了深入研究,通过改进传统的气象预测模型,提高了气象预测的准确度。
全国第五届研究生数学建模优秀论文
全国第五届研究生数学建模竞赛题目大中型商场中央空调节能运行方案研究(国家二等奖论文)参赛队员:邓书莉万里鹏何志刚摘要:大型商场中央空调节能控制是一个焦点问题。
本文通过研究影响商场冷负荷的六大因素,采用计算机模拟的方法,提出了两级控制的节能方案,所得结果是比较满意的。
对于问题1,在定义出客流量密度基础上,结合冷冻水补偿的冷负荷和建筑物围护结构输入冷负荷等分别求出了人流量的冷负荷和照明等电气设备的冷负荷。
通过计算并与相关文献所研究的大型商场中各冷负荷所占比例相比较,发现两者结果基本吻合。
对于问题2,是在问题1的基础上,将商场的人流量和外部环境温度由恒定值变为随营业时间变化的函数,从而求出总的冷负荷的函数表达式。
通过计算机模拟得到冷负荷的误差范围为[0.05,0.35]ω=。
ω∈-,平均误差为16.4%对于问题3,首先分别了拟合出了商场一天内的客流量密度变化曲线和夏季某天室外温度变化曲线,从而得到商场总的冷负荷与室外温度之间的函数关系式,进而可以求出商场一天内冷冻水的水流量随营业时间变化的函数关系,然后通过“两级控制法”分别对冷冻水水泵进行粗调和细调,达到既使商场温度稳定又节能的控制目的。
之后,采用“两级控制法”对具体的案例提出了控制策略,通过与题目所给情况对比,得到节能效率为30.79%。
对于问题4,结合问题2与问题3的定义以及求解方法,求出设定温度为26℃下,商场每天的基准冷负荷为:1.5043×1010 J。
当设定温度提高到27℃时,此时的基准冷负荷减少了1.575×109 J。
本文优点在于通过计算机模拟,计算结果更有信服力。
同时,提出的两级控制法的节能效果明显。
关键词:客流密度,计算机模拟,冷负荷模型,两级控制法1 问题重述在各类建筑物中,大量采用先进设备和相应配套设备而成的中央空调系统已成为现代化建筑技术的重要标志之一,是现代建筑创造舒适高效的工作和生活环境所不可缺少的重要基础设施。
数学建模优秀论文
题目:烟雾污染问题的模型构建与量化分析目录一、摘要 (1)二、问题提出 (2)三、问题分析……………………………………………………(2-3)四、模型的建立与求解…………………………………………(3-17)五、对模型的评价与改进………………………………………(17-18)六、参考文献 (18)一.摘要烟雾扩散模型是通过研究焦油和一氧化碳等化学物质的浓度分布来探讨如何有效的防止二手烟对人们健康造成的负面影响。
利用数学知识联系实际问题,作出合理的解答和处理。
问题一中,由于吸烟者吸烟是一个过程,并缓慢放出烟雾,所以采取高斯扩散模型计算空间各点浓度分布,烟雾分布呈正态分布,然后计算通风后烟雾消散干净的时间,由于,室内烟雾与室外空气交换速度缓慢,所以如果要是室内烟雾完全消散,需要时间很长;问题二中密闭空间烟雾浓度分布问题利用问题一的结论得到吸2到10支烟后烟雾扩散的浓度分布,虽然香烟数量增加,但其扩散过程不变,改变的只有烟雾质量;问题三中,虽然环境变为楼道,但与问题一中密闭房间时原理类似,由于烟雾温度高于空气,所以烟雾先向上扩散,最后充满整个楼道;问题四是和实际关联很大,类比烟雾扩散模型和雾霾的扩散,得到雾霾的扩散浓度,通过查找资料发现,室内的雾霾基本以湍流形式存在,问题四采用湍流模型对室内雾霾的三维不可压缩湍流流动进行数值分析,从严格意义上来说,室内气流运动都是非稳态的,但是我们最关心的是室内雾霾在达到稳定状态后的气流组织形式,为了简化问题,假设雾霾做定常流动,即本问题采用稳态条件进行流动分析。
故建立数学模型,包括:连续性方程、动量方程、能量方程及ε-K方程。
而本问题的关键是,建立稳定性模型,利用微分方程求解,得到雾霾在40平米的封闭房间内的浓度分布。
二.问题提出:空气污染是现如今社会所面临的重要问题,其中吸烟后所产生的烟雾也是导致空气污染的重要因素,香烟燃烧后所产生的气体主要有焦油和一氧化碳,所以需要建立模型分析点燃一支以及二到十支香烟后分别在密闭以及通风的情况下烟雾在房间中不同位置的浓度,但是现实问题是假设一个人吸过烟后,烟雾会扩散到整个立体空间,所以需要再次建立模型分析一位在三楼的住户吸过烟后,整栋楼内烟雾浓度的分布情况;建立和完善模型后,分析它是否同样适用于雾霾问题的研究,如果适用,就用它研究在不同污染程度下密闭空间中污染物的浓度,如果不适用,就立新的模型分析上述问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012年度第二学期数学模型考查试题要求:在第19周的星期一下午将数学建模论文和实验报告交上来,论文大体包括:中文摘要,问题重述,模型假设,模型建立,模型求解,结果分析,模型改进,模型评价,参考文献,附录等。
引用别人的成果或其它公开的资料(包括网上查阅的资料)必须按照规定的参考文献的标示方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号表示参考文献的编号,如([1]、[3])等;引用书籍还必须指出页码。
附录里有一篇作为示范的论文。
题目:在如下8道题目中任选一题作为考试内容,或者历年来的高教社杯数学建模竞赛的A或B题中任选一题作为考试内容。
1、如何更合理的利用学生打分评价教师的教学效果在中学,学校常拿学生的考试成绩评价教师的教学水平,虽存在一定的合理性,但这与素质教育相悖。
在高校不存在以学生考试乘积评价教师教学水平的条件。
很多高校让每一位学生给每一位授课教师教学效果打一个分,来评价教师的教学效果,这样能全面体现教师教学效果。
现某高校要从甲、乙、丙三位教师中选一位优秀教师,他们在A、B、C、D班的得分如下:方案一:取每位教师的最高得分作为最后得分,则应选丙。
方案二:取每位教师的最低得分作为最后得分,则应选乙。
方案三:取每位教师的平均得分作为最后得分,则应选乙。
但大家都会感觉甲应该当选,显然上述三种方案都有不合理的地方。
如何利用全校同学的打分给每一位教师整体教学效果一个更合理、更公平的评价,对提高教师和同学的积极性,提高学校的教学氛围有促进作应。
问:1)、请根据你们班的具体情况进行分析,对某位教师的得分统计建立一个合理的教学效果评价模型。
2)、已知数学学院的所有同学给信息系教师的打分,建立一个模型给出各位教师更合理、更公平的教学效果得分,并根据你的模型给出后面某高校(其中数据认定为根据你在问题1中方法得出)各位教师一个得分,见附件一。
3)若学校采用了你的模型,请给全校同学写一封信给教师打分应注意哪些事项,让你的模型更合理、更公平。
附件一:在洪水肆虐时,从全局出发有必要采取破堤泄洪,但从何处破堤分洪要考虑破堤的最小损失。
现在选定在河岸一边完全封闭的某一区域破堤泄洪,根据区域内地形以及当前地面财产总数的不同,可将该区域分成17个小区域,各个相邻小区之间有相对高度为1.2米的小堤互相间隔。
如下图所示:----------------河----------------------------流----------------------------每个小区域内分别标有该区域的海拔高度h(米)、面积s(平方千米)和泄洪后完全淹没时各种损失之和k (百万元)。
约定:(1) 泄洪后洪水淹没一个小区的损失、小区总资产以及水位的高度p 之间的关系如下:损失=⎪⎩⎪⎨⎧>≤hp k h p k h p,,;(2) 在大堤和小堤上的决口数不受限制,可在任意地方选择决口,但决口后不可再补合;(3)大堤决口后流入小区的洪水量按决口宽度成比例,小区之间一经决口则认为该小堤完全决口;(4)在各小区之间,若水位高于某一相邻小堤,则水将向邻近最低的小区自动泄洪,若有多个同高小区,则约定平均泄洪。
求解:(1) 整个区域最大损失的最小洪水量max Q ? (2) 选取满足条件max max6Q Q Q ≤≤的不同洪水量为Q ,制定损失最小的泄洪方案(至少选择4个不同的洪水量)并计算该方案的损失数。
3、投资的收益和风险市场上有n 种资产(如股票、债券 、)i S ),,2,1(n i =供投资者选择,某公司有数额为M 的一笔相当大的资金可用作一个时期的投资。
公司财务分析人员对这n 种资产进行了评估,估算出在这一时期内购买i S 的平均收益为i r ,并预测出购买i S 的风险损失率为i q 。
考虑道投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险用所投资的i S 种最大的一个风险来度量。
购买i S 要付交易费,费率为i p ,并且当购买额不超过给定值i u 时,交易费按购买i u 计算(不买当然无须付费)。
另外,家丁同期银行存款利率是0r ,且既无交易费又无风险费。
(%50=r )已知4=n 时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金M ,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。
4、服务机构劳务安排的优化设计在一些大型服务机构中,不同的时间段内需要的服务量有显著的不同。
例如,交通管理人员、医院医护人员、宾馆服务人员、超市卖场营销人员等。
在不同的时段劳务需求量不同,主管单位在不同时段支付的劳务工资往往也不同。
因此对于既要满足需要,又要尽量节约劳务开支是管理者必须思考的决策问题。
现就某公司超市卖场营销人员工作安排问题建立一个数学模型来进行优化设计,使得既要满足公司超市卖场需要,又使公司的劳务开支最少。
超市卖场的营业时间是上午8点到21点,以两小时为一时段,各时段内所需的服务人员数如表1,每个营销人员可在任一时段开始时上班,但要连续工作8小时,中途需要1小时的吃饭和休息时间。
为保证营业时间内都有人值班,公司安排了四个班次,其班次与休息时间安排如表2,在不同时段的工资标准不同,上午8点到17点工作的人员月工资为1200元,中午12点到21点工作的人员月工资为1500元。
的变化。
5、调度计划某公司下设三个工厂,生产同一种产品,现在要把三个工厂生产的产品运送给四个订户。
工厂的供应量、订户的需求量以及从三个工厂到四个订户的单①:订户4的订货量首先要保证全部予以满足;②:其余用户的定货量满足程度应不低于80%;③:工厂3调运给订户1的产品量应不少于15个单位;④:因线路限制,工厂2应尽可能不分配给订户4;⑤:订户1和订户3的需求满足程度应尽可能平衡;⑥:力求使总运费最少。
6、售后服务数据的运用产品质量是企业的生命线,售后服务是产品质量的观测点,如何用好售后服务的数据是现代企业管理的重要问题之一。
现以某轿车生产厂家为例考虑这个问题。
假设该厂的保修期是三年,即在售出后三年中对于非人为原因损坏的轿车免费维修。
在全国各地的维修站通过网络将保修记录送到统一的数据库里面,原始数据主要包含哪个批次生产的轿车(即生产月份)、售出时间、维修时间、维修部位、损坏原因及程度、维修费用等等。
通过这样的数据可以全面了解所有部件的质量情况,若从不同的需求角度出发科学整理数据库中的数据,可得到不同用途的信息,从而实现不同的管理目的。
整车或某个部件的“千车故障数”是一个很重要的指标,常用于描述轿车的质量。
首先将轿车按生产批次划分成若干个不同的集合(下面表格的同一行数据就来自同一集合),再对每个集合中迄今已售出的全部轿车进行统计,由于每个集合中的轿车是陆续售出的,因此它们的统计时间的起点即售出时间是不同的。
但在下面表格中,每一列数据的统计时间的长度却是相同的(例如2002年3月底出厂的轿车,到2002年8月底;或2003年10月初出厂的轿车,到2004年3月初都是最多使用了五个月,显然它们的统计时间的终点也是不同的),在相同使用时间长度(例如下表中第5列都是使用10个月的)内的整车或某个部件的保修总次数乘以1000再除以迄今已售出的轿车数量,即为下面表格中的千车故障数。
数据利用的时效性是很强的,厂方希望知道近期生产中的质量情况,但刚出厂的轿车还没有全售出去,已售出的轿车也没使用几个月,因此数据显得滞后很多。
当一个批次生产的轿车的三年保修期都到时,我们对这批轿车的质量情况有了最准确的信息,可惜时间是轿车出厂的四、五年后,这些信息已无法指导过去的生产,对现在的生产也没有什么作用。
所以如何更科学地利用少量数据预测未来情况是售后服务数据利用的重要问题。
现有2004年4月1日从数据库中整理出来的某个部件的千车故障数,见下页的表。
其中的使用月数一栏是指售出轿车使用了的月份数,使用月数0的列中是已售出的全部轿车在用户没使用前统计的千车故障数,1的列中是某一批次已售出的每一辆轿车,在它被使用到第一个月结束时统计的,对于该批次售出的全部轿车累计的千车故障数(即没使用时和第一个月中千车故障数的和),12的列中是每辆车使用到恰好一年结束时的累计千车故障数。
生产月份是生产批次,如0201表示2002年1月份生产的。
随着时间的推移,轿车不断地销售出去,已售出轿车使用一段时间后的千车故障数也能不断自动更新,再打印出的表中数据也将都有变化。
1. 该表是工厂的真实数据,没有修改,反映的情况很多,请你分析表中是否存在不合理数据,并对制表方法提出建议;2.利用这个表的数据预测时请注意区分水平和垂直方向。
请你设计相应的模型与方法,并预测:0205批次使用月数18时的千车故障数,0306批次使用月数9时的千车故障数,0310批次使用月数12时的千车故障数。
轿车某部件千车故障数的数据表提示:1.预测时用的数据表最好是增量表,就是把原表相邻列作差的到的表,含义是第几个月期间的千车故障数。
预测后再恢复到原表的形式。
2. 轿车出厂后的运输是个复杂的事,体积大又贵重,要花费很多时间,从表中数据分析可以得到:出厂后三个月才开始有销售量,于是每个批次的前三个数据(斜三列)可认为是无效数据。
7、运输调度某城区有36个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。
现有一种载重6吨的运输车。
每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作4小时。
运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴。
请你给出满意的运输调度方案以及计算程序。
回答下列3个问题:1. 运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用)2. 铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用)3. 如果有载重量为4吨、6吨、8吨三种运输车,又如何调度?8、生产计划:某厂生产三种产品I∏I I I每种产品要经过A、B两道工序加工。
设该厂有两种规格的设备能完成A工序,他们以A1、A2表示;有三种规格的设备能完成B工序,它们以B1、B2、B3表示,产品I可以在A、B任何一种规格设备上加工;产品∏可在任何一种规格的A设备上加工,但完成B工序时只能在B1设备上加工;产品III只能在A2与B2设备上加工。
已知各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床的设备费用,如下表所示,要求安排最优的生产计划,使厂方利润最大。
附录:电力市场的输电阻塞管理一、摘要电力市场的调度是一个综合平衡的过程,涉及到发电厂、网商、用户之间的盈利。