湖南省2018年高考对口招生考试数学真题及参考答案教学内容
(完整版)湖南省2012-2018年对口升学考试数学试题

湖南省2012年普通高等学校对口招生考试数学试题时量120分钟 总分:120分、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1. ...................................................................................................................... 设集合 A=(x | x >1},B={ x |0< x <1}, WJ AU B 等丁 ............................... () A.( x | x >0} B.{ x | x 丰 1} C.{ x | x >0 或x 丰 1}D.{ x | x >0且 x 丰 1}2. “ x 3 ” 是” x 2 9 ” 的 ............................................. ()A.充分不必要条件 D.既不充分也不必要条件3. .................................................................................................................... 不等式|2 x -3|>1的解集为 ..................................................... () A.(1,2)B.(- 8,1)U (2,+ 8)C.(- 8,1)D.(2,+ 8)4. ................................................................................ 已知 tan a =-2,贝U ^^~~22a)=cos aA. 4B. 2C. -2 抛掷一枚骰子,朝上的一面的点数大丁 3的概率为A. 1B. 1C.-6326. 若直线x y k 0过加圆x 2 y 2 2x 4y 7 0的圆心,则实数k 的值为........................................................................................................... () A. -1 B. -2 C. 1 D. 2 7. 已知函数f(x) =sinx, ............................................... 若e m =2,则f(m)的值为 () A. sin2B. sineC. sin(ln2)D. ln(sin2)8. 设a ,b,c 为三条直线,a , 6为两个平■面,则下列结论中正确的是• • •() A.若 a ± b, b ± c ,则 a II c B.若 a ?也,b?6, a II b, WJ a // p C.若 a // b, b? a ,则 a //a D.若 aLa, b // a,则 b ± a9. 将5个培训指标全部分配给三所学校,每所学校至少有一个指标,则不同的分配方、填空题(本大题共5个小题,每小题4分,共20分.将答案填在答题卡中对应题号 后机密★启用前B.必要不充分条件C.充分必要条件D. -45. 案有() A. 5种2210.双曲线L J916B. 6种C. 10 种 1的一个焦点到其渐近线的距离为A, 16 B. 9 C. 4D. 12 种 .............. ()D. 3的横线上)11. 已知向量a =(1,-1), b=(2,y).若a // b ,则y= .12. 某校高一年级有男生480人,女生360人,若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为.13. 已知球的体积为七,则其表面积为^314. (x+ M)9的二项式展开式中的常数项为.( 用数字作答)x15. 函数f(x)=4 x-2x+1的值域为.三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤))16. (本小题满分8分)已知函数f(x)=lg(1 - x2).(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性,并说明理由.17. (本小题满分10分)uuu uuu已知a, b是不共线的两个向量.设AB =2a+b , BC =- a-2b .uuur uuu uuu(1)用a, b 表示AC ;(2)若|a|=|b|=1,< a , b >=60o,求AB BC .18. (本小题满分10分)设( a n}是首项a〔=2,公差不为0的等差数歹U ,且a〔, a3, a、成等比数歹U ,(1) 求数列{a n}的通项公式;(2) 若数列{b n}为等比数列,且bi =a〔, a2 = b3,求数列{b n}的前n项和S n.19. (本小题满分10分)某射手每次射击命中目标的概率为2,且各次射击的结果互不影响.假设3该射手射击3次,每次命中目标得2分,未命中目标得-1分.记X为该射手射击3 次的总得分数.求(1) X的分布列;(2) 该射手射击3次的总得分数大丁0的概率.20. (本小题满分10分)x2 V2 6 4 , 一,已知点A 2,0是椭圆C:-y & 1(a b 0)的一个顶点,点B(—,—)在C上. a2 b2 5 5(1) 求C的方程;(2) 设直线l与AB平行,且l与C相交丁P,Q两点.若AP垂直AQ,求直线l的方程.四、选做题(注意:第21题(工科类),22题(财经,商贸与服务类)为选做题,请考生选择其中一题作答.)21. (本小题满分12分)已知函数 f (x) sin x , 3 cos x⑴ 将函数V f ( x)(0 3)图象上所有点向右平■移;个单位长度,得到函数g(x)的图象,若g(x)的图象经过坐标原点,求①的值.⑵ 在/\ ABCfr,角A,B,C 所对的边分别为a,b,c,若 f (A) V3 , a =2, b+c=3,求/\ ABC的面积.湖南省2013年普通高等学校对口招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.已知集合A= {3,4,5 } , B= {4,5,6 },贝U A B 等丁A. (3,4,5,6} B{4,5} C. {3,6} D .2.凶数y=x2在其定义域内是A.增函数 B .减函数C.奇函数D.偶函数3. “x=2” 是“(x-1 )A.充分不必要条件(x-2 ) =0” 的B.必要/、充分条件C.充分必要条件D.既小充分乂不必要条件4.已知点A (m^ -1 )关丁y轴的对称点为1B (3, n),则m n的值分别为A. m=3 n=-1B.m=3 n=1C.m=-3, n=-1D.m=-3, n=15.圆(x+2) 2+ (y-1 )2=9的圆心到直线3x+4y-5=0的距离为A. -B.3C.3D.15__ 4 一6.已知sin = —,且5是第二象限的角,则tan 的值为5 A 34 八43A. —B C D. —43347.不等式x2-2x-3>0的解集为A. (-3 , 1)B.(-,-3) U (1, +)C. (-1 , 3)D.(-,-1) U (3, +)8.在100件产品中有3件次品,其余的为正品。
湖南省2018年普通高等学校对口招生考试数学试卷与答案

湖南省 2018 年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共 4 页。
时量 120 分钟。
满分120 分一. 选择题(本大题共 10 小题,每小题 4 分,共 40 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合 A={1,2,3,4} , B={3,4,5,6} ,则 ( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6} 2. “ x 2 9 是 x 3的( ) 条件A. 充分必要B. 必要不充分C. 充分不必要D.既不充分也不必要3. 函数 y x 22 x 的单调增区间是 ( )A. (,1] B. [1, )C. ( , 2]D.[0, )4. 已知 cos3 ,且 为第三象限角,则 tan =( )A.45334B.C. D.3 4435. 不等式 | 2 x 1| 1的解集是 ()A. { x | x 0}B.{x | x 1}C.{ x | 0 x 1} D. { x | x 0 或 x 1}6. 点 M 在直线 3x+4y-12=0 上, O 为坐标原点,则线段 OM 长度的最小值是 ()A.3B.4C.12D.122557. 已知向量 a 、 b 满足 | a | 7,| b | 12 , a b 42 , 则向量 a 、 b 的夹角为 ()A.30 °B.60 °C.120° D.150°8. 下列命题中,错误 的是 ( )..A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9.已知 a sin 15 , b sin 100 , c sin 200 , 则 a,b,c 的大小关系为 ( )A. a b cB.a c bC.c b aD.c a b面积的最10. 过点( 1,1 )的直线与圆x 224相交于A,B 两点,O 为坐标原点,则△大值为 ()yOABA.2B.4C.3D. 2 3二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11. 某学校有 900 名学生,其中女生 400 名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为 45 的样本,则应抽取男生的人数为 ______。
最新湖南省高考对口招生考试数学真题

湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c <<10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( ) A. 2 B. 4 C. 3 D. 23 二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .6)1(+x 13.的展开式5x 的系中数为 (用数字作答)14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x+b y ,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a}为等差数列,1a=1,3a=5,(Ⅰ)求数列{n a}的通项公式;(Ⅱ)设数列{n a}的前n项和为n S . 若n S=100,求n.17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ表示取出饮料中不合格的瓶数.求(Ⅰ)随机变量ξ的分布列;(Ⅱ)检测出有不合格饮料的概率.18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域;(Ⅱ)若1)(<m f ,求m 的取值范围19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D 为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A (0,1)在椭圆C 上. (I)(II) 求椭圆C 的方程; (III)(Ⅱ)直线l 过点1F 且与1AF 垂直,l 与椭圆C 相交于M ,N 两点,求MN 的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD 中,6==CD BC ,4=AB ,=∠BCD 120°,=∠ABC 75°,求四边形ABCD 的面积.22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?。
湖南2018年高考对口招生测验数学真题及参考答案

湖南2018年高考对口招生测验数学真题及参考答案————————————————————————————————作者:————————————————————————————————日期:湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=•b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .13.6)1(+x 的展开式中5x 的系数为 (用数字作答)14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n . 17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D 为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A (0,1)在椭圆C 上.(I)求椭圆C的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,∠BCD120°,BC,4=6=CD=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?甲乙原料限额A(吨) 1 2 8B(吨) 3 2 12参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15.321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:ξ12P52158151(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21= ∴21sin 11==∠B A BD D BA∴ 301=∠D BA即直线1BA与平面C C AA 11所成的角是 30. 20. 解:(Ⅰ)∵椭圆:C 12222=+b y a x (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c 又点A (0,1)在椭圆C 上∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直 ∴直线l 的斜率是1-=k直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN 即MN 的长是234 21. 解:如图,连结BD在BCD ∆中,6==CD BC , =∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S=ABD BD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21=45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯=6639+ 22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC作直线x y 54-=及其平行线l :554z x y +-=,直线l 表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。
最新湖南省高考对口招生考试数学真题及参考答案

湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .6)1(+x 13.的展开式中5x 的系数为 (用数字作答) 14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n .17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A(0,1)在椭圆C 上. (I) 求椭圆C 的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,=CD∠BCD120°,BC,4=6=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15. 321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21=∴21sin 11==∠B A BD D BA∴301=∠D BA即直线1BA与平面C C AA 11所成的角是30. 20. 解:(Ⅰ)∵椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c又点A (0,1)在椭圆C 上 ∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直∴直线l 的斜率是1-=k直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x 344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN即MN 的长是23421. 解:如图,连结BD在BCD ∆中,6==CD BC ,=∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S =ABD BD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21 =45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯ =6639+22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC 作直线x y 54-=及其平行线l :554z x y +-=,直线l表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。
最新湖南2018年高考对口招生考试数学真题资料

精品文档湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A∩B=()A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}23x?9x?)”的( 2. “”是“必要不充分条件A.充分必要条件 B. 既不充分也不必要条件C.充分不必要条件D.2xx2?y?函数3.)的单调增区间是(∞∞,2] D.[0,+)) C.(-A.(-∞,1] B. [1,+∞3??cos???)4.已知=( , 且,为第三象限角则tan54433?? C. A. B. D.44331??2x1的解集是(不等式)5.1|?x|x0xx?} A.{} B.{1xx|??x0或1?0x|x?}} D.{C.{精品文档.精品文档0?y?123x?4OMO M长度的在直线为坐标原点,上,则线段点6. )最小值是(1212 A. 3 B. 4 C. D. 525????????12b?7a?b?42ba?b?aa的夹,,,7.已知向量则向量,满足, )角为(?30 D. 150°° C. 120A. ° B. 60 )错误下列命题中,的是( 8...平行于同一个平面的两个平面平行A. 平行于同一条直线的两个平面平行B.交线平行C. 一个平面与两个平行平面相交, 则必与另一个相交D. 一条直线与两个平行平面中的一个相交,c,b,a?200c?sinsina?sin15?b?100?的大小关系为,,则,9.已知)(b?ac?abca?c?c?b?ba?? A. B. D. C. 224?y?xO BA为坐标原,10.过点(1,1)的直线与圆相交于,两点OAB?)面积的最大值为(点,则33A. 2 B. 4 C. D. 2二、填空题(本大题共5小题,每小题4分,共20分)精品文档.精品文档11.某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .f(x)?cosx?bbb= .则12.函)的部分图像如图所示(,为常数6)?1(x13.展开式的5x的系中数为用数()字作答??????bybacaxc则,且=14.已知向量=(1,2),+=(3,4),=(11,16),??yx .再将这个正方形各边的中点相连,画一个边长为4的正方形,15.如图个则第.10个正方形这样一共画了依次类推个正方形得到第2,,10 .正方形的面积为精品文档.精品文档60满分22,小题为选做题.本大题共7小题,其中第21(三、解答题解答应写出文字说明、证明过程或演算步骤)分,)分16.(本小题满分10aaa,}为等差数列,=5=1,已知数列{31n a }的通项公式;(Ⅰ)求数列{n SaS nn. 若{}的前=100项和为,求 . (Ⅱ)设数列nnn分)17.(本小题满分10 .用,从中随机抽取2瓶检测瓶不合格6某种饮料共瓶,其中有2?求表示取出饮料中不合格的瓶数. 随机变量)的分布列;(Ⅰ?. 检测出有不合格饮料的概率(Ⅱ))分本小题满分18.(10精品文档.精品文档f(x)?log(x?3)(a?0,且a?1)的图像过点(5,1) 已知函数a f(x)f(x)的定义域;的解析式,并写出Ⅰ)求 (f(m)?1m的取值范围若,求(Ⅱ)19.(本小题满分10分)ABC?ABCAAAA?AB?BCABC,,在三棱柱中,,⊥底面如图11111?ABC?AC D的中点,.为90°AACC BD;(I)证明: ⊥平面11BAAACC所成的角. (Ⅱ)求直线与平面111精品文档.精品文档20.(本小题满分10分)22yx?1?FF0?a?b:C(1,0),(已知椭圆(-1,0))的焦点为、2122ba A(0,1)在椭圆C点上.C的方程; (I)求椭圆FAFCll M,且与与椭圆垂直,(II)(Ⅱ)直线过点相交于11NMN的长求.两点,选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)ABCDBC?CD?6?BCD?4AB?120°,,,如图在四边形中,,?ABC?ABCD的面积.,75°求四边形精品文档.精品文档22.)10分(本小题满分23.BA吨已知生产1两种原料某公司生产甲、乙两种产品均需用.,吨1每种产品所需原料及每天原料的可用限额如表所示.如果生产该公问:.生产1吨乙产品可获利润5万元4甲产品可获利润万元,?,才能使公司每天获得的利润最大司如何规划生产精品文档.。
2018对口升学高考数学

2018年普通专业对口高考题一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1. 下列关系式中,正确的是( )A. A ∩∅= AB.A ∩A C U =∅C. A ∩B ⊇AD. A ∩B ⊇B2. 若0<x<1,则下列式子中,正确的是( )A.3x >2x >xB.x>2x >3xC.2x >3x >xD.x>3x >2x3. 已知函数 ƒ(x)为奇函数, 且当x>0时, ƒ(x)=2x +x1, 则 ƒ(-1)的值为( )A. 1B. 0C. 2D. -24. 函数 ƒ(x)=3x 12-10++的定义域是( )A. (-3,0]B. (-3,1]C. (-3,0)D. (-3,1)5. 已如α是第二象限角,135sin =α,则αcos 的值为( )A. -1312B. -135C. 1312D. 1356. 设首项为1,公比为32的等比数列}{n α的前n 项和为n S ,则( )A. n S =2n a -1B. n S =3n a -2C. n S =4-3n aD. n S =3-2n a 7.下列命题中,错误的是A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一平面的两个平面平行.C.若两个平面平行,则位于这两个平面内的直线也互相平行.D.若两个平面平行。
则其中一个平面内的直线平行于另一个平面. 8.下列命题中,正确的是:A.若|a|=|b|,则a=b .B.若a=b ,则a 与b 是平行向量. C .若|a|>|b|,则a>b. D.若a ≠b ,则向量a 与b 不共线. 9.下列事件是必然事件的是:A.第一枚硬币,出现正面向上.B.若X ∈R 则X ²≥0.C.买一张奖券,中奖.D.检验一只灯泡合格. 10.(1+ax)(x+1)5的展开式中含X ²项的系数为5,则a 的值为 A.-4 B.-3 C.-2 D.-1 二、填空题11.已知集合M={0,1,3,4},N={x ∈R|0<x<2},则M ∩N=___. 12,已知22121=+-aa ,则=+-22a a =_____.13.若A 是△ABC的一个内角,且21cos =A 则A 2sin =____.14.设等差数列{}的前n 项和为n s ,若21-=-m s ,=0,=3,则公差d=______.15.抛物线241x y =的焦点坐标是_____.16.椭圆2x ²+3y ²-12=0的高心率为_____. 17.若向量a=(-2,1),b=(1.3),c=a+2b,则c=______18.掷两颗质地均匀的骰子,则点数之和为5的概率是_____. 三、计算题(每小题8分,共24分)19.若一元一次不等式+2x+a+1<0无解,求实数a 的取值范围。
(完整版)湖南省2012-2018年对口升学考试数学试题

机密 ★ 启用前湖南省2012年普通高等学校对口招生考试数学试题时量120分钟 总分:120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x |x >1},B={x |0<x <1},则A ∪B 等于 ·········· ( )A.{ x |x >0}B.{ x |x ≠1}C.{ x |x >0或x ≠1}D.{ x |x >0且x ≠1}2.“3x >”是” 29x >”的 ···················· ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.不等式|2x -3|>1的解集为 ···················· ( )A.(1,2)B.(−∞,1)∪(2,+∞)C.(−∞,1)D.(2,+∞)4.已知tan a =−2,则aa 2cos )2sin(+π= ·················· ( ) A. 4 B. 2 C. -2 D. -45. 抛掷一枚骰子,朝上的一面的点数大于3的概率为 ········· ( ) A. 61 B. 31 C. 21 D. 32 6. 若直线0x y k +-=过加圆222470x y x y +-+-=的圆心,则实数k 的值为······························· ( )A. -1B. -2C. 1D. 27. 已知函数f(x) =sinx,若e m =2,则f(m)的值为 ··········· ( )A. sin2B. sineC. sin(ln2)D. ln(sin2)8. 设a ,b ,c 为三条直线,α,β为两个平面,则下列结论中正确的是 ··· ( )A. 若a ⊥b ,b ⊥c ,则a ∥cB. 若a ⊂α,b ⊂β, a ∥b ,则α∥βC. 若a ∥b ,b ⊂α,则a ∥αD. 若a ⊥α, b ∥a ,则b ⊥α9. 将5个培训指标全部分配给三所学校,每所学校至少有一个指标,则不同的分配方案有( )A. 5种B. 6种C. 10种D. 12种10. 双曲线116922=-y x 的一个焦点到其渐近线的距离为 ········ ( ) A, 16 B. 9 C. 4 D. 3二、填空题(本大题共5个小题,每小题4分,共20分.将答案填在答题卡中对应题号后的横线上)11. 已知向量a =(1,−1), b =(2,y).若a ∥b , 则y= .12. 某校高一年级有男生480人,女生360人,若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为 .13. 已知球的体积为34 ,则其表面积为 . 14. (x+21x)9的二项式展开式中的常数项为 .(用数字作答) 15. 函数f(x)=4x −2x+1的值域为 .三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤))16. (本小题满分8分)已知函数f(x)=lg(1−x 2).(1) 求函数f(x)的定义域;(2) 判断f(x)的奇偶性,并说明理由.17. (本小题满分10分)已知a ,b 是不共线的两个向量.设AB =2a +b ,BC =-a -2b .(1)用a ,b 表示AC ;(2)若|a |=|b |=1,< a ,b >=60,求AB BC .18. (本小题满分10分)设{n a }是首项1a =2,公差不为0的等差数列,且1a ,3a ,11a 成等比数列,(1) 求数列{n a }的通项公式;(2) 若数列{n b }为等比数列,且1b =1a ,2a =3b ,求数列{n b }的前n 项和n s .19. (本小题满分10分) 某射手每次射击命中目标的概率为23,且各次射击的结果互不影响.假设该射手射击3次,每次命中目标得2分,未命中目标得-1分.记X 为该射手射击3次的总得分数.求(1) X 的分布列;(2) 该射手射击3次的总得分数大于0的概率.20. (本小题满分10分)()2222642,0:1(0),(.55x y A C a b B C a b +=>>已知点是椭圆的一个顶点点,)在上 (1) 求C 的方程;(2) 设直线l 与AB 平行,且l 与C 相交于P,Q 两点.若AP 垂直AQ,求直线l 的方程.四、选做题(注意:第21题(工科类),22题(财经,商贸与服务类)为选做题,请考生选择其中一题作答.)21. (本小题满分12分)已知函数()sin f x x x =(1) 将函数()(03)y f x ωω=<<图象上所有点向右平移6π个单位长度,得到函数g(x)的图象,若g(x)的图象经过坐标原点,求ω的值.(2) 在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,若()f A =a =2, b +c =3,求△ABC 的面积.湖南省2013年普通高等学校对口招生考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.已知集合A={3,4,5},B={4,5,6},则A ⋂B 等于A .{3,4,5,6}B .{4,5}C .{3,6}D .Φ2.函数y=x 2在其定义域内是A .增函数B .减函数C .奇函数D .偶函数3. “x=2”是“(x-1)(x-2)=0”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.已知点A (m ,-1)关于y 轴的对称点为B (3,n ),则m ,n 的值分别为A .m=3,n=-1B .m=3,n=1C .m=-3,n=-1D .m=-3,n=15. 圆(x+2)2+(y-1)2=9的圆心到直线3x+4y-5=0的距离为A .57 B .53 C .3 D .1 6.已知sin α=54,且α是第二象限的角,则tan α的值为 A . 43- B .34- C .34 D .43 7.不等式x 2-2x-3>0的解集为A .(-3,1)B .(-∞,-3)∪(1,+∞)C .(-1,3)D .(-∞,-1)∪(3,+∞)8.在100件产品中有3件次品,其余的为正品。
(完整版)2018对口高考数学试卷及答案(可编辑修改word版)

江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。
湖南省2018年高考对口招生考试数学真题及参考答案

湖南省2018年高考对口(duìkǒu)招生考试数学真题及参考答案湖南省2018年高考对口招生(zhāo shēng)考试数学真题及参考答案湖南省2018年普通(pǔtōng)高等学校对口招生考试数学(shùxué)本试题卷包括选择题、填空题和解(héjiě)答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的)1.已知集合(jíhé)A={1,2,3,4},B={3,4,5,6},则A∩B=()A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2. “”是“”的()A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.函数的单调增区间是()A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知, 且为第三象限角,则tan =()A. B. C. D.5.不等式的解集是()A.{}B.{}C.{}D.{} 6.点在直线(zhíxiàn)上,为坐标(zuòbiāo)原点,则线段长度(chángdù)的最小值是( )A. 3B. 4C.D.7.已知向量(xiàngliàng),满足(m ǎnzú),,,则向量a ,b的夹角为( )A.B. 60°C. 120°D. 150°8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知,,,则的大小关系为( ) A.B.C.D.10.过点(1,1)的直线与圆相交于,两点,O 为坐标原点,则面积的最大值为( ) A. 2 B. 4 C.D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中(qízhōng)女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 . 12. 函(为常数)的部分(bù fen)图像如图所示,则b = .13.的展开式中的系数(xìshù)为 (用数字(shùzì)作答)14.已知向量(xiàngliàng)a =(1,2),b =(3,4),=(11,16),且c =+,则.15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分) 已知数列(shùliè){}为等差数列(d ěn ɡ ch ā shù liè),=1,=5,(Ⅰ)求数列(shùliè){n a }的通项公式(g ōngshì); (Ⅱ)设数列(shùliè){n a }的前项和为. 若n S =100,求n .17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量 的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分) 已知函数的图像过点(5,1)(Ⅰ)求的解析式,并写出)(x f 的定义域;(Ⅱ)若,求的取值范围19.(本小题满分10分) 如图,在三棱柱中,⊥底面,,90°,为的中点.(I)证明:⊥平面;(Ⅱ)求直线(zhíxiàn)与平面(píngmiàn)C C AA 11所成的角.20.(本小题满分(mǎn fēn)10分)已知椭圆(tuǒyuán)()的焦点(jiāodiǎn)为(-1,0)、(1,0),点A(0,1)在椭圆C上.(I)求椭圆的方程;(II)(Ⅱ)直线过点1F且与垂直,l与椭圆C相交于M,两点,求的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形中,,,120°,=∠ABC75°,求四边形ABCD的面积.22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?甲乙原料限额A(吨)128B(吨)3212参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15.三、解答(ji ědá)题16.解: (Ⅰ)数列(shùliè){n a }为等差数列(d ěn ɡ ch ā shù liè),1a =1,3a =5公差(g ōngch ā)d=故(Ⅱ)∵等差数列(d ěn ɡ ch ā shù liè){n a }的前n 项和为n S ,n S =100∴∴17.解:(Ⅰ)ξ的可能(k ěnéng)取值有0,1,2P ()= P ()=P ()=故随机变量(suí jī biàn liànɡ)ξ的分布(f ēnbù)列是:ξ0 1 2 P(Ⅱ)设事件(shìjiàn)A 表示检测出的全是合格饮料,则表示有不合格饮料检测出的全是全格饮料的概率52260224=⋅C C C故检测出有不合格饮料的概率18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1)∴∴有意义(yìyì),则∴函数(hánshù))3(log )(2-=x x f 的定义域是(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴∴∴又)3(log )(2-=x x f 的定义域是),3(+∞,即∴m 的取值范围(fànwéi)是(3,5)19.(Ⅰ)证明(zhèngmíng):∵在三棱柱(léngzhù)111C B A ABC -中,1AA ⊥底面ABC ∴⊥BD又,=∠ABC 90°,D 为AC 的中点.∴BD ⊥AC而∴ BD ⊥平面(píngmiàn)C C AA 11(Ⅱ)由(Ⅰ)可知(k ě zh ī):BD ⊥平面(píngmiàn)C C AA 11连结(lián jié),则是直线(zhíxiàn)1BA与平面C C AA 11所成的角在中,,∴∴即直线1BA与平面C C AA 11所成的角是. 20. 解:(Ⅰ)∵椭圆:C 12222=+b y a x (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴又点A (0,1)在椭圆C 上∴∴∴椭圆C 的方程是(Ⅱ)直线(zhíxiàn)1AF 的斜率(xiélǜ)而直线l 过点1F 且与1AF 垂直(chuízhí) ∴直线(zhíxiàn)l 的斜率(xiélǜ)是直线l 的方程是由 消去得: 设,,则 ,即MN 的长是21. 解:如图,连结BD 在中,6==CD BC ,=∠BCD 120°,由余弦定理得:四边形ABCD的面积(miàn jī)=====22.解:设公司每天生产(shēngchǎn)甲产品吨,乙产品(chǎnpǐn)y吨,才能(cáinéng)使公司获得的利润最大,则,x、y满足(mǎnzú)下列约束条件:作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形作直线(zhíxiàn)及其平行线l:,直线(zhíxiàn)l表示(biǎoshì)斜率为,纵截距为的平行直线系,当它在可行(kěxíng)域内滑动时,由图可知,直线过点A时,取得(qǔdé)最大值,由得∴万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.内容总结(1)湖南省2018年高考对口招生考试数学真题及参考答案。
对口高考试卷数学完整版

对口高考试卷数学 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】湖南省2018年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三部分,共4页。
时量120分钟。
满分120分一. 选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B =A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2.“x 2=9是“x =3”的A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.函数y =x 2−2x 的单调增区间是A.(−∞,1]B.[1,+∞)C.(−∞,2]D.[0,+∞)4.已知cos x =−35,且α为第三象限角,则tan x =A.43B.34C.−34D. −435.不等式|2x −1|>1的解集是A.{x|x <0}B.{x|x >1}C.{x|0<x <1}D.{x|x <0或x >1}6.点M 在直线3x+4y-12=0上,O 为坐标原点,则线段OM 长度的最小值是C.1225D.1257.已知向量a,b满足|x|=7,|x|=12,x?x=−42,则向量a,b的夹角为°°°°8.下列命题中,错误的是A.平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交,交线平行D.一条直线与两个平行平面中的一个相交,则必与另一个相交9.已知a=sin15°,b=sin100°,c=sin200°,则a,b,c的大小关系为<<<<<b<a<a<b10.过点(1,1)的直线与圆x2+x2=4相交于A,B两点,O为坐标原点,则△OAB面积的最大值为C.√3D.2√3二、填空题(本大题共5小题,每小题4分,共20分)11.某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为______。
2018年湖南省对口高中高考数学试卷习题

湖南省2018年一般高等学校正口招生考试数学本试题卷包含选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1、已知会合A{1,2,3,4},B{3,4,5,6},则ABA.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、“x29”是“x3”的A.充足必需条件B.必需不充足条件C.充足不用要条件D.既不充足也不用要条件3、函数y x22x的单一递加区间是A.(,1]B.[1,)C.(,2]D.[0,)4、已知cos3,且为第三象限角,则tanA.45B.334C. D.3443 5、不等式2x11的解集是A.{xx0}B.1} {xxC. D.或{x0x1}{xx0x1}6、点M在直线3x4y120上,O为坐标原点,则线段OM长度的最小值是A.3 C.12 D.122557、已知向量a,b知足a7,b12,ab42,则向量a,b的夹角为°°°°A.8、以下命题中,错误的选项是B.平行于同一个平面的两个平面平行C.平行于同一条直线的两个平面平行D.一个平面与两个平行平面订交,交线平行E.一条直线与两个平行平面中的一个订交,则必与另一个订交9、已知asin15,bsin100,csin200,则a,b,c 的大小关系为A.a b cc bC.b aD.c a bc10、过点(1,1)的直线与圆x 2 y 24订交于A 、B 两点,O 为坐标远点,则ABC 面积的最大值为C. 3D.23二、填空题(本大题共5小题,每题4分,共20分)11、某学校有900名学生,此中女生 400名,按男女比率用分层抽样的方法,从该学校学生中抽取一个容量为 45的样本,则应抽取男生的人数为。
12、函数 f(x)cosxb(b 为常数)的部分图像以下图,则b=。
湖南省对口高考数学试卷精编版

湖南省2018年普通高等学校对口招生考试数 学本试题卷包括选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合=⋂==B A A ,则,{3,4,5,6}B {1,2,3,4}A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、”的”是““392==x x A.充分必要条件 B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3、函数x x y 22-=的单调递增区间是A .]1,(-∞ B.),1[+∞ C.]2,(-∞ D.),0[+∞4、已知,53cos -=α且α为第三象限角,则=αtan A.34 B.43 C.43- D.34- 5、不等式112>-x 的解集是 A.}0{<x x B.}1{>x x C.}10{<<x x D.}10{><x x x 或6、点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是A.3B.4C.2512D.512 7、已知向量b a ,满足,42,12,7-=⋅==b a b a 则向量b a ,的夹角为A .30°B .60° C.120° D.150°8、下列命题中,错误的是A. 平行于同一个平面的两个平面平行B. 平行于同一条直线的两个平面平行C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交9、已知c b a c b a ,,,200sin ,100sin ,15sin 则︒=︒=︒=的大小关系为A .c b a <<B .b c a <<C.a b c <<D.b a c <<10、过点)(1,1的直线与圆422=+y x 相交于A 、B 两点,O 为坐标远点,则ABC ∆面积的最大值为A.2B.4C.3D.32二、填空题(本大题共5小题,每小题4分,共20分)11、某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 。
对口高考试卷计算机

机密启用前湖南省2018年普通高等学校对口招生考试计算机应用类专业综合知识试题本试题卷共六大题,19小题,共19题。
时量150分钟,满分390分。
一、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,本大题共22小题,每小题5分,共110分)1.扩展名为.MP3的文件通常是A.视频文件B.音频文件C.图片文件D.文本文件2.BCD码0010 1001转化为十进制的值是A.29B.33C.37D.413.计算机自诞生以来,无论在性能、价格等方面都发生了巨大的变化,但是______并没有发生多大的改变。
A.耗电量B.体积C.运算速度D.基本工作原理4.操作系统管理用户数据的单位是A.扇区B.磁道C.文件D.文件5.在Windows7操作系统中,显示桌面的组合键是A.“Windows”+“D”B.“Windows”+“P”C.“Windows”+“Tab”D.“Alt”+“Tab”6.下列等式中,正确的是A.1PB=1024TBB.1TB=1024PBC.1GB=1000KBD.1MB=1000GB7.在Word2010的“字体”对话框中,不可设定文字的A.字间距B.字号C.删除线D.行距8.在Excel2010中,公式______可产生[1,100]间的随机整数。
A.=rand()*100+1B.=int(rand()*101)+1C.=int(rand()*101)D.=int(rand()*100)+19.在PowerPoint2010中,从当前幻灯片开始放映幻灯片的快捷键是A.Shift+F3B.Shift+F4C.Shift+F5D.Shift+F610.台式机的组成部件中,通常不在机箱内部的是A.主板B.CPU风扇C.内存条D.鼠标11.下列关于微型计算机主板的说法中,正确的是A.任意一款主板上能安装任意一款CPUB.主板芯片组通常分为南桥芯片和北桥芯片C.主板芯片组通常分为东桥芯片和西桥芯片D.主板上不能集成网卡功能12.下列关于微型计算机部件的说法中,正确的是A.液晶显示器背光类型中,LED比CCFL更省电B.集成显卡的性能一定比独立显卡的性能更好C.任何类型的声卡都不能支持5.1声道D.网卡只能支持100Mb/s的传输速率,不能支持1000Mb/s的传输速率13.下列关于台式机的说法中,正确的是A.机箱是标准件,在任意机箱里能安装任意型号的主板B.普通家用台式机的电源功率通常在1KW到2KW之间C.台式机ATX电源的功率通常是指其峰值功率而非额定功率D.目前ATX2.31版电源输出接口有:主板供电接口、CPU专供电接口、显卡专供电接口、大4pin D型供电接口和5pin SATA设备供电接口等14.Internet的前身是美国的A.PSTNB.ISDNC.DDND.ARPA NET15.比特率是指数字信号的传输速率,它的表示单位是A.apsB.bpsC.cpsD.dps16.TCP协议属于TCP/IP协议分层体系结构中的A.网络接口层B.IP层C.传输层D.应用层17.在DNS域名系统中,“”中的“pc”表示A.主机名B.顶级域名C.二级域名D.三级域名18.在Internet中,FTP协议的主要作用是提供A.电子邮件服务B.文件传输服务C.远程登录D.万维网服务19.在HTML文档中嵌入JavaScript,应该使用的标记是A.<JS></JS>B.<Head></Head>C.<Script></Script>D.<Jscript></Jscript>20.若“int a=12;”,执行“a/=a+8;”后,a的值是A.1B.8C.9D.021.若“int a=5,b;”,执行“b=a>>2;”后,b的值是A.10B.20C.1D.222.若“char a[6]=“abcde”;”,执行“Printf(“%d”,strlen(a));”后,输出结果是A.5B.6C.7D.e二、操作题(本大题共5小题,每空4分,共60分)23.一台计算机的BIOS显示信息如图1所示,请根据图1所示信息回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ρ,b ρ满足7=a ρ,12=b ρ,42-=•b a ρρ,则向量a ρ,b ρ的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = . 6)1(+x 13.的展开式中5x 的系数为 (用数字作答) 14.已知向量a ρ=(1,2),b ρ=(3,4),c ρ=(11,16),且c ρ=a x ρ+b y ρ,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n .17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A(0,1)在椭圆C 上. (I)求椭圆C 的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,∠BCD120°,BC,4=6=CD=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?甲乙原料限额A(吨) 1 2 8B(吨) 3 2 12参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15. 321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA =I 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21= ∴21sin 11==∠B A BD D BA ∴ο301=∠D BA即直线1BA 与平面C C AA 11所成的角是ο30.20. 解:(Ⅰ)∵椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c又点A (0,1)在椭圆C 上 ∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直 ∴直线l 的斜率是1-=k 直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN 即MN 的长是23421. 解:如图,连结BD在BCD ∆中,6==CD BC ,=∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S=ABDBD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21=οο45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯=6639+22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC 作直线x y 54-=及其平行线l :554z x y +-=,直线l 表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。