反比例函数的应用(一)导学案,习题

合集下载

九年级数学上册 反比例函数全章导学案(暑假专用)

九年级数学上册 反比例函数全章导学案(暑假专用)

《5.1反比例函数》第1课时导学案【学习目标】会判断一个函数是反比例函数,能举例辩析一个变化过程中两个变量之间符合反比例函数的特征;会求简单问题中反比例函数的表达式.【学习重点】感受反比例函数是刻画世界数量关系的一种有效模型【学习难点】利用反比例函数关系解决实际问题一、知识回顾:1、一般地.在某个变化中,有两个 x和y,如果给定一个x的值,相应地,那么我们称y是x的函数,其中x叫,y 叫。

2、我们已经学过一次函数,还记得相关知识吗?⑴形如y= 的函数,叫做一次函数;⑵图像的性质是:当k>0时,图像经过第象限,y随x的逐渐增大而,这时图像是图像(上升或下降)。

当k<0时,图像经过第象限,y随x的逐渐增大而;当k=0时,它变成函数,图像的性质与的性质相同。

二、创设情境、导入新课问题提出:1、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20 40 60 80 100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?2、汽车从南京出发开往上海(全程约为300km),全程所用的时间t(h)随速度v(km/h)的变化而变化.(1)你能用含有v的代数式表示t吗?(2)利用(1)中的关系式完成下表:v/(km/h) 60 80 90 100 120t/h随着速度的变化,全程所用的时间发生怎样的变化?.(3)速度v是时间t的函数吗?为什么?概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x 的反比例函数,反比例函数的自变量x不能为零。

练习.下列关系式中的y是x的反比例函数吗?如果是,系数k是多少?①4yx=;②12yx=-;③1y x=-;④1xy=;⑤2xy=;⑥13y x-=;⑦21yx=-做一做1、 个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。

人教版新课程《3.4 函数的应用(一)》导学案(2套)

人教版新课程《3.4   函数的应用(一)》导学案(2套)

3.4 函数的应用(一)1.能够利用给定的函数模型或建立函数模型解决实际问题;2.经历建立函数模型解决实际问题的过程,提高综合运用数学知识和方法解决实际问题的能力。

1.教学重点:建立函数模型解决实际问题;2.教学难点:选择适当的方案和函数模型解决实际问题。

1.一次函数、反比例函数、二次函数、幂函数的解析式分别是什么?一次函数:;反比例函数:;二次函数:;幂函数:。

一、探索新知例1 .设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元).(1)求y关于x的函数解析式;(2)如果小王全年的综合所得由189600元增加到249600元,那么他全年应缴纳多少综合所得个税?例2 一辆汽车在某段路程中的行驶速率v(单位:km/h)与时间t(单位:h)的关系如图1所示,(1)求图1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.1.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.3.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费多少元;(2)当x⩾100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?这节课你的收获是什么?参考答案:知识梳理:一次函数:)0(≠+=k b kx y 反比例函数:)0(≠=k x k y二次函数:)0(2≠++=a c bx ax y 幂函数 )(为常数ααx y = 学习过程:例题解析见教材93页例1.,94页例2. 达标检测1.【解析】 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,∴0.12a =270,解得a =2 250. ∴每台彩电的原价为2 250元. 【答案】 2 2502.【解析】 L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500,当Q =300时,L (Q )的最大值为2 500万元. 【答案】 2 500【新教材】3.4 函数的应用(一)(人教A 版)1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.一、预习导入阅读课本93-94页,填写。

九年级数学上册《反比例函数的应用》教案、教学设计

九年级数学上册《反比例函数的应用》教案、教学设计
布置适量的练习题,让学生在练习中巩固所学知识,提高解决问题的能力。同时,关注学生的个体差异,给予针对性的指导和鼓励。
6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。

反比例函数的应用专题练习(含答案)

反比例函数的应用专题练习(含答案)

初二数学反比例函数的应用课后练习(答题时间:60分钟)一、选择题1. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A . x y 300=(x >0)B . xy 300=(x≥0) C . y =300x (x≥0) D . y =300x (x >0)2. 根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (Pa )与它的体积V (m 3)的乘积是一个常数k ,即pV =k (k 为常数,k >0),下列图象能正确反映p 与V 之间函数关系的是( )3. 小华以每分钟x 字的速度书写,y 分钟写了300字,则y 与x 的函数关系为( )A . x=300yB . y=300x (0>x )C . x+y=300D . y=300x x- 二、解答题4. 王大爷家需要建一个面积为2 500米2的长方形养鸡厂.(1)养鸡厂的长y 米与宽x 米有怎样的函数关系?(2)王大爷决定把养鸡厂的长确定为250米,那么宽应是多少?(3)由于受厂地限制,养鸡厂的宽最多为20米,那么养鸡厂的长至少应为多少米?5. 一个圆台形物体的上底面积是下底面积的23,如图所示,放在桌面上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?6. 一定质量的二氧化碳,当它的体积V=5m 3时,它的密度ρ=1.98kg/m 3.(ρ、V 成反比例)(1)求ρ与V 的函数关系式;(2)求当V=9m 3时ρ的值.7. 某地上年度电价为0.8元,年用电量为1亿度,•本年度计划将电价调至0.55~0.75元之间.经测算,若电价调至x 元,则本年度新增用电量y (亿度)与(x-0.4)元成反比例,又当x=0.65元时,y=0.8.求y 与x 之间的函数关系式.8. 为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (min )成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?一、选择题1. A ;xy=300,注意自变量的取值范围2. C ;解题思路:vk p =,如果不与实际相结合,图象分布在一、三象限,但事实上,自变量的取值范围应为y>0.3. B二、解答题4. (1)y=2500x(2)y=250,x=10米 (3)125,20y 2500,2500≥≤==y x xy ,长至少为125米 5. •300Pa6. (1)V=5m 3时,ρ=1.98kg/m 3 ,ρ=9.9V(2)V=9m 3 ,ρ=1.1kg/m 3 7. 设4.0y -=x k ,当 x=0.65元时,y=0.8. k=0.2,化简得y=152x - 8. 解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k = 145k =.∴此阶段函数解析式为45y x = (2)设药物燃烧结束后的函数解析式为22(0)k y k x=≠, 由题意得:2810k = 280k =.∴此阶段函数解析式为80y x= (3)当 1.6y <时,得80 1.6x< 0x >1.680x >50x >∴从消毒开始经过50分钟后学生才可以回教室.。

17.1.2反比例函数的图像和性质 精品导学案

17.1.2反比例函数的图像和性质 精品导学案

反比例函数的图像和性质(1)导学案学习目标1.会画反比例函数图象,理解反比例函数的图象和性质.2.感悟“数形结合”、“变化与对应”和“转化”的数学思想,并能应用数形结合和转化思想根据反比例函数的图象探究其性质.学习重点:1、反比函数的图像画法2、反比例函数的性质。

学习难学习难点:反比例函数的性质。

一、知识链接:(忆一忆)(注意:这里第1、2题要学生在上课前写在黑板上,可以多写几组,上课时,老师要稍微点一下。

为下面探究反比例函数的性质做一个铺垫。

3、4题问一下就可以了。

)1、函数做图的步骤是___________、_______________、____________。

2、正比例函数的性质填写下表:3、正比例函数的图像和性质是怎么得到的?是如何研究的?(经过哪几个步骤)4、反比例函数的表达式 ___________________________解析式中自变量x的取值能为0吗?为什么______________________、二、合作探究、展示交流1、做一做(展示)问题:反比例函数的图像是什么样的?画出下列函数图像①y=10/x y=8/x y=6/x(注意每两个小组做一个)做图应该注意的几点:(注意这里是学生在做图时思考的问题,教师在讲解时也要让学生进行口答)(1)列表时取值应注意什么?x的取值能为零吗?为什么?(2)连线时应该注意什么?(3)反比例函数图像还是直线吗?是什么?(4)图像和坐标轴有交点吗?为什么?(这里需要小组合作探究一下,从图像中和解析式中一起来考虑)2、议一议(这是小组合作的部分,要求小组成员合作完成)问题一:(1)观察前三个函数的解析式有什么共同点:(2)观察前三个函数图像有什么共同点:有哪些特征?你能填写下表吗?3)当取不同大于0的值时,上述结论是否适用于所有的反比例函数?(注意:这里需要教师用几何画板演示,还有要学生从解析式来分析所有的函数都符合这一规律)问题二:做出下列反比例函数的图像:④y=-6/x ⑤y=-8/x ⑥y=-10/x (注意每两个小组做一个)(4)观察后三个函数解析式有什么共同点:(5)观察后三个函数的图像有什么共同点:你能填写下表吗?(6)当取不同小于0的值时,上述结论是否适用于所有的反比例函数?问题三:(7)前三个函数解析式和后三个函数解析式有什么不同?(k的取值范围不同)前三个函数图象和后三个函数图象有什么不同?由什么决定的?(8)你能总结出反比例函数图像的性质吗?在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

17.4.1反比例函数 导学案(含答案)

17.4.1反比例函数 导学案(含答案)

17.4反比例函数 1.反比例函数教学目标1.了解反比例函数的概念.2.能够根据已知条件,确定反比例函数的解析式.情景问题引入北京至上海的高速路全程约1 200 km ,某人开汽车要从北京到上海,该汽车的速度v (km/h)和时间t(h)之间的函数解析式为v t =1 200,则在t =1 200v中,t 和v 之间是什么关系呢?是一次函数或正比例函数关系吗?[学生用书P51]1.反比例函数的概念反比例函数:一般地,形如__y =kx(k 是常数,k ≠0)__的函数叫做反比例函数.注 意:(1)反比例函数也可写成xy =k (k ≠0)或y =kx -1(k ≠0)的形式; (2)自变量x 的取值范围是不等于0的一切实数.2.求反比例函数的关系式方法:待定系数法.步骤:首先根据题意设出反比例函数的关系式,再从实际出发,找出一对对应值或图象上的一个点,用待定系数法求出k的值,确定关系式.[学生用书P51]类型之一反比例函数的概念下列函数是反比例函数的是( B )A.y=x3B.y=63xC.y=x2+2x D.y=4x+8【点悟】形如y=kx(k≠0)的函数是反比例函数,其变换形式有xy=k(k≠0)及y=kx-1(k≠0).对于与反比例函数的一般形式相符,但不能确定常数k是否不为0的,则不能肯定它是反比例函数.类型之二待定系数法求反比例函数的关系式y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.解:(1)y=-2x(2)见上表【点悟】求反比例函数的关系式时,可用待定系数法,但要注意哪个变量是自变量,哪个是因变量,要根据题意,从而正确地设待求的反比例函数表达式.类型之三求实际问题的反比例函数关系式一水池装水12 m3,如果从水管中 1 h 流出x m3的水,则经过y h可以把水放完,写出y与x之间的函数关系式及自变量x的取值范围.解:y=12x(x>0).【点悟】函数是刻画某些实际问题中变量之间关系的数学模型,如何把某些实际问题抽象成数学模型,是问题能否得以解决的关键.[学生用书P51]1.下列函数中,y是x的反比例函数的是( A )A.y=-12xB.y=-1x2C .y =1x +1 D .y =1-1x2.下列函数关系中,成反比例函数的是( A ) A .长方形的面积S 一定时,长a 与宽b 的函数关系 B .长方形的长a 一定时,面积S 与宽b 的函数关系 C .正方形的面积S 与边长a 的函数关系 D .正方形的周长L 与边长a 的函数关系3.如果函数y =x m为反比例函数,那么m 的值是( D ) A .1 B .0 C.12D .-14.已知反比例函数y =k x,当x =-1时,y =2,则k =__-2__.[学生用书P51]1.下列函数中,y是x的反比例函数的是( C )A.y=2x3B.y=2x3C.y=23xD.y=23-x2.若y=2x m-5为反比例函数,则m的值为( C )A.-4 B.-5C.4 D.53.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.已知该电路中电阻R为3 Ω时,电流I为2 A,则用电阻R表示电流I的函数关系式为( C )A.I=2RB.I=3RC.I=6RD.I=-6R4.近视眼镜的度数y(度)与镜片焦距x(m)成反比例.已知400度近视眼镜镜片的焦距为0.25 m,则y与x之间的函数关系式为( C )A.y=400xB.y=14xC .y =100x D .y =1400x5.已知y 是x 的反比例函数,且当x =3时,y =8,则这个函数的关系式为__y =24x__.6.已知反比例函数y =-32x. (1)说出这个函数的比例系数; (2)求当x =-10时,函数y 的值; (3)求当y =6时,自变量x 的值. 解:(1)y =-32x ,比例系数为-32.(2)当x =-10时,y =-32×(-10)=320.(3)当y =6时,-32x =6,解得x =-14.7.[2018·柳州]已知反比例函数的解析式为y =|a |-2x,则a 的取值范围是( C )A .a ≠2 B.a ≠-2 C .a ≠±2 D.a =±2【解析】根据反比例函数的定义,可知反比例函数的系数不能为0,故|a |-2≠0,解得a ≠±2.8.已知y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且当x =1时,y =3;当x =-1时,y =1.求当x =-12时,y 的值.解:依题意,设y 1=mx 2,y 2=n x(m 、n ≠0).∴y =mx 2+n x.依题意有⎩⎪⎨⎪⎧m +n =3,m -n =1,解得⎩⎪⎨⎪⎧m =2,n =1. ∴y =2x 2+1x.当x =-12时,y =2×14-2=-32.9.若长方形的一边长为x ,另一边长为y ,面积保持不变.下表给出了x 与y 之间的一些值.(1)请你根据表格信息写出y 与x 之间的函数关系式; (2)根据函数关系式完成上表. 解:(1)y =4x.(2)如下表所示:10.[2018·杭州]已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时要卸货多少吨?解:(1)v=100t(t>0).(2)0<t≤5,当t=5时,v=20.∵k=100>0,∴v≥20,∴平均每小时至少要卸货20吨.。

反比例函数导学案

反比例函数导学案

反比例函数导学案第一课时反比例函数(一)------反比例函数的意义1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想4.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。

5.培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。

学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念学习过程:一、忆一忆回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?二、议一议1.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?2.矩形面积为6,设长为x,宽为y,那么x与y的关系式是怎样的?3.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:(3)变量I是R的函数吗?为什么?归纳:反比例函数:如果两个变量x,y之间的关系可以表示成的形式,那么y 是x的反比例函数,其中x是自变量,反比例函数的自变量x的取值范围是.三、练一练1.一个矩形的面积为202cm,相邻的两条边长分别为x cm和y cm。

那么变量y是变量x的函数吗?为什么?2.某村有耕地346公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:(2)根据函数表达式完成上表。

四、测一测1.下列等式中,哪些是反比例函数(1)3xy=(2)xy2-=(3)xy=21 (4)25+=xy(5)xy23-=(6)31+=xy(7)4-=xy2.当m取什么值时,函数23)2(mxmy--=是反比例函数?3.已知y是x的反比例函数,当1=x时,4=y.(1)求y与x的函数关系式(2)当x=-2时,求函数y的值4.苹果每千克x元,花10元钱可买y千克的苹果,求出y与x之间的函数关系式.五、小结与反思:第二课时反比例函数(二)------反比例函数的图像和性质1目标导学:1.体会并了解反比例函数的图象的意义2.能描点画出反比例函数的图象3.通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。

人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】教学目标1、知识与技能目标:通过对反函数的学习,在具体情境中感受反函数的解决实际问题,与生活息息相关,加深对函数概念的理解。

2、过程与方法目标:通过带领学生解决实际问题,体验反函数的学习过程,并且能够运用反函数解决实际问题。

3、情感、态度与价值观目标:在整个教学过程中照顾到全体学生,创造平等的教学氛围和环境。

教学重点理解反函数的概念,体验学习反函数概念的过程。

教学难点理解反函数的概念,会运用反函数去解决实际问题。

教学准备:多媒体课件教学过程一、导入活动内容:教师提出问题,引导学生复习函数及一元一次函数的相关知识。

问题1:上次课我们学习了函数,那么有谁知道一次函数和正比例函数表达式么?师:同学们能用语言和字母分别表示一次函数和正比例函数:生:一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.师:如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,如果速度是恒定的,我们关心的是花费的时间,那么时间是如何去求的呢?生:师:那么这里的t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?二、新授活动内容:师:同学们可以根据以下三个具体的问题列出表达式吗?京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t 单位:h)的变化而变化;某住宅小区要种植一个面积为1000的矩形草坪,草坪的长y( 单位:m)随宽度x 单位:m)的变化而变化;已知北京市的总面积为平方千米,人均占有的土地面积S(单位:平方千米/人)随全市总人口n 单位:人)的变化而变化。

生: 1) 2) 3)师:同学们你们还记得函数的定义吗?一起回顾下。

《函数的应用(一)》教案、导学案与同步练习

《函数的应用(一)》教案、导学案与同步练习

《第三章函数的概念与性质》《3.4函数的应用(一)》教案【教材分析】客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.【教学目标与核心素养】课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.数学学科素养1.数学抽象:总结函数模型;2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数;3.数学运算:结合函数图象或其单调性来求最值.;4.数据分析:二次函数通过对称轴和定义域区间求最优问题;5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。

【教学重难点】重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。

【教学过程】一、情景导入我们学习过了一次函数、二次函数、分段函数、幂函数等都与现实世界有紧密联系,请学生们举例说明与此有关的生活实例.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本93-94页,思考并完成以下问题1.一、二次函数、反比例函数的表达形式分别是什么?2.幂函数、分段函数模型的表达形式是什么?3.解决实际问题的基本过程是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.常见的数学模型有哪些?(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);+b(k,b为常数,k≠0);(2)反比例函数模型:f(x)=kx(3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(4)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(5)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛.2.解答函数实际应用问题时,一般要分哪四步进行?提示:第一步:分析、联想、转化、抽象;第二步:建立函数模型,把实际应用问题转化为数学问题;第三步:解答数学问题,求得结果;第四步:把数学结果转译成具体问题的结论,做出解答.而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解.四、典例分析、举一反三题型一一次函数与二次函数模型的应用例1(1)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30000,而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2000套B.3000套C.4000套D.5000套(2)某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)D(2)见解析【解析】(1)因利润z=12x-(6x+30000),所以z=6x-30000,由z≥0解得x≥5000,故至少日生产文具盒5000套.(2)①根据题意,得y=90-3(x-50),化简,得y=-3x+240(50≤x≤55,x∈N).②因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360x-9600(50≤x≤55,x∈N).③因为w=-3x2+360x-9600=-3(x-60)2+1200,所以当x<60时,w随x的增大而增大.又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1125.所以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1125元.解题技巧:(一、二次函数模型应用)1.一次函数模型的应用利用一次函数求最值,常转化为求解不等式ax+b≥0(或≤0).解答时,注意系数a 的正负,也可以结合函数图象或其单调性来求最值.2.二次函数模型的应用构建二次函数模型解决最优问题时,可以利用配方法、判别式法、换元法、讨论函数的单调性等方法求最值,也可以根据函数图象的对称轴与函数定义域的对应区间之间的位置关系讨论求解,但一定要注意自变量的取值范围.跟踪训练一1、商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶壶赠一个茶杯;②按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),试分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?2、某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为120√6t吨(0≤t≤24).①从供水开始到第几小时时,蓄水池中的存水量最少?最少存水量是多少吨?②若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象.【答案】见解析【解析】 1.解:由优惠办法①可得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,且x∈N).由优惠办法②可得y2=(5x+20×4)×92%=4.6x+73.6(x≥4,且x∈N).y1-y2=0.4x-13.6(x≥4,且x∈N),令y1-y2=0,得x=34.所以,当购买34个茶杯时,两种优惠办法付款相同;当4≤x<34时,y1<y2,即优惠办法①更省钱;当x>34时,y1>y2,优惠办法②更省钱.2.解:①设t小时后蓄水池中的存水量为y吨,则y=400+60t−120√6t,令√6t=x,则x2=6t,即t=x26,所以y=400+10x2-120x=10(x-6)2+40,∴当x=6,即t=6时,y min=40,即从供水开始到第6小时时,蓄水池存水量最少,只有40吨.②令400+10x2-120x<80,即x2-12x+32<0,解得4<x<8,即4<√6t<8,83<t<323.因为323−83=8,所以每天约有8小时出现供水紧张现象.题型二分段函数模型的应用例2一辆汽车在某段路程中的行驶速度与时间的关系如图所示.(1)求图中阴影部分的面积,关说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象.【答案】见解析【解析】解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360阴影部分的面积表示汽车在这5h内行驶的路程为360km.(2)获得路程关于时间变化的函数解析式:图像如图解题技巧:(分段函数注意事项))1.分段函数的“段”一定要分得合理,不重不漏.2.分段函数的定义域为对应每一段自变量取值范围的并集.3.分段函数的值域求法:逐段求函数值的范围,最后比较再下结论.跟踪训练二1.某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-1t2(万元).2(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?【答案】见解析【解析】解:(1)当0<x≤5时,产品全部售出,当x>5时,产品只能售出500件.所以,所以当x=4.75(百件)时,f(x)有最大值,f(x)max=10.78125(万元).当x>5时,f(x)<12-0.25×5=10.75(万元).故当年产量为475件时,当年所得利润最大.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本95页习题3.4【教学反思】本节课主要就一次函数、二次函数、分段函数模型举例说明就函数的实际应用.在实际应用中,建立合适的函数模型,把实际应用问题转化为数学问题为关键点.《3.4 函数的应用(一)》导学案【学习目标】1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性.【重点与难点】重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.【学习过程】一、预习导入阅读课本93-94页,填写。

26.2.1 反比例函数的实际应用(1)导学案

26.2.1 反比例函数的实际应用(1)导学案

人教版九年级下册第26章《反比例函数》导学案[26.2.1 反比例函数的实际应用(1)]1.能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题. (重、难点) 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力. 典例解析【例1】市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1)储存室的底面积S (单位:m2) 与其深度d (单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S 定为 500 m2,施工队施工时应该向下掘进多深?(3)当施工队按 (2) 中的计划掘进到地下 15 m 时,公司临时改变计划,把储存室的深度改为15 m. 相应地,储存室的底面积应改为多少 (结果保留小数点后两位)?【针对练习】1. 矩形面积为 6,它的长y 与宽x 之间的函数关系用图象可表示为 ( )2.如图,某玻璃器皿制造公司要制造一种容积为1升(1升=1立方分米)的圆锥形漏斗.(1) 漏斗口的面积 S (单位:dm2)与漏斗的深 d (单位:dm) 有怎样的函数关系?(2) 如果漏斗的深为10 cm,那么漏斗口的面积为多少 dm2?(3) 如果漏斗口的面积为 60 cm2,则漏斗的深为多少?【例2】码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1) 轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2) 由于遇到紧急情况,要求船上的货物不超过 5天卸载完毕,那么平均每天至少要卸载多少吨?【点睛】在解决反比例函数相关的实际问题中,若题目要求“至多”、“至少”,可以利用反比例函数的增减性来解答 .【针对练习】某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把 1200 立方米的生活垃圾运走.(1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y与 x 之间的函数关系式;(2) 若每辆拖拉机一天能运 12 立方米,则 5 辆这样的拖拉机要用多少天才能运完?(3) 在 (2) 的情况下,运了 8 天后,剩下的任务要在不超过 6 天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?【例3】一司机驾驶汽车从甲地去乙地,他以 80千米/时的平均速度用 6 小时达到乙地.(1) 甲、乙两地相距多少千米?(2) 当他按原路匀速返回时,汽车的速度v 与时间t 有怎样的函数关系?达标检测1. 面积为 2 的直角三角形一直角边为x,另一直角边长为y,则y 与x 的变化规律用图象可大致表示为 ( )2. 体积为 20 cm3 的面团做成拉面,面条的总长度y (单位:cm) 与面条粗细 (横截面积) S (单位:cm2) 的函数关系为,若要使拉出来的面条粗 1 mm2,则面条的总长度是 cm.3. A、B两城市相距720千米,一列火车从A城去B城.(1) 火车的速度 v (千米/时) 和行驶的时间 t (时)之间的函数关系是______.(2) 若到达目的地后,按原路匀速返回,并要求在 3 小时内回到 A 城,则返回的速度不能低于____________.4. 学校锅炉旁建有一个储煤库,开学时购进一批煤,现在知道:按每天用煤 0.6 吨计算,一学期 (按150天计算) 刚好用完.若每天的耗煤量为 x 吨,那么这批煤能维持 y 天.(1) 则 y 与 x 之间有怎样的函数关系?(2) 画出函数的图象;(3) 若每天节约 0.1 吨,则这批煤能维持多少天?5. 在某村河治理工程施工过程中,某工程队接受一项开挖水渠的工程,所需天数y (天) 与每天完成的工程量x (m/天) 的函数关系图象如图所示.(1) 请根据题意,求y 与x 之间的函数表达式;(2) 若该工程队有 2 台挖掘机,每台挖掘机每天能够开挖水渠 15 m,问该工程队需用多少天才能完成此项任务?(3) 如果为了防汛工作的紧急需要,必须在一个月内 (按 30 天计算)完成任务,那么每天至少要完成多少 m?6. 王强家离工作单位的距离为3600 米,他每天骑自行车上班时的速度为v 米/分,所需时间为t 分钟.(1) 速度v 与时间t 之间有怎样的函数关系?(2) 若王强到单位用 15 分钟,那么他骑车的平均速度是多少?(3) 如果王强骑车的速度最快为 300 米/分,那他至少需要几分钟到达单位?。

初三数学九年级下册《反比例函数》导学案

初三数学九年级下册《反比例函数》导学案

第26章 反比例函数26.1.1反比例函数的意义【学习目标】1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用 【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】反比例函数的解析式的确定 【学法指导】自主、合作、探究【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、三个函数表达式:v t 1262=、xy 1000=、S =n 41068.1⨯有什么共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000=,完成下表:3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。

九北数上导学案6.3 反比例函数的应用

九北数上导学案6.3 反比例函数的应用

6.3 反比例函数的应用教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。

教学重点:反比例函数的应用 教学程序: 一、新授: 1、实例1:(1)用含S 的代数式表示P ,P 是S 的反比例函数吗?为什么?答:P=600s(s>0),P 是S 的反比例函数。

(2)、当木板面积为0.2 m 2时,压强是多少? 答:P=3000Pa (3)、如果要求压强不超过6000Pa ,木板的面积至少要多少? 答:至少0.lm 2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做 1、(1)蓄电池的电压为定值,使用此电源时,电流I (A )与电阻R (Ω)之间的函数关系如图5-8所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗? 电压U=36V , I=60k2、完成下表,并回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A ,那么3、如图5-9,正比例函数y=k1x 的图象与反比例函数y=k的图象相交于A 、B 两点,其中点A 的坐标为( 3 ,2 3 )(1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求的?与同伴进行交流; 二、随堂练习: 1、若()2,2M 和()21,n b N --是反比例函数xky =图象上的两点,则一次函数b kx y += 的图象经过_____________象限。

2、函数xy 32-=的图象在第_____象限,在每个象限内,图象从左向右_________.3、如图所示,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数)。

两地间的距离是80千米,请根据图象回答或解决下面的问题。

⑴谁出发的较早?早多长时间?谁到达乙较早,早多长时间?⑵两人在途中的速度分别是多少?⑶请你分别求出表示自行车和摩托车行驶过程的函数关系式(不要求写自变量的取值范围)⑷指出在什么时间段内两车均行驶在途中(不包括端点)在这段时间内,请你分别按下列条件列出关于x的方程或不等式(不要化简求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面。

初中数学 导学案:用反比例函数解决问题

初中数学 导学案:用反比例函数解决问题

课题: 用反比例函数解决问题学习目标:1.能利用反比例函数的相关的知识,分析和解决一些简单的实际问题.2.能根据实际问题中的条件确定反比例函数的解析式.重难点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题. 学习过程: 一.复习练习1.若点(2,-4)在反比例函数 的图象上,则k=____.2.若反比例函数 的图象在第二、四象限,则k 的取值范围是____________.3.甲乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间y(h)表示为汽车的平均速度x(km/h)的函数,则这个函数的图象大致是( )4. 某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化? 如果人和木板对湿地地面的压力合计600N,那么(1)用含S 的代数式表示P,P 是S 的反比例函数吗?为什么? (2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大? (4)在直角坐标系,作出相应函数的图象. 二.新知探究:为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y 与x 成反比例(如图所示),现测得药物8min 燃毕,此时室内空气中每立方米的含药量xk y 1+=xk y =6O 8x(min)y(mg)为6mg,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y 关于x 的函数关系式为_______.(2)研究表明,当空气中每立方米的含药量低于时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能有效杀灭空气中的病菌, 那么此次消毒是否有效?为什么?三.例题分析:例1.小明将一篇24000字的社会调查报告录入电脑,打印成文.(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务? (2)录入文字的速度v (字/min )与完成录入的时间t(min)有怎样的函数关系? (3)小明希望能在3h 内完成录入任务,那么他每分钟至少应录入多少个字?例2.某自来水公司计划新建一个容积为43410m 的长方形蓄水池.(1)蓄水池的底部S (平方米)与其深度有怎样的函数关系?(2)如果蓄水池的深度设计为5m ,那么蓄水池的底面积应为多少平方米? (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m 和60m ,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)例3.某报报道:一村民在清理鱼塘时被困淤泥中,消防队员以门板作船,泥沼中救人.如果人和门板对淤泥地面的压力合计900N,而淤泥承受的压强不能超过600Pa,那么门板面积至少要多大?(分析:根据物理学知识,人和门板对淤泥的压力F(N)确定时,人和门板对淤泥的压强p(Pa)与门板面积S(m2)成反比例函数关系:FpS =.)例4.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V =时,p=16000Pa.(1)当V =时,求p的值;(2)当气球内的气压大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?四.展示交流:1.某地上年度电价为元/度,年用电量为1亿度.本年度计划将电价调至元至元之间.经测算,若电价调至x元,则本年度新增用电量y亿度与(x-元成反比例,当x=时,y=-.(1)求y与x之间的函数关系式;(2)若每度电的成本价为元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]2.如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.3.已知反比例函数kyx的图像与一次函数y=kx+m的图像相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为-4,当x取什么范围时,反比例函数值大于一次函数的值。

反比例函数专题复习(第一课时)导学案(新部编)

反比例函数专题复习(第一课时)导学案(新部编)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校反比例函数专题复习导学案(第一课时)班 级: 姓 名:复习目标───明确中考要求:1.能根据已知条件确定反比例函数的解析式;2.能根据k 的符号画出反比例函数的大致图象;3.会利用反比例函数的解析式、图象和性质解决有关问题;4. 能用反比例函数的知识解决某些实际问题。

知识回顾───忆一忆填一填: 1. 反比例函数的概念:形如 的函数叫做反比例函数。

(其中 叫做自变量, 是x 的反比例函数, 叫做比例系数,且 ≠0。

)反比例函数解析式的常用变形有: 。

2. 反比例函数的图象和性质:(1). 反比例函数的图象: ; (2). 反比例函数的性质(如下表):3. k 的几何意义:反比例函数y =kx(k ≠0)中比例系数k 的几何 意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴 垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 考点透视:例1. (1)下列函数中哪些是反比例函数? ①2y 3x =; ②3y 2x=; ③3xy=-2; ④ y=kx -1; ⑤y= ; ⑥. y=2x 2(2). 若函数22)1(--=n xn y 是反比例函数,则n= .小结:(小结一下,收获更大)例 2.(1)正比例函数kx y =和反比例函数ky =在同一平面直角坐标系内的图象为 ①A ② ③ ④23x小结:(小结一下,收获更大) 变式:函数kx y =-k 与xky =在同一平面直角坐标系中的图象可能是_______:(2)在函数y= kx (k>0)的图象上有三个点的坐标分别为(1,1y )、(12,2y )、(3-,3y ),函数值y 1、y 2、y 3的大小关系是( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 3>y 1 >y 2D .y 2>y 1>y 3小结:(小结一下,收获更大)变式:已知(x 1,y 1),(x 2,y 2)为反比例函数y= kx 图像上的点,且x 1<0<x 2时,y 1<y 2,则k的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
鸡西市第十九中学初三数学组
例 1、市煤气公司要在地下修建一个容积为 104 m3 的圆柱形煤气储存室。
(1) 储存室的底面积 S (单位 m2 ) 与其深度 d (单位: m) 有怎样的函数关系? (2)公司决定把储存室的底面积 S 定为 500 m2 ,施工队施工时应该向下掘 进多深? (3)当施工队按(2)中的计划掘进到地下 10m 时,碰上了坚硬的岩石。为了 节约建设资金, 公司临时改变计划, 把储存室的深度改为 10m, 相应地, 2 储存室的底面积应改为多少 m 才满足需要? 分析:圆柱体的体积=底面积×高 解: (1)根据圆柱体的体积公式,我们有 变形得 S= ∴储存室的底面积 S 是其深度 d 的反比例函数。 (2)把 S=500 代入上式:得 (3)把 d=10 代入上式:得 解之得: 解之得:
(2)若到达目的地后,按原路匀速返回,并要求在 3 小时内回到 A 城,则返 回的速度不能低于 .
4.码头工人以每天 30 吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好 用了 8 天时间,请问: (1) 、轮船到达目的地后开始卸货,卸货速度 V(吨/天)与卸货时间 t(天) 之间有怎么样的函数关系?
y x O A A. B. B C. y O x y x C y O x D D.
O
2.完成某项任务可获得 500 元报酬, 考虑由 x 人完成这项任务, 试写出人均报 酬 y(元)与人数 x(人)之间的函数关系式
1
鸡西市第十九中学初三数学组
3.A、B 两城市相距 720 千米,一列火车从 A 城去 B 城. ( 1 )火车的速度 v (千米 / 时)和行驶的时间 t (时)之间的函数关系 是 .
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
班级 姓名
Байду номын сангаас
学科 时间 学习 目标 重点 难点
课题 反比例函数的应用(一) 课型 新课 八年级下 2014 年 月 日 人教版 1、进一步运用反比例函数的概念解决实际问题; 2、 运用反比例函数解决实际问题的过程中, 进一步体会数学建模思想 运用反比例函数的意义和性质解决实际问题。
3
鸡西市第十九中学初三数学组
3.一司机驾汽车从甲地去乙地, 他以 80 千米/时的平均速度用 6 小时到达目的 地。(1)当他按原路匀速返回时,汽车的速度 v 与时间 t 有怎样的函数关系? (2)如果该司机必须在 4 小时之内回到甲地, 则返程时的速度不能低于多少? 解: 先求出甲乙两地的路程: (1)返回时,根据题意得到式子: 变形得:v = 故汽车的速度 v 是时间 t 的 (2)把 t=4 代入 解得: ∴如果该司机必须在 4 小时之内回到甲地,则返程时的速度不能低 于 。 4.某农业大学计划修建一块面积为 200 m 2 的长方形试验田。 (1)试验田的长 x(单位:m)与宽 y(单位:m)的函数解析式是什么? (2)如果把试验田的长与宽的比为 2:1,则试验田的长与宽分别为多少? 解: (1)长方形的面积公式为:长 宽 = 面积, 因此可以得到式子: 变形得:y = 故试验田的宽 y 是长 x 的 (2) ∵长与宽的比为 2:1 ∴设长 x=_____,宽 y=_____,根据题意列式可得: 5.为预防“手足口病” ,某校对教室进行“药熏消毒” .已知药物燃烧阶段,室 内每立方米空气中的含药量 y(mg) 与燃烧时间 x(分钟)成正比例;燃烧后, .现测得药物 10 分钟燃完,此时教室内每立方米 y 与 x 成反比例(如图所示) 空气含药量为 8mg.据以上信息解答下列问题: (1)求药物燃烧时 y 与 x 的函数关系式. (2)求药物燃烧后 y 与 x 的函数关系式. (3)当每立方米空气中含药量低于 1.6mg 时, 对人体方能无毒害作用,那么从消毒开始, 经多长时间学生才可以回教室? 函数. ,得 函数.
B、3
C、0
D、 3
4、已知反比例函数的图像经过点 A(2,6) , (1)这个函数图象分布在哪些象限?y 随 x 的增大如何变化?
1 4 (2)点 B(3,4) ,C( 2 ,4 )和(2,5)是否在在这个函数的图像上? 2 5
【自主探究】1.若矩形的面积为 12cm 2 ,则它的长 y cm 与宽 x cm 的函数关系 用图象表示大致( )
4
鸡西市第十九中学初三数学组
5
学习内容
数学
【复习回顾】 1、 若点 (1, 2) 在函数 y
3 2、 y 的图象叫做 x 当 x 增大时,则 y k 上, 则 k= x
, 则这个函数表达式是

,图象位于 ;
象限,在每个象限内,
3、已知反比例函数 y 的值可以是 ( A、 1
k 1 的图象在其每个象限内 y 随 x 的增大而减小,则 k x )
(2) 、由于遇到紧急情况,船上的货物必须在不超过 5 日内卸载完毕,那么平 均每天至少要卸多少吨货物?
5.小林家离工作单位的距离为 3600 米, 他每天骑自行车上班时的速度为 v (米 /分) ,所需时间为 t(分) (1)则速度 v 与时间 t 之间有怎样的函数关系? (2)若小林到单位用 15 分钟,那么他骑车的平均速度是多少? (3)如果小林骑车的速度最快为 300 米/分,那他至少需要几分钟到达单位?
【当堂训练】 1.已知长方体的体积是 100 cm3 ,它的长是 5 cm,宽是 x cm,高是 y cm. (1) 写出用 x 表示的 y 的函数关系式 (2) 当 x=4 时,求 y 的值。
2.一种容量为 180L 的太阳能热水器,设其每分钟排水量为 x L,连续工作时 间为 y 分钟(排水的时候不进水) 。 (1)写出 y 与 x 之间的函数关系式; (2)若每分钟放热水 4 L,则热水器可不间断的工作时间为多长?
相关文档
最新文档