尺规作图
《尺规作图》课件PPT课件
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
专题13 尺规作图篇(解析版)
专题13 尺规作图1. 尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2. 基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3. 基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M 、N 。
如图①②连接MN ,过MN 的直线即为线段的垂直平分线。
如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O 为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M 、N 。
如图①。
②分别以点M 与点N 为圆心,大于MN 长度的一半为半径画圆弧,两圆弧交于点P 。
如图②。
③连接OP ,OP 即为角的平分线。
(5)过一点作已知直线的垂线.4. 复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。
5. 设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。
1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=21ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段FA的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是 ;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD即为所求;(2)过点O作OH⊥BC于H,连接OB,OC.∵AD是切线,∴OA⊥AD,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2.9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF 是菱形.【分析】(1)根据作法得到MN 是线段AD 的垂直平分线;(2)根据垂直平分线的性质则AF =DF ,AE =DE ,进而得出DF ∥AB ,同理DE ∥AF ,于是可判断四边形AEDF 是平行四边形,加上FA =FD ,则可判断四边形AEDF 为菱形.【解答】(1)解:根据作法可知:MN 是线段AD 的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN 是AD 的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB 长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。
五种基本的尺规作图
在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
尺规作图的路径与原理
尺规作图的路径与原理尺规作图的路径与原理闽江学院附属中学杜强⼀、知识回顾1.什么是尺规作图?尺规作图是指⽤⽆刻度的直尺和圆规作图起源起源于古希腊,最初由伊诺⽪迪斯提出,并逐渐形成公约,最后总结在欧⼏⾥得的《⼏何原本》之中。
直尺没有刻度,⽆限长,且只能使⽤直尺的固定⼀侧画直线、射线或线段,不可以⽤于度量长度。
描述:画直线、射线或线段。
例如:画射线OA圆规两脚可以开⾄⽆限宽,量取两点之间的距离,⽤于画圆弧,描述:以某点为圆⼼,某长为半径作弧,与直线(射线、线段或弧)交于某点。
例如:以点C为圆⼼,适当长为半径作弧,交AB于点D和E2.课标要求⑴能⽤尺规完成基本作图①.作⼀条线段等于已知线段;②.作⼀个⾓等于已知⾓;③.作⼀个⾓的平分线;④.作⼀条线段的垂直平分线;⑤.过⼀点作已知直线的垂线。
⑵会利⽤基本作图作三⾓形①已知三边、两边及其夹⾓、两⾓及夹边作三⾓形;②已知底边上的⾼线作等腰三⾓形;③已知⼀直⾓边和斜边作直⾓三⾓形。
⑶会利⽤基本作图完成①过不在同⼀直线上的三点作圆;②作三⾓形的外接圆、内切圆;③作圆的内接正⽅形和正六边形。
⑷尺规作图要求在尺规作图中,了解作图的道理,保留作图痕迹,不要求写出作法。
3.基本作图五个基本作图名称:①作⼀条线段等于已知线段;②作⼀个⾓等于已知⾓;③作⼀个⾓的平分线;④作⼀条线段的垂直平分线;⑤过⼀点作已知直线的垂线。
五个基本作图要求:在尺规作图中,了解作图的道理,熟悉作图的过程,保留作图痕迹,不要求写出作法。
五个基本作图的作法:①作⼀条线段等于已知线段(七年级上册第四章P126)已知线段a. 求作线段AB,使AB=a作法:(1)画射线AC(2)在射线AC上截取AB=a(以点A为圆⼼,线段a长为半径画弧,交射线AC于点B),则线段AB即为所求②作⼀个⾓等于已知⾓(⼋年级上册第⼗⼆章P36)已知∠AOB. 求作∠AOB',使∠AOB′=∠AOB.作法:(1)以点O为圆⼼,任意长为半径画弧,分别交OA,OB于点C,D(2)画⼀条射线O’A’,以点O'为圆⼼,OC长为半径画弧,交O'A'于点C'(3)以点C'为圆⼼,CD长为半径画弧,与第2步中所画的弧相交于点D'(4)过点D'画射线O'B’,则∠A'O'B'=∠AOB原理:△OCD≌△O'C'D'(sss)③作⼀个⾓的平分线(⼋年级上册第⼗⼆章P48)已知∠AOB. 求作∠AOB的平分线作法:(1)以点O为圆⼼,适当长为半径画弧,交OA于点M,交OB于点N;MN的长为半径画弧,两弧在∠AOB的内(2)分别以点M,N为圆⼼,⼤于1 2部相交于点C;(3)画射线OC,则射线OC即为原理:△OMC≌△O NC(sss)④作⼀条线段的垂直平分线(⼋年级上册第⼗三章P63)已知线段AB. 求作线段AB垂直平分线作法:AB的长为径作弧,两弧相交于C,D (1)分别以点A和点B为圆⼼,⼤于12两点(2)作直线CD,则直线CD即为所求原理:四边形ACBD是菱形注:它也是作直线的垂线和确定线段中点的重要依据⑤过⼀点作已知直线的垂线(⼋年级上册第⼗三章P62)I.已知直线AB和直线AB外⼀点C, 求作AB的垂线,使它经过点C(1)任意取⼀点K,使点K和点C在AB的两旁;(2)以点C为圆⼼,CK长为半径作弧,交AB于点D和EDE的长为半径作弧,两弧相交于点(3)分别以点D和点E为圆⼼,⼤于12F;(4)作直线CF,则直线CF即为所求直线原理:线段DE的垂直平分线∠.已知直线AB和直线AB上⼀点C, 求作AB的垂线,使它经过点C.作法:(1)以点C为圆⼼,适当长为半径作弧,交AB于点D和EDE的长为半径在直线AB的同侧(2)分别以点D和点E为圆⼼,⼤于1 2作弧,两弧相交于点F;(3)作直线CF,则直线CF即为所求直线原理:等腰△DEF三线合⼀⼆、实践提升1.⽜⼑⼩试【练习】如图,已知线段a.求作等边∠ABC,使其边长为a2举⼀反三【变式I】求作⼀个⾓,使它等于60°∴∠ABC为所求作的⾓【变式∠】求作⼀个⾓,使它等于30°(五种作法如下)【变式∠】已知线段AB,以线段AB为斜边,求作R∠ABC,使∠BAC=30°可以类⽐30°⾓的作法:【变式∠】求作⼀个⾓,使它等于45°【变式V】求作⼀个⾓,使它等于75【变式∠】求作⼀个⾓,使它等于120°4.归纳提升三、中考前沿1.真题赏析【2017福州质检·19题】(本题满分8分)如图,在Rt∠ABC中,∠C=90°,BC=1,AC=2以点B为圆⼼,BC长为半径画弧交AB于点D;以点A为圆⼼AD长为半径画弧,交AC于点E,保留的值作图痕迹,并求AEAC注:根据⽂字语⾔,完成尺规作图,再解答【2017福州中考·19题】(本题满分8分)如图,△ABC中,∠ABC=90°,AD⊥BC,垂⾜为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留痕迹,不写作法)【2018福州质检·19题】(本题满分8分)如图,在Rt∠ABC中,∠C=90°,∠B=54°,AD是∠ABC的⾓平分线.求作AB 的垂直平分线MN交AD于点E,连接BE;并证明DE=DB. (要求:尺规作图,保留痕迹,不写作法)【2018福建中考·20题】(本题满分8分)求证:相似三⾓形对应边上的中线之⽐等于相似⽐要求:①根据给出的∠ABC及线段A'B’,∠A'(∠A'=∠A),以线段A'B’为⼀边,在给出的图形上⽤尺规作出∠A'B'C',使得∠A'B'C'∠∠ABC,不写作法,保留作图痕迹;②在已有的图形上画出⼀组对应中线,并据此写出已知、求证和证明过程【2019·福州质检20题】(本题满分8分)如图,在Rt∠ABC中,∠ACB=90°,BD平分∠ABC.求作∠O,使得点O在边AB上,且∠O经过B,D两点;并证明∠O与AC相切.(要求:尺规作图,保留作图痕迹,不写作法)【2019福建中考·20题】(本题满分8分)已知∠ABC和点A',如图(1)以点A'为⼀个顶点作∠A'B'C',使得∠A'B'C'∠∠ABC,且∠A'B'C'的⾯积等于∠ABC⾯积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是∠ABC三边AB,BC,CA的中点,D’,E',F'分别是你所作的∠A'B'C'三边A'B’,B'C',C'A',的中点,求证:∠DEF∠∠D'E'F'2.总结升华了解:了解中考要求,知晓标准理解理解作图原理,熟悉作法掌握掌握基本作图,解决问题。
尺规作图教案
尺规作图教案尺规作图教案尺规作图是一种古老而神秘的几何学方法,通过使用简单的工具,如尺子和圆规,来实现复杂的几何图形的绘制。
这种方法在古代被广泛应用于建筑、艺术和工程领域,如今仍然被一些学校和几何学爱好者所研究和实践。
一、尺规作图的基本原理尺规作图的基本原理是利用尺子和圆规的测量和绘制功能,通过一系列的步骤和规则来实现几何图形的绘制。
尺规作图的关键在于准确地测量和标记线段和角度,以及合理地运用几何定理和构造方法。
二、尺规作图的基本工具尺规作图所需的基本工具包括尺子和圆规。
尺子用于测量和绘制线段,而圆规则用于绘制和测量圆和弧。
这两个工具的结合使用可以实现各种几何图形的绘制。
三、尺规作图的基本步骤尺规作图的基本步骤可以分为以下几个部分:1. 给定条件:根据给定的条件,确定需要绘制的几何图形的要求和限制。
2. 画基本线段:根据给定的条件,使用尺子在纸上画出所需的基本线段。
3. 画基本角度:根据给定的条件,使用尺子和圆规在纸上画出所需的基本角度。
4. 运用几何定理和构造方法:根据给定的条件,利用几何定理和构造方法,通过测量和绘制其他线段和角度,逐步构建出所需的几何图形。
5. 检查和修正:绘制完毕后,检查所绘制的几何图形是否符合给定的条件和要求,如果有误差或不精确之处,可以进行修正。
四、尺规作图的应用尺规作图在古代被广泛应用于建筑、艺术和工程领域。
例如,在建筑设计中,尺规作图可以用来绘制建筑平面图、立体图和透视图,帮助建筑师更好地理解和展示设计方案。
在艺术创作中,尺规作图可以用来绘制几何图案和对称图形,增加作品的美感和精确度。
在工程测量中,尺规作图可以用来绘制地图、测量土地和规划道路等。
五、尺规作图的意义和挑战尺规作图作为一种古老而神秘的几何学方法,具有重要的意义和挑战。
它可以帮助人们更好地理解和应用几何学的知识,培养人们的观察力、逻辑思维和创造力。
然而,尺规作图也需要一定的技巧和经验,对于初学者来说可能会面临一些困难和挑战。
第24讲 尺规作图(解析版)
第24讲 尺规作图1.尺规作图的作图工具 圆规和没有刻度的直尺 2.基本尺规作图类型一:作一条线段等于已知线段 步骤:①作射线OP ;②以O 为圆心,a 为半径作弧,交OP 于A ,OA 即为所求线段.图示:类型三:作线段的垂直平分线步骤:①分别以点A ,B 为圆心,以大于12AB 长为半径,在AB 两侧作弧,两弧交于M ,N 点;②连接MN ,直线MN 即为所求垂直平分线.图示:类型四:作一个角等于已知角:步骤:①以O 为圆心,以任意长为半径作弧,交∠α的两边于点P ,Q ; ②作射线O′A ;③以O′为圆心,OP 长为半径作弧,交O′A 于点M ; ④以点M 为圆心,PQ 长为半径作弧,交前弧于点N ; ⑤过点N 作射线O′B ,∠AO′B 即为所求角.图示:类型五:过一点作已知直线的垂线步骤:点在直线上:①以点O 为圆心,任意长为半径作弧,交直线于A ,B 两点; ②分别以点A ,B 为圆心,以大于12AB 长为半径在直线两侧作弧,交点分别为M ,N ;③连接MN ,MN 即为所求垂线. 点在直线外:①在直线另一侧取点M ; ②以PM 为半径画弧,交直线于A ,B 两点;③分别以A ,B 为圆心,以大于12AB 长为半径画弧,交M 同侧于点N ;④连接PN ,则直线PN 即为所求的垂线.图示:3.常见几种基本尺规作图作三角形 ①已知三边作三角形; ②已知两边及其夹角作三角形; ③已知两角及其夹边作三角形; ④已知底边及底边上的高作等腰三角形; ⑤已知一直角边和斜边作直角三角形. 4.作图的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明; (6)讨论.步骤(5)(6)常不作要求,步骤(3)一般不要求,但作图中一定要保留作图痕迹.考点1:简单尺规作图【例题1】尺规作图,已知顶角和底边上的高,求作等腰三角形. 已知:如图,∠α,线段a.求作:△ABC ,使AB =AC ,∠BAC =α,AD ⊥BC 于D ,且AD =a.【解析】:作图如图,(1)作∠EAF =∠α;(2)作AG 平分∠EAF ,并在AG 上截取AD =a ;(3)过D 作MN ⊥AG ,MN 与AE ,AF 分别交于B ,C.则△ABC 即为所求作的等腰三角形归纳:1.熟悉五个基本的作图步骤及作图痕迹. 2.平时多体会和理解一些复杂作图的依据及作图过程. 3.会在常见的作图语言与对应的几何语言之间进行转化.4.提倡在平时画图时,采用尺规作图,强化自己的作图意识和规范性. 考点2: 复杂尺规作图【例题2】如图,在△ABC 中,已知∠ABC =90°.(1)请在BC 上找一点P ,作⊙P 与AC ,AB 都相切,与AC 的切点为Q ;(尺规作图,保留作图痕迹) (2)连接BQ ,若AB =3,(1)中所作圆的半径为32,求sin ∠CBQ.【分析】 (1)要求作⊙P 与AB 、AC 相切,根据切线的性质,即点P 到AB 、AC 的距离相等,且点P 在边BC 上,想到角平分线上的点到角两边的距离相等,即作∠BAC 的平分线交BC 于P 点,以点P 为圆心,PB 为半径作圆即可;(2)由切线长定理得AB =AQ ,又PB =PQ ,则判定AP 为BQ 的垂直平分线,利用等角的余角相等得到∠CBQ =∠BAP ,然后在Rt △ABP 中利用正弦函数求出sin ∠BAP ,从而可得到sin ∠CBQ 的值.解:(1)如图所示,⊙P 即为所求:(2)∵AB 、AQ 为⊙P 的切线,∴AB =AQ ,∵PB =PQ ,∴AP 为BQ 的垂直平分线,∴∠BAP +∠ABQ =90°,∵∠CBQ +∠ABQ =90°,∴∠CBQ =∠BAP ,在Rt △ABP 中,AP =AB 2+PB 2=32+(32)2=352,∴sin ∠BAP =BP AP =32352=55,∴sin ∠CBQ =55考点3: 关于尺规作图的应用【例题3】(2019▪广西池河▪8分)如图,AB 为⊙O 的直径,点C 在⊙O 上.(1)尺规作图:作∠BAC 的平分线,与⊙O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD 平分∠BAC ,然后连接OD 得到点E ;(2)由AD 平分∠BAC 得到∠BAD =12∠BAC ,由圆周角定理得到∠BAD =12∠BOD ,则∠BOD =∠BAC ,再证明OE 为△ABC 的中位线,从而得到OE ∥AC ,OE =12AC .【解答】解:(1)如图所示;(2)OE∥AC,OE=12 AC.理由如下:∵AD平分∠BAC,∴∠BAD=12∠BAC,∵∠BAD=12∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE=12 AC.一、选择题:1.(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【答案】B【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.2. (2018•襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.3. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【答案】C【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.4. (2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【答案】D【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.5. (2018•河南)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【答案】A【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.二、填空题:6. (2018•南京)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=cm.【答案】5【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.7. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为.【答案】22.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.8. (2018•淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【答案】【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC ﹣DB=5﹣=,故答案为. 三、解答题:9. 2.如图,在Rt △ABC 中,∠ACB =90°.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) ①作AC 的垂直平分线,交AB 于点O ,交AC 于点D; ②以O 为圆心,OA 为半径作圆,交OD 的延长线于点E. (2)在(1)所作的图形中,解答下列问题.①点B 与⊙O 的位置关系是_____________;(直接写出答案) ②若DE =2,AC =8,求⊙O 的半径.解:(1)如图所示: (2)①连接OC ,如图,∵OD 垂直平分AC ,∴OA =OC ,∴∠A =∠ACO ,∵∠A +∠B =90°,∠OCB +∠ACO =90°,∴∠B =∠OCB ,∴OC =OB ,∴OB =OA ,∴点B 在⊙O 上; ②∵OD ⊥AC ,且点D 是AC 的中点,∴AD =12AC =4,设⊙O 的半径为r ,则OA =OE =r ,OD =OE -DE =r -2,在Rt △AOD 中,∵OA 2=AD 2+OD 2,即r 2=42+(r -2)2,解得r =5.∴⊙O 的半径为510. (2018•安徽•分) 如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E(保留作图痕迹,不写作法); (2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC 中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.11. (2019•江苏泰州•8分)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【分析】(1)分别以A,B为圆心,大于12AB为半径画弧,两弧交于点M,N,作直线MN即可.(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.12. (2018·广东·6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.13. (2019•湖北孝感•8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB=13,知sin∠DAF=DFAD=BCAB,即12+xx=513,解之求得x=152,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB=13,∴sin∠DAF=DFAD=BCAB,即12+xx=513,解得x=152,∵BC=BF=5,∴tan∠DBF=DFBF=152×15=32.。
尺规作图 —初中数学课件PPT
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
尺规作图
尺规作图:我们把只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图注意:(1)直尺的作用:①过两点画一条直线;②将线段向两端无限延长(2)圆规的作用:以定点为圆心,定长为半径画圆或画弧基本作图有以下五种:①作一条线段等于已知线段;②作一个角等于已知角③作已知角的平分线④经过一已知点作已知直线的垂线⑤作已知线段的垂直平分线知识点一:作一条线段等于已知线段作一条线段等于已知线段,先画一条射线,然后在射线上截取等长的线段即可注意:(1)画射线用直尺,截取线段用圆规,作图时要正确使用作图工具,尽量减小误差,用铅笔作图,保留作图痕迹(2)在射线上截取线段时,求和则顺次截取叠加,求差则从线段中截去◆【典型例题】例1、(2013秋•沙洋县期末)阅读:在用尺规作线段AB等于线段a时,小明的具体作法如下:已知:如图,线段a:求作:线段AB,使得线段AB=a.作法:①作射线AM;②在射线AM上截取AB=a.∴线段AB即为所求,如图.解决下列问题:已知:如图,线段b:(1)请你仿照小明的作法,在上图中的射线AM上求作点D,使得BD=b;(不要求写作法和结论,保留作图痕迹)(2)在(1)的条件下,取AD的中点E.若AB=10,BD=6,求线段BE的长.(要求:第(2)问重新画图解答)知识点二:作一个角等于已知角例2、已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB,根据图填空.作法:(1)作射线;(2)以点为圆心,以任意长为半径画弧,交OA于点,交OB于点,以点为圆心,以为半径画弧,交射线O′A′于点C′;(3)以点为圆心,以为半径画弧,与前弧交于点D′;(4)作射线,就是所求的角.例3、(2015春•泾阳县期中)如图所示,已知线段AB,∠α,∠β,分别过A、B作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)知识点三:作已知角的平分线例4、(2016•厦门模拟)已知∠AOC,请用尺规作图的方法作出该角的角平分线.步骤:1.以O为圆心,以任意长为半径,画圆,交OA,OC于B,D两点.2.分别以B,D为圆心,以大于BD的长为半径,作圆弧,这两段圆弧相交于P点.3.连接OP就是∠AOC的角平分线.知识点四:经过一已知点作已知直线的垂线已知点与已知直线可以有两种不同的位置关系:①点在直线上;②点不在直线上因此要分别按这两种情况作图(1)过直线AB上一点C作AB的垂线的步骤:①作做平角ACB的平分线CD②反向延长射线CD直线CD就是所要作的垂线。
尺规作图教案
尺规作图教案尺规作图教案尺规作图是数学中的一个重要内容,通过使用尺子和圆规等工具,可以绘制出精确的图形。
在数学教学中,尺规作图是培养学生准确观察、思维逻辑和手工操作能力的重要方法之一。
本文将介绍一份关于尺规作图的教案,帮助教师更好地组织教学内容和过程。
一、教学目标1.了解尺规作图的基本概念和工具。
2.掌握尺规作图的基本方法和步骤。
3.培养学生观察力、思维逻辑和手工操作能力。
二、教学内容1.尺规作图的基本概念- 介绍尺规作图的定义和作用,引导学生认识到尺规作图在几何学中的重要性。
2.尺规作图的基本工具- 介绍尺子、圆规和铅笔等工具的使用方法和注意事项,让学生熟悉这些工具。
3.尺规作图的基本步骤- 分步骤教授尺规作图的基本方法,例如如何作一条直线、如何作一个等边三角形等,引导学生逐步掌握作图的技巧。
4.尺规作图的应用实例- 提供一些常见的尺规作图问题,让学生通过实际操作来解决问题,培养他们的思维逻辑和解决问题的能力。
三、教学过程1.导入- 通过展示一些精美的尺规作图作品,激发学生对尺规作图的兴趣,并提出一个问题,如:“如何用尺规作出一个正五边形?”引导学生思考。
2.概念讲解- 介绍尺规作图的基本概念和作用,让学生了解尺规作图的重要性和实际应用价值。
3.工具演示- 演示尺子、圆规和铅笔等工具的使用方法和注意事项,让学生掌握正确使用这些工具的技巧。
4.步骤讲解- 逐步讲解尺规作图的基本步骤,例如如何作一条直线、如何作一个等边三角形等,引导学生通过实际操作来理解和掌握这些步骤。
5.应用实例- 提供一些尺规作图的应用实例,让学生通过实际操作来解决问题,培养他们的思维逻辑和解决问题的能力。
6.练习与巩固- 给学生一些练习题,让他们运用所学的尺规作图方法来解决问题,并及时给予指导和反馈。
7.总结与展望- 总结本节课的内容和学习收获,展望尺规作图在日常生活和学习中的应用前景,激发学生对数学的兴趣和探索欲望。
四、教学评价1.观察学生的学习情况,包括他们对尺规作图的理解程度、操作技巧和解决问题的能力。
初中数学中的尺规作图
尺规作图是一种古老而神奇的工具,能够用简单的工具和技巧绘制出精确的几何图形。
在初中数学中,尺规作图是一个必修的内容,对于学生来说,掌握它是非常重要的。
本文将详细介绍尺规作图的基础知识、步骤和实践技巧。
一、什么是尺规作图?尺规作图,又称欧氏几何作图,是一种利用尺子和圆规进行的几何作图方法。
它的基本原理是:利用尺子测量长度,用圆规画出圆和弧,然后通过将这些线段和圆弧相交、平移、旋转等操作,得到所需的几何图形。
尺规作图是欧几里得几何的基础,也是很多复杂几何问题的解决方法之一。
二、尺规作图的基本步骤1. 给定图形尺规作图的第一步是给定一个几何图形,通常是已知几条线段或者角度的大小关系。
例如,给定一个直角三角形,其中两条直角边的长度分别为3cm和4cm,要求作出这个三角形。
2. 作出基础线段根据给定的条件,用尺子和圆规作出基础线段。
例如,在一个纸上画一条长度为3cm的线段AB,再画一条长度为4cm的线段AC,其中∠BAC为直角。
3. 作出辅助线段根据需要,作出一些辅助线段,以便通过相交、平移、旋转等操作得到所需的图形。
例如,可以在线段AB上取一点D,再以点C为圆心、AC为半径画一个圆,得到一个圆弧,将其与线段AB相交于点E,再连接线段AE和BE,就得到了一个直角三角形ABC。
三、尺规作图的实践技巧1. 细心测量尺规作图需要精确测量线段的长度和角度的大小,因此必须细心认真地进行测量,避免出现误差。
特别是在作大型图形时,必须使用长尺和精密测量工具,以确保准确性。
2. 多加练习尺规作图需要的是手眼协调能力和灵活性,这些技能需要通过不断地练习才能掌握。
建议初学者多做练习题,逐渐提高自己的技巧和速度。
3. 熟练运用尺规尺规作图需要灵活运用圆规和尺子,掌握不同的测量技巧和作图方法。
例如,可以利用圆规的不同刻度测量半径和角度,或者利用尺子的折叠功能作出垂线等。
四、总结归纳尺规作图是一种重要的几何工具,能够在解决复杂几何问题时提供有力的支持。
尺规作图课件华东师大版数学八年级上册
探究讨论
通过上面的作图,你还能发现什么?你会作任意一个三 角形的三条中线吗? 通过作图,知道直线 CD 与线段 AB 的交点就是 AB 的 中点,因此我们可以用这种方法作出线段 AB 的中点, 从而可以作出任意一个三角形的的三条中线。
例2 如图,A,B 是路边两个 新建小区,要在公路边增设一
个公共汽车站,使两个小区到
作一条线段等于已知线段
已知:线段 MN. 求作线段 AC,使 AC=MN.
1. 画射线 AB; 2. 用圆规量出线段 MN 的长,在 射线 AB 上截取 AC=MN. 线段 AC
就是所要画的线段.
图 24.4.2
作一个角等于已知角
B
已知:∠AOB.
求作:∠A'O'B',
O
A
使 ∠A'O'B' = ∠AOB.
A
C
B
2.经过已知直线外一点作已知直线
的垂线. 已知直线 AB 和 AB 外一点 C,
AD
试按下列步骤用直尺和圆规准确
地经过点 C 作出直线 AB 的垂线.
C
B E F
步骤: (1)以点 C 为圆心,作弧与直线 AB 相交于点 D、点 E; (2)作∠DCE 的平分线 CF. 直线 CF 就是所要求作的垂线.
2. 已知: ∠1, ∠2.求作:
1
(1) ∠3,使得∠3 = ∠2 -∠1; B
2
解:1. 作法:
D
(1) 作射线 OA;
O
A
(2) 以 OA 为边做∠AOB =∠2;
(3) 以 O 为顶点,以射线 OA 为边,在∠AOB 内部作
∠AOD =∠1.则∠BOD 即为所求的∠3.
13.4尺规作图(含五种基本作图)
练习:求作:一条线段MN,使得MN=2b-a
基本作图2、“作一个角等于已知角。”
作 法
已知: ∠AOB。 求作: ∠A’O’B’ 使 ∠A’O’B’示 =∠AOB 范。
D B
(1) 作射线O’A’;
任意长为半径 画弧, (2) 以点O为圆心, 交OA于点C
,
交OB于点D
O C D’ A
以(OD)长为半径画弧, (3) 以点O’为圆心, 交O’A’于点C’ CD长为半径 画弧, (4) 以点C’为圆现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
• 在几何里,把限定用(没有刻度的)直尺和圆规来画 图的,称为尺规作图. • 尺:没有刻度的直尺; 规:圆规 •最基本,最常用的尺规作图,通常称基本作图.
五种基本作图: 1.作一条线段等于已知线段。 2.作一个角等于已知角。 3.作已知角的平分线。 4.经过一已知点作已知直线的垂线。 5.作已知线段的垂直平分线。
作法 :
(1)作射线AC; (2)以点A为圆心,
a
以a长为半径 画弧, 交射线AC于点D; (3)以点D为圆心, 以a长为半径 画弧, 交射线AC于点B;
则:AB 即为所求。
A D B C
思考:探究与合作 你们会做一条线段等于所给线段的和或差吗?
例1、已知线段a、b,且a<b,
求作:一条线段AB,使得AB=2a+b
作法一:
B’
C B B’
法二:
D B
O
C A
E
C’
O A’ A O’ A
∠A’O’B’即为所求.
∠A’O’B’即为所求.
例2、已知∠ 1、∠2且 , ∠ 1<∠2,
中考数学复习考点知识专题讲义第28讲 尺规作图
利用基本作图作三角形 1.已知三边、两边及其夹角、两角及其夹边作三角形. 2.已知底边及底边上的高线作等腰三角形. 3.已知一直角边和斜边作直角三角形.
利用基本作图作与圆有关的图形 1.过不在同一直线上的三点作圆. 2.作三角形的外接圆、内切圆. 3.作圆的内接正方形和正六边形.
尺规作图及其要求 1.尺规作图:利用没有刻度的直尺和圆规的作图称作尺规作图. 2.在尺规作图中,了解作图的道理,保留作图痕迹,不要求写出作法.
【跟踪训练】 2.如图,已知△ABC,用尺规作出△ABC 的内切圆⊙O,并标出⊙O 与边 AB,BC, AC 的切点 D,E,F.(保留作图痕迹,不写作法)
解:如解图所示.
利用尺规作图探究结论 例 3 (逻辑推理)综合与探究——用直尺与圆规作图和探究线段的关系 任务 1:如图 1,在△ABC 和△DCB 中,∠A=∠D=90°,AC 与 BD 相交于点 O, 图中有哪些线段相等?
图1
(1)小明观察得出相等的线段有 AC=BD,AB=CD,OA=OD,OB=OC.小明说:
“若用圆规验证得到 AC=BD,就可证明其余结论均成立”.请判断小明的说法是否正 确,并说明理由.
解:小明的说法正确.理由:若 AC=BD,又 BC=CB,∠A=∠D=90°,
∴Rt△ABC≌Rt△DCB. ∴AB=DC,∠ACB=∠DBC. ∴OB=OC. ∴OA=OD.
︵ (1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作PQ ,交射线 OB 于点 D, 连接 CD;
︵ (2)分别以点 C,D 为圆心,CD 长为半径作弧,交PQ于点 M,N; (3)连接 OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是( D ) A.∠COM=∠COD B.若 OM=MN,则∠AOB=20° C.MN∥CD D.MN=3CD
尺规作图.精选
第9讲尺规作图1.尺规作图定义:只用没有刻度的直尺和圆规作图称为尺规作图2.五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线;过一点作一条直线与已知直线垂直。
3.五种基本作图步骤:(1)作一条线段等于已知线段求作:线段AB等于线段a作法:如图,①先画射线AC.②然后用圆规在射线AC上截取AB=a.线段AB就是所要作的线段.(2)作一个角等于已知角求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:如图,①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作已知角的平分线求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC。
OC就是所求的射线.(4)作线段的垂直平分线求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.(5)经过已知点作这条直线的垂线情况a:经过已知直线上的一点作这条直线的垂线,如图已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线情况b:经过已知直线外一点作这条直线的垂线.如图已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.★注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.4.三角形的外接圆、三角形的内切圆的作法。
尺规作图知识归纳+真题解析
尺规作图知识归纳+真题解析【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【知识归纳答案】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.真题解析一.选择题(共8小题)1.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.学科网7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=?BC?AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.学科网二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP 射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=56°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.学科网12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义..【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB 的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;。
用尺规作图的方法
用尺规作图的方法
使用尺规作图的方法通常是指使用直尺和圆规来绘制几何图形。
下面是一些常见的尺规作图方法:
1. 画直线:使用直尺将两点连接起来,得到直线段。
2. 作等分线段:给定一条线段AB,使用直尺从A点和B点分别向外画出等长的线段AC和BD,然后使用圆规以AC为半径或以BD为半径在A点或B点上作圆弧,两个圆弧的交点C即为原线段AB的中点。
3. 作平行线:给定一条直线AB和一点C,使用尺规方法如下:
a. 以C为中心,任意取一条长度大于AC的线段CD;
b. 使用圆规以C为中心,以线段CD的长度作圆弧,在直线AB上作出EF 两个交点;
c. 使用直尺连接线段EF,得到平行于直线AB的直线。
4. 作垂直线:给定一条直线AB和一点C,使用尺规方法如下:
a. 使用直尺连接点C与直线AB上的任意一点D;
b. 以点D为中心,调整圆规的宽度,绘制一个圆弧,与直线AB相交于E 和F两个点;
c. 使用直尺连接点C和点E或F,得到垂直于直线AB的直线。
5. 作角的平分线:给定一个角ACB,使用尺规方法如下:
a. 以点C为中心,绘制一个圆弧,与直线CA和CB分别相交于D和E两个点;
b. 以点D和E为中心,调整圆规的宽度,分别绘制两个圆弧,使得两个圆弧相交于F;
c. 使用尺子连接点C和F,得到角ACB的平分线。
需要注意的是,尺规作图方法不能解决所有的几何问题,只能在一些特定的条件下使用。
同时,尺规作图的精度也受到直尺和圆规的限制,因此绘制出的图形可能会有一定的误差。
在实际应用中,还需要结合其他几何工具和方法来进行精确的绘图。
尺规作图方法大全
尺规作图大全一、尺规作图定义尺规作图是指用没有刻度的直尺和圆规作图。
(人教版七上第126页)二、五种基本的尺规作图1、作一条线段等于已知线段(人教版七上第126页);2、作一个角等于已知角(人教版八上第36页);3、作已知角的角平分线(人教版八上第48页);4、作已知线段的垂直平分线;5、过一点作已知直线的垂线(人教版八上第62页);【作图1】作一条线段等于已知线段。
已知:如图,线段a 。
求作:线段AB ,使AB a =。
【作图2】作已知线段的中点(或垂直平分线)。
已知:如图,线段MN 。
求作:在线段MN 上找点O ,使MO NO =(即O 为线段MN 的中点)【作图3】作一个角等于已知角。
已知:如图,AOB ∠,求作:111A O B ∠,使得111A O B AOB =∠∠。
作法:第一步:用直尺作射线AP ;第二步:用圆规以点A 为圆心,a 为半径画弧,交射线AP 于点B ,线段AB 为所求。
作法:第一步:分别以M 、N 为圆心,大于0.5MN 长为半径画弧,两弧相交于点P 、点Q ;第二步:连接PQ ,交MN 于点O ,则点O 即为线段MN 的中点【思考】线段MN 的垂直平分线跟这个作法一样吗?【作图4】作已知角的角平分线。
已知:如图,AOB ∠,求作:射线OC ,使得AOC OC =∠∠B (OC 平分AOB ∠)。
【作图5】经过直线外一点,作已知直线的垂线已知:如图,直线AB 和直线AB 外一点C 。
求作:直线AB 的垂线,使它经过点C 。
作法:第一步:以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D;第二步:作射线11O A ,以点1O 为圆心,OC 长为半径画弧,交11O A 于点1C ;第三步:以点1C 为圆心,CD 长为半径画弧,与第二步中所画的弧交于点1D ;第四步:过点1D 画射线11O B ,则111A O B AOB =∠∠。
作法:第一步:以点O 为圆心,适当长为半径画弧,交OA 于点M ,OB 于点N ;第二步:分别以M 、N 为圆心,大于0.5MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C ;第三步:画射线OC ,射线OC 即为所求。
人教版八年级数学上册13.1.2 尺规作图 (共13张PPT)
•
新课讲解
作法:(1)分别以点A和B为圆心,
以大于1 AB的长为半径作弧,
2
两弧交于C、D两点.
A
(2)作直线CD.
CD就是所Байду номын сангаас作的直线.
C B
D
特别说明:这个作法实际上就是线段垂直平分线的尺规作图, 我们也可以用这种方法确定线段的中点.
新课讲解
2 作轴对称图形的对称轴
【想一想】下图中的五角星有几条对称轴?如何作出这
距离相等的两点,即线段AB的垂直平分线上的两点,从 而作出线段AB的垂直平分线.
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。21:41:1121:41:1121:418/10/2021 9:41:11 PM
些对称轴呢?
l
作法:(1)找出五角星的一对
A
B
对称点A和B,连结AB.
(2)作出线段AB的垂直平分线l.
则l就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴, 所以五角星有五条对称轴.
新课讲解
方法总结:对于轴对称图形,只要找到任意一组对称点,作出 对称点所连线段的垂直平分线,就能得此图形的对称轴.
•
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月下 午9时41分21.8.1021:41August 10, 2021
•
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021年8月10日星期 二9时41分11秒21:41:1110 August 2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图一、选择题1.(2016,湖北宜昌,12,3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等边三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等边三角形.故选B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.2. (2016年浙江省丽水市)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【考点】作图—复杂作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.二、填空题1.(2016吉林长春,11,3分)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结C D.若AB=6,AC=4,则△ACD的周长为10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC 的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC =DB ,∴△ADC 的周长=AC +CD +AD =AC +AD +BD =AC +AB , ∵AB =6,AC =4, ∴△ACD 的周长为10. 故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC +AB 来解决,属于基础题,中考常考题型.2. (2016·广东深圳)如图,在□ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于点Q P 、,再分别以Q P 、为圆心,以大于PQ 21的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为_________.答案:.2考点:角平分线的作法,等角对等边,平行四边形的性质。
解析:依题意,可知,BE 为角平分线,所以,∠ABE =∠CBE ,又AD ∥BC ,所以,∠AEB =∠CBE ,所以,∠AEB =∠ABE ,AE =AB =3, AD =BC =5,所以,DE =5-3=2。
三、解答题1. (2016·湖北咸宁)(本题满分12分) 如图1,在平面直角坐标系xOy 中,点A 的坐标为(0,1),取一点B (b ,0),连接AB ,作线段AB 的垂直平分线l 1,过点B 作x 轴的垂线l 2,记l 1,l 2的交点为P .(1)当b =3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b ,得出相应的点P ,并把这些点用平滑的曲线连接起来,发现:这些点P 竟然在一条曲线L 上!①设点P 的坐标为(x ,y ),试求y 与x 之间的关系式,并指出曲线L 是哪种曲线; ②设点P 到x 轴,y 轴的距离分别为d 1,d 2,求d 1+d 2的范围. 当d 1+d 2=8时,求点P 的坐标;③将曲线L 在直线y =2下方的部分沿直线y =2向上翻折,得到一条“W ”形状的新曲线,若直线y =kx +3与这条“W ”形状的新曲线有4个交点,直接写出k 的取值范围.图1 图2【考点】二次函数,一次函数,尺规作图,平面直角坐标系,勾股定理,一元二次方程,轴对称——翻折,最值问题.【分析】(1)根据垂直平分线、垂线的尺规作图方法画图即可,要标出字母;(2)①分x >0和x ≤0两种情况讨论:当x >0时,如图2,连接AP ,过点P 作PE ⊥y轴于点E ,可得出P A =PB =y ;再在Rt △APE 中,EP =OB =x ,AE =OE -OA = y -1,由勾股定理,可求出y 与x 之间的关系式;当x ≤0时,点P (x ,y )同样满足y =21x 2+21,曲线L 就是二次函数y =21x 2+21的图像,也就是说曲线L 是一条抛物线.②首先用代数式表示出d 1,d 2:d 1=21x 2+21,d 2=|x |,得出d 1+d 2=21x 2+21+|x |,可知当x =0时,d 1+d 2有最小值21,因此d 1+d 2的范围是d 1+d 2≥21;当d 1+d 2=8时,则21x 2+21+|x |=8. 将x 从绝对值中开出来,故需分x ≥0和x <0两种情况讨论:当x ≥0时,将原方程化为21x 2+21+x =8, 解出x 1,x 2即可;当x <0时,将原方程化为21x 2+21-x =8,解出x 1,x 2即可;最后将x =±3代入y =21x 2+21,求得P 的纵坐标,从而得出点P 的坐标.③直接写出k 的取值范围即可.【解答】解:(1)如图1所示(画垂直平分线,垂线,标出字母各1分).…………..3分E(2)①当x >0时,如图2,连接AP ,过点P 作PE ⊥y 轴于点E . ∵l 1垂直平分AB∴P A =PB =y .在Rt △APE 中,EP =OB =x ,AE =OE -OA = y -1.由勾股定理,得 (y -1)2+x 2=y 2. ………………………………………5分整理得,y =21x 2+21. 当x ≤0时,点P (x ,y )同样满足y =21x 2+21. ……………………….6分 ∴曲线L 就是二次函数y =21x 2+21的图像.即曲线L 是一条抛物线. …………………………………………………………7分②由题意可知,d 1=21x 2+21,d 2=|x |.∴d 1+d 2=21x 2+21+|x |.当x =0时,d 1+d 2有最小值21.∴d 1+d 2的范围是d 1+d 2≥21. ………………………………………………8分当d 1+d 2=8时,则21x 2+21+|x |=8. (Ⅰ)当x ≥0时,原方程化为21x 2+21+x =8. 解得 x 1=3,x 2= -5(舍去).(Ⅱ)当x <0时,原方程化为21x 2+21-x =8.解得 x 1= -3,x 2= 5(舍去).将x =±3代入y =21x 2+21,得 y =5. …………………………………….9分 ∴点P 的坐标为(3,5)或(-3,5). …………………………….10分③k 的取值范围是:-33<k <33. …………………………………………….12分解答过程如下(过程不需写):把y =2代入y =21x 2+21,得x 1=-3,x 2=3. ∴直线y =2与抛物线y =21x 2+21两个交点的坐标为(-3,2)和(3,2). 当直线y =kx +3过点(-3,2)时,可求得 k =33; 当直线y =kx +3过点(3,2)时,可求得 k =-33.故当直线y =kx +3与这条“W ”形状的新曲线有4个交点时,k 的取值范围是:-33<k <33. ………………….12分【点评】本题是压轴题,综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题. 读懂题目、准确作图、熟谙二次函数及其图像是解题的关键. 近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。
解决压轴题目的关键是找准切入点,如添辅助线构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等. 压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力。
2. (2016·四川广安·8分)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).【考点】作图—相似变换.【分析】在图1中画等腰直角三角形;在图2、3、4中画有一条直角边为,另一条直角边分别为3,4,2的直角三角形,然后计算出四个直角三角形的周长.【解答】解:如图1,三角形的周长=2+;如图2,三角形的周长=4+2;如图3,三角形的周长=5+;如图4,三角形的周长=3+.3. (2016·四川达州·7分)如图,在▱ABCD中,已知AD>A B.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【考点】平行四边形的性质;作图—基本作图.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.【解答】解:(1)如图所示:(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.4. (2016·四川凉山州·8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S+S△ABC扇形CAA1=+×3×2=+3.5.(2016湖北孝感,20,8分)如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=.【考点】作图—基本作图.【分析】(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.【解答】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE∥BC,∴△ADE∽△ABC,【点评】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【难易】容易【考点】尺规作图,平行线,平行四边形【解析】利用“等圆中,等弧所对的圆心角相等”可以完成等角的作图再利用“内错角相等”可判定两直线平行,然后利用“一组对边平行且相等的四边形是平行四边形”完成平行四边形的判定,最后利用平行四边形的性质进行平行的证明【参考答案】]证明;如图ÐCAE AD ,CD 为所做 因为ÐCAE =ÐACB , 所以AE //BC 因为AD =BC所以四边形ABCD 为平行四边形 所以CD //AB7.(2016·广东梅州)如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆 心,大于BF 21长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .(1) 四边形ABEF 是_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE ,BF 相交于点O ,若四边形ABEF 的周长为40,BF =10,则AE 的长为________,∠ABC =________°.(直接填写结果) 考点:角平分线的画法,菱形的判定及其性质,勾股定理。