对数函数_换底公式_例题
高中数学复习提升-对数的运算及换底公式7(学生)
第三章 指数函数、对数函数和幂函数第 7 课时 内容:对数的公式班级 姓名 小组一、学习目标1.理解并掌握对数性质及运算法则; 2.掌握对数换底公式;二、自主学习 阅读读本(P75 –P78 )1.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 1.加法:log log log ()a a a M N MN += 2.减法:log log log a a aM M N N-= 3.数乘:log log ()n a a n M M n R =∈ 4.N aNa =log5.换底公式:log a N=aNc c log log )1,0(≠>c c 说明:由换底公式可得以下常见结论(也称变形公式): ① log log 1a b b a ⋅=;② log log m n a a nb b m=;三、例题分析 例1.求值.(1)log 5125; (2)log 2(23·45);(3)(lg5)2+2lg5·lg2+(lg2)2; (4)3log 24例2.计算(1)83log 9log 32⨯(2)427125log 9log 25log 16⋅⋅(3)483912(log 3log 3)(log 2log 2)log ++-例3.设)2lg(2lg lg b a b a -=+,求log 4a b的值.四、课堂训练1.若0>a 且1≠a ,0,0>>N M ,且N M >,给出下列式子:①)(log log log N M N M a a a +=⋅; ②)(log log log N M N M a a a ⋅=⋅; ③)(log log log MN N M a a a =+; ④)(log log log N M N M a a a -=-. 其中不正确的是 .2. 用lg x ,lg y ,lg z表示:2lg yz3.求值:(1)52log (48)⨯ (2)52lg 4lg 8+ (3)lg8lg125+ (4)13log 22+4. 化简:532111log 7log 7log 7++;5. 设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.五、课堂小结 1.对数的运算性质; 2.换底公式.六、课后作业1.若a =2lg ,lg3=b ,则log 512=________2.计算:(1)12lg )2(lg 5lg 2lg )2(lg 222+-+⋅+(2)(log 2125+log 425+log 85)(log 52+log 254+log 1258)3.若a lg 、b lg 是方程01422=+-x x 的两个实根,求2)(lg )lg(baab ⋅的值。
对数运算、对数函数经典例题讲义全
1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33 C .x = 3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =121232x xy -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a MN=____________________;(3)log a M n =__________(n ∈R ).2.对数换底公式log a b =log c b log c a (a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a x C.log a x n=log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a 2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( ) A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________. 8.(lg 5)2+lg 2·l g 50=________.9.2008年5月12日,汶川发生里氏8.0级特震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x 的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.在运算过程中避免出现以下错误: log a (MN )=log a M ·log a N .log a M N =log a M log a N.log a N n =(log a N )n .log a M ±log a N =log a (M ±N ).2.根据对数的定义和运算法则可以得到对数换底公式:log a b =log c b log c a (a >0且a ≠1,c >0且c ≠1,b >0).由对数换底公式又可得到两个重要结论: (1)log a b ·log b a =1;(2) log n ma b =mnlog a b .3.对于同底的对数的化简常用方法:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).对于常用对数的化简要创设情境,充分利用“lg 5+lg 2=1”来解题.1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图象定义域 ________ 值域 ________单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图象过点________,即log a 1=0函数值 特点 x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ 对称性函数y =log a x 与y =1log ax 的图象关于____对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 9.给出函数则f (log 23)=________. 三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)恒成立,数m 的取值围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.12 2.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3 C .y =log a x 2和y =2log a x D .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12 C .2 D .4 5.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值围是______________. 9.若log a 2<2,则实数a 的取值围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.数m 的取值围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8C .16D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的围决定,若“底”的围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <nC .p <m <nD .p <n <m 2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg(2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值围是( ) A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞) 7.已知log a (ab )=1p ,则log ab a b=________. 8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________. 10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,数a 的取值围.11.抽气机每次抽出容器空气的60%,要使容器的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小; (2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y =x对称.。
高中数学对数与对数函数知识点及例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N . ②log aNM=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象O x y y = l o g x a >x<a11( )底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+基础例题题型1(对数的计算)1.求下列各式的值. (1)355log +212log 1505log -145log ; (2)log 2125×log 318×log 519.练习题 1.计算:lg 12-lg 58+lg12.5-log 89·log 278;2.log 535+212log -log 5150-log 514; 3.log 2125×log 318×log 519.4. 3991log log 4log 32+-. 5. 4lg 2lg 5lg 22+-221(6).log 24lg log lg 2log 32+-- 7.2lg 2lg3111lg 0.36lg823+++例2.已知实数x 、y 、z 满足3x =4y =6z>1. (1)求证:2x +1y=2z ; (2)试比较3x 、4y 、6z 的大小.练习题.已知log 189=a ,18b=5,用a 、b 表示log 3645.题型二:(对数函数定义域值域问题)例1.已知函数()22log 1xf x x -=-的定义域为集合A ,关于x 的不等式22a a x --<的解集为B ,若A B ⊆,求实数a 的取值范围.2.设函数22log (22)y ax x =-+定义域为A . (1)若A R =,求实数a 的取值范围;(2)若22log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围.练习题1.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域2 求函数y =2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及其单调性)例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x-1.(1)求f(x)在[-1,0)上的解析式; (2)求f(12log 24)的值.2. 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性;(Ⅲ)若(2)()f m f m -<,求m 的取值范围.练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a >1时,求使f(x)>0的x 的取值范围2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12()log f x x =.(1)求函数()f x 的解析式; (2)解不等式2(1)2f x ->-;3.已知()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.(Ⅰ)求(0)f ,(1)f ; (Ⅱ)求函数()f x 的表达式;(Ⅲ)若(1)1f a -<-,求a 的取值范围.题型4(函数图像问题)例题1.函数f (x )=|log 2x |的图象是1 1 1 11 1 1xxxx y yy yOO OO ABC D2.求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.3.设f(x)=|lg x|,a ,b 为实数,且0<a <b. (1)求方程f(x)=1的解; (2)若a ,b 满足f(a)=f(b)=2f 2a b +⎛⎫⎪⎝⎭, 求证:a·b=1,2a b+>1.练习题:1.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F +=(1)求函数)(x F 的定义域及其零点;(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围.2.已知函数f(x)=log 4(4x+1)+kx(k∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23x a a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.3.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于题型五:函数方程1方程lg x +lg (x +3)=1的解x =___________________.2.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为4.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数). (Ⅰ)求函数()f x 的定义域;(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域; (Ⅲ)若函数()f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围.5.已知函数221log log (28).242x xy x =⋅⋅≤≤ (Ⅰ)令x t 2log =,求y 关于t 的函数关系式及t 的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的x 的值.6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。
对数与对数函数知识点及例题讲解
对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
对数函数换底公式
2021-2022学年高一数学必修一第4章微专题4 换底公式换底公式的作用是将不同底数的对数式转化成同底数的对数式,将一般对数式转化成自然对数式或常用对数式来运算.要注意换底公式的正用、逆用及变形应用.题目中有指数式和对数式时,要注意将指数式与对数式进行互化,统一成一种形式.一、换底公式的正用例1 (1)log 29×log 34等于( )A.14B.12C .2D .4 考点 对数的运算题点 换底公式的应用答案 D解析 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4. (2)已知log 152=a ,b =log 35,则log 12518=________.答案 ab +a +23b解析 a =log 152=log 32log 315=log 32log 35+1=log 32b +1, 所以log 32=a (b +1)=ab +a ,log 12518=log 318log 3125=log 3(2×32)log 353=log 32+23log 35=ab +a +23b. 二、换底公式的逆用例2 计算:log 52×log 727log 513×log 74=________. 答案 -34解析 原式=log 52log 513×log 727log 74=13log log 427=lg 2lg 13×lg 27lg 4 =12lg 2-lg 3×3lg 32lg 2=-34. 三、换底公式的基本变形一:log a b =1log b a例3 已知2a =5b =10,求1a +1b的值. 解 ∵2a =10,∴a =log 210, ∴1a =1log 210=lg 2, 5b =10,∴b =log 510,∴1b =1log 510=lg 5. ∴1a +1b=lg 2+lg 5=1. 四、换底公式的基本变形二:log n m a b =m nlog a b 例4 已知log 1627=a ,则log 916=________. 答案 32a解析 ∵log 1627=a ,∴432log 3=a ,∴34log 23=a ,∴log 23=43a , ∴log 916=243log 2=42log 32=2log 32=2·1log 23=2×34a =32a. 五、解对数方程例5 若log a b ·log b c ·log c 3=2,则a 的值为________. 答案 3解析 ∵log a b ·log b c ·log c 3=lg b lg a ·lg c lg b ·lg 3lg c =lg 3lg a=2. ∴lg 3=2lg a =lg a 2, ∴a 2=3,解得a =3,或a =-3(舍去).六、证明对数恒等式例6 证明:(ab )lg a +lg b =a lg a ·b lg b ·a 2lg b .证明左边=a lg a+lg b·b lg a+lg b =a lg a·a lg b·b lg a·b lg b,又()lg lg lg lg lg log lg lg lg lg .b ba ab b a a b b b b b b b a ⋅⎛⎫==== ⎪ ⎪⎝⎭ 所以左边=a lg a ·b lg b ·b lg a ·a lg b =a lg a ·b lg b ·a lg b ·a lg b=a lg a ·b lg b ·a 2lg b =右边. 即原等式成立.。
高一数学换底公式练习题
指数函数和对数函数·换底公式·例题例1-6-38log34·log48·log8m=log416,则m]为 [[ ]A.b>a>1B.1>a>b>0C.a>b>1D.1>b>a>0解 A 由已知不等式得故选A.知识改变命运][故选A.[ ]A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2)知识改变命运2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,[ ]A.m>p>n>qB.n>p>m>qC.m>n>p>qnD.m>q>p>例1-6-43 (1)若log a c+log b c=0(c≠0),则ab+c-abc=____;(2)log89=a,log35=b,则log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.知识改变命运例1-6-44函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45已知log1227=a,求log616的值.例1-6-46比较下列各组中两个式子的大小:知识改变命运例1-6-47已知常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)若x=a t(t≠0),试以a,t表示y;(2)若t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得即 log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3(2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a值不存在.知识改变命运知识改变命运。
对数换底公式
小结
log a N 对数换底公式 logb N log b a, b 0, a, b 1, N 0. a
logb a loga b 1
常用结论
logb a logb c logc a 1
n loga m b loga b m
n
作业
1 1 lg 2 a 10 lg lg 5 2 1 lg 2 1 a lg 3 lg 3 lg 3 b
⑶log35=
2 lg 3 2 lg 2 2a 2b ⑷log1236= lg 3 2 lg 2 2a b
练习
2.已知 log3 4 log 4 8 log8 m log 4 2, 求 m的值.
问题:由上述计算你可得 出什么结论?
对数换底公式
log a N a, b 0, a, b 1, N 0. log b N log a b
证明: 设x=logbN,根据对数定义,有 N=bx. 两边取以a为底的对数,得 logaN=logabx. 而logabx=xlogab,所以 logaN=xlogab. log a N x . 由于b≠1,则logab≠0,解出x得
例2 用科学计算器计算下列对数(精确到0.001):
log248; log310; log8π; log550; log1.0822.
5.585 2.096 5.505
2.431
8.795
练习 1.已知lg2=a,lg3=b,请用a,b表示下列各式的 值. ⑴log36= ⑵log210=
lg 6 lg 2 lg 3 a b lg 3 lg 3 b
lg a lg b log b a log a b 1 lg b lg a
对数运算与对数函数(修改版)
对数与对数运算一、对数的概念若N a x=)1,0(≠>a a ,则x 叫做以.a 为底..N 的对数(Logarithm ), 记作:N x a log = 其中a — 底数,N — 真数,N a log — 对数式 说明:1、注意底数的限制0>a ,且1≠a ;2、x N N a a x=⇔=log ; 3、 注意对数的书写格式.二、对数的基本运算法则如果0,1,0,0a a M N >≠>> 有:log ()log log log log log log log ()a a a aa a n a a MN M N MM N NM n M n R =+=-=∈三、对数的性质1、负数和零没有对数;0N >;2、1的对数是零:01log =a ;3、底数的对数是1:1log =a a ;4、对数恒等式:N a Na =log ; 5、n a n a =log .四、一些推论1、对数换底公式: aNN m m a log log log = ( a >0 ,a ≠ 1 ,m >0 ,m ≠ 1,N >0).2、两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a . ② b mnb a na m log log =(a ,b >0且均不为1). 五、两种特殊的对数: 1、常用对数10log lg N N 记为;2、自然对数 e log ln N N 记为;(无理数e=2.718 28……) 六、典型例题例1、将下列指数式写成对数式,对数式写成指数式:(1)45625=;(2)61264-=;(3)1() 5.733n=;(4) 12log 164=-;(5) lg0.012=-;(6) ln10 2.303=.例2、求下列各式中x 的值: (1) 82log 3x =-;(2) 3log 274x = ;(3) 25log log 1x =() ;(4) 3log lg 0x =()。
对数函数·换底公式·例题
指数函数和对数函数·换底公式·例题例1-6-38log34·log48·log8m=log416,则m 为 [ ]解 B 由已知有A.b>a>1 B.1>a>b>0C.a>b>1 D.1>b>a>0解 A 由已知不等式得故选A.[ ]故选A.[ ]A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2)2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,[ ]A.m>p>n>q B.n>p>m>qC.m>n>p>q D.m>q>p>n例1-6-43 (1)若log a c+log b c=0(c≠0),则ab+c-abc=____;(2)log89=a,log35=b,则log102=____(用a,b表示).但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.例1-6-44函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是____.由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得.例1-6-45已知log1227=a,求log616的值.例1-6-46比较下列各组中两个式子的大小:例1-6-47已知常数a>0且a≠1,变数x,y满足3log x a+log a x-log x y=3(1)若x=a t(t≠0),试以a,t表示y;(2)若t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得即 log a y=(log a x)2-3log a x+3当x=a t时,log a y=t2-3t+3,所以y=a r2-3t+3(2)由t2-4t+3≤0,得1≤t≤3.值,所以当t=3时,u max=3.即a3=8,所以a=2,与0<a<1矛盾.此时满足条件的a值不存在.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
换底公式练习题
换底公式练习题换底公式练习题换底公式是数学中的一个重要概念,它在解决一些复杂的数学问题时起到了关键作用。
本文将通过一些练习题来帮助读者更好地理解和应用换底公式。
题目一:计算log3(5)解析:我们知道换底公式可以将一个对数转化为以任意底数为底的对数。
因此,我们可以将题目中的对数转化为以底数为3的对数。
换底公式的表达式为:loga(b) = logc(b) / logc(a)。
根据这个公式,我们可以得到:log3(5) = log10(5) / log10(3)。
在计算器上进行相应的运算,我们可以得到结果为约1.4649。
题目二:计算log2(8)解析:同样地,我们可以利用换底公式将题目中的对数转化为以底数为2的对数。
根据换底公式,我们可以得到:log2(8) = log10(8) / log10(2)。
在计算器上进行相应的运算,我们可以得到结果为3。
题目三:计算log5(125)解析:这个题目中的对数底数是5,而我们常用的计算器上通常只提供以10为底的对数计算。
因此,我们需要利用换底公式将题目中的对数转化为以底数为10的对数。
根据换底公式,我们可以得到:log5(125) = log10(125) / log10(5)。
在计算器上进行相应的运算,我们可以得到结果为3。
通过以上的练习题,我们可以看到换底公式在计算对数时的重要性和实用性。
它帮助我们将对数转化为我们熟悉且易于计算的形式,使得复杂的计算问题变得简单和直观。
除了上述的练习题,还有一些其他常见的应用换底公式的例子。
例如,在解决指数方程时,我们常常需要利用换底公式将方程中的对数转化为以底数为10或底数为e的对数。
这样一来,我们就可以通过计算器或查表的方式求解方程,从而得到方程的解。
此外,换底公式还可以在解决复杂的数学问题时起到辅助的作用。
例如,在概率论和统计学中,我们经常需要计算对数似然函数或对数概率,而这些计算通常需要利用换底公式将对数转化为以底数为10或底数为e的对数。
高一数学对数函数知识点例题
高一数学对数函数知识点例题对数函数是数学中一个重要的函数,广泛应用于各个领域。
在高中数学中,对数函数也是学习的重点内容之一。
本文将为大家介绍高一数学对数函数的知识点并提供一些例题进行讲解。
1. 对数函数的定义和性质对数函数的定义如下:对于任意一个正数a(a≠1)和正数x,以a为底的x的对数,记作logₐx,即x=aⁿ,n=logₐx。
其中,a被称为对数的底,x被称为真数,n被称为对数。
对数函数的性质如下:(1)logₐa=1,即对数a以自身为底的结果为1;(2)logₐ1=0,即对数a以1为底的结果为0;(3)logₐ(ab)=logₐa+logₐb,即对于乘法运算,对数函数的结果等于对数的和;(4)logₐ(a/b)=logₐa-logₐb,即对于除法运算,对数函数的结果等于对数的差;(5)logₐaⁿ=nlogₐa,即对于指数运算,对数函数的结果等于对数乘以指数。
2. 对数函数的例题例题1:已知log₂3=0.631和log₂5=2.322,求log₅3的值。
解析:根据对数函数的性质,我们可以利用换底公式进行计算。
换底公式如下:logₐb=logₐc/logₐb,其中a为对数底。
根据题目给出的已知信息,我们有:log₅3=log₂3/log₂5代入已知的对数值,可以计算得到:log₅3=0.631/2.322≈0.272因此,log₅3的值约为0.272。
例题2:已知logₐ10=2和log₁₀b=0.5,求logₐb的值。
解析:根据对数函数的性质,我们可以利用换底公式进行计算。
根据题目给出的已知信息,我们可以先用对数的倒数性质来换底,得到logₐb的表达式:logₐb=log₁₀b/log₁₀a代入已知的对数值,可以计算得到:logₐb=0.5/2=0.25因此,logₐb的值为0.25。
3. 对数函数的应用对数函数在实际问题中有许多应用,特别是在科学和工程领域。
以下举一个应用对数函数的例子。
对数的换底公式对数函数
对数的换底公式复习如果 a >0,a ≠1,M >0,N >0 有:log ()log log log log log log log ()a a a a a a n a a MN M NM M NNM n M n R =+=-=∈log log ()m n a a nM M n R m=∈ 新课试证明与理解: 1.对数换底公式:aNN m m a log log log =( a >0,a ≠1,m >0,m ≠ 1,N >0)2.两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a ② b mnb a na m log log =( a , b >0且均不为1) 例1、(1)27log 9,(2)81log 43,(3)625log 345,例2、已知2log 3 =a , 3log 7 =b,用a ,b 表示42log 56例3、计算:①0.21log 35 ② 4219432log 2log 3log -⋅例4、设),0(,,+∞∈z y x 且zyx643==,求证 zy x 1211=+练习①已知18log 9=a ,b18=5,用a ,b 表示36log 45②若8log 3=p,3log 5 =q, 求lg5作业1. 计算:421938432log )2log 2)(log 3log 3(log -++2.若 2log log 8log 4log 4843=⋅⋅m ,求m3.求值:12log 221033)2(lg 20log 5lg -++⋅4.求值:2lg 2)32(3log10)347(log 22++-++对数函数的图像与性质(第一课时)[互动过程1]复习:1.对数函数2y log x =的图像与性质,以及与指数函数xy 2=的图像与性质之间的关系2.练习:画出下列函数的图像x x 121(1)y 2;(2)y log x;(3)y ();(4)y lg x 3====填表:对数函数a y log x(a 0,a 1)=>≠分别就其底数a 1>和0a 1<<这两种情况的图像和性质:例1.求下列函数的定义域:2a a (1)y log x ;(2)y log (4x)==-练习1:求下列函数的定义域1(1)y lg(x 5);(2)y ln3x=-=-例2.比较下列各题中两个数的大小:22(1)log 5.3,log 4.7; 0.20.2(2)log 7,log 93(3)log ,log 3;ππ a a (4)log 3.1,log 5.2(a 0,a 1)>≠练习2:比较下列各组数中两个值的大小:(1)4.32log _____5.82log (2)8.13.0log _____7.23.0log (3)1.5log a_____9.5log a (a >0,且a ≠1)课堂补充练习:1.求下列函数的定义域:(1))1(log 3x y -= (2)x y 3log = (3)xy 311log 7-= (4)x y 2log 1=2.比较大小.4log 5log )3(01.0log 31log )2(log 3log )1(5321.05.05.0和和和π。
对数方程的解法例题及解析
对数方程的解法例题及解析例题1,解方程log2(x+1) + log2(x-1) = 3。
解析,根据对数的性质,可以将该方程转化为对数的乘法形式。
即log2[(x+1)(x-1)] = 3。
然后使用指数和对数的定义,得到2^3= (x+1)(x-1)。
化简后得到8 = x^2 1。
移项得到x^2 = 9,再开方得到x = ±3。
因此,方程的解为x = 3和x = -3。
例题2,解方程log3(2x-1) log3(x+1) = 2。
解析,根据对数的性质,可以将该方程转化为对数的除法形式。
即log3[(2x-1)/(x+1)] = 2。
然后使用指数和对数的定义,得到3^2 = (2x-1)/(x+1)。
化简后得到9 = 2x-1/x+1。
移项并合并同类项,得到9x + 9 = 2x 1。
再次移项得到7x = -10,解得x = -10/7。
因此,方程的解为x = -10/7。
例题3,解方程log5(x+2) + log5(x-3) = log5(4x-1)。
解析,根据对数的性质,可以将该方程转化为对数的乘法形式。
即log5[(x+2)(x-3)] = log5(4x-1)。
根据对数函数的性质,两边的对数函数相等,则括号内的表达式也相等。
即(x+2)(x-3) = 4x-1。
展开括号并整理,得到x^2 5x 7 = 0。
通过求解二次方程,可以得到x = (5 ± √(5^2 + 47))/2。
计算得到x ≈ 6.46 或x ≈ -1.46。
因此,方程的解为x ≈ 6.46 或x ≈ -1.46。
这些例题是对数方程的常见解法,通过运用对数的性质和换底公式,可以将对数方程转化为其他形式的方程,然后通过代数运算求解方程,最终得到方程的解。
带答案对数与对数函数经典例题
经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9 当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。
高中数学对数与对数函数知识点及经典例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。
对数与对数函数_及经典题
对数与对数函数二、知识要点梳理知识点一、对数及其运算我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算.(一)对数概念:1. 如果,那么数b叫做以a为底N的对数,记作:log a N=b.其中a叫做对数的底数,N叫做真数.2. 对数恒等式:3. 对数具有下列性质:(1)0和负数没有对数,即;(2)1的对数为0,即;(3)底的对数等于1,即.(二)常用对数与自然对数通常将以10为底的对数叫做常用对数,.以e为底的对数叫做自然对数,.(三)对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a,b,N三个字母在不同的式子中名称可能发生变化.(四)积、商、幂的对数已知(1);推广:(2);(3).(五)换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下有:(1)令log a M=b,则有a b=M,(a b)n=M n,即,即,即:.(2) ,令log a M=b,则有a b=M,则有即,即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:.知识点二、对数函数1. 函数y=log a x(a>0,a≠1)叫做对数函数.2. 在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0<a<1时,对数函数的图象随a的增大而远离x轴.(见图1)(1)对数函数y=log a x(a>0,a≠1)的定义域为(0,+∞),值域为R(2)对数函数y=log a x(a>0,a≠1)的图像过点(1,0)(3)当a>1时,三、规律方法指导容易产生的错误(1)对数式log a N=b中各字母的取值范围(a>0 且a≠1,N>0,b∈R)容易记错.(2)关于对数的运算法则,要注意以下两点:一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,loga.(3)解决对数函数y=log a x (a>0且a≠1)的单调性问题时,忽视对底数a的讨论.(4)关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1);(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a≠1,k∈R).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】若log m3.5>log n3.5(m,n>0,且m≠1,n≠1),试比较m ,n的大小.解:(1)当m>1,n>1时,∵3.5>1,由对数函数性质:当底数和真数都大于1时,对同一真数,底数大的对数值小,∴n>m>1.(2)当m>1,0<n<1时,∵log m3.5>0,log n3.5<0,∴0<n<1<m也是符合题意的解.(3)当0<m<1,0<n<1时,∵3.5>1,由对数函数性质,此时底数大的对数值小,故0<m<n<1.综上所述,m,n的大小关系有三种:1<m<n或0<n<1<m或0<m<n<1.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性.(1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握. 类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u 能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.11。
高一数学换底公式练习题
指数函数和对数函数•换底公式•例题例1-6-38 log 34 • log 48 •log s m=log4l6 , 贝U m 为[ ]9A. -B. 9C. 18D. 272解 B 由已知有lg4 lg8 lgm lgl6例1-6-39若lce l(72-l)+log b(^+l)<>则下列各式中正确的是[ ]A. b>a> 1B. 1 > a> b> 0C. a>b> 1D. 1 > b> a> 0解 A 由已知不等式得呃(Qj)<log b〔Ql)换底得—> 0,所以1砂〉妝・又lg耳〉0, lgb〉0,所以b〉』〉l・lga lgb故选A.2例1-6-40若log t-<L则自的取值范围是[ ]2 2A, (0,〒)U(1・ +8) B.(亍 +8)2 2 2 U (-, 1) D. (0, -)U(-32— 2 匠解A因为log -<b所以戶<1-3 lga2 ?当4时,叱 <如解得乱迁,所以2 9当0«<1吋池;〉丽解得0<a<|.故选A.例1-6-41 £仗)的图象与y=(9的图象关于直线y二吹用F?则F(x) = f(2x-?)的单调递増区间为[ ]A. [1 , ] B . (- X, 1] C . (0,2) D. [1 , 2)解 D 由己備f(x)・二log扣所!JJj(x)=logl(2x-x3).由F仅)=lo沖在定义域上是减函数,所血优向1, 2)上是増函数.2X -X 2>0 得 O v x v 2.又 t=2x-x 2=-(x-1) 2+1 在[1 , +^)上是减函数,例 1-6-42 已知r>b>£>h 如杲log.b = m, log 汕=山iogb~=p ,1略;=q ,则下式正确的是a b[ ]A. m >p >n >qB. n >p >m >qC. m >n >p >qD. m >q >p >n3解C 令尸2, b 二2卿知.例 1-6-43(1)若 log a c+log b C=O (c 丰 0),则 ab+c-abc= ⑵log s 9=a , log 35=b ,则 log 代2= __ (用 a , b 表示).但 C M 1,所以 lga+lgb=0,所以 ab=1,所以 ab+c-abc=1.例1-6-44 函数y=f(x)的定义域为[0 , 1],则函数f [lg(x 2-1)]的定义域解72<K7u^^/n«-72由题设有O w lg(x 2-1) < 1,所以Kx2-1 < 10•解之即得.例1-6-45 已知log i227=a,求log616 的值.解由log1227 = a, ^logi23=| ・所以曲121 ir log D16 21% 4 盹口三10£s 16 =-------- =--------- = ---------------' log u6 log]异6 10g12(3X ⑵4(1 ■吨弓_4(3胡l + log123 ] + ? 3 + a3例1-6-46 比较下列各组中两个式子的大小:(1)1 吗谒loggWGCl)⑵log b a^log3b a(a>K b>0, b尹f , l#l)R (l)log£logh = 21o酣I.因为0<Xl,所以当0<X悅21og a x>0,从而iQgQlogk;当囂=1时,21og芒=0,从(fDlog^ = loglxi 当Q1时,21og t x<0,从而log a x<loglx.⑵b缈血"击-品呃2log.b * log/2b)当?或b〉l时’上式为正,故log朋〉log価当时,上式为负,故log評<1姑耶乩例1-6-47 已知常数a>0且a^ 1,变数x, y满足3log x a+log a x-log x y=3⑴若x=a t(t工0),试以a, t表示y;⑵若t € {t|t 2-4t+3 <0}时,y有最小值8,求a和x的值.解(1)由换底公式,得log a y=(log a x) 2-3log a X+3当x=a t时,log a y=t 2-3t+3,所以r2-3t+3y=a(2)由12-4t+3 < 0,得1< t < 3.当CKK1且y有最小值8吋,u = t —3t+?二卜勺+;必有最大值,所以当t=3时,U max=3.即a3=8,所以a=2,与0v a v 1矛盾.此时满足条件的a值不存在.F 3 3当a>l且y有最小值&吋,u= +〒必有最小值,所以当L/丿4 23 3 3时・U站二亍恥亍=&所以a = 16,此吋;< =疽二64,所以“16,x = 64.。
对数变形常用公式及变形技巧
对数变形常用公式及变形技巧
对数运算是高中数学中常用的运算,也是高考要求掌握的一个内容,更是培养学生的数学转化意识的重要载体。
因此,学好本部分内容,对学生的学习是很有帮助的。
对数计算常用的四组公式:
(一)互化公式:a x=N⇔ logaN=x
(二)性质公式:log a1=0,log a a=1,
(三)运算公式:
积的对数公式:log a(MN)= log a M+ log a N
商的对数公式:
幂的对数公式:
(四)换底公式:
一个常用结论:若xy=1,且x>0,y>0,则logax=1-logay
【典型例题】
例1.若2a=5b=10,则
分析:根据问题,需要将a,b解放出来,方法就是通过对数互化,将指数变为对数。
为了便于求和,最好把所求用同一个底数表示。
解:对2a=10两边取常用对数,即得alg2=1,因此,同理
所以lg2+lg5=1
例2.已知log189=a,18b=5,求log3645
解:由18b=5得log185=b,log3645=
而log1845= log185+log189=a+b
log1836=log189+2log182=log189+2(1-log189)=2-b
所以lo g3645=
总结:本题在求log182时利用了结论:若xy=1,且x>0,y>0,则log a x=1-log a y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B. 9
C. 18
D. 27
例1639若leg 』孙1)+呃(Q+1K 则下列各式中正确的是
B. 1 > a > b >0
C. a > b > 1
D. 1 > b > a > 0
解 A 由已知不等式得
?< i ,
■|J<I
换底得一〉rr 〉°,所以i 或〉ig 乳力网〉0‘ igb 〉o,所以
b 〉a 〉i. lga lgb
故选A.
9
例1-6-40若lo gl -<l,则自的取值范围是
例 1-6-38
log 34 • log 48 log 8m=log 4I6 , 贝 U m
lg4 . lg8
由已知有-扛 -=:
lgm _ lg!6
诉=莎
o lgm = 21 g3 o tn = 9
2 2
A. (0, -)U(1, +8)
B. (-
+oo)
f
2 2 2
C・(亍1) D. (0, -)U(p +s)
2
2*87
解A因为log -<1?所以戶<1.
3lga
2 2
当Q时lg|<lga.解得迸,所以小
2 9
当O<K时蚯>1與解得oa<7
故选A.
例1-6-41 f(x)的图象与y=(?的图象关于直线y二谢秫则
I :' :: ::' —[ ]
A. [1 , + 钓 B . (-x,i] C . (0 ,
2) D . [1 , 2)
解D由己如僦c)・二log扣所lilF(x)=logl(2x-x3)#由
2x-x2>0 得 0 vx V 2 .又 t=2x-x2=-(x-1)2+1 在[1, + 马上是减函数,
F(x)=log*在定义域上是减酬,所历倒在[1, 2)上是増酬,
例1-6-42己知如杲logbb=ni, 1绍評=小
log b - = p, log.^q,则下式正确的是
[ ]
A. m>p>n>q
B. n>p>m>q
C. m>n>p>q
D. m>q>p>n
解C 令汗2, b = 2弓即亂
例 1-6-43 ⑴若 log a c+log b c=0(c 和),贝U ab+c-abc= __ ;
⑵log 89=a, log 35=b ,贝U log®2= ____ (用 a, b 表示).
解(1)1 1緡尸畑2若=詈
lga lgb
但 c 为,所以 lga+lgb=0,所以 ab=1,所以 ab+c-abc=1 .
2 3
⑵ TTT7 由吨沙二乩 log 35 = t^jE :
ltlog 33 = -a )log a 5 = blog 23.
比时 3ab u 口、| 1 1 2
所^5=-.所以1唤2二硕二市励二乔巨.
例1-6-44 函数y=f(x)的定义域为[0,1],贝U 函数f[lg(x 2-1)]的定义域是
由题设有0 W g(x2 3-1)<1,所以1衣-1 <10 .解之即得. 例 1-6-45 已知 Iog i227=a,求 log e16 的值.
解由1031227 = a,得1街异二扌.所以
曲12
1
ir log
D
16 21% 4 盹口三
1 O£
s
16 = --- = ------ =----------
' log
u
6 log]异6 10g12(3X ⑵
El
_4(l-lo
gl33)_4^-3)_4(3-
a
)
l+log ia3 [十? 3 + a
3
例1-6-46 比较下列各组中两个式子的大小:
⑴鹅必与log扣(0<艮<1)
⑵log b a^log a a(a>l, b>0, b弄十,b#l)
R (1)1第「10心=210酣
3L
因为0<Xl,所以当0<X悅21og a x>0,从而iQgQlogk;
当囂=1时,21og t x = 0,从而log4x = loglxi 当£>1时,21og t x<0,从而log^Cloglx.
(2)1 og眄1伽汗硬■ 1 每(2b) = kgJ-kg/Sb)
^0<b<|sfib>lBj.上式为正"故log朋〉log価当W<b<l时,上式为负,故log評<1褪朋..
例1-6-47 已知常数a > 0且a^1,变数x, y满足
3log x a+log a x-log x y=3
⑴若x=a t(tO),试以a, t表示y;
⑵若t qt|t2-4t+3 O}时,y有最小值8,求a和x的值.
解(1)由换底公式,得
log a y=(log a x)2-3log a x+3
当 x=a t 时,log a y=t2-3t+3,所以
⑵由 t2-4t+3 切,得 1 .
log. 2
y=a
当0<枝<1且y有最小值眄小
值,所以当t=3时,U max =3.即a3=8,所以a=2,与0vav 1矛盾.此
时满足条件的a值不存在.
3 3当a>l且y有最小值时,u= t-~ +〒必有最小■直所以当t = f
3 3 3
时・u讪二亍即話=&所以a = 16,此吋“疽=64•所以a = 16, x = 64.。