十种数字滤波方法
数字滤波器的分类方法
数字滤波器的分类方法数字滤波器是数字信号处理中常用的工具。
它可以通过对数字信号进行滤波,去除噪声或者对信号进行特定频率范围的增强,从而提高信号的质量。
数字滤波器通常可以分为以下几种分类方法:时域滤波器和频域滤波器、有限冲击响应滤波器和无限冲击响应滤波器、线性滤波器和非线性滤波器。
1. 时域滤波器和频域滤波器时域滤波器是对数字信号进行时域处理的滤波器,其基本思路是基于时间域内信号的特征进行滤波。
常见的时域滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
时域滤波器的优点是实现简单,缺点是滤波效果受到时间分辨率的影响,对时间域内信号的变化比较敏感。
频域滤波器是对数字信号进行频域处理的滤波器,其基本思路是通过对信号进行傅里叶变换或者其他频域变换,将信号转换到频域内进行处理。
常见的频域滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
频域滤波器的优点是对信号的频域分辨率比较敏感,可以消除高频噪声,缺点是实现比较复杂。
2. 有限冲击响应滤波器和无限冲击响应滤波器有限冲击响应滤波器是一种滤波器,其冲击响应长度有限。
有限冲击响应滤波器的特点是实现简单,但是会产生一定的时域失真。
常见的有限冲击响应滤波器包括FIR滤波器。
无限冲击响应滤波器是一种滤波器,其冲击响应长度为无限。
无限冲击响应滤波器的特点是能够实现更高的滤波效果,但是实现比较复杂。
常见的无限冲击响应滤波器包括IIR滤波器。
3. 线性滤波器和非线性滤波器线性滤波器是一种将输入信号进行线性处理的滤波器。
线性滤波器的优点是实现简单,且可以通过叠加多个线性滤波器来实现更高的滤波效果。
常见的线性滤波器包括FIR滤波器和IIR滤波器。
非线性滤波器是一种将输入信号进行非线性处理的滤波器。
非线性滤波器的优点是可以实现更高的滤波效果,可以处理一些线性滤波器无法处理的信号。
常见的非线性滤波器包括中值滤波器、均值滤波器、高斯滤波器等。
通过以上的分类方法,可以更好地了解数字滤波器的特点和适用场景,选用合适的数字滤波器可以有效地提高信号质量和处理效果。
简述数字滤波方法的种类
简述数字滤波方法的种类数字滤波方法是数字信号处理中的重要组成部分,广泛应用于通信、音频处理、图像处理、生物医学工程等领域。
随着技术的不断发展,数字滤波方法的种类也越来越丰富。
以下是一些主要的数字滤波方法:1.经典滤波方法:经典滤波方法主要包括均值滤波、中值滤波和高斯滤波等。
均值滤波是一种线性滤波方法,通过计算信号中邻近样本的平均值来减少噪声。
中值滤波是一种非线性滤波方法,通过取邻近样本的中值来消除噪声,对于脉冲噪声特别有效。
高斯滤波则是一种加权平均滤波方法,根据高斯函数分配权重,对于服从正态分布的噪声有很好的抑制效果。
2.傅里叶变换滤波:傅里叶变换滤波是一种基于频率域的滤波方法。
通过将信号从时域转换到频域,我们可以方便地分析和操作信号的频率成分。
常见的傅里叶变换滤波方法包括低通滤波、高通滤波、带通滤波和带阻滤波等,它们分别允许或阻止特定频率范围的信号通过。
3.小波变换滤波:小波变换是一种时频分析方法,可以同时提供信号在时域和频域的信息。
与傅里叶变换相比,小波变换具有更好的时频分辨率,因此更适合处理非平稳信号。
小波变换滤波方法包括小波阈值滤波、小波包滤波等,它们可以有效地去除噪声并保留信号的细节信息。
4.自适应滤波:自适应滤波方法能够根据输入信号的特性自动调整滤波器参数,以达到最佳的滤波效果。
常见的自适应滤波方法包括最小均方误差(LMS)算法、递归最小二乘(RLS)算法等。
这些方法广泛应用于语音信号处理、回声消除、噪声抑制等领域。
5.时域滤波:时域滤波方法直接在信号的时域进行处理,不需要进行频域转换。
常见的时域滤波方法包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器。
FIR滤波器具有线性相位特性和稳定的性能,而IIR滤波器则可以用较少的系数实现较陡峭的过渡带,但可能引入相位失真和稳定性问题。
6.智能滤波:智能滤波方法利用人工智能和机器学习技术对信号进行处理和分析。
例如,神经网络滤波器可以通过训练学习输入信号的特征,并根据这些特征进行滤波。
简述数字滤波的概念及方法
简述数字滤波的概念及方法数字滤波是一种在数字信号处理领域中广泛使用的算法,用于对数字信号进行滤波、降噪、去基线等处理。
本文将简要介绍数字滤波的概念及方法。
一、数字滤波的概念数字滤波是指在数字信号处理系统中,使用计算机算法对数字信号进行滤波的方法。
数字信号是指用二进制数字表示的音频、视频等信号,这些信号在传输、处理过程中常常受到噪声、失真等影响,需要进行滤波来去除这些干扰。
数字滤波的方法可以分为两大类:基于差分的和基于频域的。
1. 基于差分的滤波基于差分的滤波是指使用一组基线差分信号作为滤波器输入,输出是一个差分信号。
该方法的优点是不需要对信号进行采样,缺点是在频率响应上可能存在局部噪声。
2. 基于频域的滤波基于频域的滤波是指使用频域表示信号的方法,通过对信号进行傅里叶变换,得到滤波器的频率响应。
该方法的优点是可以在保留基线信息的同时,去除噪声和失真,缺点是需要对信号进行采样,并且计算量较大。
二、数字滤波的方法数字滤波的方法可以分为以下几种:1. 带通滤波器带通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和基线,但可能会丢失高频信息。
2. 高通滤波器高通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和高频信息,但可能会丢失低频信息。
3. 带阻滤波器带阻滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和基线,并且可以保留高频信息。
4. 低通滤波器低通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和高频信息,并且可以保留低频信息。
5. 中心频率加权滤波器中心频率加权滤波器是指根据信号的中心频率进行加权的滤波器。
该方法适用于去除高频噪声和失真,但可能会丢失基线信息。
三、数字滤波的应用数字滤波在音频处理中的应用包括均衡器、压缩器、降噪器等;在视频处理中的应用包括去噪、去斑、去雾等。
此外,数字滤波也被广泛应用于信号处理、图像处理、通信等领域。
10种简单的数值滤波方法
单片机利用软件抗干扰的几种滤波方法1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效;如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。
B、优点:能有效克服因偶然因素引起的脉冲干扰。
C、缺点无法抑制那种周期性的干扰,平滑度差。
2、中位值滤波法A、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。
B、优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
C、缺点:对流量、速度等快速变化的参数不宜。
3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。
B、优点:适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。
C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。
4、递推平均滤波法(又称滑动平均滤波法)。
A、方法:把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。
B、优点:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统C、缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14,B、优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
数字滤波方法
数字滤波方法由于工业生产的现场环境非常恶劣,各种干扰源很多,计算机系统通过输入通道采集到的数据信号,虽经硬件电路的滤波处理,但仍会混有随机干扰噪声。
因此,为了提高系统性能,到达准确的测量与控制,一般情况下还需要开展数字滤波。
数字滤波,就是计算机系统对输入信号采样多次,然后用某种计算方法开展数字处理,以削弱或滤除干扰噪声造成的随机误差,从而获得一个真实信号的过程。
这种滤波方法只是根据预定的滤波算法编制相应的程序,实质上是一种程序滤波。
因而可靠性高,稳定性好,修改滤波参数也容易,而且一种滤波子程序可以被多个通道所共用,因而成本很低。
另外,数字滤波可以对各种干扰信号,甚至极低频率的信号开展滤波。
它的缺陷之处是需要占用CPU的机时。
总之,数字滤波与硬件滤波器相比优点甚多,因此得到了普遍的应用。
常用的数字滤波方法有:平均值滤波、中值滤波、限幅滤波和惯性滤波等。
一、平均值滤波平均值滤波就是对多个采样值开展平均算法,这是消除随机误差最常用的方法。
具体又可分为如下几种。
1.算术平均滤波算术平均滤波是在采样周期T内,对测量信号y 开展m 次采样,把m个采样值相加后的算术平均值作为本次采样的有效值。
采样次数m决定了信号的平滑度和灵敏度。
提高m的值,可提***滑度,但系统的灵敏度随之降低,采样次数m 的取值随被控对象的不同而不同。
一般情况下,流量信号可取10左右,压力信号可取4左右,温度、成分等缓变信号可取2甚至不开展算术平均。
在编制算法程序时,m一般取2、4、8等2的整数幂,以便于用移位来代替除法求得平均值。
这种算法适用于存在周期性干扰的信号滤波2.去极值平均滤波算术平均滤波不能将明显的偶然的脉冲干扰消除,只是把其平均到采样结果中,从而降低了测量精度。
去极值平均滤波是对连续采样的m个数据开展比较,去掉其中的最大值与最小值,然后计算余下的m-2个数据的算术平均值。
在编制算法程序时,为便于用移位来代替除法求得平均值,m-2应取2、4、8等,故m取4、6、10等。
常用的8种数字滤波算法
常用的8种数字滤波算法摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。
关键词:数字滤波;控制系统;随机干扰;数字滤波算法1引言在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。
为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。
噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。
所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。
数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点:(1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。
(2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。
(3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。
(4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。
2 常用数字滤波算法数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。
设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为:其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也可以是计算机的输出信号。
具有上述关系的数字滤波器的当前输出与现在的和过去的输入、过去的输出有关。
由这样的差分方程式组成的滤波器称为递归型数字滤波器。
如果将上述差分方程式中bK取0,则可得:说明输出只和现在的输入和过去的输入有关。
常用数字滤波算法
常用数字滤波算法
常用的数字滤波算法包括:
1. 移动平均滤波(Moving Average Filter):通过对一段时间内的
样本值取平均值来减小噪音的影响。
2. 中值滤波(Median Filter):通过将一组样本值按大小排序,然
后选择中间值作为滤波结果,从而去除异常值的影响。
3. 限幅滤波(Clipping Filter):将样本值限制在一个给定范围内,超出范围的值被替换为边界值,从而去除异常值的影响。
4. 卡尔曼滤波(Kalman Filter):基于状态估计的滤波算法,使用
模型预测和观测值校正的方式,适用于动态系统的滤波和估计。
5. 维纳滤波(Wiener Filter):根据信噪比的估计,利用频域的自
相关函数和谱估计对信号进行滤波,适用于去除加性噪声。
6. 自适应滤波(Adaptive Filter):根据输入信号的统计特性不断
更新滤波器参数,以动态调整滤波器的性能,适用于非平稳信号的滤波。
7. 快速傅里叶变换滤波(FFT Filter):通过将时域信号转换为频
域信号,滤除不需要的频率分量,然后再将频域信号转换回时域信号。
这些算法可以根据具体应用的需要选择合适的滤波方法。
数据处理中的几种常用数字滤波算法
数据处理中的几种常用数字滤波算法
在数据处理中,常用的数字滤波算法有以下几种:
1. 移动平均滤波(Moving Average Filter):将一组连续的数据取
平均值作为滤波结果。
该算法简单易实现,可以有效消除噪声,但会引入
一定的延迟。
2. 中值滤波(Median Filter):将一组连续的数据排序,并取中间
值作为滤波结果。
该算法适用于去除周期性干扰或脉冲噪声,但对于快速
变化的信号可能无法有效滤除。
3. 加权移动平均滤波(Weighted Moving Average Filter):给予
不同的数据点不同的权重,并将加权平均值作为滤波结果。
该算法可以根
据需要调整不同数据点的权重,适用于对不同频率成分有不同抑制要求的
情况。
4. 递推平滑滤波(Recursive Smoothing Filter):根据当前输入
数据与上一次滤波结果的关系,通过递推公式计算得到滤波结果。
递推平
滑滤波可以实现实时滤波,但对于快速变化的信号可能会引入较大的误差。
5. 卡尔曼滤波(Kalman Filter):适用于估计具有线性动力学特性
的系统状态,并结合观测值进行滤波。
卡尔曼滤波算法综合考虑了系统模
型和观测模型的不确定性,因此能够提供较好的估计结果。
这些数字滤波算法在实际应用中可以根据需求进行选择和组合,以实
现对信号的有效滤波和噪声抑制。
数字滤波器的分类方法
数字滤波器的分类方法
数字滤波器是一种将数字信号进行滤波的工具,它可以按照不同的方式进行分类。
以下是数字滤波器的分类方法:
1. 根据滤波器的传递函数分类
数字滤波器可以根据其传递函数的类型进行分类,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器可以通过将高频成分滤除来保留低频信号,而高通滤波器则相反。
带通滤波器可以通过选择一定范围的频率来保留中间频率的信号,而带阻滤波器则可以通过去除某个频率范围内的信号来达到滤波效果。
2. 根据滤波器的实现方式分类
数字滤波器可以根据其实现方式进行分类,包括IIR滤波器和FIR滤波器。
IIR滤波器是基于递归式的计算方式,能够实现高效的滤波功能,但可能存在不稳定性和相位失真等问题。
FIR滤波器则是基于非递归式的计算方式,能够实现线性相位和稳定的滤波效果。
3. 根据滤波器的响应特性分类
数字滤波器可以根据其响应特性进行分类,包括线性相位和非线性相
位滤波器。
线性相位滤波器能够保持信号的相位特性,而非线性相位滤波器则可能会引入相位失真的问题。
4. 根据滤波器的滤波器系数类型分类
数字滤波器可以根据其滤波器系数的类型进行分类,包括有限字长和无限字长滤波器。
有限字长滤波器在计算中需要考虑计算精度的问题,可能会引入误差,而无限字长滤波器则不存在这个问题。
总的来说,数字滤波器的分类方法有很多种,不同的分类方法可以帮助我们更好地理解数字滤波器的特性和应用。
数字滤波器设计方法
数字滤波器设计方法数字滤波器是数字信号处理中重要的一个组成部分,其作用是对数字信号进行滤波处理,消除噪声和干扰,提高信号的质量和可靠性。
数字滤波器的设计是数字信号处理中重要的一个环节,本文将介绍数字滤波器的设计方法及其步骤。
一、数字滤波器的设计方法数字滤波器的设计方法主要分为模拟滤波器设计法和数字滤波器设计法两种。
模拟滤波器设计法是在模拟域内进行滤波器设计,再将其转换为数字域中,而数字滤波器设计法是基于数字信号处理的理论和方法进行设计。
数字滤波器的设计方法可以分为两类,即基于时域设计和基于频域设计。
基于时域设计主要是对数字信号进行时域上的处理,通过调整滤波器传递函数中的系数来实现滤波器设计。
基于频域设计则是对频率响应进行优化设计,通过傅里叶变换将时域信号转换为频率域信号,进而对其进行频率响应设计。
在实际滤波器设计中,两种方法可以相互结合,实现更加灵活有效的数字滤波器设计。
二、数字滤波器设计的步骤数字滤波器设计主要包括以下步骤:1. 滤波器的性能评估首先要明确数字滤波器设计的目的和要求,如要过滤的信号频率范围、所要达到的滤波器性能指标和运算速度等。
在确定这些要素后,可以选择适当的滤波器设计方法和算法。
2. 数字滤波器的类型选择按照数字滤波器传递函数的形式,可将其分为FIR滤波器和IIR滤波器两种类型。
FIR滤波器是有限脉冲响应滤波器,具有线性相位和时域上的线性性质。
其优点在于简单可靠,易于实现,且滤波器响应的改变仅与滤波器系数有关,具有较好的稳定性和可重现性。
而IIR滤波器则是无限脉冲响应滤波器,其传递函数在分母中包含反馈因子,因此具有频域上的非线性性质。
IIR滤波器的优点是设计具有更快的计算速度和更窄的频带滤波器响应,但其稳定性和阶数选择需进行充分考虑。
3. 滤波器的设计在实际滤波器设计中,可以根据所选波形的性质来设计滤波器的系数。
根据所选择的滤波器类型和具体算法,可以采用各种滤波器设计工具进行滤波器系数计算。
数字滤波器的原理和设计方法
数字滤波器的原理和设计方法数字滤波器是一种用于信号处理的重要工具,其通过对输入信号进行滤波操作,可以去除噪声、改变信号频谱分布等。
本文将介绍数字滤波器的原理和设计方法,以提供对该领域的基本了解。
一、数字滤波器的原理数字滤波器是由数字信号处理器实现的算法,其原理基于离散时间信号的滤波理论。
离散时间信号是在离散时间点处取样得到的信号,而数字滤波器则是对这些取样数据进行加工处理,从而改变信号的频谱特性。
数字滤波器的原理可以分为两大类:时域滤波和频域滤波。
时域滤波器是通过对信号在时间域上的加工处理实现滤波效果,常见的时域滤波器有移动平均滤波器、巴特沃斯滤波器等。
频域滤波器则是通过将信号进行傅里叶变换,将频谱域上不需要的频率成分置零来实现滤波效果。
常见的频域滤波器有低通滤波器、高通滤波器等。
二、数字滤波器的设计方法数字滤波器的设计是指根据特定的滤波要求来确定相应的滤波器参数,以使其能够满足信号处理的需求。
下面介绍几种常见的数字滤波器设计方法。
1. IIR滤波器设计IIR滤波器是指具有无限长单位响应的滤波器,其设计方法主要有两种:一是基于模拟滤波器设计的方法,二是基于数字滤波器变换的方法。
基于模拟滤波器设计的方法使用了模拟滤波器的设计技术,将连续时间滤波器进行离散化处理,得到离散时间IIR滤波器。
而基于数字滤波器变换的方法则直接对数字滤波器进行设计,无需通过模拟滤波器。
2. FIR滤波器设计FIR滤波器是指具有有限长单位响应的滤波器,其设计方法主要有窗函数法、频率采样法和最优化法。
窗函数法通过选择不同的窗函数来实现滤波器的设计,常见的窗函数有矩形窗、汉宁窗、海明窗等。
频率采样法则是基于滤波器在频率域上的采样点来设计滤波器。
最优化法是通过将滤波器设计问题转化为一个最优化问题,使用数学优化算法得到最优解。
3. 自适应滤波器设计自适应滤波器是根据输入信号的统计特性和滤波器自身的适应能力,来实现对输入信号进行滤波的一种方法。
10种简单的数字滤波算法(C++源程序)
10种简单的数字滤波算法(C++源程序)以下是10种简单的数字滤波算法C++实现示例:1. 均值滤波均值滤波是数字滤波算法的一种常见形式,它可以通过计算一定范围内像素值的平均值来平滑图像。
其C++实现如下:#include <iostream>#include <opencv2/opencv.hpp>using namespace std;using namespace cv;// Function to implement mean filtervoid meanBlur(Mat& img, Mat& result, int k_size){int img_rows = img.rows;int img_cols = img.cols;// Create a same sized blank imageresult.create(img_rows, img_cols, img.type());for(int r=0; r<img_rows; r++){for(int c=0; c<img_cols; c++){// Define the window of radius k_sizeint r_min = max(0, r-k_size/2);int r_max = min(img_rows-1, r+k_size/2);int c_min = max(0, c-k_size/2);int c_max = min(img_cols-1, c+k_size/2);// Calculate the mean valueint sum = 0;int count = 0;for (int i=r_min; i<=r_max; i++){for (int j=c_min; j<=c_max; j++){sum += img.at<uchar>(i,j);count++;}}result.at<uchar>(r,c) = (uchar) (sum/count);}}}int main(int argc, char** argv){// Load the imageMat img = imread("image.jpg", 0);// Check if image is loaded properlyif(!img.data){cout << "Failed to load image" << endl;return -1;}// Define the kernel sizeint k_size = 3;// Apply mean filterMat result;meanBlur(img, result, k_size);// Display the resultnamedWindow("Original Image", WINDOW_NORMAL);namedWindow("Mean Filtered Image", WINDOW_NORMAL);imshow("Original Image", img);imshow("Mean Filtered Image", result);waitKey(0);return 0;}在上述代码中,`meanBlur()` 函数接收一个输入图像`img` 和一个输出图像`result`,以及一个整数参数`k_size`,该参数指定滤波器的大小,即窗口的半径。
数字滤波器使用方法
数字滤波器使用方法数字滤波器是一种用于信号处理的重要工具,能够帮助我们去除信号中的噪音、平滑信号、提取信号特征等。
在实际工程和科学应用中,数字滤波器具有广泛的应用,例如音频处理、图像处理、通信系统等领域。
下面将介绍数字滤波器的基本原理和使用方法。
一、数字滤波器的基本原理数字滤波器是一种能对数字信号进行处理的系统,其基本原理是根据预先设计好的滤波器系数对输入信号进行加权求和,从而得到输出信号。
根据滤波器的结构不同,数字滤波器可以分为FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器两种类型。
FIR滤波器的特点是稳定性好、易于设计,其输出只取决于当前和过去的输入信号;而IIR滤波器具有较高的处理效率和更窄的频带宽度,但设计和稳定性方面相对复杂一些。
根据不同的应用需求和信号特性,可以选择合适的滤波器类型。
二、数字滤波器的使用方法1.确定滤波器类型:首先需要根据实际需求确定所需的滤波器类型,是需要设计FIR滤波器还是IIR滤波器。
2.设计滤波器:接下来根据所选滤波器类型进行设计,确定滤波器的阶数、频率响应特性等参数。
可以使用数字信号处理工具软件进行设计,或者根据经验公式进行计算。
3.滤波器实现:设计好滤波器之后,需要在编程环境中实现滤波器结构。
根据设计的滤波器系数,编写滤波器算法并将其应用于目标信号。
4.滤波器应用:将待处理的信号输入到设计好的数字滤波器中,并获取滤波后的信号输出。
根据实际需求对输出信号进行后续处理或分析。
5.性能评估:最后需要对滤波器的性能进行评估,可以通过对比滤波前后信号的频谱特性、信噪比以及滤波器的稳定性等指标来评估滤波器的效果。
三、注意事项•在设计数字滤波器时,需要根据具体应用场景和信号特性选择合适的滤波器类型和参数,以达到最佳的滤波效果。
•需要注意滤波器的稳定性和性能,避免设计过分复杂的滤波器导致系统不稳定或无法实现。
•对于实时应用,还需考虑滤波器的计算效率,尽量优化滤波器算法以减少计算复杂度。
10种简单的数字滤波C语言源程序算法
10种简单的数字滤波C语言源程序算法(2009-11-09 10:25:08)假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
数据处理中的几种常用数字滤波算法
・ ,+ ・万方数据
计量技术 !**& 78 +
数据处理中的几种常用数字滤波算法
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 被引用次数: 王庆河, 王庆山 济钢集团中厚板厂,济南,250101 计量技术 MEASUREMENT TECHNIQUE 2003(4) 29次
引证文献(29条) 1.史步海.孙宗海 混凝沉淀过程机理分析与数据预处理研究[期刊论文]-长春理工大学学报(自然科学版) 2010(1) 2.张燕燕 无线传感器网络中节点的信号处理[期刊论文]-工业控制计算机 2010(2) 3.余发山.宋珊.郑俊锋 基于DSP的称重控制器设计[期刊论文]-自动化技术与应用 2010(1) 4.王红亮.王洋.于君.吕永超 基于TMS320F2812的声信号采集滤波系统设计[期刊论文]-自动化技术与应用 2008(12) 5.张西良.杨伟玲.李萍萍.张世庆 动态称量信号离散小波变换数字滤波处理方法[期刊论文]-农业机械学报 2008(7) 6.史步海.朱学峰.陈锦威 基于先验知识的混凝沉淀过程神经网络建模[期刊论文]-华南理工大学学报(自然科学版 ) 2008(5) 7.赵亚明.张维玲 火电厂煤粉浓度软测量中数据校正技术[期刊论文]-甘肃科技 2008(4) 8.倪锋.佟红霞.李大维 炉前热分析冷却曲线的数字滤波[期刊论文]-铸造设备研究 2006(1) 9.侯达盘.张西良.张世庆 检重机称重信号的数据处理研究[期刊论文]-机械设计与制造 2006(1) 10.周英武.王苏岩.李宏男 结构试验中一种高保真的数字滤波算法[期刊论文]-重庆建筑大学学报 2006(6) 11.张靓 高精度高温超导磁悬浮测试系统的数据采集与控制[学位论文]硕士 2006 12.李学生 基于虚拟仪器的超声检测技术研究[学位论文]硕士 2006 13.刘荣琼 额济纳绿洲植被盖度的双因子系统模型[学位论文]硕士 2006 14.吴虹政 磁力轴承的模糊控制与数字滤法算法研究[学位论文]硕士 2006 15.刘颖 电站锅炉风粉浓度的软测量研究[学位论文]硕士 2006 16.何加锋 基于PCI数据采集卡的虚拟函数记录系统的研究及开发[学位论文]硕士 2006 17.张永强.申利永.田紫君 汽车安全性能检测系统中的软件滤波[期刊论文]-工业仪表与自动化装置 2005(5) 18.向红军.雷彬 基于单片机系统的数字滤波方法的研究[期刊论文]-电测与仪表 2005(9) 19.王舟如 炮塔壳体智能焊接系统的研究与开发[学位论文]硕士 2005 20.申利永 汽车安全性能检测系统软件研究与实现[学位论文]硕士 2005 21.徐娟 压电型超声波数据采集系统的开发与研究[学位论文]硕士 2005 22.黄志杭 用于微热板式气压传感器的数字集成电路设计[学位论文]硕士 2005 23.钟亮 粘料机智能控制系统的研制[学位论文]硕士 2005 24.王东林 小型空气弹簧隔振基础位移控制技术[学位论文]硕士 2005 25.许嘉 汽车动态称重信号分析与处理[学位论文]硕士 2005 26.吴晓亮.张世庆.张西良 混合式动态称重数据处理研究[期刊论文]-包装工程 2004(5) 27.黄剑 基于PCI数据采集卡的虚拟函数记录系统研究及应用[学位论文]硕士 2004 28.高峰 六自由度运动平台伺服系统研究[学位论文]硕士 2004
数字信号滤波公式差分积分法
数字信号滤波公式差分积分法
数字信号滤波是一种处理数字信号的技术,用于去除噪音和不需要的信号成分,以提高信号质量和提取有用信息。
差分积分法是数字信号滤波中常用的一种方法,下面我会从多个角度来解释这个问题。
首先,差分积分法是一种基于差分运算和积分运算的数字滤波方法。
在差分积分法中,首先对输入信号进行差分运算,以提取信号的变化率信息,然后再对差分后的信号进行积分运算,以平滑信号并去除高频噪声。
这种方法可以有效地滤除信号中的高频噪声,同时保留信号的低频成分,适用于需要保留信号整体趋势的应用场景。
其次,差分积分法在数字信号处理中具有较好的稳定性和实现简单的特点。
通过差分运算和积分运算的组合,可以实现对信号的滤波和去噪,同时避免了一些复杂滤波方法中需要考虑的参数选择和系统稳定性等问题。
这使得差分积分法在实际工程应用中具有一定的优势。
此外,差分积分法在实际应用中有多种变体和改进方法,可以
根据具体的信号特点和滤波要求进行调整和优化。
例如,可以通过改变差分和积分的权重系数,设计不同类型的滤波器,以适应不同频率特性的信号滤波需求。
同时,还可以结合其他滤波方法,如滑动窗口滤波、小波变换等,进一步提高滤波效果和适用范围。
总的来说,差分积分法作为数字信号滤波的一种方法,具有一定的优势和适用性,但在实际应用中需要根据具体情况进行调整和优化,以达到最佳的滤波效果。
希望以上解释能够全面回答你的问题。
写出数字滤波的几种常用方法(一)
写出数字滤波的几种常用方法(一)数字滤波的几种常用方法引言数字滤波是一种信号处理技术,通过对信号进行处理,减少其噪声和干扰,并提升信号的质量和可靠性。
本文将介绍数字滤波的几种常用方法,包括: 1. 移动平均滤波 2. 中值滤波 3. 加权递推平均滤波 4. IIR滤波器 5. FIR滤波器1. 移动平均滤波移动平均滤波是一种简单而有效的滤波方法,通过计算窗口内数据的平均值来平滑信号。
该方法适用于平稳的信号,并且能够保留信号的整体趋势。
移动平均滤波的步骤如下: - 选择一个窗口大小,通常为奇数,例如5或9。
- 将窗口内的数据求平均值,并将该平均值替换窗口中心的数据点。
- 窗口向前移动一个位置,重复以上步骤,直到滤波完成。
2. 中值滤波中值滤波是一种非线性滤波方法,通过用窗口内的中间值来替换窗口中心的数据点,以抑制噪声和异常值的影响。
中值滤波的步骤如下: - 选择一个窗口大小,通常为奇数,例如3或5。
- 将窗口内的数据排序,并取中间值作为窗口中心的新数值。
- 窗口向前移动一个位置,重复以上步骤,直到滤波完成。
3. 加权递推平均滤波加权递推平均滤波是一种基于加权平均的滤波方法,通过给窗口内的数据点赋予不同的权重来进行滤波。
该方法对于快速变化的信号具有较好的滤波效果。
加权递推平均滤波的步骤如下: - 选择一个窗口大小,通常为奇数,例如3或5。
- 给窗口内的每个数据点赋予一个权重,权重可以根据具体的应用场景进行选择。
- 将窗口内的数据点乘以相应的权重,并计算加权平均值。
- 将加权平均值替换窗口中心的数据点。
- 窗口向前移动一个位置,重复以上步骤,直到滤波完成。
4. IIR滤波器IIR滤波器是一种基于递归差分方程的滤波方法,通过计算输入信号和输出信号的差分来进行滤波。
该方法具有较高的滤波效果和较少的计算复杂度。
IIR滤波器的设计和参数选择较为复杂,可以采用著名的巴特沃斯滤波器、切比雪夫滤波器等方法进行设计。
数字滤波器的实现方法
数字滤波器是一种在数字信号处理中广泛使用的工具,用于提取、增强或消除特定频率范围的信号。
数字滤波器的实现方法有很多种,以下是其中几种常见的方法:
IIR滤波器:IIR(无限冲激响应)滤波器是一种常用的数字滤波器,它利用反馈结构实现。
IIR滤波器由两个部分组成:一个反馈路径和一个前馈路径。
反馈路径将输出信号的一部分反馈回输入端,前馈路径则将输入信号直接传递到输出端。
通过调整反馈路径和前馈路径的系数,可以实现对特定频率范围的信号进行增强或抑制。
FIR滤波器:FIR(有限冲激响应)滤波器是一种线性相位滤波器,它通过卷积运算实现。
FIR滤波器的输出是输入信号与一组预定义的系数进行卷积的结果。
这些系数可以设计为对特定频率范围的信号进行增强或抑制。
FIR滤波器的优点是相位响应线性,且没有递归结构,因此更加稳定。
窗函数法:窗函数法是一种设计数字滤波器的方法,它通过将窗函数与输入信号进行卷积来实现滤波。
窗函数的选择会影响滤波器的频率响应特性。
常见的窗函数有汉宁窗、海明窗等。
频率采样法:频率采样法是一种通过在频域采样设计数字滤波器的方法。
这种方法通过对频域的特定点进行采样并优化,从而得到滤波器的系数。
最优逼近法:最优逼近法是一种通过最小化某种误差度量来设计数字滤波器的方法。
这种方法可以设计出具有最优性能的数字滤波器。
以上是几种常见的数字滤波器的实现方法,每种方法都有其优点和适用场景。
在实际应用中,需要根据具体需求选择合适的实现方法。
最常用数字滤波方法及源代码
最常用数字滤波方法及源代码在数字信号处理中,常用的数字滤波方法有以下几种:1) 移动平均滤波(Moving Average Filter):将输入信号的过去N 个样本的平均值作为输出样本的值。
这种滤波器可以有效地平滑信号,但对于快速变化的信号可能引入较大的延迟。
2) 中值滤波(Median Filter):将输入信号的过去N个样本的中间值作为输出样本的值。
中值滤波器可以有效地去除噪声,但对于快速变化的信号可能引入较大的失真。
3) 低通滤波(Lowpass Filter):通过去除高频成分来平滑信号。
常用的低通滤波器有巴特沃斯滤波器、切比雪夫滤波器等。
以下是Python中实现这些滤波方法的简单源代码示例:移动平均滤波方法:```pythondef moving_average_filter(input_signal, window_size):filtered_signal = []for i in range(len(input_signal) - window_size + 1):window = input_signal[i:i+window_size]filtered_signal.append(sum(window) / window_size)return filtered_signal```中值滤波方法:```pythondef median_filter(input_signal, window_size):filtered_signal = []for i in range(len(input_signal) - window_size + 1):window = input_signal[i:i+window_size]filtered_signal.append(sorted(window)[window_size//2])return filtered_signal```低通滤波方法:```pythonimport scipy.signal as signaldef lowpass_filter(input_signal, cutoff_freq, fs):nyquist_freq = 0.5 * fsnormalized_cutoff_freq = cutoff_freq / nyquist_freqb, a = signal.butter(4, normalized_cutoff_freq, btype='low') filtered_signal = signal.lfilter(b, a, input_signal)return filtered_signal```注意:以上代码示例仅为简单实现,并未考虑边界情况和参数校验等细节。
10种简单的数字滤波算法(C语言源程序)
10种简单的数字滤波算法(C语言源程序)1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差#define A 10char value;char filter(){char new_value;new_value = get_ad();if ( ( new_value - value > A ) || ( value - new_value > A )return value;return new_value;}2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜#define N 11char filter(){char value_buf[N];char count,i,j,temp;for ( count=0;count<N;count++){value_buf[count] = get_ad();delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ){temp = value_buf[i];value_buf[i] = value_buf[i+1];value_buf[i+1] = temp;}}}return value_buf[(N-1)/2];}3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM#define N 12char filter(){int sum = 0;for ( count=0;count<N;count++){sum + = get_ad();delay();}return (char)(sum/N);}4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=412;温度,N=14B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM#define N 12char value_buf[N];char i=0;char filter(){char count;int sum=0;value_buf[i++] = get_ad();if ( i == N ) i = 0;for ( count=0;count<N,count++)sum = value_buf[count];return (char)(sum/N);}5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM#define N 12char filter(){char count,i,j;char value_buf[N];int sum=0;for (count=0;count<N;count++) {value_buf[count] = get_ad(); delay();}for (j=0;j<N-1;j++){for (i=0;i<N-j;i++){if ( value_buf[i]>value_buf[i+1] ) {temp = value_buf[i];value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp;}}}for(count=1;count<N-1;count++) sum += value[count];return (char)(sum/(N-2));}6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM略参考子程序1、37、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)本次采样值+a上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号#define a 50char value;char filter(){char new_value;new_value = get_ad();return (100-a)value + a new_value;}8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
char filter() {
char count,i,j; char value_buf[N]; int sum=0; for (count=0;count<N;count++) {
value_buf[count] = get_ad(); delay(); } for (j=0;j<N-1;j++) { for (i=0;i<N-j;i++) {
#define N 12
自动化科协 char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
#define N 12
char value_buf[N]; char i=0;
char filter() {
char count; int sum=0; value_buf[i++] = get_ad();
if ( i == N ) i = 0; for ( count=0;count<N,count++)
自动化科协 测量速度较慢,和算术平均滤波法一样
比较浪费 RAM
6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费 RAM
通过中间值选取,可以将信号压缩,这样针对缓慢变化的信号可以利用这个方法 对信号进行时间轴上的压缩处理这样就自然的将干扰脉冲清除干净。 3、算术平均滤波法 A、方法: 连续取 N 个采样值进行算术平均运算 N 值较大时:信号平滑度较高,但灵敏度较低 N 值较小时:信号平滑度较低,但灵敏度较高 N 值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费 RAM D、算法:
#define N 12
char filter() {
int sum = 0; for ( count=0;count<N;count++) {
sum + = get_ad(); delay(); } return (char)(sum/N); }
E、实际的效果
于中间值滤波效果类是,但是速度会快很多。 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取 N 个采样值看成一个队列 队列的长度固定为 N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
sum = value_buf[count]; return (char)(sum/N); }
5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样 N 个数据,去掉一个最大值和一个最小值 然后计算 N-2 个数据的算术平均值 N 值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费 RAM D、算法:
对于快速变化的参数不宜
1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为 A);
每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效; 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值; B、优点: 能有效克服因偶然因素引起的脉冲干扰; C、缺点 无法抑制那种周期性的干扰; 平滑度差; D、算法:
if ( value_buf[i]>value_buf[i+1] ) {
temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; }
自动化科协 }
} return value_buf[(N-1)/2]; }
E、实际的效果
7、一阶滞后滤波法 A、方法: 取 a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点:
相位滞后,灵敏度低 滞后程度取决于 a 值大小 不能消除滤波频率高于采样频率的 1/2 的干扰信号
8、加权递推平均滤波法 A、方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权 通常是,越接近现时刻的数据,权取得越大。 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低 B、优点: 适用于有较大纯滞后时间常数的对象 和采样周期较短的系统 C、缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号 不能迅速反应系统当前所受干扰的严重程度,滤波效果差
if ( value_buf[i]>value_buf[i+1] ) {
temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } }
} for(count=1;count<N-1;count++)
sum += value[count]; return (char)(sum/(N-2)); }
对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费 RAM
5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样 N 个数据,去掉一个最大值和一个最小值 然后计算 N-2 个数据的算术平均值 N 值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点:
}
2、中位值滤波法 A、方法: 连续采样 N 次(N 取奇数) 把 N 次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜,非常占用时间,如果不使用冒泡算法的话 相对会快一点。 D、算法
自动化科协 把队列中的 N 个数据进行算术平均运算,就可获得新的滤波结果
N 值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费 RAM D、算法:
自动化科协 7、一阶滞后滤波法
A、方法: 取 a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于 a 值大小 不能消除滤波频率高于采样频率的 1/2 的干扰信号 D、算法:
1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为 A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替
本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差
6、限幅平均ቤተ መጻሕፍቲ ባይዱ波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费 RAM D、算法:
参考子程序 1、3
/* 为加快程序处理速度假定基数为 100,a=0~100 */
#define a 50
char value;
char filter() {
char new_value; new_value = get_ad(); return (100-a)*value + a*new_value; }
8、加权递推平均滤波法 A、方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权 通常是,越接近现时刻的数据,权取得越大。 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低 B、优点: 适用于有较大纯滞后时间常数的对象 和采样周期较短的系统 C、缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号 不能迅速反应系统当前所受干扰的严重程度,滤波效果差 D、算法: /* coe 数组为加权系数表,存在程序存储区。*/
/* A 值可根据实际情况调整 value 为有效值,new_value 为当前采样值 滤波程序返回有效的实际值 */
#define A 10
char value;
char filter() {
char new_value; new_value = get_ad();
自动化科协 if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value;