麦克斯韦速率分布定律共23页
麦克斯韦气体速率分布律
麦克斯韦气体速率分布律Maxwell Velocity Distribution大家知道,由气体的温度公式可以得出气体分子的方均根速率。
例如在时,氦气。
氧气。
但我们要注意的是,方均根速率仅是运动速率的一种统计平均值,并非气体分子都以方均根速率运动。
事实上,处于平衡状态下的任何一种气体,各个分子均以不同的速率、沿各个方向运动着。
有的速率大于方均根速率,有的速率小于方均根速率,它们的速率可以取零到无穷大之间的任意值。
而且由于气体分子间的相互碰撞,每个分子的速度也在不断地改变,所以在某一时刻,对某个分子来说,其速度的大小和方向完全是偶然的。
然而就大量分子整体而言,在平衡状态下,分子的速率分布遵守一个完全确定的统计性分布规律又是必然的。
下面我们介绍麦克斯韦应用统计理论和方法导出的分子速率分布规律。
气体分子按速率分布的统计规律,最早是由麦克斯韦于1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学中也导出该规律。
由于技术条件的限制,测定气体分子速率分布的实验,直到本世纪二十年代才实现。
1920年斯特恩(O.Stern首先测出银蒸汽分子的速率分布;1934年我国物理学家葛正权测出铋蒸汽分子的速率分布;1955年密勒(Mlier和库士(Kusch测出钍蒸汽分子的速率分布。
斯特恩实验是历史上最早验证麦克斯韦速率分布律的实验。
限于数学上的原因和本课程的要求,我们不推导这个定律,只介绍它的一些基本内容。
*麦克斯韦(J. C. Maxwell,1831—1879)英国物理学家,经典电磁理论的奠基人,气体动理论的创始人之一。
他提出了有旋电场和位移电流概念,建立了经典电磁理论,这个理论包括电磁现象的所有基本定律,并预言了以光速传播的电磁波的存在。
1873年,他的《电磁学通论》问世,这本书凝聚着杜费、富烂克林、库仑、奥斯特、安培、法拉第……的心血,这是一本划时代巨著,它与牛顿时代的《自然哲学的数学原理》并驾齐驱,它是人类探索电磁规律的一个里程碑。
麦克斯韦速率分布定律
麦克斯韦速率分布定律的说明说明:1> 条件:理想气体、平衡态2> 下式意义:对于曲线1,dv v v N dN dv v f +→=~)(这个区间内分子数dN 占总分子数N 的百分比。
对上式两端求积分v v f NN dv Ndv dN dv v f v v v v ∆≈∆==⎰⎰)()(2121,其物理意义是v 1到v 2这个速率区间内所含的分子数。
若取速率0~∞的积分归一化条件→===⎰⎰∞1)(0NN N dN dv v f N (曲线下的面积为1) 通过归一化条件可知,分布曲线并不一定是只有曲线1这一种分布,还可以有类似于曲线2这种分布,通过对比可知曲线峰值高的,速率区间宽度肯定会较窄,其原因就是两个曲线下的总面积都为1 。
三种特征速率1. 最可几速率p υ:由0)(=dv v df 、)(v f 最大值对应的v ,MRT M RT m kT v p 41.122≈==,其中m 为分子质量,M 为摩尔质量。
其物理意义:若把速率区间分成许多相等的区间,p υ所在的区间内分子数占总数的百分比最大。
需要注意:p υ不是最大速率,而是与分布曲线峰值对应的速率。
2. 平均速率v :M RT M RT dv v vf N dN v N N v N N v N v v Niii 60.18)(02211≈===∆=+∆+∆=⎰⎰∑∞π , 物理意义:在平衡状态下,气体分子速率的算术平均值,注意:平均速率不是平均速度。
因为分子都是作物规则的运动,所以其平均速度0=v 。
3. 方均根速率2v :MRT M RT v 73.132≈=,物理意义:在平衡状态下,气体分子热运动速率的另一种统计平均值。
注意:22v v v v =∙≠,方均根速率是每个分子的速率平方后再累加求平均值。
4. 说明:1> 三种速率均由麦氏速率 分布率求得(理想气体 平衡态),2> 具有统计意义——属于大量分子整体,均正比与MRT ,且2v v v p <<。
大学物理,气体动理论14-06 麦克斯韦气体分子速率分布律
i ~ i 1
N i
N i N
5
14.6 麦克斯韦速率分布律
第14章 气体动理论
气体分子按速率分布的统计规律最早是由麦克 斯韦于1859年在概率论的基础上导出的,1877年玻 耳兹曼由经典统计力学导出。 由于技术条件的限制,测定气体分子速率分布 的实验,直到20世纪二十年代才实现。 1920年斯特 恩首先测出银蒸汽分子的速率分布;1934年我国物 理学家葛正权测出铋蒸汽分子的速率分布;1955年 密勒和库士测出钍蒸汽分子的速率分布。 斯特恩实验是历史上最早验证麦克斯韦速率分 布律的实验。实验证实了麦克斯韦的分子按速率分 布的统计规律。
14.6 麦克斯韦速率分布律
一 测定气体分子速率分布的实验
第14章 气体动理论
实验装置
接抽气泵
2
l v
Hg
金属蒸汽 狭 缝
v l
显 示 屏
8
l
14.6 麦克斯韦速率分布律
第14章 气体动理论
9
14.6 麦克斯韦速率分布律
测量原理
第14章 气体动理论
(1) 能通过细槽到达检测 器的分子所满足的条件 L v L v (2) 通过改变角速度ω的 大小,选择速率 v
28
14.6 麦克斯韦速率分布律
第14章 气体动理论
求:速率在 v1 ~ v2 之间的分子的平均速率。
(3) 通过细槽的宽度,选择不同的速率区间 L v v 2
(4) 沉积在检测器上相应的金属层厚度必定正比 相应速率下的分子数。
10
14.6 麦克斯韦速率分布律
速率区间 (m/s) 实验数据 氧分子在 273K时的 速率分布
7-(4-5)麦克斯韦速率分布
f (v)
T 1
T2 > T 1
T2
v
T > T2 , orT < T2 ? 1 1
vp1 = 2RT 1
vp1 vp2
2RT2
µ
vp2 =
µ
vp1 < vp2
T < T2 1
第六章 气体动理学理论 (2) 同温度下的不同种气体
f (v)
O2 , H2 ?
1
2RT
2
v
vp1 vp2
对于一定量的气体,在温度为T的平衡态下 的平衡态下, 对于一定量的气体,在温度为 的平衡态下,气体分子速率 出现在v附近 单位速率区间内的分子数dN 附近、 出现在 附近、单位速率区间内的分子数
说出下列各式的物理意义
第六章 气体动理学理论
(4)∫ f (v)dv= ∫
v1
v2
v2
v1
∆Nv1 →v2 dN dv = Ndv N
对于一定量的气体,在温度为 的平衡态下 的平衡态下, 对于一定量的气体,在温度为T的平衡态下,气体分子速率 占总分子数N的百分比 概率 概率)。 v1~v2区间内的分子数△N占总分子数 的百分比 (概率 。 占总分子数
(5)∫ Nf (v)dv = ∫
v1
v2
dN N = ∆Nv1→v2 N
对于一定量的气体,在温度为T的平衡态下 的平衡态下, 对于一定量的气体,在温度为 的平衡态下,气体分子速率 v1~v2区间内的分子数△N。 。
一、分子速率分布函数
速率分布: 速率分布:各种不同速率范围内的分子数占总分子数的 百分比为多大。 百分比为多大。
伽 耳 顿 板
第六章 气体动理学理论
-麦克斯韦速率分布律
0
x x x
x
太原理工大学物理系
一、 速率分布函数
o
+
把速率分成很多相等的间隔
统计出每个间隔内的分子数N
N + 间隔内分子数与分子总数N之比 N
某 处单位速率间隔内分子数与总数之比 N 1 N v
N 1 N v 只与速率v有关,只是v 的函数。
vp
取 v v 2 ,并注意到
v2
3kT m
ቤተ መጻሕፍቲ ባይዱ
3 2
2kT m
3 2
v
2 p
太原理工大学物理系
f ( v2 )
概率之比为
4
3
1
3
e2
2 vp
f (vp )dv
f (vp )
2
e
1 2
1.10
f ( v2 )dv f ( v2 ) 3
太原理工大学物理系
四、分子速率的实验测定
速率分布函数 f(v)可写为
f (v) 4 (
m
)3
2
v2e
mv2 2kT
2 kT
4
1
3
2
v2 v3p
ev2
v
2 p
4
2
v v2
v
2 p
e 3
vp
太原理工大学物理系
f (v)
4
2
v ev2
v
2 p
v
3 p
在上式中取v=vp ,得
f (vp )
4 1 e1
mol用于讨论速率分布用于计算分子的平均平动动能三种速率的使用场合地球形成之初大气中应有大量的氢氦但很多分子和he原子的方均根速率超过了地球表面的逃逸速率112kms故现今地球大气中已没有氢和氦了
大学物理04麦克斯韦速率分布律
第13页/共13页
13
3
f v 4 m 2 emv2 2kT v2
2kT
第5页/共13页
5
讨论:
1. f(v)~v曲线
v 0时 f (v) 0 v 时 f (v) 0
3
f v 4 m 2 emv2 2kT v2
2kT
2.在 dv 速率区间内分子出现的概率
3
f (v) dN Ndv
f (v)dv dN 4 m 2 emv2 2kT v2dv N 2kT
例如速率间隔取100m/s , 整个速率分为0—100;100—200;…等区间。
2.总分子数为N,在v v v区间内的分子数为N
在v
v
v区间内的概率为N 第1页/共13页
i
/
N
1
2.总分子数为N,在v v v区间内的分子数为N
在v v v区间内的概率为 N i / N
则可了解分子按速率分布的情况。
式:
g (v )
0
g(v)f (v)dv
利用此公式还可计算分子的方均根速率、分子的平均
平动动能等。
第11页/共13页
11
3.方均根速率 v 2
利用方均根速率可计算分子的平均平动动能。利 用计算统计平均值公式:
g(v
)
0
g(v)f (v)dv
v 2 0 v 2 f (v )dv
利用广义积分公式
0
x
围内, 取v1 0, v2 ,则有 :
f (v)dv
0
N dN 1 0
N 第3页/共13页
归一化条件
麦克斯韦速率分布
一般气体、液体、固体及在恒定外场中的经典系统,
只要系统的能量可写成:
分子的动量分量
E
3N
i 1
Pi2 2m
U
(q1 , q2 ,
qi
,
)
广义坐标
分子间相互作用的能量及在外场中的势能之和
气体分子按速率分布的统计规律最早是由麦克斯韦于1859年 在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学中导 出,1920年斯特恩从实验中证实了麦克斯韦速率分布律。
但由前面 u2 u2 知,vrms v 总成立
例1.速率分布函数 f 的v物理意义为:
(A)具有速率v 的分子占总分子数的百分比. (B)速率分布在v 附近的单位速率间隔中的
分子数占总分子数的百分比.
(C)具有速率v 的分子数. (D)速率分布在 v 附近的单位速率间隔中
的分子数.
3
)2
exp(
m1v12 2kT
)
v12dv1
注意
dN 2 N2
f (v2 )dv2
4
(
m2
2 kT
3
)2
exp(
m2v22 2kT
)
v22dv2
混合气中各组分的麦氏分布率不一样,但有一点一定相同:
混合气达到平衡后,各组分的温度T必然相同。
7. 统计物理证明,麦氏分布率不仅适用于理气,也适用于
速率分布函数为:
麦克斯韦速率分布概率密度
f (v) 4 (
m
)
3 2
exp(
mv
2
)
v
2
2 kT
2kT
ቤተ መጻሕፍቲ ባይዱ
麦克斯韦速率分布定律
(4) 平均速率和方均根速率.
f ( )
解:(1)求 C :
C (0 ) (0 0 ) 0 ( 0 )
0
f ( )d 1 C
6
3 0
(2) N 0 ~ 0 / 4 N
0 / 4
0
5 f ( ) d N 32
0 df ( ) (3)最可几速率 0 p d p 2
6.5 麦克斯韦速率分布定律
气体中个别分子的速度大小和方向完全是偶然的 , 但 平衡态下,气体分子的速度分布遵从一定的统计规律 — — 麦克斯韦速度分布定律. 若不考虑分子速度的方向, 这个规律就成为麦克斯韦速率分布定律.
1859年, 麦克斯韦用概率论导出了气体分子速率分布 定律,后由玻尔兹曼使用经典统计力学理论导出. 1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
f (v )
av , (0 v v 0 ) 0 , (v v 0 )
2
f (v )
v0 v 求: (1)常量 a 和υ0 的关系 0 (2)平均速率 v v0 (3)速率在 0 之间分子的平均速率 v 2
解: (1)由归一化条件
0
2 0
0
f ( )d 1
3 得 a 3 v0
f ( v)
T1 300K T2 1200K
f ( v)
麦克斯韦速率分布律.pptx
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度,
说明下式的物理意义:
(1)nf (v)dv
f (v) dN , n N
Ndv
V
nf (v)dv
dN V
表示单位体积内分布在速率区间 v 内v的 dv
分子数。
第4页/共20页
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度, 说明下式的物理意义:
(2)Nf (v)dv
f (v) dN Ndv
Nf (v)dv dN
表示分布在速率区间 v v 内的dv分子数。
第5页/共20页
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度,
说明下式的物理意义:
(3)n v2 f (v)dv
v1
f (v)
dN
,n
N
Ndv
V
n v2 f (v)dv N N N
把这些量值代入,即得
W v= 1 v p 50
N=
N
4
99 100
2
e
99 100
2
1 50
1.66%
第19页/共20页
f (v ) p3
T1
T2
T1 T2 T3
温度越高,速率 大的分子数越多
T3
v v v O
p1 p 2 p3
v
第15页/共20页
气体的三种统计速率
同一温度下不同种气体速率分布比较
f (v)
m1
m1 m2 m3
m2
分子质量越小,速
率大的分子数越多
。
m3
O
v
第16页/共20页
麦克斯韦速率分布律
理气
d(m )F (器 dt壁)
真实气体 d (m ) (F 器 壁 f 内 部 )d t 分 子
pi
β
a
修正为
RT
Pb Pi
由于分子之间存在引力 而造成对器壁压强减少 内压强 P i
基本完成了第二 步的修正
内压强 1) 与碰壁的分子数成正比 2) 与对碰壁分子有吸引力作用的分子数成正比
解: 已知 T27 K,3 p1.0at m 1.01 1350 P,a d3.51 0 1m 0
kT 2d 2 p
1 .4 1 3 .1 1 . 3 4 (3 .5 8 1 1 2 0 3 1 0 2 )0 1 7 .0 3 150 6 .9 1 8 0 m
空气摩尔质量为2910-3kg/mol
讨论
麦克斯韦速率分布中最概然速率 v p 的概念
下面哪种表述正确?
v (A) p 是气体分子中大部分分子所具有的速率. v (B) p 是速率最大的速度值. v (C) p 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比
率最大.
例 计算在 27C时,氢气和氧气分子的方均
§7-5 麦克斯韦分子速率分布定律
平衡态下,理想气体分子速度分布是有规律的, 这个规律叫麦克斯韦速度分布律。若不考虑分子速 度的方向,则叫麦克斯韦速率分布律。
麦克斯韦速率分布律: 1、速率分布率的实验测量 2、 分布函数及其意义 3、 麦克斯韦速率分布函数 4、 速率分布函数的应用
1.测定气体分子速率分布的实验
m ( H 2 ) m ( O 2 )
o
2000 v/ms1 vp(H 2)vp(O 2)
vp(H2) vp(O2)
普通物理PPT课件4.3 麦克斯韦速率分布律
v2 区间的分子数N 占分子总数
v2 N = f (v )dv v1 N
它对应于曲线下阴影部分的面积
0
f (v )dv=1
——速率分布函数的归一化
*由麦克斯韦速率分布函数表示一些平均值
v
v
2
vdN N
2
0
0
dN v N
vf (v )dv
0
在v = vp 附近单位速率区间(v =1m· s-1)内 的分子数总数为
6.02 1023 105 0.2 0 0 1.2 1026 个
在v = 10vp 附近单位速率区间(v =1m· s-1) 内的分子数总数为
6.02 1023 105 2.0 1042 0 0 1.2 10
速率在区间的分子数占分子总数的百分比为它对应于曲线下阴影部分的面积速率分布函数的归一化432最概然速率平均速率和方均根速率最概然速率定义速率分布曲线上速率分布函数f最大值对应的速率叫做最概然速率
4.3 麦克斯韦速率分布律
4.3.1 麦克斯韦速率分布律 4.3.2 最概然速率 平均速率和方均根速率 4.3.4 例题分析
v2
k 玻耳兹曼常数 m 分子的质量 T-热力学温度
以v为横坐标,f (v)为纵坐标画出的曲线叫 做气体分子的速率分布曲线.
f (v )
dN f ( v )dv N
o
vp
v v dv
v
麦克斯韦速率分布曲线
3.麦克斯韦速率分布曲线
面积:
f(v)
意义:分布在区间v~ v+v 内的分子数的百分率 面积:
麦克斯韦速率分布律
dN m 3 / 2 mv 2 / 2 kT 2 f ( v) 4 ( ) e v Ndv 2 π kT
23 ´ 当m 2 10 g , T 273k , V 800m / s
f (800) 10 什么含义
6
在800-800+dv速率区间,单位速 率区间分子数占总分子数之比
f (v ) d v
0 v0 2 av d v 0
0
1 3 av 0 3
3 a 3 v0
(2)设总分子数为N, 则
v
v 0
Nf (v ) d v N
2
v 0
f (v ) d v
v0 v 0
a 4 1 3 4 3 av d v v 0 ( 3 )v 0 v 0 4 v0 4 4
m 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
总人数1380 1.50-1.55m的人数130
30 25 20 15 10 5 0 25 26 26 26 27
1.51
1.52
1.53
1.54
1.55
1.56
50 40 30 20 10 0
N v d N v 0 N d Nv 0
i
N v 0
d Nv N
v 0
f (v ) d v
8kT 8RT 对麦氏速率分布经计算得: v πm π
v (v ) f (v ) d v
0
规律:任意v 的函数(v)对 全体分子的平均值都可以用 速率分布函数由上式求得:
课件:麦克斯韦速率分布律
Nf (v) a
o
解:(1)由图可写出分子速率分布函数:
v0
2v0 v
a
Nv0
v
f
(v)
a N
0
(0 v v0 )
(v0 v 2v0 ) (v v0 )
由归一化条件,得
f (v)dv 1
,即
0
v0 a vdv 2v0 a dv 1
0 Nv0
N v0
2N a
3v0
(2)速率在区间[1.5v0,2.0v0]内的分子数:
区间的分子数占总分子数的 百分比 .
归一化条件
N dN f ( v )dv 1
0N
0
f (v)
dN f (v)dv dS
N
S
速率位于v v dv 内分子数
o
v1 v2 v
dN Nf (v)dv
速率位于
v1
v2
区间的分子数 N
v2
v1
N
f
(v)dv
速率位于 v1 v2 区间的分子数占总数的百分比
v
v f (v)dv
v0 v f (v)dv
v v0 1 dv v0
0
0
0 v0
2
2、导体中自由电子的运动,可看作类似气体分子 的运动(称为电子气)。设导体中共有N个自由电
子,其中电子的最大速率为vF(称为费米速率)。
电子速率分布函数为
f
(v
)
4 A
N
v
2
0
0 v vF v vF
v v1dN1 v2dN2 vidNi vndNn N
N
vdN vNf (v)dv
v 0
0
麦克斯韦速率分布定律
υ 附近单位速率区
间的分子数
(5) nf ()d N dN dN
VN V
单位体积中速率在υ ~ υ+dυ区间的分子数
(6) 2 f ()d 1
dN N
N1 2 N
速率在υ1 ~ υ2区间的分
子数占总分子数的百分比
(7) 2 Nf ()d 1
1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
p (O2 ) 500 m/s
例4. 设某气体的速率分布函数为
f (v )
av 2,(0 v v0 )
0 , (v v 0 )
f (v )
求:(1)常量 a 和υ0 的关系 0 v0
v
(2)平均速率 v
(3)速率在 0 v 0 之间分子的平均速率v
2
解:(1)由归一化条件
(1) f () dN Nd
(2) f ( )d dN
N
υ附近单位速率区间的分子
数占总分子数的百分比
速率在υ ~ υ+dυ区间的分
子数占总分子数的百分比
(3) N f ()d N dN dN
N
速率在υ ~ υ+dυ
区间的分子数
(4) N f () N dN dN Nd d
f ()
T1
T2 T1
T2
p
2kT m
大学物理05-5麦克斯韦速率分布律
抽气
上页 下页 返回 退出
当铝钢圆柱体以给定角 速度 转动时,只有满足下 列关系式的原子才能顺利通 过细槽出口:
L t v
长为 L=20.40 cm、刻有螺旋形 细槽的铝钢圆柱体。
v L
这里的斜槽是一速率选择器。
而其它速率的原子则将沉积在槽壁上而不能通 过。改变角速度,检测器D则测出通过细槽的不 同速率的原子射线强度,于是可得原子蒸气的速率 分布,见下图。
上页 下页 返回 退出
O
v
麦克斯韦(James Clerk Maxwell 1831—1879)
•他提出了有旋电场和位移电流概念,建 立了经典电磁理论(麦克斯韦方程组), 预言了以光速传播的电磁波的存在。
•1873年,他的《电磁学通论》问世,这 是一本划时代巨著,它与牛顿的《自然哲 学的数学原理》并驾齐驱,它是人类探索 电磁规律的一个里程碑。
将速率分成若干相等的区间,如
0 ~ 10 m/s; 10 m/s ~ 20 m/s; 20 m/s ~ 30 m/s;
上页 下页 返回 退出
设任一速率区间为: v ~ v v 设总的气体分子数为N,在该区间内的分子数为ΔN
N ——分布在速率 v附近单位速率间隔内的分子数 v N ——分布在速率 v 附近单位速率间隔内的分子数 vN 占总分子数的比率。
0
——归一化条件
O dv
v1 v2
v
上页 下页 返回 退出
三、麦克斯韦速率分布律
早在1859年,麦克斯韦应用统计概念和力学原理 导出在平衡态下气体分子速率分布函数的具体形式
m 32 f (v) 4π( ) e 2πkT
f (v )
mv2 2 kT
麦克斯韦速率分布定律
1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
氧气分子在 0ºC 时的分子速率分布
(m / s)
100以下
N / N (%)
1.4
100-200
8.1
200-300
16.5
300-400
21.4
400-500
20.6
500-600
15.1
600-700
9.2
700-800
4.8
800-900
2.0
二.气体分子速率分布 N /(Nv)
p (O2 ) 500 m/s
例4. 设某气体的速率分布函数为
f (v )
av 2,(0 v v0 )
0 , (v v 0 )
f (v )
求:(1)常量 a 和υ0 的关系 0 v0
v
(2)平均速率 v
(3)速率在 0 v 0 之间分子的平均速率v
2
解:(1)由归一化条件
N
0 / 4 0
f ()d
5N 32
(3)最可几速率
df () d p
0p
0
2
(4)
f
( )d
0
0
2
rms
2
[
麦克斯韦速率分布定律ΔN
f(v) T1
T2(> T1)
f(v) μ2(> μ1) μ1
O
v p1 v p2
vO
v p2 v p1
v
例 氦气的速率分布曲线如图所示。
求 (1) 试在图上画出同温度下氢气的速率分布曲线的大致情况; (2) 氢气在该温度时的最概然速率和方均根速率。
解 (2) v p
2RT M
RT 2 103
1、速率分布函数 f(v)
设某系统处于平衡态下, 总分子数为 N ,则在v~v+ dv 区
间内分子数的比率为
dN N
f
(v ) dv
f (v) dN Ndv
f(v)
称为速率分布函数
分布在速率v 附近单位速率间隔内的分子数与总分子数比率
讨论 分子束中的速率分布和容器中的是否相同?
2、 麦克斯韦速率分布定律 理想气体在平衡态下,分子速率分布函数
df (v ) 0 dv vvp
vp
2kT μ
2RT 1.41 RT
M
M
2. 平均速率
v
v
dN N
1 N
0 v Nf (v
)dv
v
v f (v )dv
8kT 1.60
RT
0
π
M
3. 方均根速率
v 2
v
2
f
(v
)dv
3kT
0
μ
说明
v 2 3kT 1.73 RT
分子数与总分子数的比率
v2 f (v)dv N
v1
N
(7)曲线下面的总面积, 等
高二物理竞赛麦克斯韦速率分布律课件
2 3
n k
微观 理论
(p, V, T)
温度公式
T
2 3
1 k
k
统计规律
能量均分定理
ki
1 2
kT
理想气体模型:
宏观 规律 1、忽略分子大小 ( 看作质点 )
2、忽略分子间的作用力,忽略重力
3、碰撞(分子之间、分子与器壁间)属完全弹性
气体状态方程 4、分子服从经典力学规律
pV M R T M mol
8
分子速率的实验测定
1、实验装置
2、实验原理
O —— 蒸汽源 S —— 分子束射出方向孔 R —— 长为 l 、刻有螺旋形细槽的铝钢滚筒 D —— 检测器,测定通过细槽的分子射线强度
当圆盘以角速度ω转动时,
每转动一周,分子射线通
过圆盘一次,由于分子的
速率不一样,分子通过圆
盘的时间不一样,只有速
率满足下式的分子才能通
提出了有旋电场和位移电流概念,建立了经典电磁理论,
预言了以光速传播的电磁波的存在。
讨论速率分布(不同温度、同温但分子质量不同)时——
用最概然速率
都含有统计的平均意义,
反映大量分子作热运动的统计规律。
例3 图为同一种气体,处于不同温度状态下的速率分布曲线,问:(1)哪一条曲线对应的温度高?(2)如果这两条曲线分别对应的
则分布在vP所在区间的分子数比率最大(而不是速率最大)。
是分布函数的一个特征值。
• vP的值:
df v
0 dv
vvp
vp
2 RT M mol
1.41 RT M mol
15
三种统计速率
1、最概然速率
vp
2 RT M mol