《实数复习课》教学设计

合集下载

初中实数复习课教案

初中实数复习课教案

初中实数复习课教案1. 理解实数的意义,掌握实数的分类,了解实数与数轴的关系。

2. 掌握有理数、无理数的概念,理解有理数与无理数的区别。

3. 理解相反数、绝对值的概念,掌握相反数和绝对值的性质。

4. 掌握实数的四则运算,包括加、减、乘、除、乘方及开方运算。

5. 能运用实数的概念和性质解决实际问题。

二、教学重难点1. 实数的分类和实数与数轴的关系。

2. 相反数和绝对值的性质。

3. 实数的四则运算。

三、教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,引导学生通过自主学习、合作交流,掌握实数的知识和技能。

四、教学过程1. 导入新课通过数轴引入实数的概念,引导学生回顾数轴上的点与实数的关系,为新课的学习打下基础。

2. 知识讲解(1)实数的分类讲解实数的分类,包括有理数和无理数。

通过实例让学生了解有理数和无理数的特点,引导学生掌握有理数与无理数的区别。

(2)实数与数轴讲解实数与数轴的关系,引导学生理解每一个实数都在数轴上有一个对应的点,反之亦然。

(3)相反数和绝对值讲解相反数和绝对值的概念,引导学生掌握相反数和绝对值的性质。

3. 课堂练习布置一些有关实数的分类、实数与数轴、相反数和绝对值等方面的练习题,让学生在课堂上完成,及时巩固所学知识。

4. 小组合作组织学生进行小组合作,探讨实数的四则运算,引导学生掌握实数的运算规律。

5. 课堂小结对本节课的内容进行课堂小结,帮助学生梳理实数的知识和技能。

五、课后作业布置一些有关实数的练习题,让学生课后巩固所学知识,提高解题能力。

六、教学反思在课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,为下一步的教学做好准备。

通过以上教学设计,希望能帮助学生全面掌握实数的知识和技能,提高他们的数学素养。

实数复习教案-北峰中学-张建栋

实数复习教案-北峰中学-张建栋

给出实数分类 的示意图,让学生 通过具体的实例来 体会有理数和无理 数的定义后,请学 生自己找找无理 数,让学生在寻找 的过程中,体会无 理数的基本特征.
第 2 页,共 5 页
牛刀二试 填空:将下列各数分别填入下列的集合括号中
应该让学生 自己小结得出结 论:判断一个数是 有理数还是无理 数,并作出归纳总 结.
另一方面,每个实数都可以用数轴上的一个点来 表示;反过来,数轴上的每一个点都表示一个实数.
即实数和数轴上点是一一对应的.
第 3 页,共 5 页
牛刀三试 填一填
(1) 5 的相反数是_____,绝对值是_____;没有倒
数的实数是______;
(2) 3 2 的相反数是_______;绝对值是_________
开平方:求一个数的平方根的运算,叫做开平方。 开立方:求一个数的立方根的运算,叫做开立方。
2、算术平方根、平方根、立方根的比较:
表示方法
a 的取值
正数
性 质
0
负数
开方
运算得本身
算术平方根
a
a ≥0
平方根
±a
a ≥0
立方根
3a
a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
立方根
铺垫.
2、基本运算:开平方、开立方、绝对值
3、基本运用:求算术平方根、求平方根、求立
知识回顾
方根、求绝对值、解二次方程、解三次方程、解绝对 值方程、比较大小、化简、估算、应用题(面积、体
积)
三、知识点的分解: 1、平方根与立方根 平方根:一般地,如果一个数的平方等于 a,这 个数叫做 a 的平方根(也叫二次方根)。

(完整版)《实数》复习课教案

(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。

人教版七年级数学下册复习课优秀教学案例:6.3实数

人教版七年级数学下册复习课优秀教学案例:6.3实数
(三)小组合作
我鼓励学生进行小组合作,共同探讨和解决问题。在教学过程中,我设计了多个小组讨论的活动,让学生在小组内交流自己的想法和理解,共同探讨实数的分类和实数与数轴的关系。
例如,在讲解实数的分类时,我让学生在小组内讨论并总结实数的分类,每个小组成员都能发表自己的观点,共同得出实数的分类结果。通过小组合作,学生能够互相学习、互相启发,提高他们的合作能力和团队精神。
在教学过程中,我采用了“问题驱动”的教学方法,通过设置一系列具有启发性的问题,引导学生主动思考、探究和交流。同时,我还运用了数形结合的方法,让学生直观地理解实数与数轴的关系。
本节课结束后,学生对实数的认识得到了加深,他们在实数的分类、实数与数轴的关系等方面的理解更加清晰。此外,通过本节课的学习,学生的数学思维能力得到了锻炼,他们能更好地运用实数解决实际问题。总体来说,本节课达到了预期的教学目标,取得了较好的教学效果。
然后,我组织学生进行小组讨论,让他们共同探讨和解决问题。我提出了与实数相关的问题,引导学生进行思考和交流,培养他们的合作能力和团队精神。
在总结归纳环节,我将学生的小组讨论结果进行总结和归纳,突出实数的重要性和应用。我通过总结归纳,帮助学生形成系统的知识结构,提高他们的理解和记忆能力。
最后,我布置作业小结,让学生在课后进行自主学习和复习。我设计了相关的练习题和思考题,使学生能够巩固所学知识,提高他们的实际应用能力。
在课程开始之前,我通过调查了解到学生对实数的认识存在一定的模糊地带,特别是在实数的分类、实数与数轴的关系等方面。因此,我决定以这些问题为切入点,引导学生进行自主探究,从而提高他们的数学素养。
针对这一章节的内容,我设计了以下教学目标:一是使学生掌握实数的分类,理解有理数和无理数的概念;二是让学生了解实数与数轴的关系,能正确地在数轴上表示实数;三是培养学生运用实数解决问题的能力,提高他们的数学思维品质。

《实数》复习课教案

《实数》复习课教案

《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。

本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。

【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。

1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。

人教版七年级数学下册第六章《实数》单元复习教案设计

人教版七年级数学下册第六章《实数》单元复习教案设计

⼈教版七年级数学下册第六章《实数》单元复习教案设计⼈教版七年级下册《实数》单元复习教案教学⽬标:【知识与技能】掌握本章基本概念与运算,能⽤本章知识解决实际问题.【过程与⽅法】梳理本章知识点,挖掘知识点间的联系,并应⽤于实际解题中.【情感态度】领悟分类讨论思想,学会类⽐学习的⽅法.【教学重点】本章知识梳理及掌握基本知识点.【教学难点】应⽤本章知识解决实际与综合问题.【教学⽅法】演⽰法、类⽐法教学过程:⼀、作业回顾,提出错点【教学说明】将前⼀天的作业问题进⾏反馈,及时化解存在的问题。

⼆、课前⼩测,竞争⿎励1.下列说法正确的是()A.1的平⽅根是1B.1是1的算术平⽅根C. 22)(- 的平⽅根是2 D.0没有算术平⽅根 2.下列运算正确的是() A.31-=-31- B. 31-= 31 C. 31-= 31- D.31-=-313.化简:2242)()(-+-= . 4.6-的相反数是,倒数是,绝对值是 .5.绝对值⼩于7的正数有,它们的和是 .【教学说明】1.通过简单知识⼩测,让学⽣体会成就感的同时回顾本章知识.2.利⽤⼩组竞争提⾼学⽣的数学学习兴趣.三、知识要点,整体把握【教学说明】1.通过构建框图,帮助学⽣回忆本节所有基本概念和基本⽅法.2.帮助学⽣找出知识间联系,如平⽅与开平⽅,平⽅根与⽴⽅根,有理数与实数等等.四、类⽐精讲,释疑解惑【教学说明】在例题的分析讲解后,学⽣马上进⾏相关练习训练,通过师⽣互动形式,达到学以致⽤的效果。

例1.在实数21,3-,-3.14,0,π,2.161161161…,316中,⽆理数有() A.1个 B.2个 C.3个 D.4个分析:准确地进⾏实数的分类,能将各个数落相应类别的位置上.类⽐精练1.下列实数中,⽆理数是() A.4 B.2π C.2.161161116 D. 722 例2.若(a+1)2+02-b =,则a ,b 的值为 .【教学说明】本题由两个⾮负数的和为0,得到两个⾮负数为0,求出a,b 的值. 类⽐精练2.若x,y 为实数,且︱x+2︱+2-y =0,则2017)(y x 的值为() A.1 B.-1 C.2 D. -2 例3.计算(1)328163+-)((2)361535-++-【教学说明】实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适⽤.在进⾏实数混合运算时,⾸先要观察算式的特点,选择合适的⽅法进⾏计算.⼀般按照先乘⽅,后乘除,再加减的顺序计算,另外还要注意符号.类⽐精练3.(1)2325276)()(-+- (2)32274123-++-)(五、随堂练习,巩固要点4.下列等式正确的是()A. 13169±=B.552--=)(C. 327-D.1251253=--5.在10,3,325,-4中,最⼤的⼀个是()A. 10B.3C. 325D.-46.设a 为整数,若a 在数轴上的对应点如图所⽰,则a 的取值范围是()A.2﹤a ﹤3B. 4﹤a ﹤9C. -2﹤a ﹤3D. -4﹤a ﹤97.若1.1001.102=,则±0201.1=8.若10的纯⼩数是a ,则a =9.若a a --332=)(,则a 与3的⼤⼩关系是 .11.如果⼀个数的两个平⽅根分别是 2a-3和a+9,求这个数.【教学说明】结合中考考点,有针对性地进⾏训练,提⾼学⽣解题能⼒.六、拓展训练,能⼒提升14.已知a,b,c 为实数,且它们在数轴上的对应点位置如图所⽰:化简:a c a c b a b 2)(222---++-)(【教学说明】多块知识点相关结合,为中等能⼒的学⽣提升知识运⽤能⼒.七、作业布置:1.布置作业:课本P61 3.8.92.完成优化设计的课时的练习.教学反思:1.本课时教学可应⽤不同形式的练习引导学⽣认识相关的基本概念,强化对基本概念的理解以利于进⾏运算与判断.2.注重分类思想的认识与理解,强调实数计算能⼒的训练,打下坚实的运算能⼒的基础.。

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

第六章《实数》复习课教学设计

第六章《实数》复习课教学设计
(1)0.25(求算术平方根)(2)16(求平加)⑶8
(求立方根)
教与学的策

让学生去展示、让学生去纠正错误。基本上是以学生为主,老师做指导。
反馈评价
学生都可以完成自己的任务,除了个别的还需要辅导外都可以掌握了。
教学活动2:加强理解
活动目标
通过计算,加深学生对几个概念的理性认识,逐步形成技能。
解决问题
(二)、加强理解
技术资源
教学平台、投影仪
常规资源
试卷
活动概述练片

(1
例1.计算
(1)>/144-^/169+V8(2)x2-24=25
1:
才算
)石-2+向(2)几一7(^67+石-1
、:
(1)
求x的值
一2一一2一
8x2=125(2)(x-2)=25
教与学的策

都是让学生去评价学生,老师指导。
反馈评价
(填>、<或=)0
、才"1」各数分别填在相应的集合中。
2233.14159265,",-8,0.6,0,通,[,衰
属于整数集合的:,
属于小数集合的:,
属于有理数集合的:,
属于无理数集合
的:。
4、数轴上的点与实数构成了关系。
5、不用计算器,估算出45的算术平方根在那两个整数之
问:0
6、分别求下列各数的算术平方根、平方根和立方根
力服活动概述法解
(五)、归纳小结
注意理解好乘方、开方的互逆运算美系,重点掌握平方根、算术平:和立方根的概念与运用,懂得实数的混合运算,会使用各种思想方;题:类比思想、转化思想、数形结合思想、逐步逼近思想等等。

实数(复习课)

实数(复习课)

常州龙文教育个性化辅导教学案教师:方海欧学生:年级:初二学科:数学日期:星期:时段:一、课题实数(复习课)二、教学目标1、熟练平方根、立方根的概念及其应用。

2、熟练实数有关概念,近似数与有效数字的概念。

3、增强应用意识,提高解决问题的能力,体会数学的应用价值。

三、教学重难点理解平方根、立方根、实数、近似数、有效数字等概念,并能灵活运用。

四、教学课时第10课时五、教学方法讲授法、讨论法、练习法六、教学过程【知识要点】平方根1.平方根如果一个数的平方根等于a,那么这个数叫做a的平方根,也可叙述为:“如果2x a=,那么x就叫做a的平方根.”2.开平方求一个数a的平方根的运算叫做开平方,a叫做被开方数.3.平方根的性质一个正数有两个平方根,它们互为相反数.正数a的两个平方根可以用“a±”表示,其中a表示a的正平方根(又叫算术平方根),读作“根号a”; a-表示a的负平方根,读作“负根号a”.零的平方根记作0,00=.因为任何一个正数、负数或零的平方都不是负数,所以负数没有平方根.4.开平方与平方的关系开平方与平方互为逆运算,根据平方根的意义,“如果2x a=,那么x叫做a的平方根”, x记作a±,我们得到:(1)一个正数的平方根的平方等于这个数,即:当0a>时,()22,();a a a a=-=教学过程(2)一个正数的平方的正平方根等于这个数,即:当0a>时,2.a a=一个负数的平方的正平方根等于这个数的相反数,即:当0a<时,2.a a=-立方根1.立方根与平方根类似,有:如果一个数的立方等于a,那么这个数叫做a的立方根,用“3a”表示,读作“三次根号a”,3a 中的a叫做被开方数,“3”叫做根指数;也可叙述为“如果3x a=,那么x就叫做a的立方根”,x记作3a.2.开立方求一个数a的立方根的运算叫做开立方.开立方与立方互为逆运算.3.立方根的性质我们已学过正数的立方是一个正数,负数的立方是一个负数,零的立方等于零,由立方运算可知正数有一个正立方根,负数有一个负立方根,零的立方根是零,也就是说任意一个数都有立方根,而且只有一个立方根.类似于平方与开平方之间的关系,根据立方根的意义,可以得到()3333,a a a a==.(以上a是实数)注意:一个数的立方根记作“3a”,根指数3不能忽略.实数1. 无理数:无限不循环小数叫做无理数,也就是不能用两整数比表示的数.无理数可分为正无理数和负无理数.只有符号不同的两个无理数是互为相反数.2. 实数:有理数和无理数统称为实数.3.实数分类:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数n次方根1.n次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根,也可叙述为“如果n x a=(n是大于1的整数),那么x就叫做a的n次方根”,x记作n a.平方根和立方根是n次方教学过程2.开n次方求一个数a的n次方根的运算叫做开n次方,a叫做被开方数, n叫做根指数.n次方根简称为“方根”;开n次方简称“开方”.3.n次方根的性质由于n次方根包含平方根和立方根在内,而平方根和立方根有不同的性质,这使得研究n次方根的性质时,必然要把指数按奇数或偶数分别进行研究.与立方根类比:实数a的奇次方根有且只有一个,用“n a”表示,其中被开方数a是任意一个实数,根指数n是大于1的奇数.与平方根类比:正数a的偶次方根有两个,它们互为相反数,正n次根用“n a”表示,读作“n次根号a”,负n次根用“n a-”表示,其中被开方数0a>,根指数n是正偶数(当2n=时,在n a±中省略n),负数的偶次方根不存在.因为零的n次方等于零,所以零的n次方根等于零,表示为00n=方法与技能:研究n次方根,必须用分类思想把指数分为奇数和偶数来考虑,学习奇次根式时与立方根类比,学习偶次根式时与平方根类比,这种类比方法是数学思维重要方法之一.综上,无论n为奇数还是偶数,对于正数a的正n次方根都记作n a,称为正数a的n次算术根.(0的n次算术根为零)正数a的n次算术根,有下列重要性质:.nk nmk ma a=(n为大于或等于2的整数)即根指数与被开方数的指数如果有公因数则可以约去,这一公式可以顺用,即将nk mka化为.n ma反过来,也可以将n ma化为nk mka.【典型例题】【例1】求值:(1)32的五次方根(2)-32的五次方根(3)16的四次方根(4)64的六次方根(4)0.000064的六次方根(6)32243-的五次方根【分析】运用乘方运算求方根的值是常用的方法,对于正数的偶次方根有两个,它们互为相反数要充分理解,求n次方根的值必须考虑指数的奇、偶性,增强分类的意识,学会正确的语言表述是很重要的,给书写也带来简便.【解答】(1)5232=∴32的五次方根5322==(2)()5232-=-∴-32的五次方根5322=-=-教学过程(3)()4216±=∴16的四次方根6642=±=±(4)()6264±=∴64的六次方根6642=±=±(5)()60.20.000064±=∴0.000064的六次方根60.0000640.2=±=±(6)52323243⎛⎫-=-⎪⎝⎭∴32243-的五次方根53222433=-=-【例2】选择题:1.下列语句中,正确的是()(A)正数a的n次方根记作n a(B)如果n是偶数,当且仅当a是非负实数时,则n a有意义(C)零的n次方根无意义(D)任何实数都能开方2.5x-在实数范围内能开偶次方根的条件是()(A)x为任意实数(B)5x≥(C)5x≤(D)0x≤【分析】理解立方根和开立方的概念【解答】1.(B)当n是奇数时,正数a的n次方根记作“n a”, 当n是偶数时,正数a的n次方根记作“n a±”,故(A)错.当a为非负实数时,a有偶次方根,所以n a(n是偶数)有意义,故(B)对.零的n次方为零,故(C)错.负数没有偶次方根,任何实数不一定都能开方,故(D)错.2.(C)由被开方数50x-≥解得5x≤,故选(C).【例3】求适合下列等式中的x.(1)3910x-=(2)4810x=【分析】理解开n次方与n次乘方互为逆运算的关系【解答】(1)x是910-的立方根,因为3391010--=(),所以310-是910-的立方根,因此310x-= ,即教学过程0.001x=.(2)由已知可知,x是810的四次方根,由于248(10)10±=,所以210±是810的四次方根,因此210x=±,即100x=±.近似数的精确度近似数与准确数的接近程度即近似程度,近似的程度的要求叫做精确度.近似数的精确度有以下两种表达方式:一种是精确到哪一个数位.例如精确到千分位(即保留3位小数),那么准确数与近似数的误差不大于0.0005(即万分之五),这是因为近似数是经过四舍五入截取得到的.另一种是指定保留几个有效数字.对于一个近似数,从左边第一个不是零的数字起,往右到末尾数字为止的所有数字,叫做这个近似数的有效数字.如果保留五个有效数字,π的近似值为 3.1416.那么π的准确值在 3.14155与 3.14165之间,绝对误差为0.00005.如用π代表圆周率的准确值,则3.14160.00005.π-<利用无理数的近似数作计算时,中间过程中,应比最后要求精确度多保留一位数字,到最后再按四舍五入法,按最后要求取近似值.例题:1.求下列各数的平方根:2.求下列各数的算术平方根:5.解答题:6、比较两个数大小的方法很多,最常见的方法是:(1)类比法;(2)“作差”比较法.下面先学习用类比法比较两个数的大小.解:169,3723,21,0,65,36,12149,81225,1625,1632,196,36125,0,49324,289,521,49,81121,25;11-132=-+-+xxx计算:、.5323554=-+计算:、)32)(32()1(-+2)525()2(-(1)6 2.5;比较与的大小22.5 2.5 6.25==6 6.25<6 2.5∴<练习:比较下列两数的大小.思考:比较215- 和 21的大小;你是怎么比较的?用“作差”比较两数的大小,其步骤是:第一步:求差 第二步:判断值的正负 第三步:做出结论 解:练习:比较解:8、判断下列说法是否正确:(1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数; (4)实数都是无理数;(5)无理数都是实数; (6)没有根号的数都是有理数. (7)一个数的立方根不一定是无理数 (8)任何实数都有唯一的立方根(9)只有正实数才有算术平方根 (10)任何数的平方根有两个,它们互为相反数 (11)两个无理数的和一定是无理数 (12)两个无理数的积一定是无理数 (13)若正数a 的一个平方根是b ,那么a 的另一个平方根是-b. (14)若a 为有理数,b 为无理数,则 ab 必为无理数 ()123,4.5()231,5.6515(2)..28-比较与的大小=--85215 =-8954224598⨯-=165818⨯-=88180-0<85215<-∴2323,55-. )( , 32 7的值求代数式部分为,小数的整数部分为记、b a b b a ++(第5题)七、课后练习 1.下列实数722,3,38,4,3π,0.1, 010010001.0-,其中无理数有( ) A.2个 B.3个 C.4个 D.5个2. 对0.000009进行开平方运算,对所得结果的绝对值再进行开平方运算……随着开方次数的增加,其运算结果( )A.越来越接近1B.越来越接近0C.越来越接近0.1D.越来越接近0.33.地球七大洲的总面积约是1494800002km ,如对这个数据保留3个有效数字可表示为( ) A .1492km B .1.5×1082km C .1.49×1082km D .1.50×1082km4、对于10.08与0.1008这两个近似数,它们的( )A .有效数字与精确位数都不相同B .有效数字与精确位数相同C .精确位数不同,有效数字相同D .有效数字不同,精确位数相同5. 右图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )2的值是( )A .13B .19C .25D .169第6题6.如图,阴影部分是以直角三角形的三边为直径的半圆,两个小半圆的直径之比是3∶4,面积和为100,则大的半圆面积是___________.7.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).⑴在图1中,画一个三角形,使它的三边长都是有理数;图2图3图18、如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a 、b,斜边为c 。

初中数学_第六章《实数》复习教学设计学情分析教材分析课后反思

初中数学_第六章《实数》复习教学设计学情分析教材分析课后反思

教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备课件、计算器.教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类2.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示《实数》复习学情分析本章属于“数与代数”这个范畴的数的内容,学生已经系统学过有理数,对有理数的概念和运算有了较深刻的认识。

第5章 实数 (复习课导学案)

第5章     实数  (复习课导学案)

第5章 实数 (复习课导学案)一、复习目标:1、对本章的知识点进行整合,形成知识网络(重点)2、进一步熟悉本章的重要知识点的应用(难点)二、复习流程:(一)、回忆整理1、实数的有关概念:算术平方根无理数勾股数组平方根开平方立方根开立方实数2、勾股定理:勾股定理逆定理3用计算器求平方根和立方根(二)、交流提高:(同学间、小组间对上述教学内容交流一下,谈收获,形成知识结构)(三)典例剖析:1、已知实数x.y 满足(2x-3y-1)2+22+-y x =0 求2x-53y 的平方根。

(非负数的性质)2、比较-53和-43的大小。

(负无理数的比较)3、实数a 对应的点在数轴上的位置如图所示,则a,-a,a 1,a 2的大小关系是_ (用“<”连接)(四)巩固练习:<一>选择:1、化简4)2(-的结果是( )A-4 B.4 C.±4 D.无意义2、下列各式无意义的是( )A 、23-B 、33)3(-C 、2)3(-D 、310-3、若a 是b 的一个平方根,则b 的平方根是( )A 、aB 、—aC 、±aD 、a 24、25的算术平方根是( )A 、5B 、5 C 、-5 D 、±5 5、414,226 ,15三个数的大小关系是( ) A 、414<15< 226 B 、226<15< 414 C 、414<226<15 D 、226<414<15 6、估算24+3的值( ) A 、在5和6之间 B 、在6和7之间 C 、在7和8之间D 、在8和9之间<二>、填空题1、25的算术平方根是————。

2、如果3+x =2那么(x+3)2=————。

3、若2)1+-a (是一个实数,则a=___4、若xy=-2,x-y=52-1,则 (x+1)(y-1)=__ 5、若22-a 与|b+2|是互为相反数,则(a-b )2=__ 6、若a 3=b 4,那么b ba +2的值是___(五)课堂总结1、针对练习中出现问题的原因2、总结思想方法(六)拓展提升1、已知5+11的小数部分为a,5-11的小树部分为b.(1)求a+b 的值(2)求a-b 的值2、物体自由下落的高度h(米)和下落的时间(秒)的关系是:在地球上大约是h=4.9t 2,在月球上大约是h=0.8 t 2,当h=20米时:(1)物体在地球上和月球上自由下落的时间各是多少?(2)物体在哪里下落的快?答案导学案1答案(略)导学案2答案 达标测评:1、求AB 的长,应分两种情况,AB 为斜边或直角边。

中考数学复习课《实数》说课稿

中考数学复习课《实数》说课稿

中考数学复习课《实数》说课稿今天我说课的内容是《实数》。

我将从教材分析、教学法分析、教学过程、及板书设计等各方面去阐述我对《实数》这节复习课的教学。

一、教材分析(一)教材的地位和作用本章之前数及其运算的内容都是在有理数范围进行,学习本章之后,将在实数范围内研究数及其运算问题,虽然本章内容不多,篇幅不大,但在中学数学中占有重要地位和作用,本章内容不仅是初中阶段学习二次根式、一元二次方程以及解三角形等知识的基础,也是学习高中数学中函数、不等式等知识的基础。

因此本节内容具有承上启下的作用。

实数及其运算是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题17题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法。

所以我在明确中考考试大纲的要求下有针对性地对《实数》进行复习。

(二)学情分析知识上,实数这节内容学生都已学过,但是在一些问题上学生有些淡忘,或者说是理解不透,而本节课是一节复习课,虽说是温故更是要让学生明白考试大纲的要求并达到这些要求。

能力上,九年级学生对《实数》的内容都是有此了解的,对于中等生来说一些简单的题目还是可以完成的,正因为是复习课所以有些同学为此可能不够重视,所以如何在复习过程中即不让学生觉得枯燥,又能让学生能够掌握实数相关概念并进行计算至关重要。

心理上,由于初中三年数学知识的累积,有些学生学起数学有点难度,相对于七、八年级的同学来说九年级学生迫切渴望得到肯定,因此我们一方面通过解决一些题目使其得到成就感,另一方面要造机会加大学生探索空间,发挥学生的主动性,增强学生的合作意识。

(三)学习目标根据教学大纲和学生已有的知识基础和认知能力,我确定了如下的学习目标:1、理解有理数、无理数和实数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值,知道|a|的含义。

3、了解乘方与开方互为逆运算,理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根。

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计

浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。

本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。

本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。

但实数概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。

三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。

2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和分类。

2.实数的运算规则。

3.实数与数轴的关系。

五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。

2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。

3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作数轴教具,用于教学演示。

3.准备实数运算的练习题,用于巩固练习。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。

为学生引入实数的概念做铺垫。

2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。

通过讲解和示例,让学生理解实数与数轴的关系。

3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。

教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。

4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。

教师可适时给予指导,帮助学生巩固实数的运算规则。

5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。

北师大版 八年级上册 第二章《实数复习》 说课稿

北师大版 八年级上册 第二章《实数复习》 说课稿

北师大版八年级上册第二章《实数复习》说课稿一. 教材分析北师大版八年级上册第二章《实数复习》是学生在学习了实数相关概念和性质后的一次复习。

本节课的主要内容是回顾和巩固有理数、无理数和实数的概念,以及它们的性质和运算。

教材通过例题和练习题的形式,帮助学生理解和掌握实数的运算规则,提高解决问题的能力。

二. 学情分析学生在进入八年级之前,已经学习了有理数和无理数的基本概念和性质,对实数有一定的了解。

但在实际应用中,部分学生可能对实数的理解和运算还存在一定的困难。

因此,在复习实数时,需要帮助学生巩固基础知识,提高运算能力,并培养解决问题的能力。

三. 说教学目标1.知识与技能:通过复习,使学生掌握实数的概念和性质,能够熟练进行实数的运算。

2.过程与方法:通过自主学习和合作交流,培养学生发现问题、分析问题和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,提高学生的自我学习能力。

四. 说教学重难点1.教学重点:实数的概念、性质和运算规则。

2.教学难点:实数运算的灵活应用,以及解决实际问题。

五. 说教学方法与手段本节课采用自主学习、合作交流和教师引导相结合的教学方法。

利用多媒体课件和黑板,帮助学生直观地理解和掌握实数的运算规则。

同时,通过小组讨论和例题讲解,引导学生主动参与学习,提高解决问题的能力。

六. 说教学过程1.导入:通过复习有理数和无理数的概念,引出实数的概念,激发学生的学习兴趣。

2.新课导入:讲解实数的性质和运算规则,通过例题和练习题,让学生理解和掌握实数的运算方法。

3.课堂练习:设计一些有关实数运算的练习题,让学生独立完成,巩固所学知识。

4.小组讨论:引导学生分组讨论实际问题,培养学生解决问题的能力。

5.总结:对本节课的主要内容进行总结,强调实数运算的注意事项。

6.布置作业:布置一些有关实数运算的练习题,让学生课后巩固所学知识。

七. 说板书设计板书设计主要包括实数的概念、性质和运算规则。

数学沪科版七年级下册教案第6章实数复习

数学沪科版七年级下册教案第6章实数复习

根据新课标理念,课堂教学规律、课堂教学评价体系,教学反思可以从以下六个方面着手:
1、教学内容方面:教材处理的合理性;导入、结课的激励性;深层意义的规律有否揭示与发掘。

2、教学过程方面:教学程序安排的合理性;教学设计的科学性;媒体运用的适切性;反馈评价的准确性。

3、从课堂管理方面进行反思:班级成员涉及面的广泛性;全班同学学习的积极性;学法指导的经常性;处理偶发事件的应变性。

4、时间安排方面:时间分布的合理性;课内时间的可压缩性。

5、学生活动方面:学生活动的能动性;交往状态的合理性;学生心智活动的发展性。

6、目标达成方面:学生知识、技能的落实性;学生学会学习的水平性;教师课内教学监控的有效性。

撰写教后录的切入点
1、成功点:主要是指课堂教学中的闪光点。

如课堂上一个恰当的比喻,教学难点的顺利突破,引人入胜的教学方法。

又如一些难忘的教学艺术镜头:新颖精彩的导语,成功的临场发挥,扭转僵局的策略措施
2、失败点:主要是指课堂教学中的砸锅点。

如教学目标定位不准,造成的“吃不了”或“吃不饱”之现象;教学引导的度把握不适,造成的“一问三不知”的僵局;教学方法选择不当,造成的低效等。

3、遗漏点:主要是指课堂教学设计中遗漏的一些环节或知识点。

如教学衔接必需的知识点,帮助学生理解课文的背景材料,拓展延伸的内容等。

4、改进点:主要是指课堂教学中经过微调可以追求更高效益的那些点。

如更合理的分配讲与练的时间,更恰当的选择例题,更完美的板书设计,更科学的媒体选用等。

(完整版)实数复习课公开课教案

(完整版)实数复习课公开课教案

实数复习课教案活动目标1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。

4. 能对实数进行运用和比较大小。

活动重点1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。

2.对实数准确分类和比较大小。

活动难点:掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,会求一个非负数的算术平方根;能够运用实数的有关性质解决问题教学准备课件、导学案活动过程一、 知识疏理(一) 平方根、算术平方根、立方根⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步掌握它们之间的区别,达到正确求一个数的方根的目的。

一点一练我能行!1.明辩事非3是9的算术平方根 ( )0的平方根是0,0的算术平方根也是0 ( )(-2)2的平方根是2- ( )64的立方根是4± ( )-10是1000的一个立方根 ( )2.填一填25的平方根是 16的算术平方根是 27的立方根是______ 327 的平方根是_________3.火眼睛睛(1)A .3B .3-C .3±D . 9(2)下列说法中正确的是( )A .81的平方根是±3B .1的立方根是±1C .1=±1D .-5是5的平方根的相反数(3)下列式子中① 4是16的算术平方根,即4= ②4是16的算术平方根,即4=③-7是49的算术平方根,即7= ④7是(-7)²的算术平方根,即7= 其中正确的是( )A. ①③B. ②③C. ②④D. ①④(二)实数的分类、性质、比较大小、运算1.实数分类(按定义分和按正负分)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0分类中特别强调无理数的形式针对练习:(2) 73是( ): A .无理数B .有理数C .整数D .负数1、在下列各数、、、、、、、、27111311010010001.672232.0051525354.0 π 中无理数的个数是( )A .2B .3C .4D .52、把下列各数填在相应的大括号内: 1010010001.2,64,333.3,14.3,,75,13---π 整数集合:{ ……};分数集合:{ ……};有理数集合:{ };无理数集合:{ }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实数复习课》教学设计
教学目标
1.使学生进一步理解一个数的平方根、算术平方根及立方根的意义;
2.理解无理数和实数的意义;
3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;
4.会对实数分类以及进行实数的近似计算.
教学重点和难点
重点:平方根、算术平方根、实数的概念及其计算.
难点:算术平方根、实数的综合运算和代数与几何的综合运用. 教学过程设计
一、复习基本概念
1.什么叫一个数a的平方根,怎样表示?什么叫数a的算术平方根?怎样表示?其中a可以分别表示什么数?
2.什么叫一个数a的立方根?怎样表示?其中a可以表示什么数?
3.任何实数都有平方根吗?都有立方根吗?
4.什么叫无理数?什么叫实数?实数与数轴的点有什么关系?
答:1.如果一个数的平方等于a,这个数就叫做a的平方根,表示为±a数.的非负的平方根叫做算术平方根,表示为a,其中a≥0.
2.如果一人数的立方等于a,这个数就叫做a的立方根,表示为3a,其中a为任意实数.
3.正数和0有平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,任何实数都有一个立方根.
4.无限不循环小数叫做无理数.有理数和无理数统称为实数.实数与数轴上的点一一对应.
二、例题例1 a为何值时,下列各式有意义?
(1)a2;(2)-a;(3)a+2;(4)3 a-1;(5)a+-a;(6)3 2a+1 a.
要判断a为何值时各式有意义,首先要弄清各式都表示什么,成立的条件是什么.
(1),(2),(3)式都表示算术平方根,(5)为两个算术平方根的和,各式被开方数都应为非负数,(4),(6)式都表示立方根.
任何实数都可以进行立方运算,但应注意,当被开方数是分数时,分数的分母不能为0.
解 (1)因为a为任何实数时,a2≥0,所以a为任意实数时,a2有意义.
(2)因为要使-a有意义,必须使-a≥0,即a≤0,所以当a≤0时,-a有意义.
(3)因为要使a+2有意义,必须a+2≥0,即a≥-2,所以当a≥-2时,a+2有意义.
(4)因为3 a-1有意义,a-1可取任意实数,即a为任意实数,所以当a为任意实数时3a-1的意义.
(5)因为要使a有意义,必须使a≥0;要使-a有意义,必须使-a≥0,即a≤0,所以要使a+-a 有意义,a必须等于0.因此仅当a=0时,a+-a有意义.
(6)因为2a+1a是分式,当a≠0时有意义,所以当a≠0时,3 2a+1a有意义.
例2 计算:
(1)求5的算术平方根与2的平方根之和;(保留三位有效数字)
(2)|2-5|-|5+2|;(精确到0.01)
(3)|a-π|+|2-a|(2<a<π).(精确到0.001)
上列各题是进行实数运算.
问:计算各式的思路和方法是什么?
答:根据各题的要求分别取其近似值,转化为有理数进行计算.含有绝对值的式子应先
根据实数绝对值的意义,去掉绝对值的符号,再进行计算.
解 (1)因为5的算术平方根为5,2的平方根是±2.所以5的算术平方根与2的平方根之和为5±2.又因为5≈2.236,2≈1.414,所以
5+2≈2.236+1.414=3.65,
5-2≈2.236-1.414≈0.82.
(2)因为2<5所以2-5=-(5-2).所以
|2-5|-|5+2|=5-2-5-2
=-22≈-2×1.414≈-2.83.
(3)因为2<a<π,所以
|a-π|=-(a-π)=π-a,|2-a|=-(2-a)=-2+a.
因此|a-π|+|2-a|=π-a-2+a=π-2≈3.142-1.414=1.73.
指出:
1.例2中的有关运算实际是进行实数运算,有理数的运算律和运算性质,在实数范围内仍然成立.
2.无理数的运算,可以转化为用相应的(或题目指定)近似有限小数进行,有的题目可根据问题的要求取其近似值,转化成有理数进行运算.
例3 (1)如图,已知正方形ABCD的面积是4a2,E,F,G,H分别为正方形四条边的中点,依次连结E,F,G,H得到一个正方形.求这个正方形的边长(用带根号的数表示).
(2)当a=4时,正方形EFGH的边长是多少?(精确到0.01).
分析:求正方形EFGH的边长,首先应求出正方形ABCD的边长.由于正方形的面积等于它的一边的平方,所以它的一条边是面积的算术平方根.
已知E,F,G,H是正方形ABCD的各边的中点,所以BF=BE,再在直角三角形EBF中,用勾股弦定理可求出EF的长.
解 (1)在正方形ABCD中,
AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.
因为正方形ABCD的面积=AB2抽以AB2=4a2.
因为4a2>0,a>0,所以AB=4a2=2a.
同理,BC=2a.
因为E是AB中点,F是B中点,所以BE=12AB=a,BF=12BC=a. 在Rt△EBF中,EF2=BE2+BF2=a2+a2=2a2,所以
EF=2a2=2a(a>0).
(2)当a=4时,EF=42≈4×1.414=5.66.
三、小结
1.在解答有关被开方数是字母的式子是否有意义的问题,要根据所涉及的概念的意义去考虑,如例1中的(1),(2),(3),(5)各式都表示算术平方根,因此被开方数必须是非负数,从这个意义去考虑使式子有意义的字母的取值范围.
2.在进行实数运算时,可根据各题的要求分别取无理数的近似值,转化成有理数进行计算.对于含绝对值的式子,应先根据实数的绝对值的意义,去掉绝对值的符号再进行计算,有理数的运算性质和运算律在实数范围内仍然成立.
3.在代数中解答几何题,是代数和几何的综合,是数和形的结合,在解答过程中一定要结合图形的几何性质,把论证和计算结合起来.。

相关文档
最新文档