自然数的和,平方和,立方和
推导自然数立方和公式两种方法
推导自然数立方和公式两种方法自然数立方和公式是指1³+2³+3³+.+n³的公式,下面我将介绍两种推导方法。
第一种方法是利用数学归纳法来证明。
第一步,当n=1时,1³=1,所以等式成立。
第二步,假设当n=k时,公式成立,即1³+2³+3³+.+k³=k²(k+1)²/4。
第三步,当n=k+1时,(k+1)³=k³+3k²+3k+1,所以(k+1)³+1³=(k+1)³-k³=3k²+4k+1=(k+1)²(k+2)/4。
因此当n=k+1时,公式也成立。
第四步,根据数学归纳法,我们可以得出1³+2³+3³+.+n³=n²(n+1)²/4对所有正整数n都成立。
第二种方法是利用排列组合的知识来证明。
第一步,考虑从n个不同的自然数中任取3个数的组合数。
这些组合数可以表示为C(n,3),即从n个不同元素中取出3个元素的组合数。
第二步,根据排列组合的知识,C(n,3)=n(n-1)(n-2)/6。
因此,对于任意的n,我们有C(n,3)=n(n-1)(n-2)/6。
第三步,利用上述公式,我们可以得到1³+2³+3³+.+n³=C(1,3)+C(2,3)+C(3,3)+.+C(n,3)=n(n-1)(n-2)/6 + n(n-1)(n-2)/6 + n(n-1)(n-2)/6 + . + n(n-1)(n-2)/6 =n²(n+1)²/4。
因此,我们得到了自然数立方和公式为1³+2³+3³+.+n³=n²(n+1)²/4,并且利用两种不同的方法证明了该公式的正确性。
从1开始连续自然数的立方求和公式
从1开始连续自然数的立方求和公式立方求和公式是指从1开始连续自然数的立方求和的数学公式。
立方求和公式可以帮助我们求解从1到任意正整数n的连续自然数的立方求和。
表达立方求和公式的数学符号如下:S = 1³ + 2³ + 3³ + ... + n³其中S表示从1到n的连续自然数的立方求和。
为了推导立方求和公式,我们可以利用数列求和的方法。
首先,我们观察到每一项是连续自然数的立方。
可以发现每一项可以等价表示为i³,其中i表示自然数的序号。
因此,立方求和公式可以重写为:S = 1³ + 2³ + 3³+ ... + n³ = Σ(i³)其中Σ表示求和符号,i的取值范围为1到n。
我们可以利用数学归纳法来推导立方求和公式的具体形式。
假设立方求和公式成立时,当n=k时,即S(k) = 1³ + 2³ + 3³ + ... + k³。
现在我们要证明当n=k+1时,也满足立方求和公式。
我们可以进行如下的推导:S(k+1) = 1³ + 2³ + 3³ + ... + k³ + (k+1)³= S(k) + (k+1)³通过数学归纳法的推导,我们可以得出结论:S(n) = 1³ + 2³ + 3³ + ... + n³ = (1+2+3+...+n)²这就是从1开始连续自然数的立方求和公式。
因此,如果我们想要求解从1到任意正整数n的连续自然数的立方求和,我们只需要将自然数序号相加,并将结果的平方即可。
请注意,立方求和公式适用于任意正整数n,并且不适用于负整数和分数。
在实际应用中,立方求和公式可以帮助我们快速计算从1到n的连续自然数的立方求和,从而节省时间和精力。
连续自然数的立方和公式
连续自然数的立方和公式(最新版)目录1.引言:立方和公式的定义和意义2.立方和公式的推导过程3.立方和公式的性质和应用4.结论:立方和公式的重要性和影响正文1.引言连续自然数的立方和公式是指从 1 开始的连续自然数的立方和的计算公式。
这个公式在数学中有着广泛的应用,尤其在数列求和和数学分析等领域有着重要的地位。
2.立方和公式的推导过程为了更好地理解立方和公式,我们先来了解一下什么是自然数和立方。
自然数是正整数,而立方是指一个数的三次方。
例如,1 的立方是1×1×1=1,2 的立方是 2×2×2=8。
连续自然数的立方和就是从 1 开始的连续自然数的立方和。
为了推导连续自然数的立方和公式,我们可以使用数学归纳法。
首先,我们假设 n 个连续自然数的立方和为 S,即S=1^3+2^3+3^3+...+n^3。
然后,我们把 S 加上 (n+1)^3,得到 S+(n+1)^3。
通过展开 (n+1)^3,我们可以得到S+(n+1)^3=1^3+2^3+3^3+...+n^3+(n+1)^3。
我们发现,(n+1)^3 可以表示为 n^3+3n^2+3n+1,所以 S+(n+1)^3=S+n^3+3n^2+3n+1。
接下来,我们把 S+(n+1)^3 减去 S,得到S+(n+1)^3-S=n^3+3n^2+3n+1。
我们发现,这个式子正好是 (n+1)^2,所以 S+(n+1)^3-S=(n+1)^2。
根据数学归纳法,我们可以得出结论:连续自然数的立方和公式为 S=((n+1)/2)^2×4。
3.立方和公式的性质和应用立方和公式具有很多重要的性质,比如公式中的 n 表示的是连续自然数的个数,而不是具体的数字。
此外,公式中的 4 是一个常数,表示连续自然数的立方和与自然数个数的平方成正比。
立方和公式在数学中有着广泛的应用,尤其在数列求和和数学分析等领域有着重要的地位。
常用的数列求和公式:平方和公式、立方和公式是什么?
平方和公式、立方和公式
在数学的数列求和试题中,除了等差数列和等比数列外,还会考到两个公式。
平方和公式与立方和公式。
平方和公式:
从1 开始,前n个自然数平方的和。
(先平方,再相加)
1²+2²+3²+4²+5²+6²+7²+……+n²
=n(n+1)(2n+1)/6
G老师纯手写
立方和公式:
从1 开始,前n个自然数立方的和。
(先立方,再相加)
1³+2³+3³+4³+5³+6³+7³+……+n³
=(1+2+3+4+5+6+7+……+n)²
=n²(n+1)²/4
注意,
①平方和与立方和公式运用时,一定要从1开始。
②遇见类似数列但不是从1开始,先补充完整计算后,再减去增添的部分。
这两个公式证明过程略微复杂,
在小学奥数中不需要掌握,
感兴趣的家长和同学可以自行网上搜索查阅学习。
连续自然数的立方和公式
连续自然数的立方和公式
连续自然数的立方和公式是一个数学公式,它表示连续自然数的立方和可以用一个简单的公式来表示。
具体来说,如果我们有一个连续的自然数序列,比如1, 2, 3, ..., n,那么这个序列的立方和可以用下面的公式来表示:
sum_i(i^3) = n^2(n+1)^2/4
其中,sum_i 表示对i进行求和,i^3表示每个数的立方,n表示连续自然数的最大值。
这个公式可以通过数学归纳法进行证明。
简单来说,我们可以将n分为两部分,一部分是奇数,一部分是偶数。
对于奇数部分,我们可以将其分为两部分,一部分是能被4整除的奇数,另一部分是其他奇数。
对于能被4整除的奇数,我们可以将其平方和表示为n^2(n+1)^2/4-n(n+1)/2,对于其他奇数,我们可以将其平方和表示为n(n+1)/2。
因此,我们可以通过数学归纳法证明这个公式。
自然数平方和公式的推导与证明
※自然数之和公式的推导法计算1,2,3,…,n,…的前n项的和:由 1 + 2 + … + n-1 + nn + n-1 + … + 2 + 1(n+1)+(n+1)+ … +(n+1)+(n+1)可知上面这种加法叫“倒序相加法”※等差数列求和公式的推导一般地,称为数列的前n项的和,用表示,即1、思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。
我们用两种方法表示:①②由①+②,得由此得到等差数列的前n项和的公式对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。
2、除此之外,等差数列还有其他方法(读基础教好学生要介绍)当然,对于等差数列求和公式的推导,也可以有其他的推导途径。
例如:====这两个公式是可以相互转化的。
把代入中,就可以得到引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。
第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次函数”,可以与二次函数进行比较。
这两个公式的共同点都是知道和n,不同点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。
自然数平方和公式的推导与证明(一)12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。
其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。
一、设:S=12+22+32+…+n2=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题另设:S1的关键,一般人不会这么去设想。
有了此步设题,第一:S=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22)+( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即=2S+n3+2n(1+2+3+...+n).. (1)S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为:第二:S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中:S122+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2)12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2= (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+(22×n2-2×2×n+1)2=22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n=22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n=4S-4(1+2+3+…+n)+n……………………………………………………………..(3 )由(2)+ (3)得:=8S-4(1+2+3+...+n)+n.. (4)S1由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n= n[n2+n(1+n)+2(1+n)-1]= n(2n2+3n+1)= n(n+1)(2n+1)S= n(n+1)(2n+1)/ 6亦即:S=12+22+32+...+n2= n(n+1)(2n+1)/6 (5)以上可得各自然数平方和公式为n(n+1)(2n+1)/6,其中n为最后一位自然数。
自然数平方和公式的推导与证明
※自然数之和公式的推导法计算1,2,3,…,n,…的前n项的和:由 1 + 2 + … + n-1 + nn + n-1 + … + 2 + 1(n+1)+(n+1)+ … +(n+1)+(n+1)可知上面这种加法叫“倒序相加法”※等差数列求和公式的推导一般地,称为数列的前n项的和,用表示,即1、思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。
我们用两种方法表示:①②由①+②,得由此得到等差数列的前n项和的公式对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。
2、除此之外,等差数列还有其他方法(读基础教好学生要介绍)当然,对于等差数列求和公式的推导,也可以有其他的推导途径。
例如:====这两个公式是可以相互转化的。
把代入中,就可以得到引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。
第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次函数”,可以与二次函数进行比较。
这两个公式的共同点都是知道和n,不同点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。
自然数平方和公式的推导与证明(一)12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。
其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。
一、设:S=12+22+32+…+n2另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。
自然数的n次方的和公式
自然数的n次方的和公式首先,我们来介绍一下这个公式的用途。
自然数的n次方的和公式可以用来计算自然数从1到任意正整数n的连续自然数的幂的和。
它可以用于求解一系列问题,例如计算特定范围内的平方和、立方和等。
此外,它还有许多实际应用,比如在统计学中用于计算方差、标准差等指标。
接下来,我们来推导这个公式的过程。
设自然数n的连续自然数的n次方的和为S,我们可以按照如下步骤推导出这个公式:Step 1: 我们先计算S的前n-1项和,即S1 = 1^2 + 2^2 + 3^2+ ... + (n-1)^2Step 2: 我们观察前n-1项和的规律,发现它们中都包含一个公共项n^2,所以可以将这些项整理成一个公因式,得到S1 = n^2 * (1 + 2 +3 + ... + (n-1))Step 3: 通过观察我们可以发现,1 + 2 + 3 + ... + (n-1)可以表示为等差数列的和,即Sn-1 = (n-1) * ((n-1) + 1) / 2Step 4: 将Sn-1代入到S1中得到S1 = n^2 * (Sn-1)Step 5: 我们将S1的结果与n项和S相加,得到S = S1 + n^2 =n^2 * (Sn-1) + n^2 = n^2 * (Sn-1 + 1)完成以上步骤,我们得到了自然数的n次方的和公式:S=n^2*(Sn-1+1)这个公式可以方便地计算自然数从1到n的连续自然数的n次方的和。
接下来,我们来看一些应用案例。
假设我们要计算自然数从1到10的平方和,我们可以根据上述公式计算:S=10^2*((10-1)*((10-1)+1)/2+1)=10^2*((9*10)/2+1)=10^2*((9*5)+1)=10^2*(45+1)=10^2*46= 4600所以自然数从1到10的平方和为4600。
同样地,我们可以计算自然数从1到10的立方和、四次方和等。
总之,自然数的n次方的和公式是一个重要的数学公式,在数学中有广泛的应用。
自然数平方和公式推导
我们把S(n)拆成数字排成的直角三角形:12 23 3 34 4 4 4……n n …… n这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的:1 1 1 (1)2 2 2 (2)3 3 3 (3)4 4 4 (4)……n n n …… n这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2而我们补上的数字是哪些呢?1 1 1 …… 1 (n-1)个的12 2 …… 2 (n-2)个的23 …… 3 (n-3)个的3………n-1又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。
而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于(12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2]将各个扩号内的第一项和第二项分别相加,得T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2=S(n-1)/2+(n-1)*n/4=S(n-1)/2+n2/4-n/4也就是说,S(n)=n3/2+n2/2-T(n)=n3/2+n2/2-S(n-1)-n2/4+n/4=n3/2+n2/4+n/4-S(n-1)/2 ……①因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到S(n)=n3/2+n2/4+n/4-S(n)/2+n2/23S(n)/2=n3/2+3n2/4+n/43S(n)=n3+3n2/2+n/2S(n)=n3/3+3n2/6+n/6上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6另外一种经典的方法设:S=12+22+32+…+n2另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。
n个自然数立方和公式
n个自然数立方和公式n个自然数立方和公式是指将n个自然数分别取立方后相加的结果。
具体的公式可以表示为:S = 1^3 + 2^3 + 3^3 + ... + n^3,其中S表示n个自然数立方和。
自然数是指从1开始的正整数,即1、2、3、4…。
立方是指一个数的三次方,即该数乘以自身两次,例如2的立方是2^3 = 2 × 2 × 2 = 8。
n个自然数立方和公式的用途非常广泛,尤其在数学和物理领域中经常被使用。
它可以用来解决各种问题,例如计算物体的体积、求解数列的和等等。
下面将从几个角度来讨论n个自然数立方和的应用。
n个自然数立方和可以用来计算物体的体积。
当我们需要计算一个立方体或长方体的体积时,可以利用n个自然数立方和公式来求解。
假设一个立方体的边长为n,则该立方体的体积可以表示为n个自然数立方和。
这个公式的推导可以通过将立方体分成n层,并计算每层的立方和,然后将所有层的立方和相加而得到。
通过这个公式,我们可以快速准确地计算出立方体的体积。
n个自然数立方和还可以用来求解数列的和。
数列是指按照一定规律排列的一组数,例如1、4、7、10、13等等。
当我们需要求解数列的和时,可以利用n个自然数立方和公式来进行计算。
首先,我们需要确定数列的前n项,然后将每一项分别取立方后相加即可得到数列的和。
通过这个公式,我们可以方便地求解各种数列的和,从而深入研究数列的性质和规律。
n个自然数立方和还可以用于计算多项式的和。
多项式是由若干个单项式相加或相减而成的代数表达式,例如x^3 + 2x^2 + 3x + 4。
当我们需要计算多项式的和时,可以将多项式中的每一项进行立方后相加,从而得到多项式的和。
通过这个公式,我们可以简化多项式的计算过程,提高计算效率。
n个自然数立方和还可以用于解决一些数学问题。
例如,我们可以利用n个自然数立方和公式来验证哥德巴赫猜想。
哥德巴赫猜想认为,每个大于2的偶数都可以表示为两个质数的和。
连续自然数的立方和
连续自然数的立方和
连续自然数立方和公式:n²(n+1)²/4,连续自然数是一组自然数,诸如:96、97、98、99、100等此类的连续性的自然数。
自然数由0开始,一个接一个,组成一个无穷的集体。
自然数有有序性,无限性,分为偶数和奇数,合数和质数等。
立方和公式是有时在数学运算中需要运用的一个公式。
该公式的文字表达为:两数和,乘它们的平方和与它们的积的差,等于这两个数的立方和;表达式为:(a+b)(a²-ab+b²)=a³+b³。
自然数集是全体非负整数组成的集合,常用N来表示。
自然数有无穷无尽的个数。
自然数立方和公式的可视化演示,你看懂了吗?
自然数立方和公式的可视化演示,你看懂了吗?下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!自然数立方和公式的可视化探索:看懂它的魅力在数学的世界里,公式是语言,而可视化则是这种语言的生动描绘。
图解自然数的平方和公式
我们知道以下前n项自然数平方和的计算公式:
有很多关于这个公式的证明方法,比如数学归纳法、待定系数法、裂项相消法等。
今天介绍两个数形结合的方法。
方法一
我们知道前n项自然数的和
于是
这是巧合吗?
把左边平方和拆开,乘法拆成加法,写成
第一行1个数,第二行2个数,第三行3个数,...,第n行n个数,这样一共(1+2+3+...+ n)=n(n+1)/2 个数相加。
简记为一张三角形图:
逆时针旋转120°,得到
再逆时针旋转120°,又得到
对上面三个三角形,相同位置处的三个数对应相加,其和恰为定值(2n+1),即:
于是
方法二
立体的看,平方和就是下面所有方块的体积和:
堆起来,就是
类似地,取三堆相同的
然后再堆起来
最上面一层的方块,从中间切开,拼到缺的那部分,就得到一个三边分别为n+1/2,n,n+ 1的长方体:
于是总体积
当然,第二种方法也可以取6堆,直接拼成一个三边分别为2n+1,n,n+1的长方体。
殊途同归。
最后附赠一个自然数立方和的图解:
来自B站视频ThinkTwice。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
For personal use only in study and research; not for commercial use
求:①自然数(一次方)的和,即:n ++++ 321
②自然数平方(二次方)的和,即:2222321n ++++
③自然数立方(三次方)的和,即:3333321n ++++
求①式可用2)1(+n 来计算;求②式可用3)1(+n 来计算;求③式可用4)1(+n 来计算
①
∵12)1(22++=+n n n
∴ 1121222+⨯+=
……
将以上等式两边相加得:
∴ n ++++ 3212)1(+=
n n ②
∵3)1(+n = 1332
3+++n n n
∴ 1131312233+⨯+⨯+=
…… 3)1(+n = 13323+++n n n
将以上等式两边相加得:
)321(32222n ++++⨯ = 3)1(+n —⎥⎦
⎤⎢⎣⎡++⨯+n n n 2)1(313 ∴ 2222321n ++++ =
6
)12)(1(++n n n ③
用同样的方法,可得: 3333321n ++++ = 4)1(22+n n = 22)1(⎪⎭
⎫ ⎝⎛+n n 自然数的立方和等于自然数和的平方。
利用上面三个结论,我们就可以计算下面数列的和了。
④ )321()321()21(1n +++++++++++
∵n ++++ 3212)1(+=n n = n n 2
1212+
∴ 12
112112⨯+⨯= ……
n ++++ 321 = n n 2
1212+ 将上面各式左右两边分别相加,得:
)321()321()21(1n +++++++++++ = )321(2
12222n ++++ = ⎪⎭
⎫ ⎝⎛++++2)1(6)12)(1(21n n n n n =
6
)2)(1(++n n n ⑤ )1(433221+++⨯+⨯+⨯n n = 3
)2)(1(++n n n ⑥ )2)(1(543432321++++⨯⨯+⨯⨯+⨯⨯n n n = 4)3)(2)(1(+++n n n n
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。