高考数学中利用空间向量解决立体几何的向量方法-法向量
高中数学空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量学案含解析
1.2.2 空间中的平面与空间向量导思1.什么是平面的法向量?它在解决线面位置关系中有何用途? 2.什么是三垂线定理及其逆定理?1.平面的法向量(1)定义:如果α是空间中的一个平面,n 是空间中的一个非零向量,且表示n 的有向线段所在的直线与平面α垂直,则称n 为平面α的一个法向量.此时也称n 与平面α垂直,记作n ⊥α. (2)性质:如果A ,B 是平面α上的任意不同两点,n 为平面α的一个法向量,则: 1 若直线l ⊥α,则l 的任意一个方向向量都是平面α的一个法向量 2 对任意实数λ≠0,λn 是平面α的一个法向量 3向量AB → 一定与n 垂直,即AB →·n =0平面α的法向量唯一吗?它们有什么共同特征? 提示:不唯一,都平行.2.空间线面的位置关系与空间向量若v 是直线l 的一个方向向量,n 1,n 2分别是平面α1,α2的一个法向量,则:1 n 1∥v ⇔l ⊥α12 n 1⊥v ⇔l ∥α1或l ⊂α13 n 1⊥n 2⇔α1⊥α24 n 1∥n 2⇔α1∥α2或α1,α2重合已知v 是直线l 的一个方向向量,n 是平面α的一个法向量,如果n ⊥v ,那么直线l 一定与平面α平行吗?提示:不一定,也可能l ⊂α. 3.三垂线定理及其逆定理 射影已知平面α和一点A ,过点A 作α的垂线l ,设l 与α相交于点A′,则A′就是点A在平面α内的射影,也称为投影.三垂线定理如果平面内的一条直线与平面的一条斜线在该平面内的射影垂直,则它也和这条斜线垂直.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在该平面内的射影垂直.1.辨析记忆(对的打“√”,错的打“×”).(1)已知直线l垂直于平面α,向量a平行直线l,则a是平面α的法向量.()(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.()(3)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.()提示:(1)×.向量a必须为非零向量.(2)√.(3)×.因为b不一定在平面α内,所以a与b不一定垂直.2.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是() A.(0,1,2) B.(3,6,9)C.(-1,-2,3) D.(3,6,8)【解析】选B.向量(1,2,3)与向量(3,6,9)共线.3.(教材例题改编)已知PO⊥平面ABC,且O为△ABC的垂心,则AB与PC的关系是________.【解析】因为O为△ABC的垂心,所以CO⊥AB.又因为OC为PC在平面ABC内的射影,所以由三垂线定理知AB⊥PC.答案:垂直关键能力·合作学习类型一 平面的法向量(数学运算)1.若两个向量AB → =(1,2,3),AC →=(3,2,1),则平面ABC 的一个法向量 为( )A .(-1,2,-1)B .(1,2,1)C .(1,2,-1)D .(-1,2,1)2.已知点A(2,-1,2)在平面α内,n =(3,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .P(1,-1,1)B .P ⎝⎛⎭⎫1,3,32C .P ⎝⎛⎭⎫1,-3,32D .P ⎝⎛⎭⎫-1,3,-343.正四棱锥如图所示,在向量PA → -PB → +PC → -PD → ,PA → +PC → ,PB → +PD → ,PA → +PB → +PC →+PD →中,不能作为底面ABCD 的法向量的是________.【解析】AB → =(1,2,3),AC →=(3,2,1), 设平面ABC 的一个法向量n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AB →=x +2y +3z =0n ·AC →=3x +2y +z =0 ,取x =-1,得平面ABC 的一个法向量为(-1,2,-1).2.选B.设P(x ,y ,z),则AP →=(x -2,y +1,z -2); 由题意知,AP → ⊥n ,则n ·AP →=0;所以3(x -2)+(y +1)+2(z -2)=0,化简得3x +y +2z =9. 验证得在A 中,3×1-1+2×1=4,不满足条件; 在B 中,3×1+3+2×32 =9,满足条件; 同理验证C 、D 不满足条件.3.连接AC ,BD ,交于点O ,连接OP ,则OP → 是底面ABCD 的一个法向量,PA → -PB → +PC → -PD →=BA → +DC → =0,不能作为底面ABCD 的法向量;PA → +PC → =-2OP →,能作为底面ABCD 的法向量;PB → +PD → =-2OP → ,能作为底面ABCD 的法向量;PA → +PB → +PC → +PD → =-4OP →,能作为底面ABCD 的法向量.答案:PA → -PB → +PC → -PD →求平面ABC 的一个法向量的方法1.平面垂线的方向向量法:证明一条直线为一个平面的垂线,则这条直线的一个方向向量即为所求.2.待定系数法:步骤如下:类型二 三垂线定理及其逆定理的应用(直观想象、逻辑推理)【典例】如图所示,三棱锥P-ABC 中,PA ⊥平面ABC ,若O ,Q 分别是△ABC 和△PBC 的垂心,求证:OQ ⊥平面PBC.【思路导引】利用三垂线定理及其逆定理证明【证明】如图,连接AO 并延长交BC 于点E ,连接PE.因为PA ⊥平面ABC ,AE ⊥BC(由于O 是△ABC 的垂心), 所以PE ⊥BC ,所以点Q 在PE 上.因为⎩⎪⎨⎪⎧AE ⊥BC ,PE ⊥BC ,AE ∩PE =E ⇒BC ⊥平面PAE ⇒BC ⊥OQ.①连接BO 并延长交AC 于点F ,则BF ⊥AC. 连接BQ 并延长交PC 于点M ,则BM ⊥PC. 连接MF.因为PA ⊥平面ABC ,BF ⊥AC , 所以BF ⊥PC(三垂线定理).因为⎩⎪⎨⎪⎧BM ⊥PC ,BF ⊥PC ,BM ∩BF =B ⇒PC ⊥平面BMF ⇒PC ⊥OQ.②由①②,知OQ ⊥平面PBC.利用三垂线定理及其逆定理证明线线垂直的基本环节在正方体ABCD-A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.【证明】连接AC,CD1,在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.类型三利用空间向量证明线面、面面的位置关系(逻辑推理)证明平行问题角度1【典例】如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q 是CC1上的点.当点Q在什么位置时,BQ∥平面PAO?【思路导引】建立恰当的坐标系,设出点Q的坐标,由BQ∥平面PAO确定其位置即可.【解析】建立如图所示的空间直角坐标系Dxyz,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2). 再设Q(0,2,c),所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,c),BD 1=(-2,-2,2). 设平面PAO 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·OA →=0,n ·OP →=0, 所以⎩⎪⎨⎪⎧x -y =0,-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n =(1,1,2). 若BQ ∥平面PAO ,则n ⊥BQ ,所以n ·BQ → =0,即-2+2c =0,所以c =1, 故当Q 为CC 1的中点时,BQ ∥平面PAO.本例若把“Q 是CC 1上的点”改为“Q 是CC 1的中点”,其他条件不变,求证:平面D 1BQ ∥平面PAO.【证明】建立如图所示的空间直角坐标系,设正方体棱长为2,则O(1,1,0),A(2,0,0),P(0,0,1),B(2,2,0),D 1(0,0,2),Q(0,2,1), 所以OA → =(1,-1,0),OP →=(-1,-1,1), BQ →=(-2,0,1),BD 1=(-2,-2,2). 设平面PAO 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧n 1·OA →=0n 1·OP →=0 ,所以⎩⎪⎨⎪⎧x -y =0-x -y +z =0,令x =1,则y =1,z =2.所以平面PAO 的一个法向量为n 1=(1,1,2).同理可求平面D 1BQ 的一个法向量为n 2=()1,1,2 , 因为n 1=n 2,所以n 1∥n 2, 所以平面D 1BQ ∥平面PAO.角度2证明垂直问题【典例】在如图所示的几何体中,平面CDEF 为正方形,平面ABCD 为等腰梯形,AB ∥CD ,AB =2BC ,∠ABC =60°,AC ⊥FB. (1)求证:AC ⊥平面FBC ;(2)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.【思路导引】(1)利用余弦定理和勾股定理的逆定理可得AC ⊥BC ,再利用已知AC ⊥FB 和线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,利用两个平面的法向量是否垂直即可. 【解析】(1)因为AB =2BC ,∠ABC =60°,在△ABC 中,由余弦定理可得AC 2=AB 2+BC 2-2AB ·BCcos 60°=3BC 2, 所以AC 2+BC 2=4BC 2=AB 2, 所以∠ACB =90°,所以AC ⊥BC. 又因为AC ⊥FB ,FB ∩BC =B , 所以AC ⊥平面FBC.(2)线段ED 上不存在点Q ,使平面EAC ⊥平面QBC. 证明如下:因为AC ⊥平面FBC , 所以AC ⊥FC.因为CD ⊥FC ,所以FC ⊥平面ABCD.所以CA ,CF ,CB 两两互相垂直,如图建立空间直角坐标系.在等腰梯形ABCD 中,可得CB =CD.设BC =1,所以C(0,0,0),A(3 ,0,0),B(0,1,0),D(32 ,-12 ,0),E ⎝ ⎛⎭⎪⎪⎫32,-12,1 .所以CE → =⎝⎛⎭⎪⎪⎫32,-12,1 ,CA →=(3 ,0,0),CB →=(0,1,0).设平面EAC 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·CE →=0n ·CA →=0 ,所以⎩⎨⎧32x -12y +z =03x =0,取z =1,得n =(0,2,1).假设线段ED 上存在点Q , 设Q ⎝⎛⎭⎪⎫32,-12,t (0≤t≤1),所以CQ →=⎝ ⎛⎭⎪⎫32,-12,t . 设平面QBC 的法向量为m =(a ,b ,c),则⎩⎪⎨⎪⎧m ·CB →=0m ·CQ →=0 ,所以⎩⎨⎧b =032a -12b +tc =0,取c =1,得m =⎝ ⎛⎭⎪⎫-2t 3,0,1 .要使平面EAC ⊥平面QBC ,只需m·n =0, 即-23t×0+0×2+1×1=0,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC. 利用空间向量证明平行、垂直问题的常用思路线面平行(1)求出直线l的方向向量是a,平面α的法向量是u,只需证明a⊥u,即a·u=0.(2)在平面内找一个向量与已知直线的方向向量是共线向量即可.面面平行(1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u,v,证明u∥v即可说明α∥β.线面垂直求出平面内两条相交直线的方向向量,证明直线的方向向量和它们都垂直.面面垂直(1)转化为线面垂直.(2)求解两个平面的法向量,证明两个法向量垂直.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1∥平面ADE;(2)平面ADE∥平面B1C1F.【解析】如图所示建立空间直角坐标系,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以FC1=(0,2,1),DA → =(2,0,0),AE → =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA → ,n 1⊥AE → ,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0n 1·AE →=2y 1+z 1=0 ⇒⎩⎪⎨⎪⎧x 1=0z 1=-2y 1 , 令z 1=2⇒y 1=-1,所以n 1=(0,-1,2),因为n 1·1FC =-2+2=0,所以n 1⊥1FC , 又因为FC 1⊄平面ADE ,即FC 1∥平面ADE.(2)因为11C B =(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥1FC ,n 2⊥11C B ,得21222112FC 2y z 0C B 2x 0⎧=+=⎪⎨==⎪⎩n n ⇒⎩⎪⎨⎪⎧x 2=0z 2=-2y 2. 令z 2=2⇒y 2=-1,所以n 2=(0,-1,2),所以n 1=n 2,所以平面ADE ∥平面B 1C 1 F.2.在正方体ABCD-A 1B 1C 1D 1中,E 是BC 的中点,在CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,且P(0,2,a),则D(0,0,0),E(1,2,0),C 1(0,2,2),A 1(2,0,2),B 1(2,2,2),则DE → =(1,2,0),1DC =(0,2,2),设n 1=(x 1,y 1,z 1)且n 1⊥平面DEC 1,则⎩⎪⎨⎪⎧x 1+2y 1=0y 1+z 1=0 ,取n 1=(2,-1,1). 又1A P =(-2,2,a -2),11A B =(0,2,0),设n 2=(x 2,y 2,z 2)且n 2⊥平面A 1B 1P ,则⎩⎪⎨⎪⎧-2x 2+2y 2+(a -2)z 2=0y 2=0 ,取n 2=(a -2,0,2). 由平面A 1B 1P ⊥平面C 1DE ,得n 1·n 2=0,1的中点.【补偿训练】在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F.求证:(1)PA ∥平面EDB.(2)PB ⊥平面EFD.K【证明】建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a.(1)连接AC 交BD 于G ,连接EG ,依题意得D(0,0,0),A(a ,0,0),P(0,0,a),E ⎝⎛⎭⎫0,a 2,a 2 . 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0 ,所以EG → =⎝⎛⎭⎫a 2,0,-a 2 .又PA → =(a ,0,-a),所以PA → =2EG → ,这表明PA ∥EG.而EG ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB.(2)依题意得B(a ,a ,0),PB → =(a ,a ,-a),DE → =⎝⎛⎭⎫0,a 2,a 2 ,所以PB → ·DE → =0+a 22 -a 22 =0,所以PB → ⊥DE → ,即PB ⊥DE.又已知EF ⊥PB ,且EF∩DE =E ,所以PB ⊥平面EFD.课堂检测·素养达标1.设直线l 的方向向量为a ,平面α的法向量为n ,l ⊄α,则使l ∥α成立的是( )A .a =(1,-1,2),n =(-1,1,-2)B .a =(2,-1,3),n =(-1,1,1)C .a =(1,1,0),n =(2,-1,0)D .a =(1,-2,1),n =(1,1,2)【解析】l 的方向向量为a ,平面α的法向量为n ,l ⊄α,使l ∥α成立,所以a·n =0, 在A 中,a·n =-1-1-4=-6,故A 错误;在B 中,a·n =-2-1+3=0,故B 成立;在C 中,a·n =2-1=1,故C 错误;在D 中,a·n =1-2+2=1,故D 错误.2.(教材练习改编)若平面α与β的法向量分别是a =(2,4,-3),b =(-1,2,2),则平面α与β的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 【解析】选B.a·b =(2,4,-3)·(-1,2,2)=-2+8-6=0,所以a ⊥b ,所以平面α与平面β垂直.3.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)【解析】选A.设平面α内一点P(x ,y ,z),则:MP → =(x -1,y +1,z -2),因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP → ,n ·MP → =6(x -1)-3(y +1)+6(z -2)=6x -3y +6z -21,所以由n ·MP → =0得6x -3y +6z -21=0,所以2x -y +2z =7,把各选项的坐标数据代入上式验证可知A 适合.4.正三棱锥P-ABC 中,BC 与PA 的位置关系是________.【解析】如图,在正三棱锥P-ABC 中,P 在底面ABC 内的射影O 为正三角形ABC 的中心,连接AO ,则AO 是PA 在底面ABC 内的射影,且BC ⊥AO ,所以BC ⊥PA.答案:BC ⊥PA。
用空间向量法求解立体几何问题典例及解析
用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
(浙江专用)高考数学总复习 第八章 立体几何与空间向量 第7讲 立体几何中的向量方法(一)—证明平行
第7讲立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=01.判断正误(在括号内打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.( )(3)若两平面的法向量平行,则两平面平行或重合.( )(4)若空间向量a平行于平面α,则a所在直线与平面α平行.( )答案(1)×(2)√(3)√(4)×2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β不平行,也不垂直.答案 C3.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33 D.⎝⎛⎭⎪⎫33,33,-33 解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .答案 C4.(2017·青岛月考)所图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设|AD |=2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),所以AM →=(-2,0,1),ON →=(1,0,2),因此AM →·ON →=-2+0+2=0,故AM ⊥ON .答案 垂直5.(2017·杭州调研)设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________. 解析 当a =(1,1,2)时,a =12n ,则l ⊥α;当a =(-1,-1,1)时,a ·n =(-1,-1,1)·(2,2,4)=0,则l ∥α或l ⊂α. 答案 l ⊥α l ∥α或l ⊂α6.(2017·绍兴月考)设α,β为两个不同的平面,u =(-2,2,5),v =(1,-1,x )分别为平面α,β的法向量.(1)若α⊥β,则x =________; (2)若α∥β,则x =________.解析 (1)由α⊥β,得u ·v =0,即-2-2+5x =0,x =45;(2)由α∥β,得u ∥v ,即-21=2-1=5x ,x =-52.答案 (1)45 (2)-52考点一 利用空间向量证明平行问题【例1】 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz . 由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0,∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法一 ∴EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →, 又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P , ∴DM ⊥平面PAB .∵DM ⊂平面PAD , ∴平面PAD ⊥平面PAB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,故AB 1⊥平面A 1BD . 法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三 利用空间向量解决探索性问题【例3】 (2017·湖州调研)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .规律方法 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在. 【训练3】 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说明理由.(1)证明 由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,从而得EF ⊥CD . (2)解 假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即存在满足条件的点G ,且点G 为AD 的中点.[思想方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直. [易错防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.。
高考数学一轮复习第7讲 立体几何中的向量方法
第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。
高三立体几何大题专题(用空间向量解决立体几何类问题)
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
用空间向量解立体几何问题方法归纳
用空间向量解立体几何问题方法归纳(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求P A 长. (2)学审题由(1)―→AD,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°. 由余弦定理知AE =12+⎝ ⎛⎭⎪⎫122-2×1×12cos 60°=32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2, 即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎫1,-12,0, D ⎝ ⎛⎭⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎨⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·AC |n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值.解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE ⊥BD , ∴Rt △AOD ∽Rt △BAD ,∴DO AD =ADBD ,∴DO =4,∴BO =5. 在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧ n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x =25得n 1=(25,4,5).又n 2=(0,1,0)为平面AEP 的一个法向量, ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=461×1=46161, 故二面角E -AP -B 的余弦值为46161.5.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQQD 的值;若不存在,请说明理由.解:(1)在△P AD 中,P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量, cos 〈PB ,OA 〉=PB ·OA | PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ), 则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =(λ+1)y +(1-λ)z =0.取z =λ+1,得m =(1-λ,λ-1,λ+1), 又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍), 所以存在点Q ,且PQ QD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0). 设平面SCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1, 于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM ⊄平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪(1,0,0)·(2,-1,1)1·6=⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1). 又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪(x ,2x -3,-1)·(1,0,0)x 2+(2x -3)2+(-1)2·1=⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎫1x 2-12⎝ ⎛⎭⎪⎫1x +5=110⎝ ⎛⎭⎪⎫1x -352+75 .当1x =35,即x =53时,(sin θ)max =357.7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠F AB =∠DAB =90°,AF =AB =BC =2,AD =1,F A ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵F A ⊥AB ,F A ⊥CD ,AB 与CD 相交,∴F A ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DF =0,n ·DC =0⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1. 则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点. (1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面P AB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ). 由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面P AB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧ n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝ ⎛⎭⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即 34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23). 设EC 与平面P AB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面P AB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0),则⎩⎪⎨⎪⎧ n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +(2-t )y =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。
立体几何之空间向量法
立体几何之空间向量法【知识要点】1. 利用空间向量证明平行问题的方法(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两条相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两个平面的法向量平行即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线平行:l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(2)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0.(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.2. 利用空间向量证明垂直问题的方法(1)线线垂直:直线与直线的垂直,只要证明两条直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两个平面的法向量垂直即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线垂直:l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3.(3)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.3. (1)夹角计算公式①两条异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|. (2)距离公式①点点距离:点与点的距离,是以这两点为起点和终点的向量的模;②点线距离:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M到直线a 的距离d =|MN |sin 〈MN ,a 〉; ③线线距离:两条平行线间的距离,转化为点线距离;两条异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距离:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN ||cos 〈MN ,n 〉|=||||MN n n ; ⑤线面距离:直线和与它平行的平面间的距离,转化为点面距离;⑥面面距离:两平行平面间的距离,转化为点面距离.4. (1)用空间向量解决立体几何问题的步骤及注意事项①建立空间直角坐标系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量或直线的方向向量;④根据向量运算法则,求出问题的结果.(2)利用空间向量巧解探索性问题空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.一、真题试做1.如图,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A .55B .53C .255D .352.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A-B1E-A1的大小为30°,求AB的长.5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.二、热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.变式训练1如图,已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC ,D,E,F分别为B1A,C1C,BC的中点.求证:=90°,且AB=AA(1)DE∥平面ABC;(2)B1F⊥平面AEF.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.变式训练2如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若P A=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求P A的长.热点三利用空间向量求角和距离【例3】如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.B1所成角的余弦值;(1)求异面直线AC与A(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.变式训练3 已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的 高.热点四 用向量法解决探索性问题【例4】如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.变式训练4 如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值; (3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45若存在,求出CQ 的值;若不存在,请说明理由.三、思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.【典型例题】如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1 图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.四、练习巩固 1.已知AB =(1,5,-2),BC =(3,1,z ),若,AB BC BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A .337,-157,4B .407,-157,4C .4072,4D .4,407,-15 2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A .26B .36C .13D .664.在四面体PABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.7.在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.。
高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离
G
x D F A
C
E
y
B
例1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是 :
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点 z B 到平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). E F ( 2 , 2 , 0 ), E G ( 2 , 4 , 2 ), D C
G
x D
F A
C
E
y
B
练习3: 正方体AC1棱长为1,求BD与平面GB1D1的 距离
D1 A1 Z B1
DD
C1 d
1
n
n
G A X
D
B
C Y
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
D1 A1 Z B1
AD
n
C1 d
n
D
A X B
C Y
| PA n | = |n |
.
这个结论说明,平面外一点到平面的距离等于连结此点与平面 上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的 绝对值.
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
∴n M C 2 2 ax ay 0
a , 0, 0) N (
2 2
a,
1 2
a,
1 2
a)
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
空间向量在立体几何中的应用
空间向量在立体几何中的应用【考纲说明】1. 能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2. 会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3. 培养用向量的相关知识思考问题和解决问题的能力;知识梳理】、空间向量的运算1、向量的几何运算1)向量的数量积:已知向量,则叫做的数量积,记作空间向量数量积的性质:① ;②;③.2)向量共线定理:向量a r a r r r r0 与b 共线,当且仅当有唯一一个实数,使b2、向量的坐标运算(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
2)若,,则,,3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2. 利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3. 利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4. 利用空间向量求角度1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[0 0,90 0])2)线面角的求法:(3)二面角的求法:设n1,n2 分别是二面角其补角的大小(如图)5. 利用空间向量求距离1)平面的法向量的求法:设n=(x,y,z),利用n 与平面内的两个不共线的向a, b 垂直,其数量积为零,列出两个三元一次方程,联立后取设n 是平面的法向量,是直线的方向向量,则直线与平面所成的角为其一组解,即得到平面的一个法向量(如图)就是二面角的平面角或的两个面2)利用法向量求空间距离a ) 点 A 到平面 的距离: ,其中 , 是平面 的法向量。
b ) 直线 与平面 之间的距离:,其中 , 是平面 的法向量。
c ) 两平行平面 之间的距离: ,其中 , 是平面 的法向量。
经典例题】例 1】( 2010 全国卷 1理)正方体 ABCD-A 1B 1C 1D 1中, B B 1与平面 AC D 1所成角的余弦值为(A )23B )332C )23 D )63【解析】 D 【例 2】( 2010 全国卷 2 文)已知三棱锥 SA =3,那么直线 AB 与平面 SBC 所成角的正弦值为( ) S ABC 中,底面 ABC 为边长等于 2 的等边三角形, SA 垂直于底面ABC , A ) 3 (B) 4 5(C) 4 (D) 解析】 D 2012 全国卷)三棱柱 ABC A 1B 1C 1 中,底面边长和侧棱长都相等, SABAA 1CAA 1 60o ,则异面直线 AB 1与 BC 1所成角的余弦值为 解析】影是线段BC 的中点O。
2024年高考数学总复习第八章《立体几何与空间向量》8
2024年高考数学总复习第八章《立体几何与空间向量》§8.7立体几何中的向量方法(二)——求空间角和距离最新考纲1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).概念方法微思考1.利用空间向量如何求线段长度?提示利用|AB →|2=AB →·AB →可以求空间中有向线段的长度.2.如何求空间点面之间的距离?提示点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为|BO →|=|AB →||cos 〈AB →,n 〉|.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(3)两个平面的法向量所成的角是这两个平面所成的角.(×)(4)两异面直线夹角的范围是0,π2,直线与平面所成角的范围是0,π2,二面角的范围是[0,π].(√)(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.(×)题组二教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为()A .45°B .135°C .45°或135°D .90°答案C解析cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22),AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角,cos ∠C 1AD =AC 1,→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32,又∵∠C 1AD ∈0,π2,∴∠C 1AD =π6.题组三易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.22答案C 解析以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos 〈BM →,AN →〉=BM ,→·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010.5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________.答案30°解析设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC .在Rt △EBG 中,可得BE =2,故DF =22.在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),1,0C (0,3,0),所以AE →=(1,3,2),CF →1,-3故cos 〈AE →,CF →〉=AE ,→·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为()A.110B.35C.710D.45答案C解析如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),-32,-12,所以AM →=(0,1,2),BN →=32,-12,2所以cos 〈AM →,BN →〉=AM ,→·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2(2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.(1)证明由已知可得BF ⊥PF ,BF ⊥EF ,PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,所以PE ⊥PF .所以PH =32,EH =32.则H (0,0,0),,01,-32,DP →,32,HP →,0又HP →为平面ABFD 的法向量,设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP ,→·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34.思维升华若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2(2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.(1)证明因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.如图,连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0).设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0).设平面PAM 的法向量为n =(x ,y ,z ).由AP →·n =0,AM →·n =0,得y +23z =0,+(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB ,→·n |OB ,→||n |=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去)或a =43.所以n -833,433,-又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34.题型三求二面角例3(2018·济南模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面PAQ ;(2)若BE =2AE ,求二面角C —BQ —A 的余弦值.(1)证明由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴,92,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →,m -92,-∵OD →·AQ →=0,OD →·PQ →=0,∴OD →⊥AQ →,OD →⊥PQ →,且AQ →与PQ →不共线,∴OD ⊥平面PAQ .(2)解∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ),1·QB ,→=0,1·BC ,→=06x +3y =0,3y +6z =0,令z =1,则y =2,x =1,则n 1=(1,2,1),易知平面ABQ 的一个法向量为n 2=(0,0,1),设二面角C —BQ —A 的平面角为θ,由图可知,θ为锐角,则cos θ=|n 1·n 2|n 1|·|n 2||=66.思维升华利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3(2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD 所在平面垂直,M 是 CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为 CD的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则·AM ,→=0,·AB ,→=0,2x +y +z =0,y =0.可取n =(1,0,2),DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA ,→|n ||DA ,→|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值.(1)证明设AC ∩BD =O ,连接SO ,如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线,即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°,所以BD =23,CO =1.在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点,所以SO =12BD =3.在△SOC 中,因为CO =1,SO =3,CS =2,所以SO 2+CO 2=CS 2,所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD .[5分](2)解方法一过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB .因为OK ∩AO =O ,OK ,AO ⊂平面AOK ,所以SB ⊥平面AOK .[6分]因为AK ⊂平面AOK ,所以AK ⊥SB .同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角.因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .在Rt △SOB 中,OK =SO ·OB SB =62.在Rt △AOK 中,AK =AO 2+OK 2=422,同理可求CK =102.[10分]在△AKC 中,cos ∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分]方法二因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD ,所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD ,所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3).所以AB →=(-3,3,0),CB →=(1,3,0),SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1),AB ,→·n =-3x 1+3y 1=0,SB ,→·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3).同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为()A .60°B .120°C .60°或120°D .90°答案C解析cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为()A.55B.53C.56D.54答案A解析设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为()A.12B.23C.33D.22答案B解析以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),,0D (0,1,0),∴A 1D →=(0,1,-1),A 1E →,0设平面A 1ED 的一个法向量为n 1=(1,y ,z ),1D ,→·n 1=0,1E ,→·n 1=0,-z =0,-12z =0,=2,=2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为()A.π6B.π4C.π3D.π2答案D解析以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·上饶模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为()A .0B .-14C.14D.12答案C解析以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ,则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.(2018·上海松江、闵行区模拟)如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于()A.43B.53C.23D .-23答案C解析由题意可知,平面ABO 的一个法向量为OC →=(0,0,2),由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC ,→·n ||OC ,→||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),0,,12,,12,∴PA →=(0,0,-2),DE →,12,DF →-12,12,设平面DEF 的法向量为n =(x ,y ,z ),·DE ,→=0,·DF ,→=0,=0,x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA ,→·n ||PA ,→||n |=55,∴直线PA 与平面DEF 所成角的正弦值为55.8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案45解析∵AE ∶ED ∶AD =1∶1∶2,∴AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴AF →=(-1,2,0),EC →=(0,2,1),∴cos 〈AF →,EC →〉=AF ,→·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案60°解析以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=EF ,→·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°],∴EF 和BC 1所成的角为60°.10.(2018·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析方法一延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.方法二如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),,1,1AE →,1AF →1,1设平面AEF 的法向量为n =(x ,y ,z ),·AE ,→=0,·AF ,→=0,+13z =0,x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3),取平面ABC 的法向量为m =(0,0,-1),设平面AEF 与平面ABC 所成的锐二面角为θ,则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.11.(2018·皖江八校联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形,∴M 是AC 1的中点,又Q 是A 1B 的中点,∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1,∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M ,∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1,∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2),∴CA →=(3,-1,0),B 1A 1→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ),则由n ⊥B 1A 1→,n ⊥B 1B →,-2y =0,2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3),设直线AC 与平面A 1BB 1所成的角为α,则sin α=|n ·CA ,→||n |·|CA ,→|=23231=9331.12.(2018·赣州模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ;(2)求二面角A -BF -C 的余弦值.(1)证明在Rt △ABE 中,由AB =AE =1,得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC .在△PAD 中,cos ∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos ∠PAE =5+1-2×5×1×55=4,所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,所以PE ⊥BE .又因为CE ∩PE =E ,CE ,PE ⊂平面PEC ,所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),,-22,D (-2,2,0),-22,22,AB →,22,BF →-322,22,BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1),·AB ,→=22x 1+22y 1=0,·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22),设平面BFC 的法向量为n =(x 2,y 2,z 2),·BC ,→=-2x 2+22y 2=0,·BF ,→=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角),则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3,∴B (0,4,0),S (0,0,3).设BC =m ,则C (m ,4,0),∵SF BF =CE BE=λ,∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F0,4λ1+λ,31+λ同理可得m 1+λ,4,0,∴FE →m 1+λ,41+λ,-31+λ∵FA →0,-4λ1+λ,-31+λ∠AFE 为直角,即FA →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.14.(2018·海南五校模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明连接A1Q.∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1(0,0,1),B1(1,0,1),,1,12,,12,NM →-12,12A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN→λ,12,-设n =(x ,y ,z )是平面PMN 的法向量,·NM ,→=0,·PN ,→=0,+12y +12z =0,+12y -z =0,=1+2λ3x ,=2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时,满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于()A .1B .2C .13D .26答案B 解析设平面ABCD 的法向量为n =(x ,y ,z ),⊥AB →,⊥AD →,x -2y +3z =0,4x +y =0,令y =4,则n ,4则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =2626×226=2.16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD =CD =BC =1,∵AB ∥CD ,∠BCD =120°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC .∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF ,∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)解以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,·AB ,→=0,·BM ,→=0,-3x +y =0,-y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4.∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77,∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
空间向量法解决立体几何问题全面总结
由OA1 =(-1,-1,2),OD1 =(-1,1,2)
得:
x x
y y
2z 2z
0 0
解得:xy20z
取z =1
得平面OA1D1的法向量的坐标n=(2,0,1).
(2)求平面的法向量的坐标的特殊方法:
• 第一步:写出平面内两个不平行的向量 • a = (x1,y1,z1), b = (x2,y2,z2), • 第二步:那么平面法向量为
z
C1
A1
A x
B1
C O
B y
• 解:建立如图示的直角坐标系,则
•
A(
a 2
,0,0),B(0,
3 2
a
,0)
A1(
a 2
,0,).
C(-
a 2
,0,
2a)
• 设面ABB1A1的法向量为n=(x,y,z)
•得 a 3
AB ( , 2
2
a,0), AA1 (0,0,
2a)
• •
a
一.引入两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向
量都称为直线的方向向量.如图,在空间直角
坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是
z
AB (x2 x1, y2 y1, z2 z1)
B
A
y
x
2.平面的法向量 • 如果表示向量n的有向线段所在的直线垂直
n
a
b
α
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z).
空间向量解决立体几何
1 空间直角坐标系构建三策略利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其它向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如.1.利用共顶点的互相垂直的三条棱例1 已知直四棱柱中,AA 1=2,底面ABCD 是直角梯形,∠DAB 为直角,AB ∥CD ,AB =4,AD =2,DC =1,试求异面直线BC 1与DC 所成角的余弦值.解 如图以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y轴,z 轴,建立空间直角坐标系,则D (0,0,0),C 1(0,1,2),B (2,4,0),C (0,1,0),所以BC 1→=(-2,-3,2),CD →=(0,-1,0).所以cos 〈BC 1→,CD →〉=BC 1→·CD →|BC 1→||CD →|=31717. 故异面直线BC 1与DC 所成角的余弦值为31717. 点评 本例以直四棱柱为背景,求异面直线所成角.求解关键是从直四棱柱图形中的共点的三条棱互相垂直关系处着眼,建立空间直角坐标系,写出有关点的坐标和相关向量的坐标,再求两异面直线的方向向量的夹角即可.2.利用线面垂直关系例2 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥面BB 1C 1C ,E 为棱C 1C 的中点,已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.试建立合适的空间直角坐标系,求出图中所有点的坐标.解 过B 点作BP 垂直BB 1交C 1C 于P 点,因为AB ⊥面BB 1C 1C ,所以BP ⊥面ABB 1A 1,以B 为原点,分别以BP ,BB 1,BA 所在的直线为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BB 1=2,BC =1,∠BCC 1=π3, 所以CP =12,C 1P =32,BP =32,则各点坐标分别为B (0,0,0),A (0,0,2),B 1(0,2,0),C (32,-12,0),C 1(32,32,0),E (32,12,0),A 1(0,2,2).点评 空间直角坐标系的建立,要尽量地使尽可能多的点落在坐标轴上,这样建成的坐标系,既能迅速写出各点的坐标,又由于坐标轴上的点的坐标含有0,也为后续的运算带来了方便.本题已知条件中的垂直关系“AB ⊥面BB 1C 1C ”,可作为建系的突破口.3.利用面面垂直关系例3 如图1,等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =60°,E 是BC 的中点.将△ABE 沿AE 折起,使平面BAE ⊥平面AEC (如图2),连接BC ,BD .求平面ABE 与平面BCD 所成的锐角的大小.解 取AE 中点M ,连接BM ,DM .因为在等腰梯形ABCD 中,AD ∥BC ,AB =AD ,∠ABC =60°,E 是BC 的中点, 所以△ABE 与△ADE 都是等边三角形,所以BM ⊥AE ,DM ⊥AE .又平面BAE ⊥平面AEC ,所以BM ⊥MD .以M 为原点,分别以ME ,MD ,MB 所在的直线为x ,y ,z 轴,建立空间直角坐标系Mxyz ,如图,则E (1,0,0),B (0,0,3),C (2,3,0),D (0,3,0),所以DC →=(2,0,0),BD →=(0,3,-3),设平面BCD 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧m ·DC →=2x =0,m ·BD →=3y -3z =0.取y =1,得m =(0,1,1), 又因平面ABE 的一个法向量MD →=(0,3,0),所以cos 〈m ,MD →〉=m ·MD →|m ||MD →|=22, 所以平面ABE 与平面BCD 所成的锐角为45°.点评 本题求解关键是利用面面垂直关系,先证在两平面内共点的三线垂直,再构建空间直角坐标系,然后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度就不同,所以最后还应该根据这个二面角的实际形态确定其大小.2 用向量法研究“动态”立体几何问题“动态”立体几何问题是在静态几何问题中渗透了一些“动态”的点、线、面等元素,同时由于“动态”的存在,使得问题的处理趋于灵活.本文介绍巧解“动态”立体几何问题的法宝——向量法,教你如何以静制动.1.求解、证明问题例1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .证明 以O 为坐标原点建立如图所示的空间直角坐标系,则A 1(a,0,a ),C 1(0,a ,a ).设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ).∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0,∴A 1F →⊥C 1E →,即A 1F ⊥C 1E .2.定位问题例2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,在DG 上是否存在点M ,使得直线MB 与平面BEF 的夹角为45°?若存在,求出点M 的位置;若不存在,请说明理由.解题提示 假设存在点M ,设平面BEF 的法向量为n ,设BM 与平面BEF所成的角为θ,利用sin θ=|BM →·n ||BM →||n |解出t ,若t 满足条件则存在. 解 因为四边形CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC .又DA ∩DC =D ,所以GD ⊥平面ABCD .又DA ⊥DC ,所以DA ,DG ,DC 两两互相垂直,如图,以D 为原点建立空间直角坐标系,则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在DG 上,假设存在点M (0,0,t ) (0≤t ≤1)使得直线BM 与平面BEF 的夹角为45°.设平面BEF 的法向量为n =(x ,y ,z ).因为BE →=(0,-1,1),BF →=(-1,0,1),则⎩⎪⎨⎪⎧ n ·BE →=0,n ·BF →=0,即⎩⎪⎨⎪⎧-y +z =0,-x +z =0,令z =1,得x =y =1, 所以n =(1,1,1)为平面BEF 的一个法向量.又BM →=(-1,-1,t ),直线BM 与平面BEF 所成的角为45°,所以sin 45°=|BM →·n ||BM →||n |=|-2+t |t 2+2×3=22, 解得t =-4±3 2.又0≤t ≤1,所以t =32-4.故在DG 上存在点M (0,0,32-4),且DM =32-4时,直线MB 与平面BEF 所成的角为45°.点评 由于立体几何题中“动态”性的存在,使有些问题的结果变得不确定,这时我们要以不变应万变,抓住问题的实质,引入参量,利用空间垂直关系及数量积将几何问题代数化,达到以静制动的效果.3 向量与立体几何中的数学思想1.数形结合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示可以把向量问题转化为代数运算,从而沟通了几何与代数的联系,体现了数形结合的重要思想.向量具有数形兼备的特点,因此,它能将几何中的“形”和代数中的“数”有机地结合在一起.例1 如图,在四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,∠BAD =90°,AD ∥BC ,且A 1A =AB =AD =2BC =2,点E 在棱AB 上,平面A 1EC 与棱C 1D 1相交于点F .(1)证明:A 1F ∥平面B 1CE ;(2)若E 是棱AB 的中点,求二面角A 1-EC -D 的余弦值;(3)求三棱锥B 1-A 1EF 的体积的最大值.(1)证明 因为ABCD -A 1B 1C 1D 1是棱柱,所以平面ABCD ∥平面A 1B 1C 1D 1.又因为平面ABCD ∩平面A 1ECF =EC ,平面A 1B 1C 1D 1∩平面A 1ECF =AF ,所以A 1F ∥EC .又因为A 1F ⊄平面B 1CE ,EC ⊂平面B 1CE ,所以A 1F ∥平面B 1CE .(2)解 因为AA 1⊥底面ABCD ,⊥BAD =90°,所以AA 1,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,AA 1分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系.则A 1(0,0,2),E (1,0,0),C (2,1,0),所以A 1E →=(1,0,-2),A 1C →=(2,1,-2).设平面A 1ECF 的法向量为m =(x ,y ,z ),由A 1E →·m =0,A 1C →·m =0,得⎩⎪⎨⎪⎧x -2z =0,2x +y -2z =0. 令z =1,得m =(2,-2,1).又因为平面DEC 的法向量为n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m |·|n |=13, 由图可知,二面角AA 1-EC -D 的平面角为锐角,所以二面角A 1-EC -D 的余弦值为13. (3)解 过点F 作FM ⊥A 1B 1于点M ,因为平面A 1ABB 1⊥平面A 1B 1C 1D 1,FM ⊂平面A 1B 1C 1D 1,所以FM ⊥平面A 1ABB 1,所以VB 1-A 1EF =VF -B 1A 1E =13×S △A 1B 1E ×FM =13×2×22×FM =23FM . 因为当F 与点D 1重合时,FM 取到最大值2(此时点E 与点B 重合),所以当F 与点D 1重合时,三棱锥B 1-A 1EF 的体积的最大值为43. 2.转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.例2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A -DF -C 的平面角的余弦值.分析 求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.解 (1)以D 为原点,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴D 1F →=23D 1E →=23(1,1,-2) =(23,23,-43), ∴DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43) =(23,23,23),设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0, ∴⎩⎪⎨⎪⎧ 23x +23y +23z =0,2y =0.取x =1得平面FDC 的一个法向量为n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则⎩⎪⎨⎪⎧p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧ 23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1), ∵n ·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(3)设q =(x ,y ,z )是平面ADF 的法向量,则⎩⎪⎨⎪⎧ q ·DF →=0,q ·DA →=0, ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A -DF -C 的平面角为θ,由题中条件可知θ∈(π2,π),则cos θ=|n ·q |n |·|q ||=-0+0+12×2=-12, ∴二面角A -DF -C 的平面角的余弦值为12. 3.函数思想例3 已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,且c =a +t b ,a =(-1,1,3),b =(1,0,-2).问|c |能否取得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不能,说明理由.分析 写出|c |关于t 的函数关系式,再利用函数观点求解.解 由题意知Δ≥0,得-4≤t ≤-43, 又c =(-1,1,3)+t (1,0,-2)=(-1+t,1,3-2t ),∴|c |=(-1+t )2+(3-2t )2+1 =5⎝⎛⎭⎫t -752+65. 当t ∈⎣⎡⎦⎤-4,-43时,f (t )=5⎝⎛⎭⎫t -752+65是单调递减函数,∴y max =f (-4),即|c |的最大值存在, 此时c =(-5,1,11).b·c =-27,|c |=7 3.而|b |=5,∴cos 〈b ,c 〉=b·c |b||c |=-275×73=-91535. 点评 凡涉及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类讨论思想例4 如图,矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD (点P 位于平面ABCD 上方),问BC 边上是否存在点Q ,使PQ →⊥QD →?分析 由PQ →⊥QD →,得PQ ⊥QD ,所以平面ABCD 内,点Q 在以边AD为直径的圆上,若此圆与边BC 相切或相交,则BC 边上存在点Q ,否则不存在.解 假设存在点Q (Q 点在边BC 上),使PQ →⊥QD →,即PQ ⊥QD ,连接AQ .∵P A ⊥平面ABCD ,∴P A ⊥QD .又PQ →=P A →+AQ →且PQ →⊥QD →,∴PQ →·QD →=0,即P A →·QD →+AQ →·QD →=0.又由P A →·QD →=0,∴AQ →·QD →=0,∴AQ →⊥QD →.即点Q 在以边AD 为直径的圆上,圆的半径为a 2. 又∵AB =1,由题图知,当a 2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a 2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ;当0<a <2时,不存在点。
第二十一讲空间向量在立体几何中的应用原卷版2023届高考数学二轮复习讲义
第二十一讲:空间向量在立体几何中的应用【考点梳理】1.法向量的求解①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量 n 是平面的法向量,向量 m 是与平面平行或在平面内,则有0⋅= m n .第一步:写出平面内两个不平行的向()()111222,,,,,== a x y z b x y z ;第二步:那么平面法向量(),,= n x y z ,满足1112220000⎧++=⋅=⎧⎪⇒⎨⎨++=⋅=⎩⎪⎩ xx yy zz n a xx yy zz n b .第三步:化解方程组令z y x ,,其中一个为1,求其它两个值.2.判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为 a , b .若 a ∥ b ,即= a b λ,则∥a b ;若⊥ a b ,即0⋅= a b ,则⊥a b .②直线与平面的位置关系:直线l 的方向向量为 a ,平面α的法向量为 n ,且⊥l α.若 a ∥ n ,即= a n λ,则⊥l α;若⊥ a n ,即0⋅= a n ,则∥ a α.3.平面与平面的位置关系平面α的法向量为1 n ,平面β的法向量为2 n .若1 n ∥2 n ,即12= n n λ,则∥αβ;若1 n ⊥2 n ,即120⋅= n n ,则α⊥β.4.空间角公式.(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.5.点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.||||⋅= AB n d n 【典型题型讲解】考点一:直线与平面所成的角【典例例题】例1.(2022·广东茂名·一模)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面ABCD 为平行四边形,E 为CD 的中点,12AE CD =.(1)证明:PC AD ⊥;(2)若三角形AED 为等边三角形,PA =AD =6,F 为PB 上一点,且13PF PB =,求直线EF 与平面PAE 所成角的正弦值.【方法技巧与总结】设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.【变式训练】1.(2022·广东惠州·一模)如图1所示,梯形ABCD 中,AB=BC=CD=2,AD=4,E 为AD 的中点,连结BE ,AC 交于F ,将△ABE 沿BE 折叠,使得平面ABE ⊥平面BCDE (如图2).(1)求证:AF ⊥CD ;(2)求平面AFC 与平面ADE 的夹角的余弦值.2.(2022·广东广州·一模)如图,在五面体ABCDE 中,AD ⊥平面ABC ,//AD BE ,2AD BE =,AB BC =.(1)求证:平面CDE ⊥平面ACD ;(2)若AB =2AC =,五面体ABCDE ,求直线CE 与平面ABED 所成角的正弦值.3.(2022·广东汕头·一模)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =,ABC 是底面的内接正三角形,且6DO =,P 是线段DO 上一点.(1)是否存在点P ,使得PA ⊥平面PBC ,若存在,求出PO 的值;若不存在,请说明理由;(2)当PO 为何值时,直线EP 与面PBC 所成的角的正弦值最大.考点二:二面角【典例例题】例1.(2021·广东佛山·一模)某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==,将包装纸各三角形沿菱形的边进行翻折后,点E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --的正弦值为14,试求PC 与平面PAT 所成角的正弦值.【方法技巧与总结】设12, n n 是二面角--l αβ的两个半平面的法向量,其方向一个指向二面角内侧,另一个指向二面角的外侧,则二面角--l αβ的余弦值为1212n n |n ||n |⋅⋅ .【变式训练】1.(2022·广东·一模)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若2AB BC ==,当三棱锥B DEF -的体积最大时,求二面角B DF E --的余弦值.2.(2022·广东湛江·一模)如图,在三棱柱111ABC A B C -中,平面ABC ⊥平面11ACC A ,90ABC ∠= ,AB BC =,四边形11ACC A 是菱形,160A AC ∠=,O 是AC 的中点.(1)证明:BC ⊥平面11B OA ;(2)求二面角11A OB C --的余弦值.3.(2022·广东深圳·一模)如图,在四棱锥E -ABCD 中,//AB CD ,12AD CD BC AB ===,E 在以AB 为直径的半圆上(不包括端点),平面ABE ⊥平面ABCD ,M ,N 分别为DE ,BC 的中点.(1)求证://MN 平面ABE ;(2)当四棱锥E -ABCD 体积最大时,求二面角N -AE -B 的余弦值.4.(2022·广东广东·一模)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形,//AB DC ,2BC CD AD ===,4AB =,M ,N 分别是AB ,AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C AB P --的大小为60°,求四棱锥P ABCD -的体积.5.(2022·广东韶关·一模)如图,在四棱锥M ABCD -中,底面ABCD 是直角梯形,AB ∥,90C D A D C ∠= ,MBC 是以BC 为斜边的等腰直角三角形,E 为AB 中点,222AB AD D C M E ====.(1)求证:BC ME ⊥;(2)点P 为棱AM 上一点,若12AP AM =,求二面角P BD A --的余弦值.6.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,且PA ⊥底面ABCD ,2,4,60AB PA BC ABC ===∠=︒,点E 是线段BC (包括端点)上的动点.(1)探究点E 位于何处时,平面PAE ⊥平面PED ;(2)设二面角P ED A --的平面角的大小为α,直线AD 与平面PED 所成角为β,求证:π2αβ+=考点三:点到平面距离【典例例题】例1.(2022·广东中山·高三期末)已知圆锥AO 的底面半径为2,母线长为,点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=.(1)求三棱锥D OCB -的表面积;(2)求A 到平面OCD 的距离.例2.在正方体1111ABCD A B C D -中,E 为11A D 的中点,过1AB E 的平面截此正方体,得如图所示的多面体,F 为棱1CC 上的动点.(1)点H 在棱BC 上,当14CH CB =时,//FH 平面1AEB ,试确定动点F 在棱1CC 上的位置,并说明理由;(2)若2AB =,求点D 到平面AEF 的最大距离.【方法技巧与总结】如图所示,平面α的法向量为n ,点Q 是平面α内一点,点P 是平面α外的任意一点,则点P 到平面α的距离d ,就等于向量 PQ 在法向量n 方向上的投影的绝对值,即|||cos ,|==<> d PQ PQ n 或||=||||⋅⋅ PQ n d PQ n 【变式训练】1.(2022·广东梅州·二模)如图①,在直角梯形ABCD 中,AB AD ⊥,AB DC ∥,2AB =,4AD CD ==,E 、F 分别是AD ,BC 的中点,将四边形ABFE 沿EF 折起,如图②,连结AD ,BC ,AC .(1)求证:EF AD ⊥;(2)当翻折至AC =时,设Q 是EF 的中点,P 是线段AC 上的动点,求线段PQ 长的最小值.2.如图,在三棱柱111ABC A B C -中,ABC 为等边三角形,四边形11BCC B 是边长为2的正方形,D 为AB 中点,且1A D =.(1)求证:CD ⊥平面11ABB A ;(2)若点P 在线段1BC 上,且直线AP 与平面1ACD ,求点P 到平面1ACD 的距离.3.如图,矩形ABCD 和梯形ABEF ,,//AF AB EF AB ⊥,平面ABEF ⊥平面ABCD ,且2,1AB AF AD EF ====,过DC 的平面交平面ABEF 于MN .(1)求证:DN 与CM 相交;(2)当M 为BE 中点时,求点E 到平面DCMN 的距离:4.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【巩固练习】一、单选题1.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为()A .3B .3C .2D .22.如图,正方体1111ABCD A B C D -的棱长为a ,E 是棱1DD 的动点,则下列说法正确的()个.①若E 为1DD 的中点,则直线1//B E 平面1A BD②三棱锥11C B CE -的体积为定值313a③E 为1DD 的中点时,直线1B E 与平面11CDD C④过点1B ,C ,E 的截面的面积的范围是22⎤⎥⎣⎦A .1B .2C .3D .4二、多选题2.在空间直角坐标系Oxyz 中,已知点(1,1,1)P ,(1,0,1)A ,(0,1,0)B ,则下列说法正确的是()A .点P 关于yOz 平面对称的点的坐标为(1,1,1)-B .若平面α的法向量(2,2,2)n =- ,则直线//AB 平面αC .若PA ,PB 分别为平面α,β的法向量,则平面α⊥平面βD .点P 到直线AB 3.直三棱柱111ABC A B C -,中,AB AC ⊥,11AB AC AA ===,点D 是线段1BC 上的动点(不含端点),则()A .//AC 平面1A BDB .CD 与1AC 不垂直C .ADC ∠的取值范围为,42ππ⎛⎤ ⎥⎝⎦D .AD DC +三、填空题4.如图,在棱长为2的正方体1111ABCD A B C D -中,点E 为棱CD 的中点,点F 为底面ABCD 内一点,给出下列三个论断:①1A F BE ⊥;②13=A F ;③2ADF ABF S S =△△.以其中的一个论断作为条件,另一个论断作为结论,写出一个正确的命题:___________.5.如图,在正方体1111ABCD A B C D -中,,E F 分别为棱11A B ,BC 的中点,则EF 与平面11A BC 所成角的正弦值为___________.四、解答题6.如图,在三棱柱111ABC A B C -中,11222A C AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.7.如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.8.如图所示,在直四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB CD ∥,2AB CD =,60BAD ∠=︒,四边形11CDD C 是正方形.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明),并在图中将平面1ADB 截该四棱柱所得的截面补充完整;(2)求二面角11B AD A --的余弦值.9.如图,圆锥PO ,ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =60ABC ∠=︒.(1)证明:PA PC ⊥;(2)设点Q 满足OQ OP λ= ,其中()0,1λ∈,且二面角O QB C --的大小为60︒,求λ的值.10.如图,在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,1A C 的中点为O ',四面体111O A B C '-的体积为13,四边形11BCC B 的面积为(1)求O '到平面11BCC B 的距离;(2)设1AB 与1A B 交于点O ,ABC 是以ACB ∠为直角的等腰直角三角形且111AA A B =.求直线1'B O 与平面1A BC 所成角的正弦值.。
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
高二数学空间向量与立体几何
为基点,那么空间中任意一点 P 的位 置就可以用向量 OP 来表示,我们把 向量 OP 称为点 P 的位置向量.
⑵直线
空间中任意一条直线 l 的位置可以由 l 。 A 以及一个定方向确定. 上一个定点 对于直线 l 上的 任一点 P ,存在实数 t
使得
AP t AB
P
或 AP t a
a
⑶平面
c2
(二)例题探析 例1、用向量法证明:一条直线与一个平面内两条相
交直线都垂直,则该直线与此平面垂直。 已知:直线m,n是平面 内的任意两条相交直线, 且 l m, l n.
解:设直线l , m, n的方向向量分别为a, b, c. l m, l n,a b, a b 0. 同理a c 0.
第十三章
《空间向量与立体几何》
立体几何中的向量方法(一)
一、复习目标:1、理解直线的方向向量与平
面的法向量并会求直线的方向向量与平面的法向 量。2、理解和掌握向量共线与共面的判断方法。 3、用向量法会熟练判断和证明线面平行与垂直。
二、重难点:概念与方法的运用 三、教学方法:探析归纳,讲练结合。 四、教学过程 (一)、知识梳理,方法定位 1、点、直线、平面的位置的向量表示 ⑴点 在空间中,我们取一定点 O 作
在空间坐标系中,已知 A(3, 0, 0), B(0, 4, 0) , 求法:
C (0, 0, 2) ,试求平面 ABC 的一个法向量.
⑴设平面的法向量为 n ( x , y , z ) 步骤:
⑵ 找出 (求出 )平面内的两个不共线的向量 的坐标 a ( a1 , b1 , c1 ), b ( a 2 , b2 , c 2 )
⑶根据法向量的定义建立关于 x , y , z 的
立体几何的向量方法-法向量
平面向量可以由其所在平面的法向量和任意一个非零 常数倍数表示。
法向量与空间向量的关系
法向量是空间向量的特殊情况 ,当空间向量垂直于某平面或 空间时,该空间向量即为该平 面或空间的法向量。
法向量与空间向量共面,即它 们在同一平面内。
空间向量可以由其所在平面或 空间的法向量和任意一个非零 常数倍数表示。
80%
几何意义
法向量在几何上表示平面的方向 ,可以用于描述平面内的直线和 平面间的角度关系等。
02
法向量在几何中的应用
平面与平面
法向量的计算
计算两个平面的法向量,可以通 过计算两个平面的点积,然后除 以两向量模的乘积得到。
平面间的角度
两个平面的法向量之间的角度就 是这两个平面间的夹角。
直线与平面
直线方向向量的定义
直线方向向量可以通过两点间的向量差得到,表示直线上的任意两点的向量差 都是这个方向向量。
直线与平面的关系
如果直线的方向向量与平面的法向量平行,那么直线要么在平面上,要么与平 面平行;如果直线的方向向量与平面的法向量垂直,那么直线要么在平面上, 要么与平面相交。
点与平面
点到平面的距离
投影法
总结词
投影法是一种通过将一个向量投影到另一个 向量上,然后取反方向来计算法向量的方法 。
详细描述
投影法是通过将一个向量投影到平面上,然 后取反方向来计算平面的法向量的方法。具 体地,设一个向量$mathbf{a} = (a_1, a_2, a_3)$,将其投影到平面上,得到投影向量
$mathbf{p}$,然后取反方向得到法向量 $mathbf{n}$。具体地,$mathbf{n} = -
法向量与向量积的关系
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面
3.2.1 直线的方向向量及平面的法向量1.用向量表示直线的位置条件直线l上一点A表示直线l方向的向量a(即直线l的□01方向向量)形式在直线l上取AB→=a,那么对于直线l上任意一点P,一定存在实数t使得AP→=□02tAB→作用定位置点A和向量a可以确定直线的位置定点可以具体表示出l上的任意一点(1)通过平面α上的一个定点和两个向量来确定条件平面α内两条□03相交直线的方向向量a,b和交点O形式对于平面α上任意一点P,存在有序实数对(x,y),使得OP→=□04x a+y b(2)通过平面α上的一个定点和法向量来确定平面的法向量□05直线l⊥α,直线l的方向向量,叫做平面α的法向量确定平面位置过点A,以向量a为法向量的平面是完全确定的3.空间中平行、垂直关系的向量表示设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则线线平行l∥m⇔□06a∥b⇔□07a=k b(k∈R)线面平行l∥α⇔□08a⊥u⇔□09a·u=0面面平行α∥β⇔□10u∥v⇔□11u=k v(k∈R)线线垂直 l ⊥m ⇔□12a ⊥b ⇔□13a ·b =0 线面垂直 l ⊥α⇔□14a ∥u ⇔□15a =λu (λ∈R ) 面面垂直 α⊥β⇔□16u ⊥v ⇔□17u ·v =01.判一判(正确的打“√”,错误的打“×”)(1)直线上任意两个不同的点A ,B 表示的向量AB →都可作为该直线的方向向量.( ) (2)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(3)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (4)若两条直线平行,则它们的方向向量的方向相同或相反.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(请把正确的答案写在横线上)(1)若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(2)已知a =(2,-4,-3),b =(1,-2,-4)是平面α内的两个不共线向量.如果n =(1,m ,n )是α的一个法向量,那么m =________,n =________.(3)(教材改编P 104T 2)设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =________.(4)已知直线l 1,l 2的方向向量分别是v 1=(1,2,-2),v 2=(-3,-6,6),则直线l 1,l 2的位置关系为________.答案 (1)(2,4,6) (2)120 (3)4 (4)平行探究1 点的位置向量与直线的方向向量例1 (1)若点A ⎝ ⎛⎭⎪⎫-12,0,12,B ⎝ ⎛⎭⎪⎫12,2,72在直线l 上,则直线l 的一个方向向量为( )A.⎝ ⎛⎭⎪⎫13,23,1B.⎝ ⎛⎭⎪⎫13,1,23C.⎝ ⎛⎭⎪⎫23,13,1D.⎝ ⎛⎭⎪⎫1,23,13(2)已知O 为坐标原点,四面体OABC 的顶点A (0,3,5),B (2,2,0),C (0,5,0),直线BD ∥CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.[解析] (1)AB →=⎝ ⎛⎭⎪⎫12,2,72-⎝ ⎛⎭⎪⎫-12,0,12=(1,2,3),⎝ ⎛⎭⎪⎫13,23,1=13(1,2,3)=13AB →,又因为与AB →共线的非零向量都可以作为直线l 的方向向量.故选A.(2)由题意可设点D 的坐标为(x,0,z ), 则BD →=(x -2,-2,z ),CA →=(0,-2,5).∵BD ∥CA ,∴⎩⎪⎨⎪⎧x -2=0,z =5,∴⎩⎪⎨⎪⎧x =2,z =5,∴点D 的坐标为(2,0,5). [答案] (1)A (2)见解析 拓展提升求点的坐标:可设出对应点的坐标,再利用点与向量的关系,写出对应向量的坐标,利用两向量平行的充要条件解题.【跟踪训练1】 已知点A (2,4,0),B (1,3,3),在直线AB 上有一点Q ,使得AQ →=-2QB →,求点Q 的坐标.解 由题设AQ →=-2QB →,设Q (x ,y ,z ),则(x -2,y -4,z )=-2(1-x,3-y,3-z ),∴⎩⎪⎨⎪⎧x -2=-2(1-x ),y -4=-2(3-y ),z =-2(3-z ),解得⎩⎪⎨⎪⎧x =0,y =2,∴Q (0,2,6).z =6,探究2 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 与平面SBA 的法向量.[解]∵AD ,AB ,AS 是三条两两垂直的线段,∴以A 为原点,分别以AD →,AB →,AS →的方向为x 轴、y 轴、z 轴的正方向建立坐标系,则A (0,0,0),D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ),则n ·DC →=(1,λ,u )·⎝ ⎛⎭⎪⎫12,1,0=12+λ=0,∴λ=-12.n ·DS →=(1,λ,u )·⎝ ⎛⎭⎪⎫-12,0,1=-12+u =0,∴u =12,∴n =⎝⎛⎭⎪⎫1,-12,12. 综上,平面SCD 的一个方向向量为n =⎝⎛⎭⎪⎫1,-12,12,平面SBA 的一个法向量为AD →=⎝ ⎛⎭⎪⎫12,0,0.拓展提升设直线l 的方向向量为u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ⊥α⇔u ∥v ⇔u =k v ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2,其中k ∈R ,平面的法向量的求解方法:①设出平面的一个法向量为n =(x ,y ,z ).②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).③依据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0.④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.【跟踪训练2】 在正方体ABCD -A 1B 1C 1D 1中,求证:DB 1→是平面ACD 1的一个法向量.证明 设正方体的棱长为1,分别以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系,则DB 1→=(1,1,1),AC →=(-1,1,0),AD 1→=(-1,0,1).于是有DB 1→·AC →DB 1→⊥AC →,即DB 1⊥AC . 同理,DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,从而是平面ACD 1的一个法向量. 探究3 利用方向向量、法向量判断线、面 关系例3 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1与l 2的位置关系:①a =(2,3,-1),b =(-6,-9,3); ②a =(5,0,2),b =(0,4,0); ③a =(-2,1,4),b =(6,3,3).(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系: ①u =(1,-1,2),v =⎝ ⎛⎭⎪⎫3,2,-12;②u =(0,3,0),v =(0,-5,0); ③u =(2,-3,4),v =(4,-2,1).(3)设u 是平面α的法向量,a 是直线l 的方向向量(l ⊄α),根据下列条件判断α和l 的位置关系:①u =(2,2,-1),a =(-3,4,2); ②u =(0,2,-3),a =(0,-8,12); ③u =(4,1,5),a =(2,-1,0).[解] (1)①因为a =(2,3,-1),b =(-6,-9,3),所以a =-13b ,所以a ∥b ,所以l 1∥l 2.②因为a =(5,0,2),b =(0,4,0),所以a ·b =0, 所以a ⊥b ,所以l 1⊥l 2.③因为a =(-2,1,4),b =(6,3,3),所以a 与b 不共线,也不垂直,所以l 1与l 2的位置关系是相交或异面.(2)①因为u =(1,-1,2),v =⎝⎛⎭⎪⎫3,2,-12,所以u ·v =3-2-1=0,所以u ⊥v ,所以α⊥β.②因为u =(0,3,0),v =(0,-5,0),所以u =-35v ,所以u ∥v ,所以α∥β.③因为u =(2,-3,4),v =(4,-2,1).所以u 与v 既不共线,也不垂直,所以α,β相交.(3)①因为u =(2,2,-1),a =(-3,4,2),所以u ·a =-6+8-2=0, 所以u ⊥a ,所以直线l 和平面α的位置关系是l ∥α.②因为u =(0,2,-3),a =(0,-8,12),所以u =-14a ,所以u ∥a ,所以l ⊥α.③因为u =(4,1,5),a =(2,-1,0),所以u 和a 不共线也不垂直,所以l 与α斜交. 拓展提升利用向量判断线、面关系的方法(1)两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. (2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.(3)两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.【跟踪训练3】 根据下列条件,判断相应的线、面位置关系: (1)直线l 1,l 2的方向向量分别为a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解 (1)因为a =(1,-3,-1),b =(8,2,2),所以a ·b =8-6-2=0,所以a ⊥b ,所以l 1⊥l 2.(2)因为u =(1,3,0),v =(-3,-9,0),所以v =-3u ,所以v ∥u ,所以α∥β. (3)因为a =(1,-4,-3),u =(2,0,3),所以a ≠k u (k ∈R )且a ·u ≠0,所以a 与u 既不共线也不垂直,即l 与α相交但不垂直.(4)因为a =(3,2,1),u =(-1,2,-1),所以a ·u =-3+4-1=0,所以a ⊥u ,所以l ⊂α或l ∥α.1.空间中一条直线的方向向量有无数个.2.线段中点的向量表达式:对于AP →=tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM →=12(OA →+OB →),这就是线段AB 中点的向量表达式.,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.(1)设n 是平面α的一个法向量,v 是直线l 的方向向量,则v ⊥n 且l 上至少有一点A ∉α,则l ∥α.(2)根据线面平行的判定定理:“如果平面外直线与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明平面外一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.(1)在一个平面内找到两个不共线的向量都与另一个平面的法向量垂直,那么这两个平面平行.(2)利用平面的法向量,证明面面平行,即如果a ⊥平面α,b ⊥平面β,且a ∥b ,那么α∥β.1.若平面α,β的法向量分别为a =⎝ ⎛⎭⎪⎫12,-1,3,b =(-1,2,-6),则( ) A .a ∥β B .α与β相交但不垂直 C .α⊥β D .α∥β或α与β重合 答案 D解析 ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1,平面BCC 1B 1的中心,以点A 为原点,建立如图所示的空间直角坐标系,则直线EF 的方向向量可以是( )A.⎝ ⎛⎭⎪⎫1,0,22B .(1,0,2) C .(-1,0,2) D .(2,0,-2) 答案 D解析 由已知得E (1,1,2),F ⎝ ⎛⎭⎪⎫2,1,22,所以|EF →|=⎝⎛⎭⎪⎫2,1,22-(1,1,2)=⎝⎛⎭⎪⎫1,0,-22,结合选项可知,直线EF 的方向向量可以是(2,0,-2).3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎪⎫33,33,-33 B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝ ⎛⎭⎪⎫-33,-33,-33 答案 D解析 由AB →=(-1,1,0),AC →=(-1,0,1),结合选项,验证知应选D.4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m =________.答案 -8解析 因为直线l ∥α,所以直线l 的方向向量与平面α的法向量垂直,所以(2,m,1)·⎝⎛⎭⎪⎫1,12,2=2+m 2+2=0,解得m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:OB →1是平面PAC 的法向量.证明 建立空间直角坐标系如右图所示,不妨设正方体的棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),∴OB 1→·AC →=-2+2=0,OB 1→·AP →=-2+2=0. ∴OB 1→⊥AC →,OB 1→⊥AP →,即OB 1⊥AC ,OB 1⊥AP . ∵AC ∩AP =A ,∴OB 1⊥平面PAC ,即OB 1→是平面PAC 的法向量.。